
i

GENG5511 Engineering Research Project Part 2

Mars Rover (Autonomous Software)

Luan Swart

22777124
School of Engineering, University of Western Australia

Supervisor: Prof. Thomas Bräunl

School of Engineering, University of Western Australia

Co-Supervisor: Kieran Quirke-Brown
School of Engineering, University of Western Australia

Word count: 7966

School of Engineering
University of Western Australia

Submitted: 14 Oct 2024

iii

Project Summary

This build project focussed on the development of an autonomous navigation system for a
prototype Mars rover which was constructed in 2023 at the University of Western Australia
(UWA). The initial design of the prototype rover incorporated a basic teleoperation (remote
control) mode for driving, implementing turn on the spot and side driving behaviour. This
project aimed to extend that functionality by implementing additional steering controllers
such as Ackermann-like controls and developing autonomous driving capabilities. The
purpose of the autonomous driving capabilities is to solve a key issue faced by planetary
rovers, namely the communication delay between earth and the rover which makes
teleoperation a difficult and delicate operation. Modern planetary rovers all take advantage of
autonomous navigation systems utilizing a variety of sensors for guidance. This project will
further demonstrate UWA’s growing capabilities in the areas of autonomous navigation in
different environments and applications.

The aim of this project was to develop relevant software for the rover to autonomously
navigate between two locations on a self-generated map whilst avoiding obstacles. The initial
map of the area is created through teleoperation of the rover utilizing a simultaneous
localisation and mapping package (SLAM).

This build project utilized the open-source Robot Operating System 2 (ROS2) variant called
Humble Hawksbill as the core communication and control framework. ROS2 provides a
number of software libraries and tools which allows for easy integration of sensors and
standardised communication between software packages to implement the necessary control.
This project predominantly utilizes sensors such as LIDAR, a stereo camera and an inertial
measurement unit (IMU) which will be used with the ROS2 Navigation 2(Nav2) stack to
achieve the autonomous navigation functionality.

The Nav2 stack is an open-source framework developed to support autonomous navigation
for robotics applications. It consists of a large number of interfaces, plugins, controllers,
planners and various packages which can be used to assist with autonomous navigation
objectives. For the stated autonomous navigational goals of the rover, the Nav2 stack
implementation utilizes visual SLAM, odometry data, LIDAR point clouds, robot transforms,
various planners, controllers and behaviour servers along with rover specific base controllers
within the ROS2 Nav2 ecosystem to navigate autonomously between locations.

The rover has successfully demonstrated autonomous navigation between points in a
simulation environment and limited autonomous navigation in the physical setup due to both
hardware and software limitations.

iv

Acknowledgements

I would like to extend my gratitude to a number of individuals whose guidance and assistance
during this project was instrumental to its success

I would like to thank my supervisors, Professor Thomas Brӓunl and Kieran Quirke-Brown for
their guidance and support during this project.

I would also like to thank my brother Andries Swart and friend Nico Myburgh who assisted me
numerous times during experimental testing of this project. Your help was greatly appreciated,
and without your assistance experimental testing would have been exceptionally difficult.

v

Table of Contents

Project Summary .. iii

Acknowledgements ... iv

Table of Contents ... v

List of Figures .. vii

List of Tables ... viii

Nomenclature ... ix

1. Introduction and Literature Review ... 1

1.1. Introduction .. 1

1.2. Literature Review .. 3

1.2.1. Robot Operating System 2 .. 3

1.2.2. LIDAR .. 4

1.2.3. Stereo Camera’s ... 4

1.2.4. Simultaneous Localisation and Mapping .. 5

1.2.5. Visual SLAM .. 6

1.2.6. Real Time Appearance Based Mapping(RTAB-Map) 6

1.2.7. Ros2 Navigation 2 Stack (Nav2) .. 7

1.2.7.1. Odometry ... 8

1.2.7.2. Transforms and Frames .. 8

1.2.7.3. Planners and controllers ... 9

1.2.7.4. Costmaps ... 9

1.2.7.5. Nav2 Complete Overview .. 10

1.3. Project Objectives .. 10

2. Design Approach ... 12

2.1. Hardware Requirements/Constraints ... 12

2.2. Software Requirements/Constraints .. 12

2.3. Design Approach ... 13

2.4. Relevant Standards .. 13

2.5. Criteria for Evaluation and Experimental Test .. 15

3. Results ... 16

vi

3.1. Hardware Design ... 16

3.1.1. Component Selection .. 16

3.1.2. Component Layout and Integration ... 17

3.1.3. Hardware/Software Interface ... 18

3.2. Software Design .. 19

3.2.1. Autonomous Navigation Software Overview ... 19

3.2.1.1. Robot Base Controller ... 21

3.2.1.2. SLAM Setup .. 22

3.2.1.3. Navigation 2 Setup.. 23

3.2.1.4. URDF Design .. 24

3.3. User Interface ... 25

3.4. Simulation .. 26

3.4.1. Simulation Results .. 27

3.4.1.1. SLAM Results .. 27

3.4.1.2. Autonomous Navigation Results ... 28

3.5. Physical Results .. 29

3.5.1. SLAM Results .. 29

3.5.2. Autonomous Navigation Results ... 31

3.6. Implications of Results and Limitations .. 32

4. Conclusion and Future Works.. 33

4.1. Future Works .. 33

5. Bibliography ... 35

Appendix A ... 40

Appendix B ... 41

Appendix C ... 43

Appendix D ... 50

vii

List of Figures

Figure 1.1: NASA's Perseverance Rover in the Jet Propulsion Laboratory [3] 1
Figure 1.2: Prototype Planetary Rover [4] ... 2
Figure 1.3: Communication between a ROS Publisher and Subscriber Node 3
Figure 1.4: Stereo Image Disparity Example .. 5
Figure 1.5: Nav2 Stack [27] .. 7
Figure 1.6: REP105 Frame Standard... 8
Figure 1.7: Navigation 2 Stack Example Output(Adapted From Rafal [37]) 10
Figure 2.1: Overview of Design Steps... 13
Figure 2.2: Axis Tree of REP103 ... 14
Figure 3.1: Nvidia Jetson AGX Xavier Development Kit [40] .. 16
Figure 3.2: Richbeam Lakibeam 1S Lidar (left) [41], and the Luxonis Oak-D S2
Camera(right) [42] ... 17
Figure 3.3: Controller and Sensor Integration ... 18
Figure 3.4: High level Interconnection Between Packages and Drivers 20
Figure 3.5: Ackermann-like Swerve Driving Implementation ... 21
Figure 3.6: Robot Base Controller and Command Velocities .. 22
Figure 3.7: Simplified overview of Node-Topic connections for SLAM 23
Figure 3.8: Nav2 Inputs and Outputs .. 24
Figure 3.9: Simplified Coordinate Frames of the Rover ... 25
Figure 3.10: Front, Left and Right View of the Rover Model in Gazebo 25
Figure 3.11: User Interface and Visualisation ... 26
Figure 3.12: ROS-Gazebo bridge ... 26
Figure 3.13: Simulated SLAM map .. 27
Figure 3.14: Broken Localisation During Mapping in Simulation Environment 28
Figure 3.15: Simulated Autonomous Navigation 1 .. 28
Figure 3.16: Simulated Autonomous Navigation 2 .. 29
Figure 3.17: Physical SLAM Test 1 .. 30
Figure 3.18: Physical SLAM Test 2 .. 30
Figure 3.19: Physical SLAM Test 3 .. 31
Figure 3.20: Physical Autonomous Navigation Test .. 32

viii

List of Tables

Table 1.1: Key Aims of the Project ... 11
Table 2.1: Criteria for Evaluation and Experimental Tests .. 15
Table 3.1: Hardware and Software Interfaces ... 19
Table 3.2: Software packages .. 20
Table 3.3: Nav2 Component Plugins ... 23

ix

Nomenclature

Acronym Definition

GPS Global Positioning System

IMU Inertial Measurement Unit

LIDAR Light Detection and Ranging

MPPI Model Predictive Path Integral

NASA The National Aeronautics and Space Administration

Nav2 Navigation 2 Stack

QoS Quality of Service

RGB-D Red Green Blue – Depth (Camera)

ROS Robot Operating System

RTAB-Map Real Time Appearance Based Mapping

RViz ROS Visualization

SLAM Simultaneous Localisation and Mapping

URDF Unified Robotics Description Format

UWA The University of Western Australia

VSLAM Visual Simultaneous Localisation and Mapping

1

1. Introduction and Literature Review

1.1. Introduction

Planetary rovers have been an instrumental part in human exploration efforts on Mars,

specifically related to the characterization of the climate, geological properties and in the

search for extra-terrestrial life [1]. Modern advances in computing technologies have allowed

these exploration efforts to rapidly accelerate as it solves one of the key issues faced by these

rovers which is communication lag between earth and Mars making teleoperation difficult.

In particular, advances in computing power allows new planetary rovers to be more

autonomous which allows them to travel further and faster with less manual intervention. The

current most advanced rover in terms of autonomous navigation is NASA’s Perseverance

rover which is shown in Figure 1.1. Perseverance holds the record for the longest distance

covered during unassisted navigation at 759 meters [2].

Figure 1.1: NASA's Perseverance Rover in the Jet Propulsion Laboratory [3]

In 2023, as part of a final year thesis, a proof-of-concept planetary rover consisting of a 6-

wheel rocker-bogie suspension and a solar panel sized chassis has been constructed at the

University of Western Australia. The design of the planetary rover took inspiration from the

Perseverance rover, specifically for the wheels and suspension. The design intent behind the

rover was to demonstrate driving functionality of the rocker-bogie suspension over uneven

terrain along with basic navigation tasks. The prototype rover as constructed in 2023, is

showcased in Figure 1.2 below.

2

Figure 1.2: Prototype Planetary Rover [4]

At the end of 2023, only basic driving functionality of the rover has been implemented using

a Raspberry Pi 4B as the control system for the rover. The original intent was to incorporate

additional navigation abilities utilizing a stereo camera in conjunction with wheel encoders

and a LIDAR sensor, however this was not attempted. Upon the start of this design project,

the rover consisted of 6 independently adjustable steering servo’s, 6 motors for driving which

are controlled by 4 channels, along with 6 motor encoders. All 6 wheels can be turned

independently however, the driving speed of the 6 wheels can only be controlled across 4

channels, meaning that the speed of all wheels cannot be independently adjusted as some

wheels share a motor controller channel.

This project aimed to develop autonomous navigation software of the prototype rover for

terrains similar to the Martian surface. The rover had major limitations in regard to its drive

train, and as such, testing and developing of the autonomous driving software focussed on flat

and smooth surfaces. This project’s main focus was to demonstrate a real-world application

of this autonomous navigation between points on a map however, a simulation environment

was also be set up in order to test and demonstrate the proposed functionality of the

developed code due to significant issues with reliability related to the prototype rover’s

drivetrain. A detailed description of the objectives of this project is given in section 1.3. This

project aimed to further showcase UWA’s capabilities in autonomous driving albeit in a

different planetary environment, which could open new areas of research and funding for

UWA.

3

1.2. Literature Review

The section will focus on common tools, software packages and libraries that are used in

robotics applications related to autonomous navigation specifically focussing on the Robot

Operating System 2 and the Navigation 2 stack along with its associated components. Early

research indicated that the Navigation 2 stack was likely to be the only feasible

implementation of the autonomous navigation system without expanding the intended scope

multiple times over.

1.2.1. Robot Operating System 2

Robot Operating System 2 (ROS 2) is an open-source set of software libraries and tools

available to assist developers with robotics applications. It acts as robotics middleware, which

maintains platform independence and is especially useful to simplify communication between

devices in a distributed system [5]. It possesses a number of fundamental concepts, including

nodes, topics, services and messages each of which serves a different purpose.

A node is a process which performs some form of computation and can pass the results to

another node via a message. Messages are strictly typed data structures and nodes can only

send messages to other nodes via a topic. The messages are received or transmitted by the

nodes by either publishing or subscribing to a topic. Topics are simply a string value used for

reference [6]. In addition to this, a ROS service implements a request-response

communication structure whereby the communication consists of two messages, one for

requesting the data and the other for receiving [7]. A simple overview of the communication

between publisher and subscriber nodes via a topic is presented in Figure 1.3 below. Nodes

can be both publishers and subscribers at the same time and can subscribe or publish to a

number of different topics simultaneously.

 Figure 1.3: Communication between a ROS Publisher and Subscriber Node

4

ROS has a large and active community of loosely affiliated developers and hobbyists

however the source code is maintained by Open Robotics which makes it an attractive choice

for robotics applications [8]. In particular, the use of ROS for the Mars Rover project can

help centralise the communication system of the rover however, running ROS increases the

overhead on the controller’s processing resources.

1.2.2. LIDAR

LIDAR is a commonly used method for measuring distances to objects. It is a remote sensing

method which utilizes laser light pulses to measure distances from objects [9]. The distance

measurement is done by measuring the two-way travel time of the emitted laser pulse also

called the time of flight (ToF). Given that the laser is a form of light, the distance can be

calculated in a straightforward manner as given in equation 1 below [10],

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ்௢ி×ௌ௣௘௘ௗ ௢௙ ௟௜௚௛௧
ଶ

 (1)

LIDAR modules can either consist of a single layer laser or multiple layers, with a key trade-

off being increasing cost as the number of layers increase. Costly, three-dimensional LIDAR

sensors can be used to create high-resolution three-dimensional representations of the

sensor’s surrounding environment, which can be utilized for many different applications

including object detection, geospatial mapping, surveying etc. According to Li et al. [11], a

two-dimensional line-scan LIDAR mounted on a robotic servo can imitate the functionality

of a much more expensive three-dimensional LIDAR module albeit at a reduced frequency of

scan and provided that the necessary transforms and control structures are set up.

1.2.3. Stereo Camera’s

A stereo camera is a camera which consists of 2 or more image sensors which imitate human

vision giving it the ability to perceive depth [12]. The basic idea behind a stereo camera is to

have an offset between the two or more cameras in its physical configuration with the

cameras pointing in the same direction. This will result in the two images provided by the

camera’s having an offset between the object of interest in the frame [13]. This offset or

disparity can then be used to calculate the depth of the object of interest.

Figure 1.4 below shows the basic idea behind stereo disparity. The image from the left

camera detects the object of interest towards the right of the frame as shown by the triangle

and the right camera detects the object of interest towards the left of the frame. As such, a

5

disparity in pixel overlap occurs which is presented in the combined frame of the left and

right images from which the distance can then be calculated.

1.2.4. Simultaneous Localisation and Mapping

Simultaneous Localisation and Mapping (SLAM) is a common method used in the area of

autonomous navigation to develop a map of a robot’s environment and to establish the robot’s

pose withing that map. SLAM allows a vehicle to build a map and simultaneously localise the

vehicle within that map utilizing the robot’s odometry [14]. Localisation of a robot or vehicle

describes the estimation of the changes in the robot’s position while the vehicle is moving.

Since the pose of a vehicle cannot be directly measured, it has to be acquired and then

calculated from sensor data. As such any and all errors in the original sensor data will result

in the accumulation of errors in the resulting pose which is known as drift [15]. The output

of a SLAM algorithm generally consists of a point cloud map, either in 2D or 3D.

Since its introduction, SLAM based approaches have evolved to substantially mitigate the

effect of cumulative odometry errors resulting in drift. A popular process for correcting these

errors is called loop closure. Loop closure works by returning to a known point at which the

SLAM algorithm will recognize overlapping points. This allows the process to calculate any

drift or tracking errors that could influence the accuracy of the localisation and make the

necessary adjustments [15], [16]. Typically, these loop closure detection algorithms improve

localisation by publishing rectified odometry, which in turn corrects the robot’s pose estimate

[17].

Left + Right

Left

110 pixels

Right Image

Disparity

Figure 1.4: Stereo Image Disparity Example

6

“Appearance- and pose-based SLAM methods offer a radically new paradigm for mapping

and location estimation without the need for strong geometric landmark descriptions” [17, p.

116]. As such SLAM is of central importance to modern day autonomous driving in unknown

environments, especially in areas with no GPS availability.

Modern SLAM packages can utilize a variety of sensors such as LIDAR, stereo cameras,

RGB-Depth cameras and IMU sensors. An IMU sensor is commonly used in combination

with a camera or LIDAR sensor. Advances in computing technology has allowed SLAM

packages that uses a combination of LIDAR sensors, stereo or RGB cameras, IMU sensors

and wheel odometry.

1.2.5. Visual SLAM

Visual SLAM(VSLAM) refers to SLAM algorithms which can utilize a variety of different

cameras as source for pose estimation and depth perception. Common types of cameras

supported by VSLAM packages include stereo, multi, wide angle, fisheye and time of flight

cameras (RGB-D) [14]. One of the major drawbacks is that stereo depth perception and hence

VSLAM can be compute intensive if not hardware accelerated through the use of graphics

processing units [18]. In addition, VSLAM requires the surrounding environment to consists

of a number of distinct and discriminative features in order to perform loop closure to

accurately localise and map the surrounding environment. VSLAM approaches work well in

areas with a number of obstacles, but localisation and mapping become much harder in

monotonous and indistinct or repetitive areas [19], [20].

1.2.6. Real Time Appearance Based Mapping(RTAB-Map)

RTAB-Map is open-source library which initially started as an appearance-based loop closure

detection method, which then grew to implement a graph-based approach to simultaneous

localization and mapping and is now commonly used in robotics applications [20], [21].

This SLAM package is particularly useful for robotics applications utilizing a stereo or depth

camera in ROS2 as it is one of the few packages which can implement VSLAM within

ROS2. In addition to this, RTAB-Map has the ability to fuse multiple cameras and LIDAR

sensors in order to generate a more accurate map and implement a more superior form of loop

closure detection and benefitting from algorithmic effectiveness multimodal SLAM [22],

[23]. Loop closure is the process of identifying already visited points in order to correct drift

[24]. Loop closure detection in VSLAM approaches is often far superior to loop closure

7

detection in LIDAR based SLAM approaches in environments with rich visual imagery due

to the distinct nature of reference points [25].

1.2.7. Ros2 Navigation 2 Stack (Nav2)

The ROS2 Navigation 2 stack is a highly configurable comprehensive framework which is

designed to enable autonomous navigation of a robot. It consists of a large number of tools,

libraries and algorithms for robots to navigate their surroundings autonomously whilst

avoiding obstacles and driving to a goal pose. The Nav2 stack provides perception, control,

planning, localisation and visualization in order to achieve autonomous navigation [26]. A

simplified breakdown of the Nav2 stack is given in Figure 1.5 below.

Figure 1.5: Nav2 Stack [27]

The Nav2 stack uses a number of inputs to allow for path planning and autonomous control

including but not limited to,

 Point clouds from either LIDAR or stereo cameras.

 An initial map provided by a SLAM package.

 Sensor odometry data such as IMU’s and encoder feedback.

 Coordinate frame transforms of the robot

 A customisable behaviour tree.

 Waypoint goal pose

8

It then uses a behaviour tree decision making structure in order to calculate desired routes and

hence outputs a command velocity to the robot’s base controller which communicates with

the physical hardware to drive motors and steering [26].

1.2.7.1. Odometry

Odometry is the utilization of sensor data to estimate the position change over time of an

object of interest. Accurate estimation with error correction is essential for autonomous

navigation tasks, including generating a map utilizing SLAM or localising the robot within

that map [28]. In the Navigation 2 stack, the odometry frame or “odom” frame is associated

with the robot’s odometry system and can take various sensor inputs including, wheel

encoders, inertial measurement units, visual inertial odometry and LIDAR odometry. Section

1.2.7.2, below will discuss the odom frame setup in relation to the rest of the robot. Odometry

is used to provide a locally accurate estimate of the robot’s pose, however globally accurate

information is required to correct drift and this will be provided by the map frame [29].

1.2.7.2. Transforms and Frames

In order to set up Nav2 correctly, related packages and software requires a standard

coordinate frame setup for different components in the robotics system. In Nav2, the standard

is REP105, which defines the relationship between the earth, map, odom and base_link

frames, which is required for successful integration. The linking between frames is shown in

Figure 1.6 below. The top frame is earth and then progresses down to map, odom and then

base_link. The earth frame is not required for successful setup. The frame links for physical

components of a robot is attached to the base_link as indicated by the ellipsis in Figure 1.6

[30].

Figure 1.6: REP105 Frame Standard

9

A common way of providing the relationship between frames is via a unified robot

description format (URDF) file which gets converted to joint states through the use of a joint

state publisher [31].

1.2.7.3. Planners and controllers

A major part of the Nav2 integration relates to the setup of various planners and controllers.

Of particular interest is the configuration of the Planner and Controller server which is used

to specify which planner and controller plugins to use for handling path planning requests

along with the method of computation for path planning. The planner and controller servers

work in conjunction with one another.

Specifically, the planner server is responsible for developing a global path from the robot’s

current pose to the specified goal pose utilizing the known environment from the global

costmap which is used to identify known static obstacles [32]. A number of different

algorithms can be implemented in the planner server including the NavFn, SMAC and Theta

Star planner approaches all of which are optimized to plan routes for robots of different

configurations [33]. The output of the planner server is the global path.

Subsequently, the controller server takes the global path from the planner server as input and

then applies the relevant velocity commands to the base controller to ensure the robot follows

the planned path accurately and smoothly [34]. In addition, the controller server is

responsible for implementing the local costmap and for avoiding dynamic obstacles. Specific

controller servers available for use include the DWB, Regulated Pure Pursuit, Model

Predictive Path Integral (MPPI) and the Rotation Shim controller, all of which is optimised

for different robot configurations [35].

1.2.7.4. Costmaps

In Nav2, costmaps are developed by utilizing sensor data from the world whereby an

occupancy grid map is produced based on perceived obstacles in the surrounding

environment. Costmaps provide information about obstacles and free space as well as the

intermediary zones which is crucial for path planning along with efficient and safe navigation

of the robot. In Nav2 the package utilized to implement the costmaps is the

costmap_2d package [36].

True to its name, the costmaps utilize a “cost value” approach to mapping whereby each cell

of the produced occupancy grid map has a value ranging from 0-255 whereby 0 represents

10

free space and it gradually increases to 255 which represents a fully occupied or lethal

obstacle [37]. Costmaps can be constructed from a number of layers including the static,

obstacle, inflation and voxel layers. Each of the layers are responsible for a different aspect of

costmap generation including aspects like static and dynamic obstacle detection, buffer zone

generation and 3-dimensional voxel grid information.

1.2.7.5. Nav2 Complete Overview

An example output of a typical navigation 2 stack implementation is visualised in Figure 1.7

below. This figure visualises the global costmap, local costmap, global path and the robot’s

footprint. Additionally, the robot is fully localised on the map and a LIDAR sensor is

visualised to show the robots field of view in its current environment.

Figure 1.7: Navigation 2 Stack Example Output(Adapted From Rafal [37])

1.3. Project Objectives

Building upon the mechanical work done by the previous student, the overall goal of this

project was to develop the autonomous navigation software for the prototype rover whereby

the rover autonomously traverse terrain between points on a continuously self-generating

map. Specifically, the rover needed to have the ability to autonomously navigate and traverse

terrain by avoiding obstacles through accurate obstacle detection, localisation and path

planning.

Global Costmap

Local Costmap
Robot Footprint

Global Path

11

The aim for this project was to develop and incorporate the necessary sensors, controllers,

control structures and software to implement the autonomous navigation as described, such

that the software is fully self-contained on the rover along with an easy-to-use interface.

Consideration was given to the prototype rover’s physical limitations when designing and

developing the driving software as the drivetrain is plagued with mechanical issues, resulting

in tolerances exceeding the initial design constraints, specifically in relation to the steering

axis, drive belts and wheel alignment making it difficult to drive.

The physical inadequacies of the current rover design meant that testing was conducted in

both a simulation and then limited physical environment. The step-by-step objectives of the

project is summarised in Table 1.1 below.

Table 1.1: Key Aims of the Project

Aim Description

1 Incorporate the necessary sensors for autonomous navigation

2 Experiment and develop driving controllers to suit the rover’s physical construction.

3 Implement teleoperation of the rover along with an easy-to-use user interface

4 Implement a simultaneous localization and mapping package utilizing visual and/or

LIDAR based technologies.

5 Implement an autonomous navigation package and set up the necessary inputs.

6 Demonstrate functionality of autonomous navigation between two points on a

teleoperated generated map.

This project will lay the groundwork for continuing development of autonomous navigation

systems to be utilized in non-standard environments such as off-road or extra-terrestrial

environments. In recent literature, autonomous navigation has heavily focussed on robots or

vehicles driving on smooth surfaces due to their applicability to modern transportation. This

project will demonstrate growing feasibility of adapting autonomous navigation systems for

approaches to different environments and ultimately demonstrate feasibility of increasingly

autonomous navigation on extra-terrestrial environments.

12

2. Design Approach

The first task for the design approach was to develop and define the requirements of the

system to ensure the system will be feasible for the proposed goal of autonomous navigation

as described in section 1.3. Based on early research, some key requirements and constraints

of the proposed autonomous navigation system were identified, and these are listed below in

section 2.1 to 2.2. Some of the criteria is dependent on the initial decision to implement the

autonomous navigation system in the ROS2 Nav2 ecosystem due to the lack of viable

alternatives without significantly expanding the scope of this project.

2.1. Hardware Requirements/Constraints

In terms of hardware requirements, the system will need to have the ability to incorporate or

maintain the following functionality.

1. Maintain the existing configuration of 6 independently steered wheels (6 steering

channels and 4 motor speed control channels).

2. Have the ability to incorporate a LIDAR sensor and stereo camera.

3. Have the necessary compute capacity to implement SLAM utilizing a stereo camera

and/or a LIDAR sensor.

4. Have the ability to run ROS2 Humble with no detrimental effects on performance of

the controller due to computing power.

5. Have the ability to incorporate additional hardware such as a robotic arm and/or

additional LIDAR sensors or stereo cameras for future development.

6. Remain within budgetary constraints of $500 total.

2.2. Software Requirements/Constraints

The software requirements and constraints of the design consists of the following items:

1. Utilize open-source software.

2. Incorporate a method to drive the rover using teleoperation.

3. Dedicated robot base controller(s) which communicates with the motor and servo

controllers of the rover.

4. Implement an easy-to-use user interface including a wireless interface for control

5. Develop a URDF to model the physical characteristics of the rover which provides

joint states.

13

6. Utilize a 2D LIDAR and/or depth camera to detect obstacles and generate a map via

SLAM.

7. Localise the rover within the generated map

8. Plan a path to a received goal while avoiding obstacles on the developed map.

9. Autonomously drive the rover to the received goal on the planned path

2.3. Design Approach

The design process is divided into hardware and software development phases. Since the

software development is contingent on hardware selection, the required hardware

components had to be identified and integrated before software for the physical rover could

be configured. A simulated environment was set up to assist with development of the

configuration files and for Nav2. It was also identified that the simulation setup could be used

as a mitigation against mechanical issues experienced by the physical rover.

The breakdown of the steps of the project’s design and development is presented in Figure

2.1 below. The development of the complete system first started with the hardware

component selection and integration, followed by the development of the hardware/software

interfaces between controllers and then the autonomous driving and navigation code as well

as the user interface setup.

Figure 2.1: Overview of Design Steps

2.4. Relevant Standards

Key design constraints and standards identified and employed during this project all relates to

the ROS2 framework. ROS2 utilizes a variety of standards in order for the system to

14

effectively communicate between its nodes, topics and services. For this project, the key

standards were as follows:

REP103 - Standard Units of Measure and Coordinate Conventions

This standard describes the base units for measurable quantities such as length, mass, time,

current, velocity etc. In addition to this, it also specifies the coordinate frames of commonly

used topics such as cmd_vel. For example, the cmd_vel topic requires the axis orientation in

relation to a body to be set up such that [38]:

o x represents forwards

o y represents left

o and z represents upwards.

The axis tree is shown in Figure 2.2 below and the design will adhere to the base units of

measure and base directions.

Figure 2.2: Axis Tree of REP103

REP105 - Coordinate Frames for Mobile Platforms

This standard is applicable to the coordinate frames and linking of frames and joints of the

model of the physical rover within ROS2. Key elements from the standard were described in

section 1.2.7.2 and the key component which is useful for this specific design is the linking of

the model’s frame from,

earth->map->odom->base_link->…

It should be noted that the base_footprint link can also exist in between the odom and

base_link. Both REP103 and REP105 was identified as being key to ensure correct setup of

interfaces between different components of the system such that it functions as intended.

15

2.5. Criteria for Evaluation and Experimental Test

Based on the mentioned requirements and constraints along with the project objectives, the

successful demonstration of a number of key elements via experimental tests will validate the

success of this project as presented in Table 2.1 below.

Table 2.1: Criteria for Evaluation and Experimental Tests

No Criteria for Evaluation Experimental Test

1 Teleoperation of the Rover in

ROS2

Drive the rover using a wireless joystick on a flat

surface either indoor or outdoor, demonstrating

linear and angular motion

2 Automatic startup of all

components including the

controller after a pushbutton

press.

Demonstrate the startup of the controller

including booting to the home screen when the

power switch is pressed

3 Implementation of a touchscreen

user interface for control and

visualization

Test the launch application and live visualisation

on the touchscreen after running the controllers.

4 A successful SLAM generated

map of the rover’s environment

with the rover localised on the

map.

Teleoperate the rover whilst running the necessary

sensor interfaces and SLAM package in both

simulation and a smooth physical environment.

The output should be an occupancy grid map and

a localised rover.

5 Demonstrated capability of path

planning avoiding obstacles.

After a SLAM map has been generated, visualise

the global path in RViz and send a goal pose

waypoint to NAV2. The calculated path should

show in the visualisation and avoid obstacles.

6 Autonomously navigate between

two points on a map

Once a SLAM map with the rover localised has

been generated and the global path has been

calculated, observe the commands to the robot

base controller along with visually confirming the

rover navigates between points.

16

3. Results

The results will first cover the final hardware and software design, followed by simulation

and then physical testing results. Although simulation was not part of the initial scope and

objectives, it was introduced due to early mechanical failures to allow for safer and easier

code development and testing.

3.1. Hardware Design

The majority of the hardware for this rover, including the LIDAR and Stereo/Depth camera

were selected before the commencement of the project. The only relevant component

selection was the central controller, however a brief overview of the critical components are

provided in section 3.1.1 below.

3.1.1. Component Selection

Central Controller

Based on the design requirements, it was determined that the initial controller setup utilizing

a Raspberry Pi 4B as the main controller will not have sufficient compute power to run ROS2

Humble and compute intensive VSLAM without significant drawbacks [18], [39]. To

eliminate this constraint and ensure future expandability, the Nvidia Jetson AGX Xavier

development kit, was utilized due to its availability at no cost and increased compute

capacity. The Jetson boasts 32TeraOps of computing power with an 8 core ARM CPU and a

512 core Volta GPU and 16GB of RAM, far exceeding the compute power of the Raspberry

Pi 4B [40]. The controller is shown in Figure 3.1 below.

Figure 3.1: Nvidia Jetson AGX Xavier Development Kit [40]

17

Depth Perception

Both the LIDAR sensor and stereo camera were preselected for this project and include the

2D Richbeam Lakibeam 1s LIDAR and the Luxonis Oak-D S2 camera, which is shown in

Figure 3.2 below.

Figure 3.2: Richbeam Lakibeam 1S Lidar (left) [41], and the Luxonis Oak-D S2 Camera(right) [42]

The LIDAR sensor has a range of 0-15m at a field of view of 270° and sampling rate of 10-

20Hz [41]. The Oak-D S2 camera has both a 1MP, WXGA stereo camera pair and a 4K 12MP

RGB Depth(RGB-D) Camera operating at refresh rates of up to 60FPS for the 4K RGB

sensor and 120FPS for the stereo camera pair.

The remaining components remain unchanged from the original design and is presented in

Appendix A.

3.1.2. Component Layout and Integration

A simplified layout of the electronic components is presented in Figure 3.3 below. The lines

represent control connections between modules however, power connections are omitted.

Some devices receive power over USB from the Jetson, but the majority have dedicated

power connections which is fed from an onboard fuse box which is supplied by a large 12.8V

2.5Ah lithium battery. The layout was redesigned to accommodate the addition of the LIDAR

sensors and stereo camera’s as well as the integration of the Jetson controller.

18

Figure 3.3: Controller and Sensor Integration

The left and right motor controllers are sharing a single TX line over UART with separate

channels for each side of the rover. Each motor controller contains 2 PWM output channels

resulting in a total of 4 linear velocity variables for the 6 wheels of the rover. As such, the

front and back wheels of the rover on each side, share a channel and the middle wheels have

their own channel for control. The motor controllers are responsible for the linear velocity of

the rover. In contrast to this, there are 6 independently controllable servo’s which are used for

steering. The 6 servos communicate to a single servo controller which in turn communicates

over USB to the Jetson.

The Depth Camera communicates over USB and auto negotiates a port. The LIDAR sensor

connects over ethernet to a USB hub which in turn connects to the Jetson controller via USB.

A static IP address for the LIDAR is set for it to interface correctly with its driver. The ports

and software interfaces are discussed in section 3.1.2 below. Both the LIDAR and Oak-D S2

camera are mounted on the top front of the rover and the exact location is specified within the

URDF of the rover to ensure the joint states are set up correctly.

3.1.3. Hardware/Software Interface

A breakdown of the hardware and software interfaces along with relevant ports for the final

design is presented in Table 3.1 below. Some interfaces required permission changes within

the udev rules of the operating system.

19

Table 3.1: Hardware and Software Interfaces

3.2. Software Design

The software design is built on the ROS2 Nav2 ecosystem which has been extensively

explained in section 1.2. This was implemented on the Jetson controller running the Ubuntu

based Nvidia Jetpack 5.12 operating system. The general design of the autonomous

navigation software consists of a SLAM package, the Navigation 2 stack, Robot Base

Controllers, component drivers and various smaller elements to assist with correct setup of

the Navigation 2 stack

3.2.1. Autonomous Navigation Software Overview

The developed autonomous navigation code integrates pre-built packages and drivers with

the ROS2 Nav2 ecosystem along with developed base controllers and configuration files. The

design involved configuring correct topics and nodes for input into the Nav2 stack based on

the sensor configurations and data from the physical rover. The LIDAR and Depth Camera

outputs are used by linking manufacturer’s ROS2 drivers with the necessary SLAM and

Nav2 packages. Other sensors and controllers such as the joystick and robot base controllers

are also set up to interface with Nav2. The robot base controller responsible for the motor and

servo controllers were developed from scratch for ROS2 compatibility.

A number of software packages and manufacturer drivers were identified and incorporated

into the final control structure. The software packages and usage are presented in Table 3.2

below.

20

Table 3.2: Software packages

A high-level overview of the interconnection of the abovementioned packages and drivers are

shown in Figure 3.4 below. This simplified diagram showcases the connections between the

main components of the developed autonomous navigation code within ROS2. A more

detailed discussion and interconnections and specific packages will be presented for critical

components.

Figure 3.4: High level Interconnection Between Packages and Drivers

21

3.2.1.1. Robot Base Controller

The robot base controller drives the rover by sending commands to the wheel motors and

steering servos. It takes linear and angular command velocities as inputs and implements

appropriate controls based on the kinematics of the rover. The steering implementation is an

adapted Ackermann-like, swerve driving controller as indicated in Figure 3.5 below.

Figure 3.5: Ackermann-like Swerve Driving Implementation

Evidently, the front and back wheel servo’s steer the wheels in opposite directions albeit at

the same absolute angle to implement the turning behaviour. In addition to this, the outer and

inner wheels travel at different speeds to implement a velocity differential whilst cornering.

The speed for the inner and outer wheels during turning are fixed according to the

relationship presented in equations 2 and 3 below,

𝑣௜௡௡௘௥ = 𝑣 × ൬1 −
𝐿௪௛௘௘௟௕௔௦௘ × 𝑊௪௛௘௘௟௕௔௦௘

2 ൰ (2)

𝑣௢௨௧௘௥ = 𝑣 × ൬1 −
𝐿௪௛௘௘௟௕௔௦௘ × 𝑊௪௛௘௘௟௕௔௦௘

2 ൰ (3)

Where 𝐿௪௛௘௘௟௕௔௦௘ and 𝑊௪௛௘௘௟௕௔௦௘ is the length of the rover’s wheelbase and 𝑣 is fixed at

approximately 20% of the PWM maximum for the motors during turning to avoid mechanical

failures and to allow for VSLAM computations to complete.

This steering setup is implemented using the motor_controller and servo_controller nodes as

indicated in the Figure 3.6 below (nodes are indicated as ovals and topics as rectangles). The

controllers receive linear and angular velocities based on the REP103 standard and converts it

to the necessary PWM or position signals. The velocity commands can come from either

22

Nav2 (cmd_vel) or the joystick (cmd_vel_joy) and is first processed by cmd_vel_switch node

before being sent to the motor and servo controllers. The cmd_vel_switch prioritises the

joystick input and will override the Nav2 commands when manual control is taken via the

joystick, acting as a safety measure.

Figure 3.6: Robot Base Controller and Command Velocities

3.2.1.2. SLAM Setup

SLAM for the rover is provided by the RTAB-Map package, utilizing the depth and stereo

camera on the rover. A simplified overview of topic and node connections are showcased in

Figure 3.7 below with the nodes indicated as ovals and the topics as rectangles. The camera

driver creates the oak node and based on the configuration and launch files, publishes the

necessary time synced image and camera information topics. These topics include the camera

info, rectified depth image and the raw stereo images. Once these topics are published, the

RTAB-Map package subscribes to the /oak camera container, the odometry and the IMU data

and computes the occupancy grid map.

In addition to the produced map, another node within the RTAB-Map package called,

rgbd_odometry produces rectified odometry based on visual inertial odometry and loop

closure detection. Lastly, the rtabmap_viz node is purely used for visualization and to adjust

settings during experimentation.

The output of the RTAB-Map VSLAM setup is the occupancy grid map and the rectified

odometry.

23

Figure 3.7: Simplified overview of Node-Topic connections for SLAM

3.2.1.3. Navigation 2 Setup

The Navigation 2 stack was launched utilizing the nav2_bringup package, which launches all

the necessary controllers, planners, servers and lifecycle managers associated with a standard

Nav2 setup. The bringup package utilizes the navigation.yaml parameter file, which sets

characteristics for the controllers, planners, servers, smoothers, managers and costmaps for

successful path planning and navigation in an environment, whilst taking into account the

rover’s geometry, move base and input topics. The key components of Nav2 and their

associated plugins and subscriptions are indicated in Table 3.3 below.

Table 3.3: Nav2 Component Plugins

Component Plugins Subscribes to

Map Server map_server /map from RTAB-Map

Planner Server Grid_based: NavFn_Planner -

Controller Server FollowPath: DWBLocalPlanner -

Local Costmap InflationLayer,

VoxelLayer

/lidar from the Lakibeam

package

Global Costmap ObstacleLayer,

StaticLayer,

InflationLayer

/map from RTAB-Map

/lidar from Lakibeam

A simplified black hole schematic is shown in Figure 3.8 below to showcase the relevant

inputs and outputs of the complete Nav2 setup as implemented. It receives input data from

24

the map, odometry, lidar, tf and goal_pose topics via the packages shown in Figure 3.4. Nav 2

then computes the necessary path and generates the command velocities on the cmd_vel topic

which is sent to the robot base controllers.

Figure 3.8: Nav2 Inputs and Outputs

3.2.1.4. URDF Design

A URDF model was developed to assist with the creation of joint states of the rover and for

use in simulation. The URDF was created in XML format following the REP105 standard,

defining frame links and plugins for the simulation environment. The created URDF model

consists of 46 linked frames to replicate the rover’s physical design however a highly

simplified model of the linked frames is shown in Figure 3.9 below due to its size. The full

transform tree is shown in Appendix B. Direct links are indicated in a solid black line and

indirect links (i.e. links with excluded frames) are indicated in a dotted line.

The Gazebo plugins specified within the URDF provide the necessary sensors interfaces for

the simulation environment which will be discussed as part of the simulation in section 3.4.

When the URDF is used on the physical rover, these additional plugins are ignored during the

parsing stage of the URDF.

25

Figure 3.9: Simplified Coordinate Frames of the Rover

The resultant model of the rover can then be visualized in both Ignition Gazebo and RViz.

The created model including the simulated sensors such as the camera(shown in green) and

the LIDAR sensor (shown in black on the top of the rover), is shown Figure 3.10 below.

Figure 3.10: Front, Left and Right View of the Rover Model in Gazebo

3.3. User Interface

Part of the requirements was to incorporate an easy-to-use user interface to allow for remote

access, control and visualisation of data and is shown in Figure 3.11 below. A VNC server

was set up on the Jetson to allow for remote control and live visualisation during testing over

Wi-Fi. In addition, a touchscreen was added which visualises the data on-board and is also

used to start the controllers. Once the rover is turned on, a simple double tap of the icon

indicated in red on the touchscreen will launch a bash script which launches the relevant

robot base controller for teleoperation.

26

Figure 3.11: User Interface and Visualisation

3.4. Simulation

Utilizing Ignition Gazebo, a simulation environment and model of the code and rover has

been developed for testing and refining of configuration files.

Basic simulation worlds with a variety of obstacles were created. The simulation setup

incorporated sensor plugins for the rover including the gpu_lidar, the camera and the imu, all

of which are set up to approximately match the real rover. In addition to the sensors, the

Gazebo AckermannSteering plugin was utilized for driving due to the limited availability of

driving plugins. This AckermannSteering controller can only steer 2 wheels instead of 4 on

the physical rover [43].

The sensor data had to be bridged to ROS2 and as such a ROS-Gazebo bridge node was set

up to publish the sensor data on the correct topics which is shown in Figure 3.12.

Figure 3.12: ROS-Gazebo bridge

27

3.4.1. Simulation Results

Several different tests were conducted in the simulation environment during the development

of the complete code. First and foremost, the driving plugin setup was tested to ensure the

rover is manoeuvrable followed by SLAM tests and then testing of the autonomous

navigation using Nav2.

3.4.1.1. SLAM Results

The purpose of the SLAM setup and testing is to provide the map for the system with robot

localized within. RTAB-Map was used in the simulation environment to generate maps using

teleoperation of the rover.

Results of a successful SLAM test is shown in Figure 3.13 below. The simulated environment

is shown on the left, the unexplored environment upon startup in the middle and the fully

explored environment on the right. Light grey represents open space, green represents

unexplored regions and black represents obstacles.

Figure 3.13: Simulated SLAM map

It should be noted that the SLAM packages only work well in object dense environments

whereby the loop closure implementation can assist with correcting odometry. If the

odometry drift is significant before loop closure can correct it, there is a possibility of

breaking localisation of the rover within the map.

An example of excessive drift, causing a break in localisation is shown in Figure 3.14 below.

To mitigate against significant drift and inadequate localisation, an EKF localiser was added

28

to assist with localisation based on the /lidar topic scans and the /imu topic data. This showed

an improvement in overall localisation.

Figure 3.14: Broken Localisation During Mapping in Simulation Environment

3.4.1.2. Autonomous Navigation Results

Once the produced map from the SLAM package was considered viable, tests were

undertaken to demonstrate the functionality of the autonomous navigation system. This was

done by sending a goal pose to the Nav2 stack via RViz. The autonomous navigation is

demonstrated in Figure 3.15 below. It shows the simulation world, the produced SLAM map,

the Goal Pose location as indicated by the red flag, and the planned global path as indicated

via the green line. The rover then autonomously traversed to the goal pose whilst avoiding the

obstacle in the middle of the map

Figure 3.15: Simulated Autonomous Navigation 1

29

Another example of the autonomous navigation is presented in Figure 3.16 below.

Figure 3.16: Simulated Autonomous Navigation 2

Evidently, in the simulation setup, the rover can autonomously traverse terrain with obstacles

in between to navigate to a goal pose.

3.5. Physical Results

All physical tests conducted, resulted in some form of mechanical failure which hampered the

efficacy of the results. Nevertheless, multiple attempts were made to test the validity of the

software design. After first confirming adequate driving performance on flat surfaces through

indoor tests based on its Ackermann-like steering setup using teleoperation, tests were

undertaken outdoors to assess the RTAB-Map VSLAM and corresponding Nav2 setup.

3.5.1. SLAM Results

The first VSLAM test took place on a residential driveway with obstacles such as cars and

walls around. The physical environment with obstacles in black and clear space in blue is

presented in Figure 3.17 below, along with the produced map from the RTAB-Map VSLAM

setup.

30

Figure 3.17: Physical SLAM Test 1

Evidently, many erroneous obstacles were being detected, which was likely due to the

environmental factors. The test was conducted in the afternoon with direct sunlight affecting

the camera. In addition to this, the surface on which it drove was a highly reflective
exacerbating the issue. The RGB-D VSLAM approach can be influenced by errors due to

sunlight as experienced in this case [44]. Before being able to remap the area and rely on loop

closure detection to correct the map, one of the wheels broke off resulting in the emergency

stop being pressed, meaning the onboard controller experienced a hard shutdown before

additional data could be observed.

Additional VSLAM tests were undertaken in a more natural environment. The produced map

from this test is shown in Figure 3.18 below along with the raw image the camera sees.

Figure 3.18: Physical SLAM Test 2

This test was successful as the map accurately depicted the surrounding environment and the

effects of loop closure correction was observed in real time. This test was conducted at the

31

front of the Clough building at UWA. It was determined that maps of this quality will be

sufficient for autonomous navigation testing. Another example of a produced map is shown in

Figure 3.19 below. This map is approximately 28x22m wide and long and was conducted in

the courtyard behind the UWA Robotics laboratory.

Figure 3.19: Physical SLAM Test 3

3.5.2. Autonomous Navigation Results

The Nav2 setup was tested to confirm that the software design on the physical rover can

navigate to a received goal pose. This test was undertaken in the courtyard at the back of the

of the UWA Robotics laboratory. The results are presented in Figure 3.20 below. The map

was first produced using VSLAM while teleoperating the rover. Once a sufficiently large map

was produced, a goal pose was sent via RViz to Nav2. It was expected that the rover would

navigate from its current location to the goal pose, however it was discovered that the

localisation of the rover body for Nav2 planning was not in the correct location and different

from the localisation of the camera doing the VSLAM.

The planned path shown in green in Figure 3.20, was developed from the initial pose of the

rover before mapping commenced and did not reflect the rover’s current pose. Evidently the

path planning and obstacle avoidance worked from a technical perspective, however there

was a disjoint between the camera frames used for localisation in RTAB-Map and the rest of

the rover, resulting in improper localisation in Nav2. This resulted in the path being planned

from the wrong location. It was also visually observed and filmed that the Nav2 setup does

32

send command velocities to the rover based on its perceived location and proposed direction

of travel.

Figure 3.20: Physical Autonomous Navigation Test

3.6. Implications of Results and Limitations

The rover successfully demonstrated mapping and autonomous navigation between points in

simulation but did not demonstrate the complete functionality in the physical setup based on

the criteria outlined in sections 1.3 and 2.5. The physical setup successfully implemented the

robot base controllers, VSLAM and the Nav2 components such as path planning and obstacle

avoidance, however the localisation disjoint between the camera and the rover body meant

successful navigation between two points on the map was not observed.

The improper localisation in Nav2 is related to the improper frame linking of the Luxonis-

DepthAI-ROS-Driver package and the rover’s URDF. Futile attempts have been made to

rectify the issue however, once this has been fixed, the rover is expected to demonstrate its

full autonomous driving capability such that it drives autonomously between points on a map.

The simulation setup was limited by Ignition Gazebo’s driving plugins and only reflected an

approximation of the physical rover. Additionally, in both simulation and physical setups, the

costmaps were being created however trying to visualise them in Rviz proved futile which is

thought to be related to a ROS QoS issue. Lastly, the mechanical inadequacies of the rover

resulted in mechanical failure during all physical tests, leading to loss of data at times.

33

4. Conclusion and Future Works

This project aimed to develop an easy-to-use autonomous navigation system for the prototype

Mars rover whereby the rover autonomously traverses flat, object laden terrain and navigate

between points on a generated map which it has mostly demonstrated.

The successful development and integration of component interfaces into the Jetson

controller in ROS2 laid the foundation for the autonomous navigation setup and was

demonstrated using joystick teleoperation. The autonomous navigation setup was built using

the Nav2 framework utilizing VSLAM, manufacturer drivers, robot base controllers and a

variety of sensor inputs and configuration files.

The developed autonomous navigation software implemented the full functionality of the

project objectives as outlined in section 1.3 within the simulation environment and mostly

implemented this on the physical rover with one minor limitation.

The simulation environment successfully demonstrated the generation of SLAM maps and

autonomous navigation between points on the map whilst avoiding obstacles, including

incorporating items such as path planning, controlling and smoothing.

The physical rover demonstrated the development of visual SLAM maps, along with its

planning and controlling capabilities, however an incorrect frame link between the onboard

camera and the rover’s URDF breaks localisation within Nav2. The physical setup can plan a

feasible route whilst avoiding obstacles and then control the robot base controller, however

the planned route is always from the initial pose of the rover.

This project has demonstrated the feasibility of autonomous navigation for the prototype

planetary rover both in simulation and in physical experiments, opening opportunities for

future works which should first focus on the mechanical issues.

4.1. Future Works

1. Redesign the rover’s drivetrain

A complete redesign of the rover’s drivetrain is required to fix mechanical issues related

to belt slippage, gear and pin slippage, stripped wheel mounts and inadequate torque.

Issues are shown in Appendix D

2. Investigate and correct the frame linking between the camera and the URDF

34

As discussed in section 3.6, a critical issue facing the software implementation of the

autonomous navigation is related to the disjoint frames between the camera and the

rover’s URDF. Attempts at remapping the camera driver’s parent frame has so far been

futile and needs to be investigated further. Fixing this issue, will result in correct

localisation and autonomous navigation of the physical rover as intended.

3. Fuse the LIDAR and stereo/depth camera in RTAB-Map

RTAB-Map allows for multimodal SLAM and implementing this by fusing the LIDAR

and Stereo/Depth camera in the SLAM package, will eliminate over exposure issues

related to a purely visual approach as discussed in section 3.5.1

4. Implement frontier exploration

Frontier exploration will allow the rover to autonomously discover or map and unknown

environment, removing the need for initial teleoperation. This will further develop the

autonomy of the rover as non-populated map wavefronts will automatically be further

explored.

35

5. Bibliography

[1] The National Aeronautics and Space Administration, “Science Objectives,” 04
2024. [Online]. Available: https://science.nasa.gov/mission/mars-exploration-
rovers-spirit-and-opportunity/science-objectives/. [Accessed 17 05 2024].

[2] S. Kuthunur, “Space,” 26 09 2023. [Online]. Available:
https://www.space.com/perserverance-mars-rover-boulder-field-maneuvers.
[Accessed 17 05 2024].

[3] NASA/JPL-Caltech, “Perserverance Rover,” 03 04 2020. [Online]. Available:
https://www.esa.int/ESA_Multimedia/Images/2020/04/Perseverance_rover.
[Accessed 17 05 2024].

[4] P. Brezmen, “Planetary Rover Design and Build Project,” The University of
Western Australia, 2023.

[5] S. S. F. Ramachandran, “Smart Walker V: Implementation of RTAB-Map
Algorithm,” in IEEE International Conference on System of Systems Engineering
(SoSE), Anchorage, AK, USA, 2019.

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R.
Wheeler and A. Ng, “ROS: an open-source Robot Operating System,”
Computer Science Department, Stanford University, Stanford, CA, Stanford,
2009.

[7] M. Bharatheesha, “ROS Services,” TUDelft OpenCourseWare, 2018. [Online].
Available: https://ocw.tudelft.nl/course-lectures/1-3-1-ros-
services/#:~:text=ROS%20services%20implement%20these%20request,in%2
0their%20own%20%2Fsrv%20folder.. [Accessed 12 05 2024].

[8] “Powering the world's robots,” Open Robotics, 2023. [Online]. Available:
https://www.openrobotics.org/. [Accessed 13 10 2024].

[9] NOAA, “What is lidar?,” National Oceanic and Atmospheric Administration, 20
01 2023. [Online]. Available:
https://oceanservice.noaa.gov/facts/lidar.html#:~:text=Lidar%2C%20which%
20stands%20for%20Light,variable%20distances)%20to%20the%20Earth..
[Accessed 12 05 2024].

[10] OpenTopography, “What is Lidar?,” OpenTopography, 2011. [Online]. Available:
https://opentopography.org/lidar_basics. [Accessed 12 05 2024].

36

[11] J. Li, H. Ziang and J. Li, “2D LiDAR and camera fusion in 3D modeling of indoor
environment,” in 2015 National Aerospace and Electronics Conference
(NAECON), Dayton, OH, USA, 2015.

[12] e-con Systems, “What is a stereo vision camera?,” e-con Systems, 23 01 2023.
[Online]. Available: https://www.e-
consystems.com/blog/camera/technology/what-is-a-stereo-vision-camera-2/.
[Accessed 17 05 2024].

[13] Longin Jan Latecki, “Temple University - Courses,” 2005. [Online]. Available:
https://cis.temple.edu/~latecki/Courses/CIS601-03/Lectures/slides_lec9.pdf.
[Accessed 17 05 2024].

[14] MathWorks, “SLAM (Simultaneous Localization and Mapping),” MathWorks,
2024. [Online]. Available: https://www.mathworks.com/discovery/slam.html.
[Accessed 12 05 2024].

[15] S. Higgins, “NavVis,” 21 07 2020. [Online]. Available:
https://www.navvis.com/blog/how-slam-aƯects-the-accuracy-of-your-scan-
and-how-to-improve-it. [Accessed 12 05 2024].

[16] P. Yu, X. Ruan and X. Zhu, “The loop closure Detection Algorithm Based on
Bagof Semantic Word For Robot Navigation,” in IEEE International Conference
on Information Technology,Big Data and Artificial Intelligence (ICIBA 2020),
Chongqing, China, 2020.

[17] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): part II,” IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108-
117, 2006.

[18] Clearview Imaging, “Stereo Vision for 3D Machine Vision Applications,” 2021.
[Online]. Available: https://www.clearview-imaging.com/en/blog/stereo-
vision-for-3d-machine-vision-applications. [Accessed 17 05 2024].

[19] M. Labbe´ and F. Michaud, “Multi-Session Visual SLAM for Illumination,”
Frontiers in Robotics and AI, vol. 9, 2022.

[20] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term
online operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416-446, 2019.

37

[21] J. V. Aravind, K. V. S. S. Ganesh and S. Prince, “Real-Time Appearance Based
Mapping using Visual Sensor,” Journal of Physics: Conference Series, vol. 2335
, 2022.

[22] M. Labbe, “RTAB-Map ROS,” Open Robotics, 19 04 2023. [Online]. Available:
http://wiki.ros.org/rtabmap_ros/Tutorials/SetupOnYourRobot#Stereo_A.
[Accessed 17 09 2024].

[23] S.-H. Chan, P.-T. Wu and L.-C. Fu, “Robust 2D Indoor Localization Through
Laser SLAM and Visual SLAM Fusion,” in 2018 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 2018.

[24] M. Labbe and F. Michaud, “Memory Management for Real-Time Appearance-
Based Loop Closure Detetction,” in International Conference on Intelligent
Robots and Systems, San Francisco, 2011.

[25] K. A. Tsintotas, L. Bampis and A. Gasteratos, “The Revisiting Problem in
Simultaneous Localization and Mapping: A Survey on Visual Loop Closure
Detection,” IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION
SYSTEMS, vol. 23, no. 11, pp. 19929-19953, 2022.

[26] S. Macenski, F. Martín, R. White and J. Clavero, “The Marathon 2: A Navigation
Systems,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2020.

[27] Nvidia, “ROS2 Navigation,” 15 05 2024. [Online]. Available:
https://docs.omniverse.nvidia.com/isaacsim/latest/ros2_tutorials/tutorial_ros
2_navigation.html#learning-objectives. [Accessed 17 05 2024].

[28] Y. Zhuang, X. Sun, Y. Li, J. Huai, L. Hua, X. Yang, X. Cao, P. Zhang, Y. Cao, L. Qi, J.
Yang, N. El-Bendary, N. El-Sheimy, J. Thompson and R. Chen, “Multi-sensor
integrated navigation/positioning systems using data fusion:,” Information
Fusion, vol. 95, pp. 62-90, 2023.

[29] Open Navigation, “Setting Up Odometry,” 2023. [Online]. Available:
https://docs.nav2.org/setup_guides/odom/setup_odom.html?highlight=odom
etry. [Accessed 24 09 2024].

[30] W. Meeussen, “Coordinate Frames for Mobile Platforms,” ROS, 27 10 2010.
[Online]. Available: https://www.ros.org/reps/rep-0105.html. [Accessed 04 10
2024].

[31] C. Yeoh, D. Kim, Y. Won, S. Lee and H. Yi, “Constructing ROS Package for
Legged Robot in Gazebo Simulation from Scratch,” in 20th International

38

Conference on Control, Automation and Systems (ICCAS), Busan, Korea
(South), 2020.

[32] P. D. C. Cheng, M. Indri, F. Sibona, M. D. Rose and G. Prato, “Dynamic Path
Planning of a mobile robot adopting a costmap layer approach in ROS2,” in
IEEE 27th International Conference on Emerging Technologies and Factory
Automation (ETFA), Stuttgart, Germany, 2022.

[33] “Planner Server,” Open Navigation, 2023. [Online]. Available:
https://docs.nav2.org/configuration/packages/configuring-planner-
server.html. [Accessed 04 10 2024].

[34] T. B. Sant’Anna, M. B. Argolo and R. T. Lima, “Comparative analysis in real
environment of trajectory controllers on ROS2,” in 2023 Latin American
Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR),
Salvador, Brazil, 2023.

[35] “Controller Server,” Open Navigation, 2023. [Online]. Available:
https://docs.nav2.org/configuration/packages/configuring-controller-
server.html. [Accessed 04 10 2024].

[36] “Costmap 2D,” Open Navigation, 2023. [Online]. Available:
https://docs.nav2.org/configuration/packages/configuring-costmaps.html.
[Accessed 04 10 2024].

[37] R. Górecki, “Navigation,” Husarion, 2024. [Online]. Available:
https://husarion.com/tutorials/ros2-tutorials/9-navigation/. [Accessed 04 10
2024].

[38] T. Foote and M. Purvis, “Standard Units of Measure and Coordinate
Conventions,” ROS, 31 12 2014. [Online]. Available:
https://www.ros.org/reps/rep-0103.html. [Accessed 06 10 2024].

[39] A. M. N and D. F. P. C, “Performance evaluation of ROS on the Raspberry Pi
platform as OS for,” Tekhnê, vol. 14, no. 1, pp. 61-72, 2017.

[40] D. Franklin, “NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of AI in
Robotics,” Nvidia, 08 12 2018. [Online]. Available:
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-
robotics/. [Accessed 05 10 2024].

[41] Richbeam, “2D LiDAR LakiBeam 1S,” Richbeam, Beijing, 2023.

39

[42] Luxonis, “OAK-D S2,” Luxonis, 2024. [Online]. Available:
https://shop.luxonis.com/products/oak-d-s2?variant=42455432233183.
[Accessed 17 05 2024].

[43] “AckermannSteering Class Reference,” Gazebo, 2024. [Online]. Available:
https://gazebosim.org/api/gazebo/6/classignition_1_1gazebo_1_1systems_1_1
AckermannSteering.html. [Accessed 13 10 2024].

[44] C. Theodorou, V. Velisavljevic, V. Dyo and F. Nonyelu, “Visual SLAM algorithms
and their application for AR, mapping, localization and wayfinding,” Array, vol.
15, p. 100222, 2022.

40

Appendix A
Component Quantity Description

Motor Controller 2 Sabertooth Dual 12A 6V-24V motor
controller

Servo Controller 1 Micro Maestro 6-Channel USB servo
controller

Depth/Stereo Camera 1 Luxonis Oak-D S2
LIDAR 1 Lakibeam 1S
Controller 1 Nvidia Jetson AGX Xavier Development Kit
Encoder Hub 1 Vint Hub Phidget
Encoders 6 Quadrature Encoder Phidget
Motors 6 FIT0185
Servo’s 6 DS51150 150kgcm Servo

41

Appendix B

Figure B1: Top View of Transform Tree

Figure B2: Camera Frames of Transform Tree

42

Figure B2: Chassis Top Frames of Transform Tree

Figure B2: Chassis Bottom Frames of Transform Tree

43

Appendix C
This is a copy of the navigation.yaml configuration file

44

45

46

47

48

49

50

Appendix D
Mechanical issues experienced are highlighted in the images below

