
GENG5512 MPE Engineering Research Project Part 2

Virtual Reality for Mobile Robots

Jairus Wong Yong Zhi

21976567

School of Computer Science and Software Engineering,

University of Western Australia

Supervisor: Thomas Bräunl

School of Electrical, Electronic and Computer Engineering,

University of Western Australia

Word Count: 7798

School of Engineering

University of Western Australia

Submitted: October 16, 2022

Abstract
This project’s main goal was to extend a virtual reality robot simulation program, EyesimVR. Eyesim
itself is a computer-based robot simulation program, producing realistic simulations focusing on
mobile robots. As a natural progression of Eyesim, a VR version, EyesimVR, was made for the Oculus
family of VR headsets.

The aim of EyesimVR was to mimic the functionality of the desktop program, whilst utilising new
features enabled by VR to allow for new modes of interaction with the robots within the simulation.

However, when porting the program to VR, some pre-existing simulation features from the desktop
program had to be removed or changed, and many other VR-based functionality have yet to be
implemented.

As such, this project aims to provide upgrades to EyesimVR, which can be roughly split into 3
sections (with some overlap). Large system changes, which cover how the simulation program is
run/customised by the user, VR specific changes, which cover changes relating to functionality
specifically achievable through the use of VR, and small fixes, small changes which lesser impact the
program.

A main milestone for the project was completing a large system change, which was the change in the
programs simulation file intake and build process. The desktop Eyesim had an important feature, the
ability to use custom scripts to control robots within the simulation. EyesimVR did not have this
feature, forcing all robots to follow a small selection of pre-made programs. Although implementing
the exact functionality from the desktop Eyesim is ideal, it was proving difficult, thus an alternative
solution was implemented. This resulted in a few compromises, such as EyesimVR being built as
multiple programs (each containing one simulation, rather than one program taking in multiple
simulations), scripts/simulations had to be input before building, could not run c binaries, but
crucially, allowed users to provide custom scripts.

Additionally, many VR specific features were implemented, a few examples include grabbing and
throwing objects, toggle a help mode with popups showing button functionality, enabling robots to
run their specified custom script, and enabling the left-hand command window to have much more
control on the robots and simulation settings.

With the upgrades, EyesimVR is now able to simulate robots running custom programs, and is better
utilising the VR technology. For future work, however, there are still many more possible upgrades
that can be made to the program, for example, implementing the ideal system (single program,
simulation files and custom c binaries loaded after program is built), or merging it with the newest
version of Eyesim.

Table of Contents

Abstract ___ 2

Table of Contents __ 3

Introduction __ 5

Eyesim __ 5

Project Scope __ 5

Use Cases ___ 6

Inputs __ 6

Literature review __ 7

Virtual Reality __ 7

Robot Simulators __ 7

Virtual Reality Simulations ___ 7

Virtual Reality Robot Simulators __ 8

Design Process __ 8

Workflow ___ 8

Tools ___ 8

Constraints __ 9

Success Condition ___ 9

Features Implemented __ 9

System Changes __ 10

Main System Change ___ 10

Program Chain __ 14

VR Features ___ 15

Grabbing Objects __ 15

Command window Upgrades ___ 17

Help Mode ___ 21

Smaller Changes __ 22

Timing Fixes __ 22

Hand Display __ 23

Bounce __ 24

Demo programs __ 24

Conclusion __ 27

Future Work ___ 27

Eyesim merge ___ 27

Build Script ___ 27

Demo list ___ 27

General VR headsets ___ 27

Sound ___ 28

Publish __ 28

Appendix ___ 28

1- GitHub Project page __ 28

2- Deployment manual __ 29

3- Program chain -> demo list __ 31

4- De-pentration Velocity __ 31

5- SideQuest __ 32

References __ 33

Introduction
Eyesim
Eyesim is a robot simulation program which was designed for traditional computer systems, with a
main focus on mobile robots, providing a sandbox to demonstrate driving/swimming/diving
programs on robots in various terrains or environments. One major draw of such a simulation, is
allowing users to create and test their own robot systems without the need to obtain and build the
physical robots.

A VR version was created for the Oculus family of VR headsets, specifically the Oculus Quest 1 and 2,
aiming to mimic all the functionality of the desktop program whilst utilising new features enabled by
the use of VR.

Project Scope
EyesimVR attempts to mimic all the functionality of the desktop program, whilst adding in other
features allowed by the use of virtual reality. However, when porting the program to VR, some pre-
existing simulation features from the desktop program had to be removed or changed, and many
other VR-based functionality have yet to be implemented.

Oculus Quest 1

Eyesim Desktop Eyesim VR

As such, this project aims to re-introduce many of the missing features, provide alternative solutions
where the missing features cannot be directly re-introduced, and implement many new features
making use of the functionality provided by the VR environment.

Use Cases
Eyesim has generally been used for educational purposes, where students are able to test their
scripts on the simulated robots, before using it on an actual robot. Whilst EyesimVR has not yet
reached that capability, the features added during this project has pushed it almost to the point
where it can be used for such purposes.

 Additionally, the features added in EyesimVR has now allowed it to be capable of giving
demonstrations of Eyesim to visitors, providing a much more fun and interactive experience
compared to just watching Eyesim Desktop run on a screen.

Inputs
To generate a simulation in Eyesim, a variety of different files can be provided to the program, a
brief description of each have been provided below.

 A simulation file controls the environment of the simulation, controlling the robots that are put in it,
the program on each robot, and the area the robot is in. This is the only required file to generate a
simulation, but without referencing the other files, the robots will be static, and only pre-made
objects/robots/worlds can be generated.

A robot script /program file contains the program to be run on a robot. It is usually a c file, but can
also be written in python or c++. For c and c++, they first have to be compiled to produce a binary .x
file, before Eyesim can use it.

World and maz files contain information about the world to be loaded. World files state some
parameters of the area, including the textures to use, whilst maz files states the shape of the world
(location of walls ++) with the use of symbols, such as a line “|” representing a vertical wall.

Robot files represent the robot to be added to the sim, containing links to the actual model, and
other parameters of the robot, such as location and direction of sensors, and the colliders, used for
physics interactions in unity.

 Object files represent different objects that can be placed around the sim to be interacted with,
including coke cans and soccer balls.

The Eyesim program can take any sim file as input, which should reference other robots, robot
programs and objects etc, all of which will make up the simulation to be generated.

It is important to note that there is a distinct difference between robot scripts, which are compiled
binaries/machine-readable instructions or the code to generate them, and all the other files, which
are just text-based files which are processed by the program through file system operations. This
means that the program has to handle robot scripts differently from all the other files. As such
future mentions of simulation/sim files will refer to ALL the possible input to the program, except for
the robot scripts, which will be referenced directly.

Literature review
Virtual Reality
Virtual reality refers to a system used for building virtual environments, usually trying to represent
some aspects of reality. These systems usually allow some way to interact with the environment,
through gloves, hand controllers, joysticks and head-mounted displays[10]. Within the context of
this project, it refers specifically to the Oculus Quest Virtual Reality headsets, a more recent set of
household entertainment systems comprising of a headset and 2 hand controllers. However, given
that the VR term is technically more general, many of the older articles refer to VR systems as any
system trying to mimic reality through mixing a virtual environment with other forms of interactions.

Virtual reality systems have often been used to enhance learning experiences, especially to obtain
practice for equipment not easily accessible in the real world, and to allow for “safe-fails” where
users can gain experience in new situations in which they would otherwise not have had [9], due to
the cost of failure being too high.

As the Eyesim program is also being used to enhance students learning experiences in UWA and has
proven to improve how well and fast students learn about robots [8], a natural progression of the
Eyesim program was the Virtual reality implementation. A VR version of Eyesim had already been
partly implemented for the Oculus family of VR headsets. It aims to leverage the VR capabilities to
allow for an even wider set of interactions, allowing users to directly interact with the robots, whilst
remaining realistic.

Robot Simulators
In terms of robot simulations, there has been many other similar kinds of applications made, many
of which are also made for educational purposes. “Webots” is a similar program, containing many of
the features present in Eyesim, such as the generation of any kind of mobile robot, the ability to
input external custom scripts to control said robots, and the ability to use those custom scripts on
actual physical robots.[1] However, given the program was produced almost 20 years ago, VR did not
exist and no follow up extensions to the program has been made regarding VR.

Both programs have been used to further extend knowledge of robot programs. For example,
Eyesim has been used to test a set of bug navigation algorithms[2], and Webot has been used to
create a model for, and study robot platoons[3].

Virtual Reality Simulations
VR, on the other hand, has a range of simulations being made, but they mostly end up focusing on
training motor control.

For example, the use of virtual reality was found to improve posture control in older adults, leading
to a lower fall rate[4]. Similarly, a much more recent study uses technology similar to the Oculus
Quest being used for this project, to determine how students perform with and without VR
technology.[5] Students use 2 “pens” acting as their work tools (similar to the oculus hand
controllers), to perform tasks, visualised on a computer screen. They were directly compared to
students who learnt the same tasks through a normal educational video, and it was found that
students with the VR equipment performed marginally better and felt more confident than those
who used the video. Most of the students reported that they would rather learn using the VR
equipment, showing the advantage VR has over traditional learning tools and validifying the move of
eyesim to VR.

Virtual Reality Robot Simulators
However, whilst there are plenty of research going into virtual reality and robot simulations
separately, there is a lot less research going into realistic robot simulations IN virtual reality.
A VR system has been created to simulate a giant biped robot moving around a virtual world.
However, it uses a custom set of hardware and has a bigger focus on the “fun” aspect of VR, turning
the system into more of a game than a realistic simulation system.[6]

Finally, another paper was found, capturing some details on how a VR studio ported their game
“Creed: Rise to Glory” into the Oculus Quest. Similar to this project, a non-VR program is to be
ported to VR (both also to the Oculus Quest). However, this paper’s focus is on ways to preserve a
visual style, without too much performance loss (since VR systems are generally more graphically
intensive) [7]. As such, this paper is not very applicable to this project unless improving the Eyesim
VR performance is moved into the scope of this project, which will only happen when the many
other systemic changes have been made.

From the Literature reviewed, no VR robot simulations were found, which allowed simulating
realistic interactions with humans and programmed robots.

Design Process
Workflow
The work for this project was done with an agile approach, with work being completed and
presented in weekly “sprints”. There were weekly face-to-face meetings with the client, with each
meeting showcasing the new functionality which has been implemented, followed by discussions on
problems faced, any changes or alternatives solutions to be made and specific work to be completed
by the next week.

Tools
Unity
Eyesim is implemented through the Unity Engine. As such, the main tool used for the project is the
Unity Editor, which is an interface that helps to visualise most aspects of the project and easily allow
for changes to be made. Below are some key features provided by the Unity Editor.

Being able to drag and drop scripts onto different objects allows for any scripts to be attached to
different objects, making implementing some functionality a simple drag-drop operation.

All Objects in Unity exist as part of a hierarchy. The Unity editor allows the hierarchies of these
objects to be easily manipulated, allowing for a much simpler implementation of many logical
functions within the project.

The Unity editor allows running the project inside the editor without needing to be built. This saves
time, and allows for the examining of any spawned objects which helps with debugging. As
EyesimVR is meant to be run on an Oculus rather than desktop (and the input devices are also
different- hand controllers vs keyboard and mouse), not everything works when running the project
in the editor. However, it is able to at least create the world/robots and attach all their required
scripts (even if they do not run properly given the different environment/input), which allows for
those objects to be examined directly, massively helping with debugging.

The Unity Edito also allows building and running a project directly on the headset. Unity provides a
function for projects “build and run”, allowing the project to be built, uploaded to the headset, and
opened automatically. This saves a lot of time as the steps would normally have to be done
manually, by opening a side-loader to install the APK on the device, then look for the correct
application to open, both time consuming and tedious. 1 caveat is that the build and run cannot be
used when any simulation files change, but this will be further explained in Future Work – Build
Script.

GitHub Projects
Given the large number of changes that need to be made and tracked, a GitHub project page was
created, allowing for cards, representing each issue, to be made and displayed on a different
columns representing their completion state. New cards can be added, and cards can be dragged to
different columns, which make tracking each requested feature/issue discovered easy. A screenshot
of the project page has been included in Appendix 1.

Side Quest
After compiling a unity project, an APK file will be created for the program, which can then be
installed on the Oculus. Whilst command line arguments can be used to install them, most notably
through the “ADB” command, having an external program to do it can be faster and removes the
need for any initial learning period of the commands and it’s arguments. As such, an external
program, “Side Quest” was installed, and used primarily to install the APKs. Some screenshots to
show how to use Side Quest is included in Appendix 5.

Constraints
Eyesim Desktop and Eyesim VR are supposed to share a set of files, “Eyesim library Files”, which are
used for producing the actual simulation (as opposed to interacting with it, such as VR functionalities
like grabbing). However, Desktop Eyesim and EyesimVR have both been upgraded in different ways,
and as such, their set of Eyesim Library Files have diverged significantly. For this project, further
changes to the Eyesim Library Files were avoided where possible, to prevent the difference in Eyesim
library Files of the 2 version to grow even more, but there were certainly areas in which such
changes had to be made.

Success Condition
Given that this project is client based, the main success condition was the client being satisfied with
the number and quality of the requested features added. However, to provide a more tangible
success condition, a minimum set of features were agreed upon, where the main system change
(explained in the “System Changes” section below), and at least 4 VR specific features, had to be
implemented. These, along with many more features, were all successfully implemented and will be
described below.

Features Implemented
The features which have been implemented can generally be split into 3 different categories, with
some overlap. Firstly, “Simulation System Changes”, which refer to changes which affect how the
program is built or used. Secondly, “VR Features”, which refer to VR-Specific functionality and
“Smaller Changes” which refer to general changes or fixes to smaller/individual parts of the
program.

System Changes
Main System Change
Background
In Desktop Eyesim, the program is first built from the program files into a single executable. Users
can run the executable which would open up the Eyesim program, and from that program, a set of
simulation files and custom robot scripts can be selected as input into the system, which would
generate the desired simulation.

This system had 4 key desirable properties. Firstly, existing as a single program, secondly, being able
to take custom scripts in as input, thirdly, being able to run custom scripts of different languages, the
most common 2 being c and python, and lastly, the custom scripts and simulation files were input
into the system at the same time.

In EyesimVR, however due to the locked down Android environment of the Oculus, instead was
implemented with a set of pre-built hard coded C# scripts which could be used to run the robots.
The project files were built along with those hard coded C# scripts, to produce a single Eyesim
program, but this time, only simulation files could be selected as input, and robots within the
simulation could only ever run the set of hard coded C# programs. As such, EyesimVR only retained
the first property, but lost the other 3, failing to be able to take in external custom scripts, run
custom scripts of different languages, and introducing the simulation files into the program at a
different time than the robot scripts.

As being able to input custom scripts into EyesimVR was a priority, the main system change for this
project, was to convert EyesimVR into a system that could allow custom scripts as separate files, to
be loaded in and control robots. Whilst there was still no solution found that could load C binaries or
custom scripts during the program runtime, a solution was found that could allow custom C# scripts
to be loaded in, however it had to be done before the program was built. This led to a compromise,
where sim files would now be loaded in together with the custom scripts before the program is built,
but each new simulation will have to be built separately into a different program, causing the
program to now “exist” as multiple programs.

A figure is provided below to provide more clarity on the difference between the 3 systems
regarding how the program is built, and how each simulation is generated.

Eyesim Desktop
(Ideal System)

Eyesim Desktop
(Previous System)

Eyesim Desktop
(Implemented System)

Finally, a summary table showing the 3 different systems and how many desirable properties they
have, is provided below to provide an easy comparison between the 3 systems.

Subtasks
To implement this system change, there were a large set of subtasks which needed to be completed,
but the three crucial ones which provided EyesimVR the 2 desirable properties from Eyesim Desktop,
have been listed below and will be discussed further.

- Custom scripts -> Separate C# scripts into individual scripts / separate files
- Scripts and Simulation files loaded together -> Method of storing and retrieving simulation

files from within the build
- Command line building

Implementation (Custom Scripts)
The most important feature that was added in this system change was the ability to provide custom
scripts as separate files into the program. This was done through 3 features provided by C#.

Firstly, the ability to call methods by name, which allowed simulation files to name the desired
method to run for each robot (as long as the corresponding robot script is named correctly). On
Eyesim Desktop, running a robot involved starting an external program, which would start a server
connecting with the robot in the simulation, to control it. The server controlling the robot would use
an external robot script (compiled c binaries, python++) and thus the sim file would need to provide
the name of that external file for the server to process. For EyesimVR instead, running a robot
involved a simple method call which would have been provided as a custom script before the
program was compiled. As such, “calling by name” allowed for the program to simply call that
method to run a robot, and the code handling the running of robot scripts was then edited to treat
the name provided by the sim file as the method name to call, rather than the name of which robot
script/binary to find.

Secondly C# allows classes to be split into multiple files by turning each file into a partial class. Each
robot is built off a base class called “Eyebot”, which then calls the requested method provided in the

simulation file. As calling methods by name only works on methods provided by its own class, the
method names requested for in the sim file has to already exist inside the Eyebot class. In most
languages, classes can only ever exist in 1 file, which would make loading in custom scripts
impossible, but C# allows splitting a class into multiple partial classes which will automatically be
joined together on compilation. As such, the “Eyebot” class was converted into a partial class, so
custom robot scripts can be written in a separate file, ensuring that it is declared as a partial class of
“Eyebot”.

Lastly, C# allows for methods to be created and used inside another method. Without these,
different custom robot scripts which needed helper functions had to ensure that those helper
function names were unique. The ability to create methods inside methods allows all these helper
functions to be declared inside the primary method (to be called by the robot), ensuring that they do
not interfere with identically named helper functions of other custom scripts.

Implementation (Scripts and Sim Files Load Together)
In Eyesim Desktop, the simulation files are first manually placed in a file system, which can then be
accessed by the program to generate each simulation.

For EyesimVR instead, since the robot scripts can only be loaded in before the program is built, and
the loading in of robot scripts and simulation files together is desired, the simulation files have to be
provided before the program is built, so the program will already have the simulation files internally.
However, most files/folders within the project are turned into a binary data when built into a
program, and as such, changes had to be made on how the program accessed those simulation files.

It was found that Unity allowed a folder specifically named “streaming assets” to be placed into the
project assets folder. Unity would try it’s best to retain the file system for any folders/files inside it. If
the simulation files are stored there, it should be easy to just change the program to reference those
simulation files.

However, whilst this might work when built as a computer program, it does not work when the
program is specifically built into an APK file for Android (the Oculus’ Operating System), where
contents within the streaming assets have also been turned into data, losing any references to a file
system. Although data from specific files can technically still be accessed by name, through using
Unity Web Requests, losing reference to the file system is a problem, as the current implementation
of processing the simulation files largely requires the use of file system operations, which is
impossible given the lack of file system within the APK.

As such, rather than rewrite all the code used for processing simulation files, a solution was
implemented which still made use of the streaming assets folder, where all files from the streaming
assets folder (stored as data within the APK), were copied out to the Oculus system (where they
would have originally been manually placed in), and the program will access those files instead. This
left one last issue to solve.

Given the lack of file system operations inside the APK, it was impossible to simply copy “all” the files
out into the file system. The solution implemented was to convert all the simulation files into a
single zip file before building. This made it easy for the program, as it just needed to target that
single zip file, copy it into the Oculus file system, and unzip all the files there, allowing the program
to use them as normal.

Build Folder
Given that Eyesim now builds into multiple different APKs, there had to be a better way of storing
them. As such, a Builds folder was created where all the unique Eyesim Simulations would be built
into, and the name of each APK built would be based off the name of the Simulation file used as
input. A screenshot of the build folder has been provided below, showing the naming convention of
each generated APKs.

Build Script
Given that many of the steps above had to be manually done, such as copying the required C# scripts
into the correct folder, or zipping up the simulation files, a build script was created, which would
handle all the steps required to build the program, as long as all the required files were present in a
specified folder inside streaming assets. The build script has to be called externally through the
command line, and the project cannot be open in the Unity Editor when the build script is run, as the
Build Script itself will open the Unity Editor, and the same project cannot be opened twice.

A breakdown of the steps it does is included below.

The program targets specifically, the “eyesimX” folder in streaming assets. Any C# files found in the
base folder (non-recursive) are copied into the custom scripts folder in Assets. The Unity builder is
force refreshed to recompile those files and only continues if there were no compilation errors with
those files. The build process then finds the first simulation file it sees, and configures the program
name and other settings, based on that simulation file name. Finally, it zips up the whole Eyesim
folder into a zip file.
When the program is run on the Oculus, it starts in an empty scene, which waits for the zip file to be
copied out from streaming assets into the file system and unzipped. When fully unzipped, the main
scene containing the simulation is automatically started.

More information about building the project has been placed in a manual for deployment steps, the
content of which has been provided in appendix 2.

Program Chain
Since Eyesim is now split into multiple programs, having to swop between simulations was a tedious
process, where users had to exit the program, find the correct button to open and display all
installed programs, find the correct tab to display specifically the EyesimVR programs, and finally,
find the actual desired simulation program. This was not a feasible approach especially when
EyesimVR has become used a lot more for visitor demonstrations. As such, a system was created
which allowed Eyesim programs to chain from one to another, allowing users to select the next, or
previous simulation within the Eyesim Program (given that it has been installed). Allowing users to
move from one simulation to another from inside the simulation, made providing demonstrations
far easier.

This new system involved providing a single text file, named “DemoList.txt” as input to each program
before it is built. Each line of this text file should contain the unique program identifier of the desired
simulation program, a space separation, and any display name to be shown inside the simulation.
The unique program identifier can be found when looking through the “unknown sources” list on the
Oculus, whereas the display name can be set to anything.

An example of the contents in a demo list has been provided in appendix 3.

An important limitation of this program chain is that each program will store its own demo list,
which means that any change in the demo list will require every program to be rebuilt to have the
updated demo list. Having a master list which all programs refer to, would eliminate this problem,
and allow the list to be edited as desired. Although placing a master demo list inside the oculus file
system was attempted, there were permission errors preventing each Eyesim program to access it.
Due to time limitations, it has been left as is, but future work could look into finding ways to feed a
master demo list into each program, whether by finding workarounds for the permission errors, or
through other means, such as retrieving it from a server.

Program chain example

VR Features
Grabbing Objects
Base functionality
The ability to grab both robots and objects, was one of the earliest implemented change, as the base
functionality was relatively simple to implement. Oculus has provided some helpful library scripts,
one which can be placed onto object to tag the as “grabbable”, and another to place on the hand
model, to tag it as a “grabber”. By simply dragging and dropping the corresponding scripts onto the
correct object inside the Unity editor, the basic grab functionality was quickly and easily
implemented. However, there were a few problems when trying to implement grabbing through
scripts, which was needed when loading in custom robots/objects as they would be done in runtime,
so the Unity editor could not be used.

Buoyancy issues
The provided “grabbable” script always assumes that it will be added by dragging and dropping
through the editor, so any variables which need to be adjusted have been set to private, and cannot
be edited in runtime. Although the script still works fine for most custom robots, there was a
problem when trying to grab robots which have been created with buoyancy, such as submarines.

To know where an object can be grabbed, the “grabbable” script contains a list of Colliders which
can tell the hand when it has collided with the object, and thus can be picked up. Inside the Unity
editor, the colliders can be manually provided, but if none is given, it will simply initialise with the
first collider it finds. This list has also been marked as private, so no outside script is able to edit it
once the program has started running. This raises a problem, as to implement buoyancy, a fake
collider has to be generated which does not completely match the robot, and more importantly, it is
marked as inactive once the buoyancy script has initialised.

As the “grabbable” script cannot be edited in run time, if it’s added to a buoyant robot, could
potentially erroneously initialise with that fake collider, and nothing can be done to change it. As the
fake collider is marked as inactive, attempts to pick up the robot will cause the program to crash,
and changing the fake collider to be marked as active, will cause the robot to collide with objects
where it should not.

Demonstration of grab robot functionality

As such, the “grabbable” script had to be edited to allow the Collider list to be edited at run time and
only have the correct colliders added to that list.

Physics issues
Grabbing objects also raises an issue with the physics implemented in Eyesim, where robots would
be unintentionally sprung into the air. There were 3 main causes for this effect.

Firstly, Unity uses colliders to calculate the physics of objects knocking into each other, and
normally, colliders would not be able to penetrate another collider (i.e., in real life, 2 solid objects
are not able to occupy the same space). Given that the position of colliders can be manually edited,
users can spawn or teleport a collider to be inside/penetrate another collider. As such, unity has to
provide a way to resolve such situations, providing an adjustable “de-penetration” velocity to
separate the solid objects. This is useful in VR, as the displayed hand would always track and follow
the user’s actual hand movements, and as such, users might grab a solid object, and move it pass a
virtual, stationary, solid wall. Unity will simply allow the object to pass through, and if the robot is
released inside the wall, the physics engine will apply the pre-set de-penetration velocity to separate
them. Steps on how to adjust the de-penetration velocity has been included in appendix 4.

Secondly, the implementation of wheels, in Eyesim, makes use of physics interactions to hold the
wheels in place, rather than having a static position relative to the robot. This means that while
other components in a robot have a fixed position relative to the rest of the robot, which will NEVER
change, the wheels instead can be moved out of position, but will apply a strong force to try and get
to its usual position.

As a result, when a robot is grabbed and held through a static wall, all the components of the robot
will simply follow, applying the “de-penetration” force when released, except for the wheels, which
will instead constantly try to apply a force to push the wheels into the wall.

 Since the wheels will never succeed in reaching it’s desired position as 2 colliders cannot penetrate
each other using force, this causes it to build up a large amount of force. If the robot is released with
the wheel positions still inside the walls, the force applied by the wheels to try to get to that position
is applied, creating a powerful spring effect launching the robot in the opposite direction, rather
than applying the much weaker de-penetration velocity.

Thirdly, the Oculus provided “grabbable “script does try to solve this, by allowing physics
interactions to be completely turned off for grabbed objects. However, it does not apply to every
component of the robot and crucially, the wheels are also left out. As such, to fix this “spring”
problem, the “grabbable” script once again had to be edited to turn physics off for ALL parts of the
robot.

(Previous) Wheels of robot not merging into the ground (Previous) Force from wheels catapult robot into the air

Library File Changes
Both changes stated above were changes to a library script provided by an external source, in this
case, the “OVRGrabbable” script provided by Oculus. As such, it is very likely that they will be
updated at some point, and if it does, will completely overwrite the current script. Future work or
maintenance on EyesimVR should be careful when updating this library script and ensure that if a
newer version of the library script is added, the same change is added to the new version, or check if
the required functionality is now allowed in the script itself and adjust the current implementation
to make use of said functionality.

Command window Upgrades
The command window is the panel held on the left hand. It initially did not have much functionality,
so one of the biggest set of features added to EyesimVR involved this command window.

Highlight
The ability to highlight robots was a new feature introduced. This allowed for easy identification of
the robot that was currently being swopped to. Highlighting of objects involved changing the
materials on every component of a robot to a different colour. However, after doing so, there was
no easy way to get back the original colour of each robot and it would be stuck on the highlighted
colour. As such, a special class “MaterialHolder” had to be created to hold the current colours of the
robot so that it could be un-highlighted after a set period of time, or if the user cycles to a different
robot.

During initialisation, each robot would create a list of material holders, and search itself and child
components recursively for any parts with colours, adding a new “MaterialHolder” into the list and
storing the original colour of that part. When the part is to be highlighted, every MaterialHolder
changes the colour of it’s part to yellow for 1 second, before changing it back the stored colour. As
the robot can be highlighted multiple times in quick succession, a counter was also added, which
ensure that robot highlights can be immediately turned off if switching to a different robot, and
to prevent the robot from reverting back too early, ensuring that only the final call to turn on the
highlight will be the one reverting the colour back.

(Fixed) Wheels of robot correctly merge into the ground (Fixed) Only small de-penetration velocity applied.

Example of a robot being highlighted when it gets selected

Select/Cycle through Robots
In the previous iteration of Eyesim VR, there was no identification of specific robots. ALL robots
would take in the same robot script, all robots would be controlled by the command window
buttons at the same time, and all robots would try to output to the screen at the same time.
A large set of features for upgrading the command window was crucial in individualising the robots.

Firstly, the hand controller could now distinguish between each robot, and a button was added
which would display which robot was being selected, as well as highlight the robot, if pressed.

Secondly a button was implemented which could cycle between the robots, temporarily highlighting
the newly selected robot.

The command window would also morph itself based on the number of robots in the simulation. If
there are no more than 3 robots, the command window would display a button for each of the
existing robots, which would allow users to select and control each robot directly. If there are more
than 3 robots, the command window would instead display buttons to cycle forwards or backwards
between the robots, as well as have a button to display and highlight the currently selected robot.

Command window with 2 robots Command window with 3 robots

Programmable buttons
On the bottom of the command window are 4 buttons which users can assign text and functionality
to. The command window will now show the correct text for each robot, automatically changing it
when cycling through/selecting a new robot. Additionally, pressing the buttons will now only target
the currently selected robot, and produce the correct functionality for that specific robot.

Output
The command window’s output screen will now only display output for the currently selected robot,
and will automatically clear itself when selecting a different robot. Camera output has also been
implemented, so robots can use the camera output function to display images, instead of text, on
the screen.

S4 Robot showing camera output

Command window with 4 robots showing “next” and “previous” rather than individual robot numbers

Robot 1 with unique programmable button text Robot 3 with unique programmable button text

Trail/Sensor Visualisations
Whilst trail/sensor visualisations can be declared in simulation files to enable/disable it, there was
no way to manually change it inside the simulation itself. As such, 4 new buttons were implemented
which allowed users to enable/disable them. 2 buttons were implemented which could toggle trail
or sensor visualisations for a specific robot, and 2 more were implemented which would toggle each
of them globally, on all robots.

Button State colours
Previously in EyesimVR, all buttons on the command window were simple push buttons, which
activated a function when pressed. As such, it would made sense that the buttons would simply
change colour when pressed on, and change back when not pressed on.

However, with many of the new functionalities added to the command window, there were a few
buttons which were directly used to represent the state of a certain variable, for example whether
the trail visualisations were on or off. With these kinds of buttons, it would be more intuitive to the
user if they instead displayed the state of that variable, directly on the button itself. As such, state-
based colours were implemented for all buttons which had some state associated to it, with orange
chosen to represent “on”, and grey for “off”. Some examples of such buttons include the
visualisation options mentioned directly above, or the selection of robots 1-3, which would show
orange for the selected robot, and grey for the other 2.

All robots with sensor and trail visualisations on

No trails, and only 1 robot with the sensor visualisations on

Show/Hide top row
As there were many new functionality being introduced to the command window, new buttons had
to be added to it to use said functionality. This resulted in the command window becoming a bit
bloated, with too many buttons being displayed at once.

To counter it, all buttons except for those used to select robots, were initially hidden, and a new
button was implemented to show/hide all the other buttons.

This opened up space for an extra button, so a credits button was added.

Help Mode
Learning the EyesimVR system might be difficult for new users, especially since the buttons on both
controllers all have unique functions which will not be immediately obvious to the user. As such, a
help mode was enabled, which could allow new users of the system to learn what each button on
the controllers do.
A button can be pressed on the command window (and on the left controller too, but it would not
be immediately obvious to new users) to toggle help mode, which would turn off all functionality for
the buttons, but display a model of the actual hand controllers inside the simulation, and show text-
based help popups coming out from each button to describe its functionality. This was implemented
through making use of library scripts provided by VRTK (Virtual Reality Tool Kit) found in the Unity
Asset Store.

Command Window top buttons hidden Command window top buttons shown

Credits button

Help mode

Smaller Changes
Smaller changes generally refer to general changes or bugfixes to the program. Since there were
many changes, including some relatively insignificant ones such as changing the display numbers of
robots to start from 1 rather than 0, or adjusting wheel positions of some of the pre-made robots,
this section will mainly expand on the more significant ones.

Timing Fixes
When loading a simulation, Eyesim would at some point, spawn the desired robots, and after
completing some other tasks, would also try to run the robots with their robot scripts. Running robot
scripts on robots on EyesimVR, was quite different from the Eyesim Desktop. Whilst the desktop
version had a guaranteed long delay between spawning a robot and running said robot as it had to
open up an external program to start up a server which would then connect to the robot to control
it, EyesimVR did not have much delay as it relied only on a single function call. This caused a
problem, as each robot would have scripts attached to it which would need initialising, but not
having that long delay, coupled with the fact that the initialising scripts would also take longer to
start since the hardware on the Oculus is generally much slower than any desktops, would cause
some robots to be run before it was ready, causing the program to crash. As such, an artificial delay
was added before running the robots, to prevent it from trying to run too early, almost guaranteeing
that the robot would be initialised before it is run.

A diagram has been added below, to show the difference in running a robot, and how the timing
problem was fixed by simply adding some delay.

Hand Display
To implement hand display and hand tracking, EyesimVR uses some Oculus provided pre-made hand
displays which can simply be added into the project. However, after updating the whole project to
the latest unity version, parts of the hand get locked in a set position.
Attempts to update the hand caused it to be de-referenced from many important scripts, and would
also cause some scripts to be completely removed from some un-related objects. As such, updating
the hand required re-attaching the missing references.

Eyesim Desktop Eyesim VR (Previous) Eyesim VR (Fixed)

Hand could only display these 2 positions

Bounce
Eyesim allows for custom objects to be added into the simulation. These custom objects have to
have an object file, which represents certain important properties which the object is going to have,
for example mass, scale, or buoyancy. An additional property has been implemented, “bounce”
which can be specified to add “bounciness” to an object. When “bounce” is declared, a value
between 0 and 1 has to be provided, which represents the percentage of energy retained when the
object hits another solid object, so 0 would represent no bounce, and 1 would represent maximum
bounce.

Demo programs
Eyesim Desktop comes with a large set of demonstration simulations, however none of the robot
scripts used were written in C#, which is required for EyesimVR. As such, a few demonstration
simulations were made using robot scripts which were converted to C#. Shown below, are some
demo simulations made which needed a new set of robot scripts to be converted to C#.

Ur5 -> 2 Manipulator Arms which picks up and drops soccer balls

Fixed -> Hand can now display full set of positions

Carolo Cup -> Controllable robot in a racetrack with different obstacles

RandomSquareSpeed -> Soccer field where 3 robots are running separate programs: random, square and circle (the script to
go in a circle was originally called “speed”, hence the name)

Maze Large -> 1 controllable robot in a large maze

Mountain -> 4 robots moving randomly in difficult terrain

Mako -> 1 controllable submarine

Swarm Follow -> 1 leader robot doing a circle, and a follower robot following it

Conclusion
This project has added many important features into EyesimVR. The system changes introduced has
allowed it to capture many desirable properties from Eyesim Desktop whilst working around the
limitations of the Oculus’ android system.

Additionally, EyesimVR usage as a demonstration tool has been significantly improved, with the
implementation of a better system to move between simulations, and the creation of a set of
demonstration programs.

The VR features implemented have allowed EyesimVR to better utilise the hand controllers/tracking
and enables a more comprehensive set of interactions with robots/objects within each simulation.
Finally, many smaller changes have been made which makes EyesimVR improves the
presentation/performance of EyesimVR, and fixes many problems arising from the differences
between EyesimVR and Eyesim Desktop.

As such, all these new features implemented has allowed EyesimVR to be effectively used for
demonstrations, whilst being much closer to being able to be used as an education tool.

Future Work
Eyesim merge
As stated in the constraints for this project, EyesimVR and Eyesim Desktops’ “Eyesim Library Files”,
representing general simulation functionality, are supposed to be exactly the same, but have
deviated from each other. As such, a future project could be the merging of both EyesimVR and
Eyesim Desktop, possibly using operating system checks to enable/disable features pertaining to
VR/desktop, which could ensure that both version will be using the exact same set of Eyesim Library
Files when generating a simulation.

Build Script
As mentioned in the main system change, a build script was created to handle all the file operations
required, such as zipping, copying, and recompiling, in order to build the desired simulation.
However, the build script does not run when directly building from inside the Unity Editor, as Unity
provides its own build script. Whilst this is fine for students, who should not be opening up the
Unity Editor in the first place, it can get quite tedious for future maintenance on EyesimVR, as every
time a change to a simulation is made, the Unity Editor would have to be closed to run the build
script externally. As such, future work could look into finding a way to implement the provided build
script into Unity’s default build script.

Demo list
As mentioned in the Program chain section, the current implementation of the program chain
requires each Simulation program to have its own version of a Demo List, where any desired changes
to the Demo list would require all programs to be rebuilt with the new version. Having a master list
to control all programs is a much better system, and so future work could look to implement this,
possibly by fixing the permission errors on the Oculus device, or through downloading the list from a
server.

General VR headsets
When EyesimVR was created, different VR companies had vastly different types of headsets and
controllers, and as such, it made sense to just focus on one and create EyesimVR specifically for it, in
this case, the Oculus Quest 1/2. Given the advancements in VR technology, most headsets and

controllers have become more standardised, so Unity has started to provide libraries which can
handle multiple types of headsets/controllers. As such, it is currently a lot more feasible to make a
general EyesimVR program which can be run on multiple types of VR headsets, so future work could
look to implement that.

Sound
At the moment, EyesimVR is completely silent. A useful feature to improve the general EyesimVR
experience, would be the implementation of sound, some examples include robots playing a sound
when motors are moving, or when robots collide with each other with enough force.

Publish
The many features implemented in EyesimVR has allowed it to be used a demonstration tool. Whilst
this is currently used only for guests visiting the campus, an extension of a demonstration tool would
be to allow anyone (with an Oculus) to download and try out some of the Demo programs too. As
such, future work could look into ways to publish some of the Demo Programs on the Oculus store,
for anyone to download and interact with.

Appendix
1- GitHub Project page

2- Deployment manual

EyesimVR Building APKs
SETUP
Go to OculusProject-MultipleFileTemplate\Assets\StreamingAsset\eyesimX

Place all the required files inside – sim files, C# scripts, world files +++

- Ensure that the sim file and C# scripts are placed DIRECTLY inside the eyesimX folder, not in
any subfolders, or they will not be detected.

- The program will build using the first sim file it sees, so make sure to only have 1 sim file
inside to avoid confusion.

- A DemoList.txt can be added DIRECTLY inside the eyesimX folder, to create the chain of
programs, but each program will need to be built with the same DemoList. – Should look
into finding a good place to have a Master List, but for now, each program has their own
local copy which will need to be updated manually every time a new list is wanted.

o Each line should be -> <UniqueProgramIdentifier> <What you want to call it>
o IE -> com.EyeSimVRTeam.eyesimCaroloCup CaroloCup

Running the build program
‘ <Unity Executable Location>’ -quit -projectPath OculusProject-MultipleFileTemplate/ -
executeMethod BuildScript.PerformBuild -logFile –

‘ <Unity Executable Location>’ -> mine was '/d/Program Files/Unity/2020.3.30f1/Editor/Unity.exe'

- Ensure that the Project is NOT open in the unity editor.
- I have placed these commands in deploy.sh -> should be easy to run once the unity

executable and project paths have been adjusted for each computer.
- An APK will be built into OculusProject- MultipleFileTemplate\Builds
- Name will be based off the sim file used

What Actually Happens
When running with the build script, the build script will do the following things.

1) Copy out every C# script inside …\Assets\StreamingAsset\eyesimX (does NOT look into sub
folders), into …\Assets\Scripts\CreateRobot\CustomScripts

a. (Clears out …\Assets\Scripts\CreateRobot\CustomScripts before copying, so any pre-
existing scripts will be deleted)

2) Do a recompile of the project WITH those new scripts inside. Any errors with the scripts will
cause the project to NOT compile and will prematurely end the building process.

3) If there were no errors with the scripts, the first .sim file found inside the eyesimX folder will
be used for setting the program name/identifer +++

4) …\Assets\StreamingAsset\eyesimX will be built into a zip file
…\Assets\StreamingAsset\eyesimX.zip

5) The program should then build the APK into the Builds Folder.

The buildscript is stored in …Assets\Scripts\Editor\BuildScript.cs which should contain the code for
the steps above.

^ These steps are NOT performed when building directly from the Unity editor itself (still not sure
how to integrate the build script into the Unity editors building process) and as such, if a change to
any file inside …\Assets\StreamingAsset\eyesimX is required, the above steps have to be done
manually, OR you can just close the Unity editor and run the build program, which will take care of
all the steps.

Below is a helpful screenshot with important points about building the project.

Path to the “eyesimX” folder in
which to place the required files Note that ONE

simulation file
(xxx.sim), along
with the C# robot
scripts, have to
directly be in the
folder, rather
than in subfolders

Optional Demo
List to be
provided here.

Meta Files can probably be
ignored, but to reduce
visual clutter, and be safer, I
delete them when changing
any of the simulation files
or C# scripts.

3- Program chain -> demo list
Below is an example of the contents of a demo list, simply the official identification name of the
program, followed by any desired display name. ie -> (program ID) (program display name)

com.EyeSimVRTeam.eyesimFollow Swarm-Follow

com.EyeSimVRTeam.eyesimUR5 UR5

com.EyeSimVRTeam.eyesimCaroloCup CaroloCup

com.EyeSimVRTeam.eyesimrandomsquarespeed randomsquarespeed

com.EyeSimVRTeam.eyesimMazeBig MazeBig

com.EyeSimVRTeam.eyesimMountain Mountain

com.EyeSimVRTeam.eyesimMako Mako

4- De-pentration Velocity
The “de-pentration” velocity value can be set by pressing on the following options

 File -> Build Settings -> Player Settings -> Physics. A screen shot has been provided below

5- SideQuest

Press on this button to open the file
explorer to search for any APKs to
be installed

Select all the desired
APKs and press Open

Press this button to look at completion
status of the APK installations and any
potential errors

The dot on the top left represents the status of
the Oculus. Ensure that the Oculus is plugged in,
and developer mode is enabled.

References
 [1] Olivier Michel, “WebotsTM: Professional Mobile Robot Simulation,” International journal of
advanced robotic systems, vol. 1, no. 1, pp. 39–42, 2008.

 [2] J. Ng and T. Bräunl, “Performance Comparison of Bug Navigation Algorithms,” Journal of
intelligent & robotic systems, vol. 50, no. 1, pp. 73–84, 2007, doi: 10.1007/s10846-007-9157-6

 [3] O. Karoui et al., “Performance evaluation of vehicular platoons using Webots,” IET intelligent
transport systems, vol. 11, no. 8, pp. 441–449, 2017, doi: 10.1049/iet-its.2017.0036.

 [4] E. D. de Bruin, D. Schoene, and G. Pichierri, “Use of virtual reality technique for the training of
motor control in the elderly: some theoretical considerations,” Zeitschrift für Gerontologie und
Geriatrie, vol. 43, no. 4, pp. 229–234, 2010, doi: 10.1007/s00391-010-0124-7.

 [5] H. Lesch, E. Johnson, J. Peters, and J. C. Cendán, “VR Simulation Leads to Enhanced Procedural
Confidence for Surgical Trainees,” Journal of surgical education, vol. 77, no. 1, pp. 213–218, 2020,
doi: 10.1016/j.jsurg.2019.08.008.

 [6] S. Hindlekar, V. Zordan, E. Smith, J. Welter, and W. Mckay, “MechVR: interactive VR motion
simulation of ‘Mech’ biped robot,” in ACM SIGGRAPH 2016 VR Village, 2016, pp. 1–2. doi:
10.1145/2929490.2932422.

 [7] Elkin, Eugene. “Porting Your VR Title to Oculus Quest.” In ACM SIGGRAPH 2019 Talks, 1–2. ACM,
2019. https://doi.org/10.1145/3306307.3328202.

 [8] T. Braunl, Robot Adventures in Python and C. Cham: Springer International Publishing AG, 2020.
doi: 10.1007/978-3-030-38897-3.

 [9] D. King, S. Tee, L. Falconer, C. Angell, D. Holley, and A. Mills, “Virtual health education: Scaling
practice to transform student learning,” Nurse education today, vol. 71, pp. 7–9, 2018, doi:
10.1016/j.nedt.2018.08.002.

 [10] W. Alhalabi, “Virtual reality systems enhance students’ achievements in engineering
education,” Behaviour & information technology, vol. 35, no. 11, pp. 919–925, 2016, doi:
10.1080/0144929X.2016.1212931.

