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Project Summary 

This build project focussed on the development of an autonomous navigation system for a 
prototype Mars rover which was constructed in 2023 at the University of Western Australia 
(UWA). The initial design of the prototype rover incorporated a basic teleoperation (remote 
control) mode for driving, implementing turn on the spot and side driving behaviour. This 
project aimed to extend that functionality by implementing additional steering controllers 
such as Ackermann-like controls and developing autonomous driving capabilities. The 
purpose of the autonomous driving capabilities is to solve a key issue faced by planetary 
rovers, namely the communication delay between earth and the rover which makes 
teleoperation a difficult and delicate operation. Modern planetary rovers all take advantage of 
autonomous navigation systems utilizing a variety of sensors for guidance. This project will 
further demonstrate UWA’s growing capabilities in the areas of autonomous navigation in 
different environments and applications. 

The aim of this project was to develop relevant software for the rover to autonomously 
navigate between two locations on a self-generated map whilst avoiding obstacles. The initial 
map of the area is created through teleoperation of the rover utilizing a simultaneous 
localisation and mapping package (SLAM).  

This build project utilized the open-source Robot Operating System 2 (ROS2) variant called 
Humble Hawksbill as the core communication and control framework. ROS2 provides a 
number of software libraries and tools which allows for easy integration of sensors and 
standardised communication between software packages to implement the necessary control. 
This project predominantly utilizes sensors such as LIDAR, a stereo camera and an inertial 
measurement unit (IMU) which will be used with the ROS2 Navigation 2(Nav2) stack to 
achieve the autonomous navigation functionality. 

The Nav2 stack is an open-source framework developed to support autonomous navigation 
for robotics applications. It consists of a large number of interfaces, plugins, controllers, 
planners and various packages which can be used to assist with autonomous navigation 
objectives. For the stated autonomous navigational goals of the rover, the Nav2 stack 
implementation utilizes visual SLAM, odometry data, LIDAR point clouds, robot transforms, 
various planners, controllers and behaviour servers along with rover specific base controllers 
within the ROS2 Nav2 ecosystem to navigate autonomously between locations. 

The rover has successfully demonstrated autonomous navigation between points in a 
simulation environment and limited autonomous navigation in the physical setup due to both 
hardware and software limitations. 
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1.  Introduction and Literature Review 

1.1. Introduction 

Planetary rovers have been an instrumental part in human exploration efforts on Mars, 

specifically related to the characterization of the climate, geological properties and in the 

search for extra-terrestrial life [1]. Modern advances in computing technologies have allowed 

these exploration efforts to rapidly accelerate as it solves one of the key issues faced by these 

rovers which is communication lag between earth and Mars making teleoperation difficult.  

In particular, advances in computing power allows new planetary rovers to be more 

autonomous which allows them to travel further and faster with less manual intervention. The 

current most advanced rover in terms of autonomous navigation is NASA’s Perseverance 

rover which is shown in Figure 1.1. Perseverance holds the record for the longest distance 

covered during unassisted navigation at 759 meters [2]. 

 

Figure 1.1: NASA's Perseverance Rover in the Jet Propulsion Laboratory [3] 

In 2023, as part of a final year thesis, a proof-of-concept planetary rover consisting of a 6-

wheel rocker-bogie suspension and a solar panel sized chassis has been constructed at the 

University of Western Australia. The design of the planetary rover took inspiration from the 

Perseverance rover, specifically for the wheels and suspension. The design intent behind the 

rover was to demonstrate driving functionality of the rocker-bogie suspension over uneven 

terrain along with basic navigation tasks. The prototype rover as constructed in 2023, is 

showcased in Figure 1.2 below. 
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Figure 1.2: Prototype Planetary Rover [4] 

At the end of 2023, only basic driving functionality of the rover has been implemented using 

a Raspberry Pi 4B as the control system for the rover. The original intent was to incorporate 

additional navigation abilities utilizing a stereo camera in conjunction with wheel encoders 

and a LIDAR sensor, however this was not attempted. Upon the start of this design project, 

the rover consisted of 6 independently adjustable steering servo’s, 6 motors for driving which 

are controlled by 4 channels, along with 6 motor encoders. All 6 wheels can be turned 

independently however, the driving speed of the 6 wheels can only be controlled across 4 

channels, meaning that the speed of all wheels cannot be independently adjusted as some 

wheels share a motor controller channel. 

This project aimed to develop autonomous navigation software of the prototype rover for 

terrains similar to the Martian surface. The rover had major limitations in regard to its drive 

train, and as such, testing and developing of the autonomous driving software focussed on flat 

and smooth surfaces. This project’s main focus was to demonstrate a real-world application 

of this autonomous navigation between points on a map however, a simulation environment 

was also be set up in order to test and demonstrate the proposed functionality of the 

developed code due to significant issues with reliability related to the prototype rover’s 

drivetrain. A detailed description of the objectives of this project is given in section 1.3. This 

project aimed to further showcase UWA’s capabilities in autonomous driving albeit in a 

different planetary environment, which could open new areas of research and funding for 

UWA.  
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1.2. Literature Review 

The section will focus on common tools, software packages and libraries that are used in 

robotics applications related to autonomous navigation specifically focussing on the Robot 

Operating System 2 and the Navigation 2 stack along with its associated components. Early 

research indicated that the Navigation 2 stack was likely to be the only feasible 

implementation of the autonomous navigation system without expanding the intended scope 

multiple times over. 

1.2.1. Robot Operating System 2 

Robot Operating System 2 (ROS 2) is an open-source set of software libraries and tools 

available to assist developers with robotics applications. It acts as robotics middleware, which 

maintains platform independence and is especially useful to simplify communication between 

devices in a distributed system [5]. It possesses a number of fundamental concepts, including 

nodes, topics, services and messages each of which serves a different purpose.  

A node is a process which performs some form of computation and can pass the results to 

another node via a message. Messages are strictly typed data structures and nodes can only 

send messages to other nodes via a topic. The messages are received or transmitted by the 

nodes by either publishing or subscribing to a topic. Topics are simply a string value used for 

reference [6]. In addition to this, a ROS service implements a request-response 

communication structure whereby the communication consists of two messages, one for 

requesting the data and the other for receiving [7]. A simple overview of the communication 

between publisher and subscriber nodes via a topic is presented in Figure 1.3 below. Nodes 

can be both publishers and subscribers at the same time and can subscribe or publish to a 

number of different topics simultaneously. 

 

 

 Figure 1.3: Communication between a ROS Publisher and Subscriber Node 
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ROS has a large and active community of loosely affiliated developers and hobbyists 

however the source code is maintained by Open Robotics which makes it an attractive choice 

for robotics applications [8]. In particular, the use of ROS for the Mars Rover project can 

help centralise the communication system of the rover however, running ROS increases the 

overhead on the controller’s processing resources. 

1.2.2. LIDAR 

LIDAR is a commonly used method for measuring distances to objects. It is a remote sensing 

method which utilizes laser light pulses to measure distances from objects [9]. The distance 

measurement is done by measuring the two-way travel time of the emitted laser pulse also 

called the time of flight (ToF). Given that the laser is a form of light, the distance can be 

calculated in a straightforward manner as given in equation 1 below [10], 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ்௢ி×ௌ௣௘௘ௗ ௢௙ ௟௜௚௛௧
ଶ

     (1) 

LIDAR modules can either consist of a single layer laser or multiple layers, with a key trade-

off being increasing cost as the number of layers increase. Costly, three-dimensional LIDAR 

sensors can be used to create high-resolution three-dimensional representations of the 

sensor’s surrounding environment, which can be utilized for many different applications 

including object detection, geospatial mapping, surveying etc. According to Li et al. [11], a 

two-dimensional line-scan LIDAR mounted on a robotic servo can imitate the functionality 

of a much more expensive three-dimensional LIDAR module albeit at a reduced frequency of 

scan and provided that the necessary transforms and control structures are set up. 

1.2.3. Stereo Camera’s 

A stereo camera is a camera which consists of 2 or more image sensors which imitate human 

vision giving it the ability to perceive depth [12]. The basic idea behind a stereo camera is to 

have an offset between the two or more cameras in its physical configuration with the 

cameras pointing in the same direction. This will result in the two images provided by the 

camera’s having an offset between the object of interest in the frame [13]. This offset or 

disparity can then be used to calculate the depth of the object of interest. 

Figure 1.4 below shows the basic idea behind stereo disparity. The image from the left 

camera detects the object of interest towards the right of the frame as shown by the triangle 

and the right camera detects the object of interest towards the left of the frame. As such, a 
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disparity in pixel overlap occurs which is presented in the combined frame of the left and 

right images from which the distance can then be calculated. 

 

 

 

 

 

 

 

 

 

1.2.4. Simultaneous Localisation and Mapping 

Simultaneous Localisation and Mapping (SLAM) is a common method used in the area of 

autonomous navigation to develop a map of a robot’s environment and to establish the robot’s 

pose withing that map. SLAM allows a vehicle to build a map and simultaneously localise the 

vehicle within that map utilizing the robot’s odometry [14]. Localisation of a robot or vehicle 

describes the estimation of the changes in the robot’s position while the vehicle is moving. 

Since the pose of a vehicle cannot be directly measured, it has to be acquired and then 

calculated from sensor data. As such any and all errors in the original sensor data will result 

in the accumulation of errors in the resulting pose which is known as drift [15].  The output 

of a SLAM algorithm generally consists of a point cloud map, either in 2D or 3D. 

Since its introduction, SLAM based approaches have evolved to substantially mitigate the 

effect of cumulative odometry errors resulting in drift. A popular process for correcting these 

errors is called loop closure. Loop closure works by returning to a known point at which the 

SLAM algorithm will recognize overlapping points. This allows the process to calculate any 

drift or tracking errors that could influence the accuracy of the localisation and make the 

necessary adjustments [15], [16]. Typically, these loop closure detection algorithms improve 

localisation by publishing rectified odometry, which in turn corrects the robot’s pose estimate 

[17]. 

Left + Right 

Left 

110 pixels 

Right Image 

Disparity 

Figure 1.4: Stereo Image Disparity Example 
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“Appearance- and pose-based SLAM methods offer a radically new paradigm for mapping 

and location estimation without the need for strong geometric landmark descriptions” [17, p. 

116]. As such SLAM is of central importance to modern day autonomous driving in unknown 

environments, especially in areas with no GPS availability. 

Modern SLAM packages can utilize a variety of sensors such as LIDAR, stereo cameras, 

RGB-Depth cameras and IMU sensors. An IMU sensor is commonly used in combination 

with a camera or LIDAR sensor. Advances in computing technology has allowed SLAM 

packages that uses a combination of LIDAR sensors, stereo or RGB cameras, IMU sensors 

and wheel odometry. 

1.2.5. Visual SLAM 

Visual SLAM(VSLAM) refers to SLAM algorithms which can utilize a variety of different 

cameras as source for pose estimation and depth perception. Common types of cameras 

supported by VSLAM packages include stereo, multi, wide angle, fisheye and time of flight 

cameras (RGB-D) [14]. One of the major drawbacks is that stereo depth perception and hence 

VSLAM can be compute intensive if not hardware accelerated through the use of graphics 

processing units [18]. In addition, VSLAM requires the surrounding environment to consists 

of a number of distinct and discriminative features in order to perform loop closure to 

accurately localise and map the surrounding environment. VSLAM approaches work well in 

areas with a number of obstacles, but localisation and mapping become much harder in 

monotonous and indistinct or repetitive areas [19], [20]. 

1.2.6. Real Time Appearance Based Mapping(RTAB-Map) 

RTAB-Map is open-source library which initially started as an appearance-based loop closure 

detection method, which then grew to implement a graph-based approach to simultaneous 

localization and mapping and is now commonly used in robotics applications [20], [21].   

This SLAM package is particularly useful for robotics applications utilizing a stereo or depth 

camera in ROS2 as it is one of the few packages which can implement VSLAM within 

ROS2. In addition to this, RTAB-Map has the ability to fuse multiple cameras and LIDAR 

sensors in order to generate a more accurate map and implement a more superior form of loop 

closure detection and benefitting from algorithmic effectiveness multimodal SLAM [22], 

[23]. Loop closure is the process of identifying already visited points in order to correct drift 

[24]. Loop closure detection in VSLAM approaches is often far superior to loop closure 
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detection in LIDAR based SLAM approaches in environments with rich visual imagery due 

to the distinct nature of reference points [25]. 

1.2.7. Ros2 Navigation 2 Stack (Nav2) 

The ROS2 Navigation 2 stack is a highly configurable comprehensive framework which is 

designed to enable autonomous navigation of a robot. It consists of a large number of tools, 

libraries and algorithms for robots to navigate their surroundings autonomously whilst 

avoiding obstacles and driving to a goal pose. The Nav2 stack provides perception, control, 

planning, localisation and visualization in order to achieve autonomous navigation [26]. A 

simplified breakdown of the Nav2 stack is given in Figure 1.5 below. 

 

Figure 1.5: Nav2 Stack [27] 

The Nav2 stack uses a number of inputs to allow for path planning and autonomous control 

including but not limited to, 

  Point clouds from either LIDAR or stereo cameras. 

 An initial map provided by a SLAM package. 

 Sensor odometry data such as IMU’s and encoder feedback. 

 Coordinate frame transforms of the robot 

 A customisable behaviour tree. 

 Waypoint goal pose 
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It then uses a behaviour tree decision making structure in order to calculate desired routes and 

hence outputs a command velocity to the robot’s base controller which communicates with 

the physical hardware to drive motors and steering [26]. 

1.2.7.1. Odometry 

Odometry is the utilization of sensor data to estimate the position change over time of an 

object of interest. Accurate estimation with error correction is essential for autonomous 

navigation tasks, including generating a map utilizing SLAM or localising the robot within 

that map [28]. In the Navigation 2 stack, the odometry frame or “odom” frame is associated 

with the robot’s odometry system and can take various sensor inputs including, wheel 

encoders, inertial measurement units, visual inertial odometry and LIDAR odometry. Section 

1.2.7.2, below will discuss the odom frame setup in relation to the rest of the robot. Odometry 

is used to provide a locally accurate estimate of the robot’s pose, however globally accurate 

information is required to correct drift and this will be provided by the map frame [29]. 

1.2.7.2. Transforms and Frames 

In order to set up Nav2 correctly, related packages and software requires a standard 

coordinate frame setup for different components in the robotics system. In Nav2, the standard 

is REP105, which defines the relationship between the earth, map, odom and base_link 

frames, which is required for successful integration. The linking between frames is shown in 

Figure 1.6 below. The top frame is earth and then progresses down to map, odom and then 

base_link. The earth frame is not required for successful setup. The frame links for physical 

components of a robot is attached to the base_link as indicated by the ellipsis in Figure 1.6 

[30]. 

 

Figure 1.6: REP105 Frame Standard 
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A common way of providing the relationship between frames is via a unified robot 

description format (URDF) file which gets converted to joint states through the use of a joint 

state publisher [31].  

1.2.7.3. Planners and controllers 

A major part of the Nav2 integration relates to the setup of various planners and controllers. 

Of particular interest is the configuration of the Planner and Controller server which is used 

to specify which planner and controller plugins to use for handling path planning requests 

along with the method of computation for path planning. The planner and controller servers 

work in conjunction with one another. 

Specifically, the planner server is responsible for developing a global path from the robot’s 

current pose to the specified goal pose utilizing the known environment from the global 

costmap which is used to identify known static obstacles [32]. A number of different 

algorithms can be implemented in the planner server including the NavFn, SMAC and Theta 

Star planner approaches all of which are optimized to plan routes for robots of different 

configurations [33]. The output of the planner server is the global path. 

Subsequently, the controller server takes the global path from the planner server as input and 

then applies the relevant velocity commands to the base controller to ensure the robot follows 

the planned path accurately and smoothly [34]. In addition, the controller server is 

responsible for implementing the local costmap and for avoiding dynamic obstacles. Specific 

controller servers available for use include the DWB, Regulated Pure Pursuit, Model 

Predictive Path Integral (MPPI) and the Rotation Shim controller, all of which is optimised 

for different robot configurations [35]. 

1.2.7.4. Costmaps 

In Nav2, costmaps are developed by utilizing sensor data from the world whereby an 

occupancy grid map is produced based on perceived obstacles in the surrounding 

environment. Costmaps provide information about obstacles and free space as well as the 

intermediary zones which is crucial for path planning along with efficient and safe navigation 

of the robot. In Nav2 the package utilized to implement the costmaps is the 

costmap_2d package [36]. 

True to its name, the costmaps utilize a “cost value” approach to mapping whereby each cell 

of the produced occupancy grid map has a value ranging from 0-255 whereby 0 represents 
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free space and it gradually increases to 255 which represents a fully occupied or lethal 

obstacle [37]. Costmaps can be constructed from a number of layers including the static, 

obstacle, inflation and voxel layers. Each of the layers are responsible for a different aspect of 

costmap generation including aspects like static and dynamic obstacle detection, buffer zone 

generation and 3-dimensional voxel grid information.  

1.2.7.5. Nav2 Complete Overview 

An example output of a typical navigation 2 stack implementation is visualised in Figure 1.7 

below. This figure visualises the global costmap, local costmap, global path and the robot’s 

footprint. Additionally, the robot is fully localised on the map and a LIDAR sensor is 

visualised to show the robots field of view in its current environment. 

 

Figure 1.7: Navigation 2 Stack Example Output(Adapted From Rafal [37]) 

1.3. Project Objectives 

Building upon the mechanical work done by the previous student, the overall goal of this 

project was to develop the autonomous navigation software for the prototype rover whereby 

the rover autonomously traverse terrain between points on a continuously self-generating 

map. Specifically, the rover needed to have the ability to autonomously navigate and traverse 

terrain by avoiding obstacles through accurate obstacle detection, localisation and path 

planning. 

Global Costmap 

Local Costmap 
Robot Footprint 

Global Path 
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The aim for this project was to develop and incorporate the necessary sensors, controllers, 

control structures and software to implement the autonomous navigation as described, such 

that the software is fully self-contained on the rover along with an easy-to-use interface.  

Consideration was given to the prototype rover’s physical limitations when designing and 

developing the driving software as the drivetrain is plagued with mechanical issues, resulting 

in tolerances exceeding the initial design constraints, specifically in relation to the steering 

axis, drive belts and wheel alignment making it difficult to drive.  

The physical inadequacies of the current rover design meant that testing was conducted in 

both a simulation and then limited physical environment. The step-by-step objectives of the 

project is summarised in Table 1.1 below.  

Table 1.1: Key Aims of the Project 

Aim Description 

1 Incorporate the necessary sensors for autonomous navigation 

2 Experiment and develop driving controllers to suit the rover’s physical construction. 

3 Implement teleoperation of the rover along with an easy-to-use user interface 

4 Implement a simultaneous localization and mapping package utilizing visual and/or 

LIDAR based technologies. 

5 Implement an autonomous navigation package and set up the necessary inputs. 

6 Demonstrate functionality of autonomous navigation between two points on a 

teleoperated generated map. 

 

This project will lay the groundwork for continuing development of autonomous navigation 

systems to be utilized in non-standard environments such as off-road or extra-terrestrial 

environments. In recent literature, autonomous navigation has heavily focussed on robots or 

vehicles driving on smooth surfaces due to their applicability to modern transportation. This 

project will demonstrate growing feasibility of adapting autonomous navigation systems for 

approaches to different environments and ultimately demonstrate feasibility of increasingly 

autonomous navigation on extra-terrestrial environments. 
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2. Design Approach 

The first task for the design approach was to develop and define the requirements of the 

system to ensure the system will be feasible for the proposed goal of autonomous navigation 

as described in section 1.3. Based on early research, some key requirements and constraints 

of the proposed autonomous navigation system were identified, and these are listed below in 

section 2.1 to 2.2. Some of the criteria is dependent on the initial decision to implement the 

autonomous navigation system in the ROS2 Nav2 ecosystem due to the lack of viable 

alternatives without significantly expanding the scope of this project. 

2.1. Hardware Requirements/Constraints 

In terms of hardware requirements, the system will need to have the ability to incorporate or 

maintain the following functionality. 

1. Maintain the existing configuration of 6 independently steered wheels (6 steering 

channels and 4 motor speed control channels). 

2. Have the ability to incorporate a LIDAR sensor and stereo camera.  

3. Have the necessary compute capacity to implement SLAM utilizing a stereo camera 

and/or a LIDAR sensor. 

4. Have the ability to run ROS2 Humble with no detrimental effects on performance of 

the controller due to computing power.  

5. Have the ability to incorporate additional hardware such as a robotic arm and/or 

additional LIDAR sensors or stereo cameras for future development. 

6. Remain within budgetary constraints of $500 total. 

2.2. Software Requirements/Constraints 

The software requirements and constraints of the design consists of the following items: 

1. Utilize open-source software. 

2. Incorporate a method to drive the rover using teleoperation. 

3. Dedicated robot base controller(s) which communicates with the motor and servo 

controllers of the rover. 

4. Implement an easy-to-use user interface including a wireless interface for control 

5. Develop a URDF to model the physical characteristics of the rover which provides 

joint states. 
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6. Utilize a 2D LIDAR and/or depth camera to detect obstacles and generate a map via 

SLAM. 

7. Localise the rover within the generated map 

8. Plan a path to a received goal while avoiding obstacles on the developed map. 

9. Autonomously drive the rover to the received goal on the planned path 

2.3. Design Approach 

The design process is divided into hardware and software development phases. Since the 

software development is contingent on hardware selection, the required hardware 

components had to be identified and integrated before software for the physical rover could 

be configured. A simulated environment was set up to assist with development of the 

configuration files and for Nav2. It was also identified that the simulation setup could be used 

as a mitigation against mechanical issues experienced by the physical rover. 

The breakdown of the steps of the project’s design and development is presented in Figure 

2.1 below. The development of the complete system first started with the hardware 

component selection and integration, followed by the development of the hardware/software 

interfaces between controllers and then the autonomous driving and navigation code as well 

as the user interface setup. 

 

Figure 2.1: Overview of Design Steps 

2.4. Relevant Standards 

Key design constraints and standards identified and employed during this project all relates to 

the ROS2 framework. ROS2 utilizes a variety of standards in order for the system to 
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effectively communicate between its nodes, topics and services. For this project, the key 

standards were as follows: 

REP103 - Standard Units of Measure and Coordinate Conventions  

This standard describes the base units for measurable quantities such as length, mass, time, 

current, velocity etc. In addition to this, it also specifies the coordinate frames of commonly 

used topics such as cmd_vel. For example, the cmd_vel topic requires the axis orientation in 

relation to a body to be set up such that [38]: 

o  x represents forwards 

o  y represents left 

o  and z represents upwards. 

The axis tree is shown in Figure 2.2 below and the design will adhere to the base units of 

measure and base directions. 

 

Figure 2.2: Axis Tree of REP103 

REP105 - Coordinate Frames for Mobile Platforms 

This standard is applicable to the coordinate frames and linking of frames and joints of the 

model of the physical rover within ROS2. Key elements from the standard were described in 

section 1.2.7.2 and the key component which is useful for this specific design is the linking of 

the model’s frame from,  

earth->map->odom->base_link->… 

It should be noted that the base_footprint link can also exist in between the odom and 

base_link. Both REP103 and REP105 was identified as being key to ensure correct setup of 

interfaces between different components of the system such that it functions as intended. 
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2.5. Criteria for Evaluation and Experimental Test 

Based on the mentioned requirements and constraints along with the project objectives, the 

successful demonstration of a number of key elements via experimental tests will validate the 

success of this project as presented in Table 2.1 below. 

Table 2.1: Criteria for Evaluation and Experimental Tests 

No Criteria for Evaluation Experimental Test 

1 Teleoperation of the Rover in 

ROS2 

Drive the rover using a wireless joystick on a flat 

surface either indoor or outdoor, demonstrating 

linear and angular motion 

2 Automatic startup of all 

components including the 

controller after a pushbutton 

press. 

Demonstrate the startup of the controller 

including booting to the home screen when the 

power switch is pressed 

3 Implementation of a touchscreen 

user interface for control and 

visualization 

Test the launch application and live visualisation 

on the touchscreen after running the controllers. 

4 A successful SLAM generated 

map of the rover’s environment 

with the rover localised on the 

map. 

Teleoperate the rover whilst running the necessary 

sensor interfaces and SLAM package in both 

simulation and a smooth physical environment. 

The output should be an occupancy grid map and 

a localised rover. 

5 Demonstrated capability of path 

planning avoiding obstacles. 

After a SLAM map has been generated, visualise 

the global path in RViz and send a goal pose 

waypoint to NAV2. The calculated path should 

show in the visualisation and avoid obstacles. 

6 Autonomously navigate between 

two points on a map 

Once a SLAM map with the rover localised has 

been generated and the global path has been 

calculated, observe the commands to the robot 

base controller along with visually confirming the 

rover navigates between points. 
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3. Results 

The results will first cover the final hardware and software design, followed by simulation 

and then physical testing results. Although simulation was not part of the initial scope and 

objectives, it was introduced due to early mechanical failures to allow for safer and easier 

code development and testing. 

3.1. Hardware Design 

The majority of the hardware for this rover, including the LIDAR and Stereo/Depth camera 

were selected before the commencement of the project. The only relevant component 

selection was the central controller, however a brief overview of the critical components are 

provided in section 3.1.1 below. 

3.1.1. Component Selection  

Central Controller 

Based on the design requirements, it was determined that the initial controller setup utilizing 

a Raspberry Pi 4B as the main controller will not have sufficient compute power to run ROS2 

Humble and compute intensive VSLAM without significant drawbacks [18], [39].  To 

eliminate this constraint and ensure future expandability, the Nvidia Jetson AGX Xavier 

development kit, was utilized due to its availability at no cost and increased compute 

capacity. The Jetson boasts 32TeraOps of computing power with an 8 core ARM CPU and a 

512 core Volta GPU and 16GB of RAM, far exceeding the compute power of the Raspberry 

Pi 4B [40].  The controller is shown in Figure 3.1 below. 

 

Figure 3.1: Nvidia Jetson AGX Xavier Development Kit [40] 
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Depth Perception 

Both the LIDAR sensor and stereo camera were preselected for this project and include the 

2D Richbeam Lakibeam 1s LIDAR and the Luxonis Oak-D S2 camera, which is shown in 

Figure 3.2 below. 

 

Figure 3.2: Richbeam Lakibeam 1S Lidar (left) [41], and the Luxonis Oak-D S2 Camera(right) [42] 

The LIDAR sensor has a range of 0-15m at a field of view of 270° and sampling rate of 10-

20Hz [41]. The Oak-D S2 camera has both a 1MP, WXGA stereo camera pair and a 4K 12MP 

RGB Depth(RGB-D) Camera operating at refresh rates of up to 60FPS for the 4K RGB 

sensor and 120FPS for the stereo camera pair. 

The remaining components remain unchanged from the original design and is presented in 

Appendix A. 

3.1.2. Component Layout and Integration 

A simplified layout of the electronic components is presented in Figure 3.3 below. The lines 

represent control connections between modules however, power connections are omitted. 

Some devices receive power over USB from the Jetson, but the majority have dedicated 

power connections which is fed from an onboard fuse box which is supplied by a large 12.8V 

2.5Ah lithium battery. The layout was redesigned to accommodate the addition of the LIDAR 

sensors and stereo camera’s as well as the integration of the Jetson controller. 
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Figure 3.3: Controller and Sensor Integration 

The left and right motor controllers are sharing a single TX line over UART with separate 

channels for each side of the rover. Each motor controller contains 2 PWM output channels 

resulting in a total of 4 linear velocity variables for the 6 wheels of the rover. As such, the 

front and back wheels of the rover on each side, share a channel and the middle wheels have 

their own channel for control. The motor controllers are responsible for the linear velocity of 

the rover. In contrast to this, there are 6 independently controllable servo’s which are used for 

steering. The 6 servos communicate to a single servo controller which in turn communicates 

over USB to the Jetson.  

The Depth Camera communicates over USB and auto negotiates a port. The LIDAR sensor 

connects over ethernet to a USB hub which in turn connects to the Jetson controller via USB. 

A static IP address for the LIDAR is set for it to interface correctly with its driver. The ports 

and software interfaces are discussed in section 3.1.2 below. Both the LIDAR and Oak-D S2 

camera are mounted on the top front of the rover and the exact location is specified within the 

URDF of the rover to ensure the joint states are set up correctly. 

3.1.3. Hardware/Software Interface 

A breakdown of the hardware and software interfaces along with relevant ports for the final 

design is presented in  Table 3.1 below. Some interfaces required permission changes within 

the udev rules of the operating system. 
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Table 3.1: Hardware and Software Interfaces 

 

3.2. Software Design 

The software design is built on the ROS2 Nav2 ecosystem which has been extensively 

explained in section 1.2. This was implemented on the Jetson controller running the Ubuntu 

based Nvidia Jetpack 5.12 operating system. The general design of the autonomous 

navigation software consists of a SLAM package, the Navigation 2 stack, Robot Base 

Controllers, component drivers and various smaller elements to assist with correct setup of 

the Navigation 2 stack 

3.2.1. Autonomous Navigation Software Overview 

The developed autonomous navigation code integrates pre-built packages and drivers with 

the ROS2 Nav2 ecosystem along with developed base controllers and configuration files. The 

design involved configuring correct topics and nodes for input into the Nav2 stack based on 

the sensor configurations and data from the physical rover. The LIDAR and Depth Camera 

outputs are used by linking manufacturer’s ROS2 drivers with the necessary SLAM and 

Nav2 packages. Other sensors and controllers such as the joystick and robot base controllers 

are also set up to interface with Nav2. The robot base controller responsible for the motor and 

servo controllers were developed from scratch for ROS2 compatibility. 

A number of software packages and manufacturer drivers were identified and incorporated 

into the final control structure. The software packages and usage are presented in Table 3.2 

below. 
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Table 3.2: Software packages 

 

A high-level overview of the interconnection of the abovementioned packages and drivers are 

shown in Figure 3.4 below. This simplified diagram showcases the connections between the 

main components of the developed autonomous navigation code within ROS2. A more 

detailed discussion and interconnections and specific packages will be presented for critical 

components. 

 

Figure 3.4: High level Interconnection Between Packages and Drivers 
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3.2.1.1. Robot Base Controller 

The robot base controller drives the rover by sending commands to the wheel motors and 

steering servos. It takes linear and angular command velocities as inputs and implements 

appropriate controls based on the kinematics of the rover. The steering implementation is an 

adapted Ackermann-like, swerve driving controller as indicated in Figure 3.5 below. 

 

Figure 3.5: Ackermann-like Swerve Driving Implementation 

Evidently, the front and back wheel servo’s steer the wheels in opposite directions albeit at 

the same absolute angle to implement the turning behaviour. In addition to this, the outer and 

inner wheels travel at different speeds to implement a velocity differential whilst cornering. 

The speed for the inner and outer wheels during turning are fixed according to the 

relationship presented in equations 2 and 3 below, 

𝑣௜௡௡௘௥ = 𝑣 × ൬1 −
𝐿௪௛௘௘௟௕௔௦௘ × 𝑊௪௛௘௘௟௕௔௦௘

2 ൰                                       (2) 

𝑣௢௨௧௘௥ = 𝑣 × ൬1 −
𝐿௪௛௘௘௟௕௔௦௘ × 𝑊௪௛௘௘௟௕௔௦௘

2 ൰                                       (3) 

Where 𝐿௪௛௘௘௟௕௔௦௘ and 𝑊௪௛௘௘௟௕௔௦௘ is the length of the rover’s wheelbase and 𝑣 is fixed at 

approximately 20% of the PWM maximum for the motors during turning to avoid mechanical 

failures and to allow for VSLAM computations to complete. 

This steering setup is implemented using the motor_controller and servo_controller nodes as 

indicated in the Figure 3.6 below (nodes are indicated as ovals and topics as rectangles). The 

controllers receive linear and angular velocities based on the REP103 standard and converts it 

to the necessary PWM or position signals. The velocity commands can come from either 
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Nav2 (cmd_vel) or the joystick (cmd_vel_joy) and is first processed by cmd_vel_switch node 

before being sent to the motor and servo controllers. The cmd_vel_switch prioritises the 

joystick input and will override the Nav2 commands when manual control is taken via the 

joystick, acting as a safety measure.  

 

Figure 3.6: Robot Base Controller and Command Velocities 

3.2.1.2. SLAM Setup 

SLAM for the rover is provided by the RTAB-Map package, utilizing the depth and stereo 

camera on the rover. A simplified overview of topic and node connections are showcased in 

Figure 3.7 below with the nodes indicated as ovals and the topics as rectangles. The camera 

driver creates the oak node and based on the configuration and launch files, publishes the 

necessary time synced image and camera information topics. These topics include the camera 

info, rectified depth image and the raw stereo images. Once these topics are published, the 

RTAB-Map package subscribes to the /oak camera container, the odometry and the IMU data 

and computes the occupancy grid map. 

In addition to the produced map, another node within the RTAB-Map package called, 

rgbd_odometry produces rectified odometry based on visual inertial odometry and loop 

closure detection. Lastly, the rtabmap_viz node is purely used for visualization and to adjust 

settings during experimentation. 

The output of the RTAB-Map VSLAM setup is the occupancy grid map and the rectified 

odometry. 
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Figure 3.7: Simplified overview of Node-Topic connections for SLAM 

3.2.1.3. Navigation 2 Setup 

The Navigation 2 stack was launched utilizing the nav2_bringup package, which launches all 

the necessary controllers, planners, servers and lifecycle managers associated with a standard 

Nav2 setup. The bringup package utilizes the navigation.yaml parameter file, which sets 

characteristics for the controllers, planners, servers, smoothers, managers and costmaps for 

successful path planning and navigation in an environment, whilst taking into account the 

rover’s geometry, move base and input topics. The key components of Nav2 and their 

associated plugins and subscriptions are indicated in Table 3.3 below. 

Table 3.3: Nav2 Component Plugins 

Component Plugins Subscribes to 

Map Server map_server /map from RTAB-Map 

Planner Server Grid_based: NavFn_Planner - 

Controller Server FollowPath: DWBLocalPlanner - 

Local Costmap InflationLayer, 

VoxelLayer 

/lidar from the Lakibeam 

package 

Global Costmap ObstacleLayer, 

StaticLayer, 

InflationLayer 

/map from RTAB-Map 

/lidar from Lakibeam 

 

 

A simplified black hole schematic is shown in Figure 3.8 below to showcase the relevant 

inputs and outputs of the complete Nav2 setup as implemented. It receives input data from 
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the map, odometry, lidar, tf and goal_pose topics via the packages shown in Figure 3.4. Nav 2 

then computes the necessary path and generates the command velocities on the cmd_vel topic 

which is sent to the robot base controllers. 

 

Figure 3.8: Nav2 Inputs and Outputs 

3.2.1.4. URDF Design 

A URDF model was developed to assist with the creation of joint states of the rover and for 

use in simulation. The URDF was created in XML format following the REP105 standard, 

defining frame links and plugins for the simulation environment. The created URDF model 

consists of 46 linked frames to replicate the rover’s physical design however a highly 

simplified model of the linked frames is shown in Figure 3.9 below due to its size. The full 

transform tree is shown in Appendix B. Direct links are indicated in a solid black line and 

indirect links (i.e. links with excluded frames) are indicated in a dotted line.  

The Gazebo plugins specified within the URDF provide the necessary sensors interfaces for 

the simulation environment which will be discussed as part of the simulation in section 3.4. 

When the URDF is used on the physical rover, these additional plugins are ignored during the 

parsing stage of the URDF. 
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Figure 3.9: Simplified Coordinate Frames of the Rover 

The resultant model of the rover can then be visualized in both Ignition Gazebo and RViz. 

The created model including the simulated sensors such as the camera(shown in green) and 

the LIDAR sensor (shown in black on the top of the rover), is shown Figure 3.10 below. 

 

Figure 3.10: Front, Left and Right View of the Rover Model in Gazebo 

3.3. User Interface 

Part of the requirements was to incorporate an easy-to-use user interface to allow for remote 

access, control and visualisation of data and is shown in Figure 3.11 below. A VNC server 

was set up on the Jetson to allow for remote control and live visualisation during testing over 

Wi-Fi. In addition, a touchscreen was added which visualises the data on-board and is also 

used to start the controllers. Once the rover is turned on, a simple double tap of the icon 

indicated in red on the touchscreen will launch a bash script which launches the relevant 

robot base controller for teleoperation.  
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Figure 3.11: User Interface and Visualisation 

3.4. Simulation 

Utilizing Ignition Gazebo, a simulation environment and model of the code and rover has 

been developed for testing and refining of configuration files. 

Basic simulation worlds with a variety of obstacles were created. The simulation setup 

incorporated sensor plugins for the rover including the gpu_lidar, the camera and the imu, all 

of which are set up to approximately match the real rover. In addition to the sensors, the 

Gazebo AckermannSteering plugin was utilized for driving due to the limited availability of 

driving plugins. This AckermannSteering controller can only steer 2 wheels instead of 4 on 

the physical rover [43].  

The sensor data had to be bridged to ROS2 and as such a ROS-Gazebo bridge node was set 

up to publish the sensor data on the correct topics which is shown in Figure 3.12. 

 

Figure 3.12: ROS-Gazebo bridge 
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3.4.1. Simulation Results 

Several different tests were conducted in the simulation environment during the development 

of the complete code. First and foremost, the driving plugin setup was tested to ensure the 

rover is manoeuvrable followed by SLAM tests and then testing of the autonomous 

navigation using Nav2. 

3.4.1.1. SLAM Results 

The purpose of the SLAM setup and testing is to provide the map for the system with robot 

localized within. RTAB-Map was used in the simulation environment to generate maps using 

teleoperation of the rover.  

Results of a successful SLAM test is shown in Figure 3.13 below. The simulated environment 

is shown on the left, the unexplored environment upon startup in the middle and the fully 

explored environment on the right. Light grey represents open space, green represents 

unexplored regions and black represents obstacles.  

 

Figure 3.13: Simulated SLAM map 

It should be noted that the SLAM packages only work well in object dense environments 

whereby the loop closure implementation can assist with correcting odometry. If the 

odometry drift is significant before loop closure can correct it, there is a possibility of 

breaking localisation of the rover within the map.  

An example of excessive drift, causing a break in localisation is shown in Figure 3.14 below. 

To mitigate against significant drift and inadequate localisation, an EKF localiser was added 
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to assist with localisation based on the /lidar topic scans and the /imu topic data. This showed 

an improvement in overall localisation. 

 

Figure 3.14: Broken Localisation During Mapping in Simulation Environment 

3.4.1.2. Autonomous Navigation Results 

Once the produced map from the SLAM package was considered viable, tests were 

undertaken to demonstrate the functionality of the autonomous navigation system. This was 

done by sending a goal pose to the Nav2 stack via RViz. The autonomous navigation is 

demonstrated in Figure 3.15 below. It shows the simulation world, the produced SLAM map, 

the Goal Pose location as indicated by the red flag, and the planned global path as indicated 

via the green line. The rover then autonomously traversed to the goal pose whilst avoiding the 

obstacle in the middle of the map 

 

Figure 3.15: Simulated Autonomous Navigation 1 
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Another example of the autonomous navigation is presented in Figure 3.16 below. 

 

Figure 3.16: Simulated Autonomous Navigation 2 

Evidently, in the simulation setup, the rover can autonomously traverse terrain with obstacles 

in between to navigate to a goal pose. 

3.5. Physical Results 

All physical tests conducted, resulted in some form of mechanical failure which hampered the 

efficacy of the results. Nevertheless, multiple attempts were made to test the validity of the 

software design. After first confirming adequate driving performance on flat surfaces through 

indoor tests based on its Ackermann-like steering setup using teleoperation, tests were 

undertaken outdoors to assess the RTAB-Map VSLAM and corresponding Nav2 setup. 

3.5.1. SLAM Results 

The first VSLAM test took place on a residential driveway with obstacles such as cars and 

walls around. The physical environment with obstacles in black and clear space in blue is 

presented in Figure 3.17 below, along with the produced map from the RTAB-Map VSLAM 

setup. 
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Figure 3.17: Physical SLAM Test 1 

Evidently, many erroneous obstacles were being detected, which was likely due to the 

environmental factors. The test was conducted in the afternoon with direct sunlight affecting 

the camera. In addition to this, the surface on which it drove was a highly reflective 
exacerbating the issue. The RGB-D VSLAM approach can be influenced by errors due to 

sunlight as experienced in this case [44]. Before being able to remap the area and rely on loop 

closure detection to correct the map, one of the wheels broke off resulting in the emergency 

stop being pressed, meaning the onboard controller experienced a hard shutdown before 

additional data could be observed. 

Additional VSLAM tests were undertaken in a more natural environment. The produced map 

from this test is shown in Figure 3.18 below along with the raw image the camera sees. 

 

Figure 3.18: Physical SLAM Test 2 

This test was successful as the map accurately depicted the surrounding environment and the 

effects of loop closure correction was observed in real time. This test was conducted at the 
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front of the Clough building at UWA. It was determined that maps of this quality will be 

sufficient for autonomous navigation testing. Another example of a produced map is shown in 

Figure 3.19 below. This map is approximately 28x22m wide and long and was conducted in 

the courtyard behind the UWA Robotics laboratory. 

 

Figure 3.19: Physical SLAM Test 3 

3.5.2. Autonomous Navigation Results 

The Nav2 setup was tested to confirm that the software design on the physical rover can 

navigate to a received goal pose. This test was undertaken in the courtyard at the back of the 

of the UWA Robotics laboratory. The results are presented in Figure 3.20 below. The map 

was first produced using VSLAM while teleoperating the rover. Once a sufficiently large map 

was produced, a goal pose was sent via RViz to Nav2. It was expected that the rover would 

navigate from its current location to the goal pose, however it was discovered that the 

localisation of the rover body for Nav2 planning was not in the correct location and different 

from the localisation of the camera doing the VSLAM.  

The planned path shown in green in Figure 3.20, was developed from the initial pose of the 

rover before mapping commenced and did not reflect the rover’s current pose. Evidently the 

path planning and obstacle avoidance worked from a technical perspective, however there 

was a disjoint between the camera frames used for localisation in RTAB-Map and the rest of 

the rover, resulting in improper localisation in Nav2. This resulted in the path being planned 

from the wrong location. It was also visually observed and filmed that the Nav2 setup does 
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send command velocities to the rover based on its perceived location and proposed direction 

of travel. 

 

Figure 3.20: Physical Autonomous Navigation Test 

3.6. Implications of Results and Limitations 

The rover successfully demonstrated mapping and autonomous navigation between points in 

simulation but did not demonstrate the complete functionality in the physical setup based on 

the criteria outlined in sections 1.3 and 2.5. The physical setup successfully implemented the 

robot base controllers, VSLAM and the Nav2 components such as path planning and obstacle 

avoidance, however the localisation disjoint between the camera and the rover body meant 

successful navigation between two points on the map was not observed. 

The improper localisation in Nav2 is related to the improper frame linking of the Luxonis-

DepthAI-ROS-Driver package and the rover’s URDF. Futile attempts have been made to 

rectify the issue however, once this has been fixed, the rover is expected to demonstrate its 

full autonomous driving capability such that it drives autonomously between points on a map. 

The simulation setup was limited by Ignition Gazebo’s driving plugins and only reflected an 

approximation of the physical rover. Additionally, in both simulation and physical setups, the 

costmaps were being created however trying to visualise them in Rviz proved futile which is 

thought to be related to a ROS QoS issue. Lastly, the mechanical inadequacies of the rover 

resulted in mechanical failure during all physical tests, leading to loss of data at times. 
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4. Conclusion and Future Works 

This project aimed to develop an easy-to-use autonomous navigation system for the prototype 

Mars rover whereby the rover autonomously traverses flat, object laden terrain and navigate 

between points on a generated map which it has mostly demonstrated.  

The successful development and integration of component interfaces into the Jetson 

controller in ROS2 laid the foundation for the autonomous navigation setup and was 

demonstrated using joystick teleoperation. The autonomous navigation setup was built using 

the Nav2 framework utilizing VSLAM, manufacturer drivers, robot base controllers and a 

variety of sensor inputs and configuration files. 

The developed autonomous navigation software implemented the full functionality of the 

project objectives as outlined in section 1.3 within the simulation environment and mostly 

implemented this on the physical rover with one minor limitation.  

The simulation environment successfully demonstrated the generation of SLAM maps and 

autonomous navigation between points on the map whilst avoiding obstacles, including 

incorporating items such as path planning, controlling and smoothing. 

The physical rover demonstrated the development of visual SLAM maps, along with its 

planning and controlling capabilities, however an incorrect frame link between the onboard 

camera and the rover’s URDF breaks localisation within Nav2. The physical setup can plan a 

feasible route whilst avoiding obstacles and then control the robot base controller, however 

the planned route is always from the initial pose of the rover. 

This project has demonstrated the feasibility of autonomous navigation for the prototype 

planetary rover both in simulation and in physical experiments, opening opportunities for 

future works which should first focus on the mechanical issues. 

4.1. Future Works 

1. Redesign the rover’s drivetrain 

A complete redesign of the rover’s drivetrain is required to fix mechanical issues related 

to belt slippage, gear and pin slippage, stripped wheel mounts and inadequate torque. 

Issues are shown in Appendix D 

2. Investigate and correct the frame linking between the camera and the URDF 
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As discussed in section 3.6, a critical issue facing the software implementation of the 

autonomous navigation is related to the disjoint frames between the camera and the 

rover’s URDF. Attempts at remapping the camera driver’s parent frame has so far been 

futile and needs to be investigated further. Fixing this issue, will result in correct 

localisation and autonomous navigation of the physical rover as intended. 

3. Fuse the LIDAR and stereo/depth camera in RTAB-Map 

RTAB-Map allows for multimodal SLAM and implementing this by fusing the LIDAR 

and Stereo/Depth camera in the SLAM package, will eliminate over exposure issues 

related to a purely visual approach as discussed in section 3.5.1 

4. Implement frontier exploration 

Frontier exploration will allow the rover to autonomously discover or map and unknown 

environment, removing the need for initial teleoperation. This will further develop the 

autonomy of the rover as non-populated map wavefronts will automatically be further 

explored. 
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Appendix A 
Component Quantity Description 

Motor Controller 2 Sabertooth Dual 12A 6V-24V motor 
controller 

Servo Controller 1 Micro Maestro 6-Channel USB servo 
controller 

Depth/Stereo Camera 1 Luxonis Oak-D S2 
LIDAR 1 Lakibeam 1S 
Controller 1 Nvidia Jetson AGX Xavier Development Kit 
Encoder Hub 1 Vint Hub Phidget 
Encoders 6 Quadrature Encoder Phidget 
Motors 6 FIT0185 
Servo’s 6 DS51150 150kgcm Servo 
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Appendix B 
 

 
Figure B1: Top View of Transform Tree 

 

 

 
Figure B2: Camera Frames of Transform Tree 
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Figure B2: Chassis Top Frames of Transform Tree 

 

 
Figure B2: Chassis Bottom Frames of Transform Tree 
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Appendix C 
This is a copy of the navigation.yaml configuration file 
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Appendix D 
Mechanical issues experienced are highlighted in the images below 

 


