
 

                                  
  
 

 
GENG4412 Engineering Research Project Part 2 

 
 
A camera-equipped, ESP32-S3 microcontroller-based mobile 
robot design capable of autonomous navigation via visual lane 

detection  
 
 

 
 

Benjamin Wright 

22244602 

School of Engineering, University of Western Australia 

 

Supervisor: Professor Thomas Bräunl 

School of Engineering, University of Western Australia 

 
Co-Supervisor: Kieran Quirke-Brown 

School of Engineering, University of Western Australia 

 
 
 

Word count: 7,980 words 
 

 
 

School of Engineering 
University of Western Australia 

 
 

Submitted: October 14th, 2024



 
 

ii 
 

Project Summary  
 
Recent improvements in low-cost microcontrollers have made it viable for camera-equipped 

autonomous mobile robots to be designed around them as the central brain of the system. This is 

opposed to using relatively more expensive single-board computers such as the Raspberry Pi. This 

project set out to redesign a small mobile robot currently based on the Raspberry Pi, known as the 

EyeBot 8, around the ESP32-S3 based LILYGO® T-Display-S3 microcontroller instead. The current 

EyeBot 8 is used for educational purposes at the University of Western Australia (UWA), primarily 

in their Embedded Systems unit (unit code ELEC3020). This new T-Display-S3 EyeBot design 

supports a core subset of the EyeBot 8’s features, such as processing video from an on-board camera, 

drawing to an integrated touchscreen display, reading button and touch inputs, reading from a distance 

sensor, and driving itself using a pair of wheeled motors. This subset of the EyeBot 8’s features 

supported in the T-Display-S3 EyeBot is sufficient to meet the demands of the Embedded Systems 

unit. Writing programs for this T-Display-S3 EyeBot has been made easier via its main software 

library implementing an API known as RoBIOS-7. This API provides users access to the EyeBot’s 

major hardware and software features using simple function calls in C/C++. This EyeBot redesign 

would allow UWA to replace their fleet of EyeBot 8’s with cheaper and simpler versions that are able 

to meet the same demands of the engineering course units that utilise them. For this design project, a 

previously designed chassis equipped with wheeled motors lacking encoders, an analogue short-range 

distance sensor, and a breadboard mounted on top was used. The remaining choices regarding 

software and hardware components were made within these hardware constraints. This design project 

also sought to discover whether autonomous navigation via visual lane detection could be feasibly 

implemented for the T-Display-S3 EyeBot to discover if the computing power of the T-Display-S3 

microcontroller, or the main software library’s RoBIOS-7 API implementation, prevented the T-

Display-S3 EyeBot from being able to perform complex tasks beyond the demands of the Embedded 

Systems unit. We discovered however that the T-Display-S3 EyeBot could comfortably perform this 

task, as an autonomous navigation program was successfully written for it using a computationally 

cheap form of line segment detection that identifies lane markings within the view of the EyeBot’s 

camera. With this program the T-Display-S3 EyeBot was able to complete full consecutive laps of 

the UWA Robotics Lab’s test circuit. This research and development for computationally cheap lane-

based navigation and line segment detector techniques can hopefully contribute to the UWA Robotics 

Lab’s body of knowledge for future software development. 

 



 
 

iii 
 

Acknowledgements 
 
I would like to thank both Professor Thomas Bräunl and Kieran Quirke-Brown for assisting me in 
solving hardware and electrical issues that arose during the T-Display-S3 EyeBot design process. 



 
 

iv 
 

Table of Contents 
 
Signed Declaration  .......................................................................................................................... i 
Project Summary ............................................................................................................................. ii 
Acknowledgements ........................................................................................................................ iii 
Table of Contents ........................................................................................................................... iv 
List of Figures ................................................................................................................................. v 
List of Tables .................................................................................................................................. v 
1. Context ..................................................................................................................................... 1 
 1.1 Introduction ........................................................................................................................ 1 
 1.2 Project Objectives .............................................................................................................. 3 
 1.3 Preliminary Work............................................................................................................... 4 
 1.4 Literature Review............................................................................................................... 6 
2. Design Approach ..................................................................................................................... 9 
 2.1 Constraints ......................................................................................................................... 9 
 2.2 Success Criteria ................................................................................................................ 10 
 2.3 Process ............................................................................................................................. 11 
3. Results and Discussion .......................................................................................................... 14 
 3.1 Final T-Display-S3 EyeBot Design ................................................................................. 14 
 3.2 Programs .......................................................................................................................... 22 
4. Conclusions and Future Work ............................................................................................... 29 
References ..................................................................................................................................... 30  
Appendices .................................................................................................................................... 32 
 Appendix A: List of implemented RoBIOS-7 API functions.............................................. 32 

 
  



 
 

v 
 

List of Figures 
 

Figure 1: Image of four EyeBot 8’s ................................................................................................ 1 
Figure 2: Image of the UWA Robotics Lab’s test circuit ............................................................... 4 
Figure 3: Angled view of the original T-Display EyeBot design ................................................... 5 
Figure 4: Complete pinout diagram for the final T-Display-S3 EyeBot design ........................... 14 
Figure 5: Angled view of the final T-Display-S3 EyeBot design ................................................. 15 
Figure 6: Close-up view of the ESP32-CAM’s orientation on-board the T-Display-S3 EyeBot . 17 
Figure 7: Overhead view of the T-Display-S3 EyeBot ................................................................. 18 
Figure 8: Close-up view of the Makerverse 2 Channel Motor Driver mounted on-board the            
T-Display-S3 EyeBot .................................................................................................................... 20 
Figure 9: Close-up view of the gap between the motor support struts and the chassis’ top plate 21 
Figure 10: Close-up view of the Colour-Tracking Navigation program during the seeking          
phase  ............................................................................................................................................. 23 
Figure 11: Image sequence from video of the Colour-Tracking Navigation program in action .. 24 
Figure 12: Illustrative diagram of the Ultrafast Line Detector Lane Navigation program’s lane 
navigation algorithm ..................................................................................................................... 25 
Figure 13: Image sequence from video of the Ultrafast Line Detector Lane Navigation  
program in action .......................................................................................................................... 26 
Figure 14: Close-up view of the Ultrafast Line Detector Lane Navigation program’s navigation 
screen ............................................................................................................................................ 27 
 
 

List of Tables 
 

Table 1: Required connections between the T-Display-S3’s and ESP32-CAM’s GPIO pins ...... 15 
Table 2: Required connections between the T-Display-S3’s GPIO pins and the Makerverse               
2 Channel Motor Driver pins ........................................................................................................ 15 
Table 3: Required connection between the T-Display-S3’s GPIO pin and the Analogue Distance 
Sensor’s data output wire .............................................................................................................. 15 
 
 
  



 
 

1 
 

1. Context 
 
1.1  Introduction 
 
As semiconductor technology has advanced, it has become increasingly more feasible for 

microcontrollers to take over the roles in electronics once dominated by more complex and relatively 

more powerful single board computers (such as the Raspberry Pi). Improvements in the ease in which 

microcontrollers can be programmed have also been accompanied by significant improvements in 

computational power and in the hardware features they can boast, such as responsive touch-displays 

and Wi-Fi connectivity. The ESP32 series of microcontrollers are particularly popular for their 

extensive and practical feature-set, compact form factor, ease of integration with other electronics, 

and low price point when compared to single board computers. The Embedded Systems unit (unit 

code ELEC3020) at the University of Western Australia (UWA) teaches the concepts behind the 

hardware and software of embedded systems primarily through lab work involving ESP32 

microcontrollers. The main ESP32 microcontroller used throughout the unit has been the LILYGO® 

T-Display, featuring heavily in the practical lab work and assignments, with the skills acquired by 

the students learning to use it being transferable to many other microcontrollers. The student 

experience within the Embedded Systems unit however has been dampened by the practical work 

involving the EyeBot 8.  

The EyeBot 8 [1] (depicted in Figure 1) is a programmable mobile robot complete with a pair of 

motors, a touch-display, a camera, and an array of distance sensors. It has been used in the Embedded 

Systems unit to provide students the opportunity to test the theory they have been taught regarding 

software control systems. This usually involves them programming the EyeBot 8 to complete specific 

challenges, such as writing a program whereby the EyeBot 8 identifies a red object in the view of its 

camera and proceeds to drive towards it, stopping before colliding with any objects based off its 

distance sensor readings. The EyeBot 8 implements an Application Programming Interface (API)

Figure 1: An image of four EyeBot 8's [1]. 



 
 

2 
 

known as RoBIOS-7 [2] that students can use to control its major hardware and software features via 

simple C/C++ function calls in their programs. While the features and capabilities of the EyeBot 8 

are technically sufficient to meet the demands of the Embedded Systems unit, the hurdles it raises for 

the experience of students are a result of it being designed around the Raspberry Pi 3 Model B. The 

most significant of these hurdles raised by the Raspberry Pi is the process of programming the EyeBot 

8 itself. Due to the Raspberry Pi requiring a Linux-based operating system, the process involves first 

powering on the EyeBot 8 and waiting for its operating system and Wi-Fi access point to boot up. 

The user then must read the Wi-Fi access point’s SSID and password from the EyeBot 8’s display, 

and then connect to the EyeBot 8’s unique Wi-Fi access point from their own computer. They then 

must open a terminal on their computer and remotely log into the EyeBot 8 via SSH. Within that 

terminal session they must then either write or copy over the desired C/C++ program into the 

Raspberry Pi’s filesystem. They then compile their program using a custom compiler command 

available only on the EyeBot 8, and finally must manually execute their program from the command 

line. If the EyeBot 8 is powered down and then restarted, this process must then be repeated. For 

students in the Embedded Systems unit who are inexperienced with Linux operating systems and the 

command line, this convoluted process is usually daunting and difficult. The EyeBot 8 relies on many 

custom-made hardware components, and to accommodate the greater power demands of the 

Raspberry Pi and the rest of the electronic components, the EyeBot 8 also requires a bulky power 

supply. Hardware factors such as these contribute to making the EyeBot 8 difficult for Embedded 

System unit facilitators to maintain. 

 

These and other issues with the EyeBot 8’s design prompted the UWA Robotics Lab (who supply the 

EyeBot 8’s to the Embedded Systems unit) to investigate whether an EyeBot re-design could solve 

these usability and maintainability issues, at a price point that could warrant the current fleet of 

EyeBot 8’s being replaced. It was noticed by the Lab that much of the functionality performed by the 

Raspberry Pi in the EyeBot 8 could theoretically be performed by an ESP32 microcontroller. Due to 

their prior positive experience with the LILYGO® T-Display series, the latest model, the LILYGO® 

T-Display-S3, was proposed as the new brain for this ESP32 EyeBot design.  The T-Display-S3 is 

based on an updated ESP32-S3 with a dual-core 240 MHz CPU [3] and 8 MB of RAM [4], alongside 

boasting an integrated touchscreen display that’s relatively large for a microcontroller. The process 

of programming a T-Display-S3 is also greatly simplified due to its inclusion in the Integrated 

Development Environment program Arduino IDE. Writing a program for the T-Display-S3 simply 

involves a student downloading Arduino IDE onto their computer, configuring it once, connecting 

the T-Display-S3 to the computer via a USB cable, writing their C/C++ program within Arduino IDE, 

and with one button they can compile and upload their program to the T-Display-S3, which 



 
 

3 
 

automatically runs when the device is powered on. This operating-system agnostic process is greatly 

superior to the process of programming the EyeBot 8 and would immediately improve the student 

experience, conforming well with the rest of the coursework in the Embedded Systems unit that also 

involves programming ESP32 microcontrollers. There also existed a simple avenue to implement the 

RoBIOS-7 API for the T-Display-S3 as a library accessible via Arduino IDE. The T-Display-S3 can 

be powered through its USB-C port by at least a 5V/1A power source, and its footprint allows it to 

be comfortably mounted on a small breadboard, with its General-Purpose Input and Output (GPIO) 

pins allowing simple wired and programmable connections with other electronic components. As a 

result of these factors, a T-Display-S3 EyeBot promised to be a significant upgrade over the EyeBot 

8 in terms of cost, usability, and maintainability. 

 

1.2 Project Objectives  

 

This project primarily seeks to benefit the UWA Robotics Lab by offering them the opportunity to 

upgrade their fleet of EyeBot 8’s to cheaper and more maintainable models that retain a feature set 

sufficient for its educational purpose in the Embedded Systems unit. The new T-Display-S3 EyeBot 

programmable through Arduino IDE should improve the educational experience of students and 

others using it. It is also hoped that the T-Display-S3 EyeBot will also be able to support complex 

applications beyond even the demands of the Embedded Systems unit’s content so that it can 

potentially be utilised in more challenging contexts. The primary test for the extent of this T-Display-

S3 EyeBot’s capabilities will be an autonomous navigation challenge involving visual lane detection. 

The UWA Robotics Lab hosts a small-scale circuit marked by white street-lane markings for the 

purpose of testing the lane detection implementations of various small autonomous robots (as 

depicted in Figure 2). Successful navigation of this test circuit would signify that the new EyeBot is 

suitable for applications of potentially greater complexity. In the case of failure, however, the goal 

would still be to demonstrate that the T-Display-S3 EyeBot and its implementation of RoBIOS-7 API 

is sufficient to support the lighter demands of the Embedded Systems unit’s educational content. This 

would be achieved by writing a program whereby the user can select a specific colour and threshold 

for the T-Display-S3 EyeBot so that it can seek and drive towards the largest object in its view whose 

colour is within the threshold, stopping before colliding with any objects head-on. 



 
 

4 
 

 

1.3 Preliminary Work 

 

Prior to this specific project commencing, work had already begun within the UWA Robotics Lab to 

design some of the hardware and software components of the new T-Display-S3 EyeBot. The most 

significant contribution of this prior work was a custom chassis already integrated with some key 

electronic components. The chassis consisted of two identical rectangular plates with rounded ends 

sandwiched together, separated by adjustable spacers. Between the two plates were a pair of DC 

powered, 3-6 V dual-axis TT gear motors with wheels attached on the EyeBot’s sides, a Sharp 

GP2Y0A41SK0F analogue short-range infrared distance sensor mounted at the front of the EyeBot 

facing forwards, and space in between the motors and the sensor for a slim USB battery bank. A 

5V/1A USB battery bank was initially provided as well. On the underside of the chassis’ bottom 

plate, directly beneath the distance sensor, was a metal ball caster that provided the EyeBot a third 

point of contact with the ground along the EyeBot’s centreline. Fixed on top of the EyeBot chassis’ 

top plate was a breadboard with a LILYGO® T-Display originally mounted on it, as well as a L298N 

Figure 2: Image of the UWA Robotics Lab's test circuit. 



 
 

5 
 

dual-channel motor driver connected to the T-Display sitting loose on top. The original state of the 

T-Display EyeBot design can be seen in Figure 3. 

 

Since the end goal for the EyeBot was also for it to be camera-equipped, standalone experiments had 

been performed to discover a method of reliable image transfer between a T-Display and a camera. 

The camera the UWA Robotics Lab advocated for in the design was the Ai-Thinker ESP32-CAM. 

The resolution of the images captured by the ESP32-CAM was only required to be QQVGA (or 160 

by 120 pixels). However, methods of image transfer devised by that point between the T-Display and 

the ESP32-CAM, such as asynchronous serial wired communication or the ESP-NOW wireless 

communication protocol, were deemed insufficient by the supervisors due to their low rate of image 

transfer (measured in images-per-second). A rate of RGB565 pixel-format QQVGA-resolution image 

transfer identified by the supervisors as sufficient for responsive vision-based navigation logic was 

approximately 7 images-per-second, and these prior implementations were unable to attain that. 

  

Figure 3: Angled view of the original T-Display EyeBot design. 



 
 

6 
 

1.4 Literature Review 

 

Finding existing literature relevant to the unique hardware and software design problems of this 

project was challenging. Searches across the databases of UWA’s OneSearch, ACM Digital Library 

and IEEE Xplore using various combinations of the search terms “microcontroller”, “esp32”, “self-

driving”, “autonomous” and “mobile robot” yielded only a couple of noteworthy design reports from 

recent years. Shobika et al. [5] developed a four-wheeled autonomous robot equipped with a time-

of-flight sensor that was centrally controlled with an ESP32, the only ESP32 based project that was 

found. Since it lacked image processing however there was virtually no information applicable to this 

project that could be drawn from it. Ueyama et al. [6] designed an Arduino microcontroller based 

autonomous mobile robot equipped with a laser range finder for a similar undergraduate course to the 

Embedded Systems unit. The most valuable conclusions it drew were that microcontrollers such as 

Arduino’s were preferable over Raspberry Pi’s for educational purposes due to their ease of 

programming through Arduino IDE, according to a student survey they conducted upon the 

completion of the course [6]. Most of the literature discovered within these search parameters 

however were concerned with designs where microcontrollers were only responsible for sub-systems 

such as the motors in mobile robots, as opposed to the central system control required for this project. 

Much of the software implementation for the RoBIOS-7 API did not warrant a special literature 

review due to its simplicity, as well as the fact that some of the more complex logic that is required 

(e.g. image processing techniques such as Laplace and Sobel edge detection) will be largely ported 

directly from the EyeBot 8 implementation. The primary research undertaken for the literature review 

component of this project however was for the extension challenge involving visual-based lane 

detection and navigation methods, with a focus on identifying techniques that could feasibly be 

implemented and performed on a T-Display-S3 with the greatest computational efficiency and the 

smallest memory demands. A survey of the state-of-the-art for automatic lane detection conducted 

by Zaidi et al. in 2023 [7] identified five categories of lane detection techniques: colour thresholding, 

gradient based, Hough transform, edge detection, and convolutional neural networks (CNN). CNNs, 

though regarded as the most accurate method [7], are immediately ruled out from consideration due 

to their dependence on GPU hardware, significant storage and memory demands, and reliance on 

substantial high quality training data [7] [8] [9], which are not feasible for this project. Techniques 

depending on the Hough transform for line detection as well, even though it is considered to be 

general purpose and reliable, will similarly be relegated to a method of last resort due to the apparent 

consensus regarding its high computational and memory cost [7] [8] [9]. On the other hand, colour 

thresholding is classed as the least resource intensive of the techniques [7], and the survey puts 



 
 

7 
 

forward a method devised in 2005 by Chiu and Lin titled “Colour-Based Segmentation” that boasts 

resilience to varying lighting conditions and does not rely on the Hough transform for line detection 

[10]. As such, this technique was prioritized for implementation on the T-Display-S3. As for gradient 

based techniques, there does not appear to be much representation for them in the database searches 

conducted outside of those explicitly listed in the survey, and the survey seems to prefer other 

technique categories over it [7]. Edge detection techniques, on the other hand, are heavily represented 

in the wider literature. The variations of the technique each share a similar processing pipeline 

involving first image pre-processing to reduce visual noise, identifying pixels that significantly 

contrast against their neighbours and most likely form an edge, line detection to map start and end 

points to contiguous edges, and then optional line tracking (hysteresis) for when edges are temporarily 

occluded or undetectable between image frames [7] [11]. Each of these stages are relatively modular, 

and thus its possible for a customised pipeline to be developed with stages suitable for the T-Display-

S3.  The most computationally expensive of these pipeline stages however is the line detection 

algorithm. A survey of non-CNN line detection algorithms conducted by Shi et al. in 2023 [8] 

concluded in their tests that the most computationally efficient method with a small trade off in 

accuracy was the Enhanced Line Segment Drawing (ELSED) algorithm. ELSED was developed 

specifically for “very low-end hardware” [9, p. 1], and thus ELSED was also prioritised behind the 

colour thresholding technique in the alternate implementations for the lane detection and navigation 

program. Another line detection algorithm that wasn’t identified in the various literature surveys 

however was developed by Yilmaz and Baykal and is titled the “Ultrafast Line Detector” [12]. 

Published in 2022, it boasts itself to be 14.88 times faster than EDLines [12] (the second fastest line 

detector behind ELSED [8]), as opposed to ELSED only claiming to be two times faster than EDLines 

[9]. This is via an unconventional look-up table that’s around 64 KB in size, which is suitable for the 

T-Display-S3’s memory constraints. The “Ultrafast” line detector method was thus prioritised over 

both the colour thresholding method and ELSED due to a combination of the project’s time 

constraints, the relative simplicity of its algorithm compared to ELSED, and the more general 

applicability of line detectors than colour thresholding techniques beyond lane navigation problems. 

Each of these three selected lane detection methods based on their algorithms appear to have a time 

complexity of approximately 𝑂(𝑁), with 𝑁 being the number of pixels in the image’s region of 

interest. Due to the time limitations of this project, only these three competing methods were 

considered. Unfortunately, none of these three methods in their source literature shared a common 

accuracy and speed benchmark which their claims can be compared to each other with. 

After potential lanes have been detected, either the EyeBot’s relative position in between the lanes or 

the trajectory of the lanes must be estimated. A simple lane departure warning system that was found



 
 

8 
 

and could be adapted as the guidance system for the T-Display-S3 EyeBot was developed by Gamal 

et al [13], which is dependent on strong assumptions being made about the orientation and perspective 

of the camera. Considering the well-defined and limited environment the EyeBot is expected to 

operate in for the navigation of the test circuit, as well as the constraints of the T-Display-S3 EyeBot 

design itself, these can be safely assumed. 

  



 
 

9 
 

2. Design Approach 
 

2.1  Constraints 

 

As already noted in Section 1.3 of this report, preliminary work on the hardware of the new EyeBot 

had provided a chassis complete with TT gear motors lacking encoders, a distance sensor, and a 

breadboard. For the sake of saving time, it was decided at the commencement of this project that the 

addition of all other hardware components required for the full functionality of the T-Display-S3 

EyeBot should fit within the provided chassis’ form-factor. There was freedom however in the 

replacement of other provided components such as the L298N motor driver and the 5V/1A USB 

battery bank. It was also settled at the commencement of the project that the original T-Display 

provided with the chassis would be replaced with the LILYGO® T-Display-S3 (the touchscreen 

variant if it could be accommodated), and that the on-board camera should be the Ai-Thinker ESP32-

CAM. The guiding criterion for further hardware component choices was the minimisation of costs 

to keep the total cost of the T-Display-S3 EyeBot design below that of the EyeBot 8, and the 

simplicity of hardware integration to make the T-Display-S3 EyeBot easier to construct and maintain 

than the EyeBot 8. All wiring connections between the various electronic components of the T-

Display-S3 EyeBot were also to be through the breadboard. 

 

As for the software of the new EyeBot, the primary expectation was for the entire RoBIOS-7 API [2] 

to be ported to the T-Display-S3 and be accessible as a library through Arduino IDE. Since the 

number of hardware and software features of the T-Display-S3 EyeBot do not match that of the 

EyeBot 8 however (such as the T-Display-S3 EyeBot not having a filesystem), not all the exposed 

API functions that assume these extra features were expected to be implemented. The only API 

functions expected to be implemented were those relating to drawing and printing to the display, 

receiving button and touch input, retrieving images from the camera, processing images, reading 

measurements from the distance sensor, and controlling the motors through the V-Omega driving 

interface. This subset was chosen due to it being sufficient to support programs that could meet the 

demands of the Embedded Systems unit. All other remaining API functions were permitted to return 

error codes when invoked to indicate they were unimplemented. Due to some of the unique 

characteristics of the T-Display-S3 EyeBot however, permission was also granted to add new 

functions to the API that followed similar conventions to the other functions. 

  



 
 

10 
 

2.2 Success Criteria 

 

The following success criteria for the project are listed in descending priority order: 

1. Port the entire RoBIOS-7 API to the T-Display-S3 as a software library, used by including a 

single C/C++ header file and linked to through Arduino IDE. Functional implementations 

should at least be provided for those API functions relating to drawing to the display, receiving 

button and touch input, retrieving images from the camera, processing images, reading 

measurements from the distance sensor, and controlling the motors through the V-Omega 

driving interface. All other remaining functions in the API are expected to compile but return 

error codes when invoked. 

2. Write a program for the T-Display-S3 EyeBot using the RoBIOS-7 API that involves the 

EyeBot seeking out and driving towards the largest object in the view of its camera whose 

colour is within a specified threshold, stopping before colliding with any object head-on. The 

user must be able to select the desired colour and threshold values. 

3. Write at least one program for the new EyeBot using the RoBIOS-7 API that involves the 

EyeBot autonomously navigating at least one full lap of the UWA Robotics Lab’s test circuit 

(as seen in Figure 2) via visual lane detection. 

 

The first two success criteria were necessary for the entire project to be deemed a success. If the first 

criteria were deemed to be completed but the second was not, then it would indicate that the port of 

the RoBIOS-7 API would be insufficient for the demands of the T-Display-S3 EyeBot’s use in the 

Embedded Systems unit. The program described in the second criterion is similar in difficulty to the 

most challenging assignment involving the EyeBot 8 currently presented to students in the Embedded 

Systems unit. The third criterion on the other hand was more of an extension challenge, since it was 

about discovering what the T-Display-S3 EyeBot was computationally capable of. Failure to 

complete this criterion would not have ruled the whole project as a failure, but it would indicate that 

the computational capability of the T-Display-S3 EyeBot would be limited beyond its use in the 

Embedded Systems unit. 

  



 
 

11 
 

2.3 Process 

 

2.3.1 RoBIOS-7 API Implementation 

 

Porting the RoBIOS-7 API to the T-Display-S3 was a simple process of working through the list of 

functions that were required to be implemented. The problem of reliably retrieving images from the 

ESP32-CAM was allocated the most time to solve, since having access to the camera is the most 

important feature of the EyeBot. The transfer of a QQVGA resolution image from the ESP32-CAM 

to the T-Display-S3 had already proven itself to be the most significant performance bottleneck for 

the EyeBot (based off the preliminary results of separate experiments involving asynchronous serial 

wired and ESP-NOW wireless communication), so an alternative method of transfer that would be 

significantly superior to previously tested methods was sought after. This problem also involved 

writing a specialised image capture and transfer program specifically for the ESP32-CAM. The 

solution devised for this problem would also dictate the wiring or lack thereof between the T-Display-

S3 and the ESP32-CAM. The image transfer system was to be deemed sufficient if it could reliably 

achieve an image transfer rate from the ESP32-CAM to the T-Display-S3 of at least seven images-

per-second and could maintain continuous image transfer even when all the T-Display-S3’s other 

electronic components were in full operation. 

 

The next set of API functions that were prioritised were those that involved drawing and printing to 

the T-Display-S3’s display, with the success criteria simply to have the output to the T-Display-S3’s 

screen conform to the individual function’s specifications. The image processing, button and touch 

input functions were likewise expected to conform to the API’s specifications to be deemed a success. 

 

The next most important subset of RoBIOS-7 functions to be implemented were the V-Omega driving 

interface functions. The V-Omega driving interface is designed to hide the details of the electrical 

control signals required to be sent from the T-Display-S3 to the motor driver to control the motor 

pair’s individual speeds and directions behind commands where the linear and angular speed of the 

whole EyeBot can be dictated in mm/s and degrees/s respectively. This mapping from requested 

linear and angular speeds to output Pulse-Width Modulation (PWM) signals for the motor driver 

required experimentation to find approximations suitable for the demands of the EyeBot in its 

educational setting. These experiments simply involved supplying the maximum output PWM signals 

from the T-Display-S3 to both motors in the same direction to discover the maximum linear speed 

and supplying the maximum PWM signal to one of the motors with the other stationary to discover 

the maximum angular speed. The wiring and control signals required between the T-Display-S3 and 



 
 

12 
 

the motor driver was to be dictated by the final choice of motor driver for the T-Display-S3 EyeBot 

design. The criterion for successful implementation was if the EyeBot could consistently manoeuvre 

itself towards the right direction and orientation at approximately the linear and angular speed 

requested, as well as the distance if requested, in the call to V-Omega driving interface function. 

 

The final subset of API functions to be implemented were related to the distance sensor. For the Sharp 

GP2Y0A41SK0F, the relationship between the distance detected and the analogue output value was 

discovered experimentally by placing obstructions in front of the T-Display-S3 EyeBot’s distance 

sensor at varying distances and recording the analogue output values across the range. The wiring 

between the distance sensor and the T-Display-S3 was also determined at this stage. The criterion for 

success was deemed to be the distance sensing functions providing approximately accurate 

measurements relevant to the feasible range that can be detected by the analogue distance sensor. 

 

2.3.2 Colour-Tracking Navigation Program 

 

Once the T-Display-S3 EyeBot library had a reliable implementation for the required subset of the 

RoBIOS-7 API, the goal was then to develop the colour-tracking navigation program described in 

project success criterion 2 of Section 2.2 using the API. The project would not be allowed to proceed 

until this criterion was accomplished, either by improving the program, improving the API 

implementation, or improving the hardware design of the T-Display-S3 EyeBot. 

 

2.3.3 Visual Lane Detection and Navigation Program 

 
The final stage of the project was to develop an autonomous navigation program via visual lane 

detection as described in project success criterion 3 of Section 2.2. Between the three methods of lane 

detection identified as being possibly viable for the T-Display-S3 EyeBot in the literature review of 

Section 1.4, development was prioritised in descending order like so: 

 

1. Ultrafast Line Detector [12] 

2. Colour-Based Segmentation [10] 

3. ELSED [9] 

 

The Ultrafast Line Detector method was prioritised first since it boasted to be the fastest and most 

memory efficient line detector amongst the line detector algorithms that were discovered during the 



 
 

13 
 

literature review. Parts of its pipeline such as the Gaussian Blur and the Canny Edge Detector are also 

extractable and possibly useful in other software projects in the UWA Robotics Lab. Upon 

completion of the Ultrafast Line Detector version of the program and a demonstration that it could or 

could not be used to navigate a full lap of the test circuit (and if there existed time-remaining within 

the project), the Colour-Based Segmentation version would be embarked upon. This would be for the 

purpose of comparing the performance claims of colour-thresholding techniques to line detection 

techniques. ELSED was relegated to the method of least priority for development, even though it was 

the fastest peer-reviewed method discovered in the line detector literature surveys, due its greater 

complexity compared to the Ultrafast Line Detector. It would only be considered if the Ultrafast Line 

Detector and the Colour-Based Segmentation techniques were determined to be insufficient for lane 

detection in practice. Each of these programs were also expected to interface with the hardware of 

the T-Display-S3 EyeBot through the RoBIOS-7 API. 



 
 

14 
 

3. Results and Discussion 

 

3.1 Final T-Display-S3 EyeBot Design 

  

Figure 4: A pinout diagram depicting the wiring required between the electronic components of the 

final T-Display-S3 EyeBot design. 



 
 

15 
 

Table 1: The required GPIO pin connections between the T-Display-S3 and the ESP32-CAM. 

T-Display-S3 GPIO Pin ESP32-CAM GPIO Pin 

43 14 

44 2 

1 3 

2 1 

 

Table 2: The required connections between the T-Display-S3’s GPIO pins and the Makerverse 2 
Channel Motor Driver’s pins. 

T-Display-S3 GPIO Pin Makerverse 2-Channel Motor Driver Pin 

3 DIR B 

10 PWM B 

11 DIR A 

12 PWM A 

 

Table 3: The required connection from the Sharp GP2Y0A41SK0F Analogue Distance Sensor’s 
data output wire to the T-Display-S3’s GPIO pin. 

T-Display-S3 GPIO Pin Analogue Distance Sensor wire 

13 Data Output 

  

Figure 5: Angled view of the final T-Display-S3 EyeBot 

design. 



 
 

16 
 

3.1.1 Ai-Thinker ESP32-CAM 

 

The solution settled upon for image transfer from the ESP32-CAM to the T-Display-S3 was to utilise 

the Serial Peripheral Interface (SPI) wired communication protocol. The SPI protocol operates in a 

master-slave configuration, with the T-Display-S3 configured to be the master device and the ESP32-

CAM as the slave device. Data communication is unidirectional from the ESP32-CAM to the T-

Display-S3 at a clock rate of 10 MHz (i.e. data rate of 10 Mb/s). At this data transfer rate, the 

performance bottleneck for the SPI transfer of a RGB565 pixel-format QQVGA resolution image, 

with a total data size of 38,400 bytes, was not in the speed of transmission but rather the rate at which 

the ESP32-CAM could supply images to be transferred. The ESP32-CAM was programmed to 

maintain a triple-buffer that was continually updated in the background with the latest image captured 

by the attached OV2640 camera module. Whenever at least one of the buffers has an image, the 

software prepares it for transfer by first swapping the endianness of each of the image’s pixels from 

its default big-endian mode to little-endian mode. After this is done, it signals the T-Display-S3 via 

a wire connecting the two of them that it has an image to transfer, and then the ESP32-CAM waits 

for the T-Display-S3 as the master device to initiate the SPI transaction. Since the total data size of 

an RGB565 pixel-format QQVGA resolution image was 38,400 bytes and the maximum data size of 

a single SPI transaction (discovered experimentally) was approximately 5000 bytes, eight separate 

SPI transactions are initiated for a single image, with the next 4800 bytes of the image being 

transferred sequentially. The T-Display-S3 must be signalled using the wire for each of these image 

segments, and it is the responsibility of the T-Display-S3 to keep track of whether it is assembling 

the image in the correct sequence. 

 

The OV2640 camera module was selected because it is the default camera module supported by the 

ESP32-CAM. The default variant of the OV2640 camera module with a 10 mm ribbon connector and 

a 60-degree field-of-view lens was replaced by one with a 40 mm ribbon connector and a 120-degree 

field-of-view lens. The greater field-of-view was selected so that the lanes of the UWA Robotics Lab 

test circuit in the peripheral vision of the camera could be more easily observed, and the longer ribbon 

length was for the purpose of mounting the ESP32-CAM in a low-profile orientation on-board the 

EyeBot, as seen in Figure 6. 



 
 

17 
 

 

3.1.2 LILYGO® T-Display-S3 

 

The T-Display-S3 has 13 free GPIO pins to physically connect and control electronic peripherals via, 

and all 13 were used for the final EyeBot hardware design: 4 for the ESP32-CAM connections, 4 for 

the Makerverse 2 Channel Motor Driver connections, 4 for the T-Display-S3’s internally integrated 

touchscreen, and 1 for the analogue distance sensor connection. The specific wiring between the T-

Display-S3 and these various components of the EyeBot (aside from the touchscreen, which is 

configured in software) are listed in Tables 1-3.  

 

Regarding the implementation of the RoBIOS-7 API in the T-Display-S3 EyeBot’s main software 

library, there is not much to note due to the relative simplicity of each of the functions. All the API 

functions that were implemented in the library are listed in Appendix A. The function for retrieving 

images from the ESP32-CAM waits for the ESP32-CAM to signal that it has an image segment ready, 

but the function will timeout after a set period (usually in the scenario of an ESP32-CAM not being 

properly connected to the T-Display-S3) and will instead return an image filled with a solid colour to 

the user. The function also assumes that eight consecutive image segments retrieved from the ESP32-

Figure 6: Close-up view of the ESP32-CAM and the attached 

OV2640 camera module’s orientation on-board the T-Display-S3 

EyeBot. 



 
 

18 
 

CAM constitute a complete image in the correct order, which is sometimes not true if the two devices 

are not reset at the same time. The only software solution to this problem would be to allocate another 

signal pin from the T-Display-S3 to the ESP32-CAM, which is not possible due to the lack of free 

GPIO pins on the T-Display-S3. The problem can be quickly resolved however by powering the 

whole T-Display-S3 EyeBot off and on again. The rate at which a whole image from the ESP32-

CAM can be retrieved and displayed it to the T-Display-S3’s screen is approximately 13 to 14 images-

per-second, nearly double the rate deemed sufficient. This approximated result was gleaned from the 

instantaneous image transfer rate being calculated and printed to the T-Display-S3’s display to be 

read. 

 

Major assumptions were made in the implementations for the V-Omega driving interface subset of 

functions within the RoBIOS-7 API. Since there is no encoder feedback available from the motor 

pair, mappings from the requested linear and angular speeds to the required control signals for the 

motor driver are purely estimations based on simple heuristics. The calculations for requested linear 

speed involve a percentage calculation of the requested speed compared to the maximum linear speed 

of the EyeBot discovered through experimentation, which is approximately 500 mm/s. This 

percentage is then multiplied with the maximum PWM output value to produce the required PWM 

Figure 7: Overhead view of the T-Display-S3 EyeBot. 



 
 

19 
 

output value. The requested angular speed similarly calculates a percentage compared to the 

maximum angular speed of approximately 225 degrees/s that was also discovered through 

experimentation. This percentage is then multiplied with the maximum PWM output value, and then 

this new value is subtracted from the PWM output value of the motor that is desired to be pivoted 

around (e.g., subtracted from the right motor to turn right), originally calculated from the requested 

linear speed. These heuristics have proven to be sufficient for the EyeBot’s low stakes demands in its 

driving functions. Speed variations between instances of the TT gear motors also led to a new function 

being added to the EyeBot library whereby the user can specify PWM offsets for each of the motors 

to potentially mitigate motor output inequality. 

 

Such heuristics however have impacted the reliability of the position tracking functions of the V-

Omega driving interface. These functions have been implemented in a way that involves the 

trigonometric change in distance and orientation over time being calculated whenever a new linear 

and angular speed for the EyeBot is set, which is then used to update the EyeBot’s estimate for its 

global position and orientation. The idealistic assumptions made in these calculations combined with 

the lack of encoder feedback from the motors means these estimates quickly become inaccurate in 

practice, however.   



 
 

20 
 

3.1.3 Makerverse 2 Channel Motor Driver 

 

The motor driver that was selected for the final T-Display-S3 EyeBot hardware design was the 

Makerverse 2 Channel Motor Driver, as seen in Figure 8. 

 

The previous L298N dual channel motor driver was replaced due to its relatively large size and 

subsequent difficulties mounting it on the EyeBot chassis. In contrast, the Makerverse 2 Channel 

Motor Driver is much smaller and can be easily mounted on the EyeBot’s chassis. It also only requires 

four input pins (as opposed to the L298N requiring six) to control the connected motor pair. It can 

power itself and the motor pair directly from the T-Display-S3’s 5V output pin, and very rarely trips 

out unless the PWM signals it’s provided are at their maximum value while the directional control 

pin signals are being flipped. The simple workaround for this situation has been to set the PWM signal 

values to zero before changing the directional control pin signals. 

 

3.1.4 Hoco J113 Energy-Bar with USB Type-C Connector 

 

The whole T-Display-S3 EyeBot is powered from a single 5V/2A USB battery bank source, the Hoco 

J113 Energy-Bar. The J113 can be recharged using likes of a laptop or an AC power adapter through 

its female USB Type-C port, and the T-Display-S3 is powered in-turn through the J113’s male USB 

Figure 8: Close-up view of the Makerverse 2 Channel Motor Driver in 

the powered state on the T-Display-S3 EyeBot. 



 
 

21 
 

Type-C cable. The T-Display-S3’s 5V output pin then administers power to the rest of the EyeBot’s 

electronic components via the breadboard’s power rails (as depicted in Figure 4). The initial 5V/1A 

USB battery bank that was provided with the EyeBot chassis at the start of the project proved to be 

insufficient to power both the motor pair at full speed and the ESP32-CAM at the same time. The 

large current draw in the circuit that was incurred when the motors were turning would drop the 

circuit voltage below the operational voltage of the ESP32-CAM, resulting in images with severe 

interference being captured and transferred to the T-Display-S3. The 5V/2A output of the J113 

alleviated this issue while the motors were turning, but the problem persisted during the initial motor 

startup from stationary to rotating. The solution to this problem however was to place a 16V, 220 

microfarad capacitor along the power rail connecting the T-Display-S3’s 5V output pin and the 

ESP32-CAM 5V input pin, which buffers the brief voltage drop sufficiently for the interference in 

the captured camera images to be greatly mitigated. 

 

3.1.6 Chassis and Remaining Work 

 

The battery compartment space in-between the top and bottom plate of the chassis was initially too 

small to accommodate the height of the J113 battery bank. The space between the plates was 

subsequently increased, but an unintended consequence of this modification though was that the 

support struts that each of the TT gear motors were separately bolted onto no longer reached across 

from the bottom to the top plate. The motor pair therefore had no fixed mounting point on the 

EyeBot’s chassis. The temporary remedy for this was to tie down the motors to the base plate using 

Figure 9: Close-up of the interior of the chassis with the J113 battery bank 

removed. The image is annotated to show the gap between the motor's 

support struts and the chassis top plate. 



 
 

22 
 

cable ties (as depicted in Figure 9), but ultimately new supports should be created that can bridge the 

gap between the two plates and remove the need for the cable ties. 

 

3.1.6 Overall Cost 

 

An accurate estimation of the total cost of purchasing all the components necessary to build the T-

Display-S3 EyeBot is difficult due to the lack of information regarding all the inputs for this design, 

such as how much it cost to manufacture the top and bottom plates used in the chassis. For the sake 

of this report a pessimistic cost estimation was calculated based on the assumption that all the major 

electronic components would not be bought in bulk. Shipping costs were excluded. Below is a list of 

the approximate cost (in Australian dollars, rounded up to the nearest dollar) of each major electronic 

component in the T-Display-S3 EyeBot design: 

- LILYGO® T-Display-S3 (touchscreen variant with soldered pins): $35 [4] 

- Ai-Thinker ESP32-CAM: $13 [14] 

- OV2640 Camera Module with 40 mm ribbon and 120-degree lens: $8 [15] 

- Makerverse 2 Channel Motor Driver: $9 [16] 

- Hoco J113 Energy-bar (USB Type-C): $25 [17] 

- 3-6V TT Gear Motor (x2): $14 [18] 

- Sharp GP2Y0A41SK0F Analog Distance Sensor: $23 [19] 

- 16V, 220 microfarad capacitor: $1 [20] 

This sum of each of these electronic components is approximately $128. While the total cost of an 

EyeBot 8 is unknown, it is known that the cost of the EyeBot 8’s interface board is $80 USD by itself 

[1]. It can be confidently concluded, therefore, that the T-Display-S3 EyeBot design is significantly 

cheaper than the EyeBot 8. 

 

3.2 Programs 

 

All instructions to upload the necessary code to the ESP32-CAM, install the T-Display-S3 EyeBot 

software library within Arduino IDE, and write programs for the EyeBot can be found in the source 

code repository in the possession of the project supervisors.  

  



 
 

23 
 

3.2.1 Colour-Tracking Navigation 

 

Project success criterion 2 of Section 2.2 was achieved with the successful implementation of this 

program. In this program the user can select a pixel colour within the view of the EyeBot’s camera, 

alongside setting the hue, saturation, and intensity thresholds above and below this selected colour. 

The user can then initiate the seeking phase, whereby the EyeBot searches for the highest 

concentration of pixels in its view whose colour falls within the threshold. To do this, a vertical and 

horizontal colour histogram of the input image is calculated to track which row and column contain 

the highest number of pixels that fall within the colour threshold. This identified row and column is 

then depicted as red crosshairs overlaid on the live camera feed, as depicted in Figure 10. The EyeBot 

turns on the spot at the set angular speed until the column falls within the central horizontal region of 

the image. At this point the EyeBot then drives forward at the set linear speed until either the column 

falls outside of the central horizontal region (causing the EyeBot to turn on the spot again, repeating 

the process), or until the distance sensor detects it is about to collide with an object, causing the 

seeking phase to come to an end. 

  

Figure 10: Sequence of images captured from a video of the Colour-Tracking Navigation program's 

seeking phase. In each image the red crosshairs are positioned over the orange cone, due to the 

colour threshold being set to detect the cone’s colour. 



 
 

24 
 

 

3.2.2 Ultrafast Line Detector Lane Navigation 

 

Project success criteria 3 of Section 2.2 was also achieved with the successful implementation of this 

program. The algorithm for the Ultrafast line detector was implemented largely as is from the original 

paper [12], minus the corner joining and precise curve detection logic. For the denoising stage of the 

algorithm, a modified and stripped-down version of Basile Fraboni’s Fast Gaussian Blur [21] was 

applied to a select region of interest (ROI) within the image. The ROI selected was the bottom quarter 

of the image, since it contained the EyeBot’s entire view of the test circuit’s surface and lane-

markings. For the edge detection stage, the Canny Edge Detector [22] was implemented from scratch 

and applied to this same ROI.  

 

The heuristic that was followed for lane detection from the set of lines the Ultrafast line detector 

produced was inspired by the lane departure warning system highlighted in the literature review [13]. 

Within the ROI, a line is designated as most likely representing a left or right lane depending on if 

they were outside of a central horizontal sub-region in the ROI, how close to it they were, if they are 

angled towards it, and on which side of the sub-region they were on. The sub-region chosen was the 

middle 40-pixel wide area spanning from the top to the bottom of the ROI, with the ROI itself being 

160-pixels wide in total. If multiple lines qualified as possibly being a lane, the line with an end 

Figure 11: Sequence of images captured from a video, from left to right, showing the successful 

execution of the Colour-Tracking Navigation program. The third image shows the EyeBot stopping 

before colliding with the orange cone. 



 
 

25 
 

closest to the sub-region’s horizontal border was chosen as the lane candidate. If a potential left or 

right lane was identified, an intersection test between the line and the horizontal border of the central 

sub-region was performed by calculating the line’s gradient and then projecting it from the line’s 

coordinates to the border. If the projected line intersected the border before intersecting the top of the 

ROI, then that as was regarded as turning inwards, and the EyeBot should turn in response until a line 

possibly identifying a lane only intersected with the top of the ROI instead. If both lanes are regarded 

as turning inwards, or no potential lanes are identified, the EyeBot drives continues to drive straight. 

This process is illustrated in Figure 12. 

 

Figure 12: Two diagrams visually depicting the lane navigation algorithm 

implemented for the Ultrafast Line Detector Lane Navigation program. In both 

diagrams the transparent blue region represents the central sub-region of the ROI. In 

the top diagram, the left and right lane candidates are the red lines with dots 

extending out from them, showing how neither of them intercepts the sub-region. 

The EyeBot will therefore drive straight ahead. On the other hand, the green line in 

the bottom diagram, representing the right lane candidate, intercepts the sub-region. 

The EyeBot will therefore turn left in response. 



 
 

26 
 

The example program that has implemented this algorithm has been successful in navigating around 

the UWA Robotics Lab test circuit for multiple consecutive laps until testing ceased, all the while 

having the EyeBot’s main body staying within the solid lane markings. The project supervisor 

approved of this satisfying the project success criterion. The program runs on the T-Display-S3 with 

minimal computational overhead, with the primary navigation logic (i.e., retrieving an image from 

the camera, detecting lanes within it, adjusting the motors, and finally drawing to the display) being 

performed at approximately 12 to 13 iterations per second, down only from the ceiling rate of 13 to 

14 iterations per second that can be achieved by only retrieving and displaying an image. The 

approximate iteration rate of this program was gleaned by printing the measured instantaneous rate 

to the display to be read. 

Figure 13: Sequence of images captured from a 

video, from top to bottom, depicting the 

successful execution of the Ultrafast Line 

Detector Lane Navigation program as the 

EyeBot rounds a bend. 



 
 

27 
 

In terms of limitations or flaws, because the Ultrafast line detector works by dividing the ROI into 4 

by 4-pixel squares, and because the input image already had a low resolution of QQVGA, the detector 

often mistakenly joins closely parallel lines. This problem did not have a noticeable impact on lane 

detection however and would be alleviated if the process was applied to higher resolution images. 

The Ultrafast Line Detector is also very much dependent on a precise single-pixel width edge detected 

image being supplied to it. The author’s implementation of the Canny Edge Detector in this program 

is unfortunately flawed however, often producing double-pixel width edges that are incompatible 

with the Ultrafast line detection method, which in turn causes the program to miss some lines. 

Considering the performance headroom leftover by this program on the T-Display-S3 however, it is 

certain that a superior version of this program could be written for it. 

 

Figure 14: Close-up of the Ultrafast Line Detector Lane Navigation 

program's navigation screen. The ROI at three stages of the program’s 

pipeline is displayed at the top half of the screen. From top to bottom, the 

first ROI is the raw colour image, the second is the output of the Canny 

Edge Detector, and the third is the output of the Ultrafast Line Detector. 



 
 

28 
 

3.2.3 Colour-Based Segmentation Lane Navigation 

 

Due to the working implementation of the Ultrafast Line Detector Lane Navigation program being 

completed, work began on implementing the Colour-Based Segmentation technique for lane 

detection [10]. Unfortunately, however, there did not remain enough time in this project for 

substantial work on this program to be completed to a stage that is worthy of discussing, but the 

work-in-progress program can be found in the examples folder of the project source code in the 

possession of the supervisors.  



 
 

29 
 

4. Conclusions and Future Work 
 

This project has been able to demonstrate that the T-Display-S3 EyeBot design proposed in this report 

is more than capable of assuming the role the EyeBot 8 currently occupies in the Embedded Systems 

unit. The T-Display-S3 EyeBot is significantly cheaper than the EyeBot 8, and it can perform the 

same core functionality the EyeBot 8 is used for in the Embedded Systems unit, as demonstrated by 

the Colour Tracking Navigation program that was written for it. The T-Display-S3 EyeBot is also 

capable of supporting programs that exceed the demands of the Embedded Systems unit, as 

demonstrated with the Ultrafast Line Detector Lane Navigation program. The minimal computational 

overhead this program incurred also indicates that more complex programs can be supported by the 

T-Display-S3 EyeBot as well. Both the Colour-Tracking Navigation and Ultrafast Line Detector Lane 

Navigation programs also demonstrate that the implementation of the RoBIOS-7 API for the T-

Display-S3 is sufficiently performant and reliable. Users of the T-Display-S3 EyeBot can write 

programs for it using this API through Arduino IDE, which also removes one of the most significant 

usability hurdles that is present in the programming process required for the EyeBot 8. Each of these 

factors suggest that the T-Display-S3 EyeBot will improve the experience of students in the 

Embedded Systems unit, and the simpler process of assembling and maintaining the T-Display-S3 

EyeBot compared to the EyeBot 8 will also improve the experience of facilitators for the unit. While 

there does remain work regarding manufacturing better support struts for the motors to replace the 

interim fix currently present in the design, this does not inhibit the current T-Display-S3 EyeBot 

design’s usability. In conclusion, the UWA Robotics Lab should consider replacing their existing 

fleet of EyeBot 8’s with T-Display-S3 EyeBot’s for use in the Embedded Systems unit. The software 

and hardware designs developed for the T-Display-S3 EyeBot can also hopefully contribute to the 

UWA Robotics Lab’s body of knowledge for future software and hardware development. 

  
  



 
 

30 
 

References 
 

[1]   T. Bräunl, “EyeBot 8,” UWA Robotics Lab, [Online]. Available: 
https://roblab.org/eyebot/. [Accessed 10 October 2024]. 

[2]   T. Bräunl, “RoBIOS-7 Library Functions,” UWA Robotics Lab, January 2023. [Online]. 
Available: https://roblab.org/eyebot/robios.html. [Accessed 10 October 2024]. 

[3]   “Xinyuan-LilyGO/T-Display-S3,” GitHub, [Online]. Available: 
https://github.com/Xinyuan-LilyGO/T-Display-S3. [Accessed 10 October 2024]. 

[4]   “T-Display-S3,” LILYGO®, [Online]. Available: https://www.lilygo.cc/products/t-
display-s3?variant=42589373268149. [Accessed 10 October 2024]. 

[5]   R. Shobika, S. Mohanbaabhu, B. Hemalatha and S. Tamilselvan, “IoT-Based Autonomous 
Vehicle Control,” in 2023	Third	International	Conference	on	Smart	Technologies,	
Communication	and	Robotics	(STCR), 2023.  

[6]   Y. Ueyama, T. Sago, T. Kurihara and M. Harada, “An Inexpensive Autonomous Mobile 
Robot for Undergraduate Education: Integration of Arduino and Hokuyo Laser Range 
Finders,” IEEE	Access,	vol. 10, pp. 79029-79040, 2022.  

[7]   M. Zaidi, H. Daud, M. Shafique and H. A. Jamal, “Lane Detection in Autonomous Driving: 
A Comprehensive Survey of Methods and Performance,” in 2024	IEEE	1st	Karachi	
Section	Humanitarian	Technology	Conference	(KHI­HTC), 2024.  

[8]   L. Shi, J. Tan, B. Xu and K. Li, “A Research of Local-based Line Segment Detection 
Algorithms,” in Proceedings	of	the	2023	International	Conference	on	Computer,	Vision	
and	Intelligent	Technology, New York, NY, USA, 2023.  

[9]   I. Suárez, J. M. Buenaposada and L. Baumela, “ELSED: Enhanced line SEgment drawing,” 
Pattern	Recognition,	vol. 127, p. 108619, 2022.  

[10]  K.-Y. Chiu and S.-F. Lin, “Lane detection using color-based segmentation,” in IEEE	
Proceedings.	Intelligent	Vehicles	Symposium,	2005., 2005.  

[11]  N. J. Zakaria, M. I. Shapiai, R. A. Ghani, M. N. M. Yassin, M. Z. Ibrahim and N. Wahid, “Lane 
Detection in Autonomous Vehicles: A Systematic Review,” IEEE	Access,	vol. 11, pp. 
3729-3765, 2023.  

[12]  I. C. Yilmaz and I. C. Baykal, “Ultrafast line detector,” Journal	of	Electronic	Imaging,	vol. 
31, p. 043019, 2022.  

[13]  I. Gamal, A. Badawy, A. M. W. Al-Habal, M. E. K. Adawy, K. K. Khalil, M. A. El-Moursy and 
A. Khattab, “A Robust, Real-Time and Calibration-Free Lane Departure Warning 
System,” in 2019	IEEE	International	Symposium	on	Circuits	and	Systems	(ISCAS), 2019.  

[14]  “ESP32-CAM Development Board With OV2640 Camera,” Lonely Binary, [Online]. 
Available: https://lonelybinary.com/products/board-esp32-
cam?variant=43890713034909&currency=AUD&utm_medium=product_sync&utm_sou
rce=google&utm_content=sag_organic&utm_campaign=sag_organic&gad_source=1&gcl



 
 

31 
 

id=EAIaIQobChMI-4Hc1OiCiQMVINkWBR3a_RDcEAQYASABEgK0EPD_BwE. [Accessed 
10 October 2024]. 

[15]  “New OV2640 Camera Module for ESP32 CAM 2.4G Wifi Module 200 222 30 45 120 160 
Degrees 850nm Night Vision DVP 24PIN Night Vision,” AliExpress, [Online]. Available: 
https://www.aliexpress.com/item/1005004518669324.html?channel=twinner. 
[Accessed 10 October 2024]. 

[16]  “Makerverse Motor Driver 2 Channel,” Core Electronics, [Online]. Available: 
https://core-electronics.com.au/makerverse-motor-driver-2-
channel.html?gad_source=1&gclid=EAIaIQobChMI5dKM3-
mCiQMVqVoPAh2CtRBuEAQYASABEgJ_bfD_BwE. [Accessed 10 October 2024]. 

[17]  “Hoco J113 Energy-bar | 5000mAh power bank with cable - Type-C - Black,” Hoco 
Group (Australia), [Online]. Available: https://www.hoco.com.au/shop/j113-c-bk-
hoco-j113-energy-bar-5000mah-power-bank-with-cable-type-c-black-6583#attr=. 
[Accessed 10 October 2024]. 

[18]  “DC Gearbox Motor - TT Motor - 200RPM - 3 to 6VDC,” Core Electronics, [Online]. 
Available: https://core-electronics.com.au/dc-gearbox-motor-tt-motor-200rpm-3-to-
6vdc.html?gad_source=1&gclid=EAIaIQobChMI44S8puqCiQMVRSV7Bx1u_AYsEAQYAS
ABEgLFGfD_BwE. [Accessed 10 October 2024]. 

[19]  “Sharp GP2Y0A41SK0F Analog Distance Sensor 4-30cm,” Core Electronics, [Online]. 
Available: https://core-electronics.com.au/sharp-gp2y0a41sk0f-analog-distance-
sensor-4-30cm.html?gad_source=1&gclid=EAIaIQobChMI5MX_zOqCiQMVpuMWBR06-
RwCEAQYASABEgKZrvD_BwE. [Accessed 10 October 2024]. 

[20]  “220uf 16V PCB Electrolytic Capacitor,” Altronics, [Online]. Available: 
https://www.altronics.com.au/p/r5143-lelon-220uf-16v-pcb-electrolytic-capacitor/. 
[Accessed 10 October 2024]. 

[21]  B. Fraboni, “Fast Gaussian Blur,” GitHub, [Online]. Available: 
https://github.com/bfraboni/FastGaussianBlur. [Accessed 19 8 2024]. 

[22]  J. Canny, "A Computational Approach to Edge Detection," IEEE	transactions	on	pattern	
analysis	and	machine	intelligence,	Vols. PAMI-8, pp. 679-698, 1986.  

 
 



 
 

32 
 

Appendices 
 

Appendix A RoBIOS-7 API C++ Functions implemented for the T-Display-S3 EyeBot 

Below is a list of signatures of the RoBIOS-7 API [2] functions that have been implemented for the 

T-Display-S3 EyeBot, with the remaining API functions that have not been listed here returning only 

error codes if they are invoked: 

 
int LCDPrintf(const char* format, ...) 

int LCDSetPrintf(int row, int column, const char *format, ...) 

int LCDClear() 

int LCDSetPos(int row, int column) 

int LCDGetPos(int *row, int *column) 

int LCDSetColor(COLOR fg, COLOR bg) 

int LCDSetFont(int font, int variation) 

int LCDSetFontSize(int fontsize) 

int LCDGetSize(int *x, int *y) 

int LCDPixel(int x, int y, COLOR col) 

COLOR LCDGetPixel(int x, int y) 

int LCDLine(int x1, int y1, int x2, int y2, COLOR col) 

int LCDArea(int x1, int y1, int x2, int y2, COLOR col, int fill) 

int LCDCircle(int x1, int y1, int radius, COLOR col, int fill) 

int LCDImageStart(int x, int y, int xs, int ys) 

int LCDImage(BYTE *img) 

int LCDImageGray(BYTE *g) 

int LCDImageBinary(BYTE *b) 

int LCDRefresh(void) 

int KEYGet(void) 

int KEYRead(void) 

int KEYWait(int key) 

int KEYGetXY (int *x, int *y) 

int KEYReadXY(int *x, int *y) 

int CAMGet(BYTE *buf) 

int CAMGetGray(BYTE *buf) 

void IPLaplace(BYTE* grayIn, BYTE* grayOut) 

void IPSobel(BYTE* grayIn, BYTE* grayOut) 



 
 

33 
 

void IPCol2Gray(BYTE* imgIn, BYTE* grayOut) 

void IPGray2Col(BYTE* imgIn, BYTE* colOut) 

void IPRGB2Col(BYTE* r, BYTE* g, BYTE* b, BYTE* imgOut) 

void IPCol2HSI(BYTE* img, BYTE* h, BYTE* s, BYTE* i) 

void IPOverlay(BYTE* c1, BYTE* c2, BYTE* cOut)  

void IPOverlayGray(BYTE* g1, BYTE* g2, COLOR col, BYTE* cOut) 

COLOR IPPRGB2Col(BYTE r, BYTE g, BYTE b) 

void IPPCol2RGB(COLOR col, BYTE* r, BYTE* g, BYTE* b) 

void IPPCol2HSI(COLOR col, BYTE *h, BYTE *s, BYTE *i) 

BYTE IPPRGB2Hue(BYTE r, BYTE g, BYTE b) 

void IPPRGB2HSI(BYTE r, BYTE g, BYTE b, BYTE* h, BYTE* s, BYTE* i) 

int PSDGet(int psd) 

int PSDGetRaw(int psd) 

int VWSetSpeed(int lin_speed, int ang_speed) 

int VWGetSpeed(int *linSpeed, int *angSpeed) 

int VWSetPosition(int x, int y, int phi) 

int VWGetPosition(int *x, int *y, int *phi) 

int VWStraight(int dist, int lin_speed) 

int VWTurn(int angle, int ang_speed) 

int VWCurve(int dist, int angle, int lin_speed) 

int VWDrive(int dx, int dy, int lin_speed) 

int VWRemain(void) 

int VWDone(void) 

int VWWait(void) 

 

Below are two functions that were added and implemented alongside the RoBIOS-7 API in the T-

Display-S3 EyeBot’s software library: 
 

int EYEBOTInit(); 

int VWSetOffsets(int left_offset, int right_offset); 


