

Nachos
An Interface for Nachi Robotics Manipulator

Model: ST133TF-01 (AX20 Controller)
(7043 words)

Hadi NAVABI
22228685

Supervisor:
Prof. Thomas Braunl

Nachos

Hadi NAVABI 2

Table of Content
ABSTRACT 4
1. INTRODUCTION 5
1.1. Nachi System 5
1.2. Nachi ST133TF-01 6
1.3. AX20 Controller 8
1.4. Teach Pendant 9
1.5. SLIM Language 11

1.5.1. Movement Commands 11
1.5.2. Function Commands 12
1.5.3. Specialised Commands 12

2. PROBLEM IDENTIFICATION 13
2.1. Overview 13
2.2. Diverse user-base 13
2.3. Lack of Information 13
2.4. Limited Efficiency of Nachi’s Teach Pendant 14
2.5. Lack of Simulation Software 14

3. NACHOS 15
3.1. Resources 15
3.2. Design Process 17

3.2.1. Requirements and Specifications 17
3.2.2. Block Programming Language (Google’s Blockly) 18
3.2.3. Framework (ReactJS) 18
3.2.4. Conclusion 19

3.3. Implementation 20
3.3.1. Overview 20
3.3.2. Two-page Architecture 20
3.3.3. Flow of Execution 23
3.3.4. NachosBlocks 24
3.3.5. NachosGenerator 25
3.3.6. Generated Code 26
3.3.7. Conclusion 26

4. PROJECTS 27
4.1. Previous Projects 27
4.2. Concurrent Projects 27

4.2.1. Concrete 3D Printing 27
4.2.2. Relocation of Nachi 28

Nachos

Hadi NAVABI 3

4.3. Future Projects 28
4.3.1. UWA’s new robotics unit 28
4.3.2. Foam Design by UWA Design 29

5. FUTURE WORK 29
5.1. I/O Functionality 29
5.2. FTP implementation for Nachos 30
5.3. “AX on Desk” Software 31
5.4. Integration with third-party applications 31
5.5. Simulation 31

6. REFERENCES 33

Nachos

Hadi NAVABI 4

Abstract
Following the donation of the Nachi robotic manipulator to the University of Western
Australia, a great prospect for educational and research activities for students,
supervisors and lecturers were created. The Nachi robotics manipulator, with a payload
of 133 Kg, creates an esteemed distinction between UWA and competing universities,
and if promoted correctly, could generate interest amongst students of Mechatronics,
Robotics and Automation.

To provide accessibility and easability to the wide diversity of individuals that may be
interested in working with Nachi, and due to their wide range of experiences coming
from different scientific fields, industries, and backgrounds, and due to the current
complexities surrounding the operation of Nachi, there is a clear need for a simple
method of communication. There should be clear and well-defined solution for all
individuals to be able complete their tasks easily and independently. Hence the birth of
“Nachos”.

Nachos, also known as NachiOS (Nachi Operation System), is a refined and simple to
use interface software. Its objectives are to bring together and link Nachi’s internal
functionalities into a formal and understandable user interface. It aims to provide
assistance to all potential users and individuals of Nachi, regardless of their dissimilar
set of expertise.

For its most basic functionality, Nachos uses advance React frameworks to create a
single-page multilayered User Interface. The page is divided into a grid of variable and
adjustable sections that can dynamically be changed according to the use case and
decision of the user. The sections are divided into the following functionalities. First
section is an integration of Google’s Blockly, to deliver Block Programming abilities into
Nachos. These blocks are analysed using Nachos proprietary internal packages and
software and are eventually translated into function calls that is understood by the
controller. This Nachi code is then displayed in one of the sections and is ready to be
downloaded and copied to the controller.

With the first final release of Nachos, we are aiming to help out all students, lecturers
and potential individuals that are interested to work with Nachi, to get a project started
quickly and with ease, and to go through and complete the project independently.

https://nachios.vercel.app

Nachos

Hadi NAVABI 5

1. Introduction
1.1. Nachi System

Nachi is a Japanese industrial robotics manipulator that was donated to the University
of Western Australia (UWA), with the intention to create learning and research
opportunities for students, lecturers, and supervisors of all fields of study. Nachi
robotics manipulator is a unique piece of equipment that creates an esteemed
distinction between UWA and competing universities, and if promoted correctly, could
generate interest amongst students of Mechatronics, Robotics and Automation, and
other engineering fields.

Table 1 Model and Full Name for Nachi robotics manipulator and its controller.

Robot: Nachi ST133TF-01 Robotics Manipulator Figure 1

Controller: AX20 Controller with Teach Pendant Figure 2

Nachi system comprises of two main parts, Nachi ST133TF-01 Robotics Manipulator
(“Nachi” henceforth), and the Nachi’s AX20 Controller (“Nachi Controller” henceforth).
These two parts are wired together to perform top-notch performance with quick
movements and a payload of 133 Kg. The entire system runs on 3-phase, 420 volts, and
a max current of 30 amps (Figure 7).

Figure 1 Nachi ST133TF-01 Robotic Manipulator (“Nachi”). Built by Nachi Robotics Systems in 2012.

Currently located at Ezone building in UWA.

Nachos

Hadi NAVABI 6

Figure 2 Nachi AX20 Controller with the Teach Pendant (“Nachi Controller”). Nachi Controller is
used to provide power to the robot and to control every aspect of the robotic manipulator. Nachi

Controller have the following functions: manual control, software limits, program creation, program
conversion, program execution, IO signals, etc…

1.2. Nachi ST133TF-01
Nachi’s company, the Nachi Robotics System Inc., has many variants of products in its
arsenal. They have been in business since 1928 [1] and have been producing high quality
robotics manipulator since 1969 [1].

UWA’s robotics manipulator is Nachi ST133TF-01. The model number of Nachi denotes
the robot’s specifications. Figure 3 shows the meaning behind each character. Nachi’s
robot type is “shelf mounting”, which means that the robot is intended to be mounted
at higher heights on pre-existing shelves, and it can reach lower levels than its base
(Figure 4). Additionally, the maximum payload authorised is 133 Kg as specified by the
model number and the manuals [2].

Schematics and reachability of Nachi are also of great importance. Maximum
reachability of the robot is limited by the constraints of the schematics; however, it is
also limited by UWA’s safety guidelines and the proximity of safety fences to the robot.
Hence, reachability is variable from time to time and is due to change. Pure schematics
of the robot is provided in Figure 6 as a reference. [2, p. 1-6]

Nachos

Hadi NAVABI 7

Figure 3 The model number of UWA’s Nachi Robotics Manipulator [2, p. 1-1]. The robot is “Shelf

mounting” and has a payload of 133 Kg.

Figure 4 Nachi's home position [2]. As the robot is "Shelf mounting" by design, it needs to be able to

reach lower positions, hence the default home position accounts for this.

Nachi comprise of number of joints that enable movement. The number of joints
denotes the degrees-of-freedom that the robot has. Most robotics manipulators have
six rotational joints, resulting in six degrees-of-freedom. Similarly, Nachi can reach
every point in the 3D space that is within its operating range. This reach has been made
possible by the first three rotational joints (J1, J2, J3 in Figure 5). The ability to move in
XYZ-coordinate system provides the robot with three degrees-of-freedom.

However, being able to simply reach every point is not sufficient for most operations,
thus, Nachi has a further three rotational joints at its wrist (J4, J5, J6 in Figure 5) which
provides the remaining three degrees-of-freedom. This enables the reachability at each
point at every angle.

Nachos

Hadi NAVABI 8

Figure 5 Nachi's six joints. Nachi comprises of six joints which enables the robot with six degrees-of-

freedom.

Figure 6 Nachi's schematics. The schematics, dimensions, and measurements of the robot.

1.3. AX20 Controller

Nachi’s AX20 Controller (Figure 2) is the brain of the system and provides all major and
minor functionalities, and commands that Nachi is capable of. Nachi Controller provides
power (Figure 7) to the robotics manipulator through several wired cables and can
controls all aspect of the robot.

Nachos

Hadi NAVABI 9

Figure 7 Power specification and Nachi Controller’s model number. Nachi system (Nachi and

Controller) runs on 3-phase, 420 volts and 30 amps of current.

1.4. Teach Pendant
The main point of communication with the Nachi robotics manipulator is through the
provided Teach Pendant. The Teach Pendant is the only user interface that is designed
for manual and automatic operation of the robot; and with the inclusion of a touch
screen, numerous buttons, emergency stop button and break release on the back, all
the operations of the robot, is at a touch away.

The first row of buttons on the Teach Pendant provides shortcuts to the most basic
functions of the Nachi robotics manipulator. Operations such as changing the
coordinate system, changing teach speeds, changing check speeds, toggling between
different loop settings, and managing different windows, can be accessed on the Teach
Pendant. Additionally, with the press of the “Enabled” button further functionalities, that
is represented by the colour green, can be accessed. (Figure 8)

The next group of buttons on the Teach Pendant are the manual control and checking
controls of the Nachi robotics manipulator. When paired with a light press of the break
release buttons on the back of the Teach Pendant, a user can manually take control of
the robot, depending on Nachi’s motors being turned on and all safety checks passed.
According to the selected coordinate system, these group of buttons can behave in
different ways. For an instance, when “Joints” coordinate system is selected, “X-” and
“X+” buttons will control J1 (Figure 5), “Y-” and “Y+” buttons will control J2 (Figure 5),
“Z-” and “Z+” buttons will control J3 (Figure 5), “RX-” and “RX+” buttons will control J4
(Figure 5), “RY-” and “RY+” buttons will control J5 (Figure 5), and “RZ-” and “RZ+”

Nachos

Hadi NAVABI 10

buttons will control J6 (Figure 5). On the other hand, when “Cartesian” (xyz) coordinate
system is selected, the buttons will behave as expected. For example, “X-” and “X+”
buttons will change the end effector’s position on the x-axis.

Figure 8 Nachi Controller's Teach Pendant. It’s the main point of communication for the manual and
automatic control of the Nachi robotics manipulator. It enables writing, testing, and execution of all

programs. Display shows Program #25 and Step #6 is highlighted (in focus).

The final group of buttons on the Teach Pendant provide other basic functionalities of
the Nachi robotics manipulator. The most important set of buttons worth mentioning
are the Arrow keys, “REC” button, “FN” button, and “Program/Step” button. The Arrow
keys help with navigation through the various menus or lists on the Teach Pendant. They
can also enable scrolling through different steps in a program. The “REC” button will
simply enable the user to record the current position of the Nachi robotics manipulator

Nachos

Hadi NAVABI 11

and add it to the current active program. “FN” button will open a list of all the available
commands. Users can use this large list of commands to program different
functionalities and movements, and in practice, automate their workplace. Finally, with
the use of “Program/Step” button, the user can jump to different steps in a program.
Alternatively, the user can jump to an entirely other program for further programming
of Nachi.

1.5. SLIM Language
SLIM (Standard Language for Industrial Manipulators) is a language designed by Nachi
Robotics Systems Inc. for almost all its robotics manipulators. SLIM complies with the
Japanese Industrial Standard (JIS) [3, p. 8] and works with both AX and FD controllers
[4]. All Nachi’s programming functionalities and commands are expresses in the SLIM
robotics language. A SLIM program comprises of a list of steps (Figure 8) that includes
movement commands and function commands. There are 3 movement commands and
about 420 function commands available in SLIM language. Out of the 420 function
commands that is available and can be found in the manuals [5] [6] [7], UWA’s Nachi
robotics manipulator has a total of 229 function commands accessible.

Function commands can be specified using the “FN***” format where a 1-3 digit number
is input into the “***” part (this is called the function number). For example, the “END”
function command is specified as “FN92” and is used to end the execution of a running
program.

1.5.1. Movement Commands

The three movement commands are “MOVE”, “MOVEJ”, and “MOVEX”, however, the
latter is the main movement command and is the one that is generally used for all cases.
“MOVEX” (Figure 15) is the movement command that is recommended by the manuals
and it’s quite comprehensive due to the many required and optional parameters that it
requires. These parameters and their order are as below: (* is required, - is optional)

1. Acceleration - (AC=) 0 to 3
2. Accuracy - (A=) 1 to 8
3. Smoothness - (SM=) 0 to 3
4. Mechanism * M1J or M1X
5. Interpolation * P, L, C1 or C2
6. Position Values *
7. Speed *
8. Tool - (H=) 1 to 32

For detailed explanation and some examples for each of these parameters, refer to [7].

Nachos

Hadi NAVABI 12

In addition to the above parameters, there are also Synchronisation, Configuration and
Speed master definition parameters that can be specified. However, due to the current
setup of Nachi, no specific use case has been found for these parameters.

An example of the movement command is outlined below and more examples can be
found in Figure 18 and Figure 19.

MOVEX A=1, AC=0, SM=0, M1J, P, (*,*,*,*,*,*), S=100, H=1, MS

1.5.2. Function Commands

In addition to the movement commands, Nachi Robotics Systems Inc. also provides a
full set of high- and low-level control flows, such as logical controls, conditional
statements, loop controls, function calls, jump commands, input signal checks, and
output signals. All of these provided function commands allows customisable order of
execution and enables modern and complex programs.

Table 2 32 major examples of Nachi’s function commands. UWA’s Nachi robotics manipulator has a
total of 229 function commands accessible.

SET LETX DELAY CALLP RETURN END ALLCLR JMP

RESET LETY WAIT CALLPI RETI STOP REM JMPI

SETMD LETZ TIMER CALLI RETN STOPI PRINT JMPN

SETM INPUT OUT CALLN IF FOR NEXT GOTO

1.5.3. Specialised Commands

Additionally, Nachi Robotics Systems Inc. also provides some specialised function
commands. These specialised commands provide functionalities that are commonly
used in various industries. Palletisations (pick and place), spot welding, servo gun
welding, seam welding, conveyor interactions, roller hem, etc. are some examples of the
specialised commands on offer. However, after crosschecking commands found in the
manuals with available commands on UWA’s Nachi robotics manipulator, only palletising
functionalities were found accessible.

Table 3 Some examples of specialised commands. Bold is accessible in Nachi robotics manipulator.

PALLET2 SPOT AS ASV SERVOON

PALLET3 ASM MPS SEAM ROLHEM

Nachos

Hadi NAVABI 13

2. Problem identification
2.1. Overview

The Nachi robotics manipulator is one of the most valuable and unique equipment that
UWA owns. That is in terms of pure dollar value (estimated at about A$50,000), and
educational opportunities that it can provide to students, supervisors, and lecturers. If
promoted well, it has the potential to attract future students and various interesting
projects. Moreover, Nachi is a unique technology that not all competing universities in
Perth have the privilege to access. The lack of this sort of technology in other
universities, creates a great advantage towards UWA, especially in trending majors such
as Mechatronics, and Robotics and Automation. However, currently, Nachi is only being
used for simple demonstrations to students and is not being utilised for educational or
research purposes. This lack of educational opportunities for students is mainly due to
complexities surrounding the operation of Nachi, that will be discussed in depth below.

2.2. Diverse user-base
Due to uniqueness and popularity of this kind of technology, Nachi has already attracted
several projects, and individuals. However, there is a huge diversity in the individuals
that are interested in working with Nachi, as they may come from different scientific
fields, industries, and backgrounds. These individuals should not be required to obtain a
complete understanding of Nachi and all its intricate details, features, and
functionalities, before being able to complete a specific task, as that would be
inefficient, time consuming and discourages motivation, innovation, and originality in
the individuals.

There should be clear, easy, and simple solution for the individuals with limited
understanding about Nachi, to be able complete their tasks easily, independently, and
confidently.

2.3. Lack of Information
Another main problem with Nachi robotics manipulator is the scarcity of information
regarding its operation, and numerous uncertainties about its functionalities and
capabilities. The ambiguities such as (a) unavailability of operational procedures and
instructions, (b) unavailability of programming features and capacities, (c) unknown
procedures for compiling and execution of a program, and interacting with IO signals,
(d) scarcity of access to manuals and resources due to proprietary nature of the
product, (e) lack of support due to end-of-life software, has essentially rendered Nachi
unusable.

Nachos

Hadi NAVABI 14

To be able to come up with a structure of information that satisfies almost all these
missing information, an extensive attempt at searching for available materials needs to
be conducted. Different manuals, instructions and procedures need to be gathered
through exploring different avenues of communication with robotics companies and
robotics service providers.

2.4. Limited Efficiency of Nachi’s Teach Pendant
As the entire capabilities that Nachi can provide, has been made accessible through the
Teach Pendant, theoretically, any program, task, and project can be completed through
the Teach Pendant. However, the assumption of the Teach Pendant as the only point of
communication with Nachi, creates some challenges and discouragement for the
individuals that are interested in working with it.

For example, for the development of any task by a team of student, or group of
colleagues, the physical proximity to Nachi robotics manipulator is required. This is
because, currently, all development must be done through the Teach Pendant, and the
Teach Pendent is physically connected to the controller via a cable. This significantly
restricts team working opportunities, collaboration, and development of tasks, to the
boundaries of Nachi which reduces efficiency to an absolute minimum.

2.5. Lack of Simulation Software
Lastly, the lack of a local simulation software hinders all development and renders the
Nachi almost unusable. This is due to the inability to visualise and test code before its
execution on Nachi. In professional software development, a simulation software is used
to model the real-world object and see the effect of the code on that object. A
simulation software is both essential and necessary for Nachi robotics manipulator, as
irreplaceable damages can occur with just smallest mistakes in code.

Nachos

Hadi NAVABI 15

3. Nachos
Nachos, or NachiOS (Nachi Operating System) is an interface and simulation software
for the Nachi robotics manipulator that aims to provide easy accessibility and effortless
programming of Nachi for all students, lecturers, and supervisors. Nachos is the
proposed application for this project and it’s an all-in-one software that intends to solve
almost all the previously identified problems. However, to be able to start designing, a
full stack of resources and manuals needs to be gathered, analysed, understood, and
tested. Additionally, a full design process needs to be conducted.

3.1. Resources
Before the development of an all-in-one software as the solution to all the identified
problems, a deep understanding of Nachi robotics manipulator and all its intricate
details and functionalities is required. Thus, gathering and elicitation of all the available
resources, manuals, and information is one of the most critical tasks in this project.
Through communication with various robotics companies and service providers in
Australia and abroad, many resources and information were gathered and packaged for
future reference.

A relatively comprehensive list of resources is now available for any individuals that may
be interested in working with the Nachi robotics manipulator. This package of
information consists of numerous and various manuals, software, and marketing
resources (photos and videos).

Nachi comprises of many parts and functionalities. The gathered manuals have been
organised accordingly into (1) Nachi robotics Manipulator, (2) Nachi’s AX20 Controller,
(3) Programming functionalities, (4) UWA Safety Instructions and Basic Operations, (5)
Other manuals and software. Additionally, all available printed manuals were scanned
and prepared for electronic use by converting them into searchable documents.

A full list of the manuals and elicited resources can be found below:

1. NACHI ST133TF-01
1. NACHI ST133TF-01 Maintenance Service Manual
2. Model Specification
3. Schematic - Home Position
4. Schematic - Joints
5. Schematic - Measurements
6. IO Signals

2. NACHI AX20 Controller

Nachos

Hadi NAVABI 16

1. NACHI AX Controller Operating Manual – Basic Operations Manual
2. NACHI AX Controller Operating Manual – Ethernet
3. FD Controller Instruction Manual – Robot Language (SLIM)
4. NACHI AX Controller Operating Manual – Palletize Function
5. NACHI AX20 Controller Maintenance Manual
6. Model Specification on Controller

3. Programming

1. Controller Instruction Manual – Command Reference vol 1 (FN0-356)
2. Controller Instruction Manual – Command Reference vol 2 (FN360-597)
3. Controller Instruction Manual – Command Reference vol 3 (FN598-893)
4. Spreadsheet of All Command

4. UWA Safety Instructions and Basic Operations

1. 2021 Nachi Safety – v1.3
2. Code Conversion and Compile

5. Other Manuals and Software

1. FD on Desk – Windows Software
2. AX on Desk – Operating Manual
3. Lock (TLS1-GD2)
4. OnRobot Grippers for Nachi

Nachos

Hadi NAVABI 17

3.2. Design Process
3.2.1. Requirements and Specifications

Due to the complete lack of existing software and resources, a comprehensive design
process and planning was to be completed for Nachos (NachiOS). Considering the key
requirements and constraints of the project and analysing them is always crucial and
necessary. These requirements help guild the project in the correct direction and allows
for an easier evaluation of the final design.

Through collaboration with the project stakeholders, specifically the project supervisor,
numerous design requirements were identified. The identified requirements and
constraints for the project are outlined below:

1. Nachos shall use Block Programming methodology as the user interface, so that
individuals can easily find and use the functionalities to generate code.

2. Nachos shall be able to convert instructions and generate code that is

understood by the Nachi robotics manipulator and its controller.

3. Nachos shall be implemented as a client-side application.

4. Nachos shall be accessible on both Windows and MacOS.

5. The final design shall be implemented in such a way that it contains most of the
basic functionalities of Nachi system.

6. The final design shall display the generated code.

7. The final design shall enable downloading of the generated code into an output
file.

8. The final design shall output the correct filename.

9. The final design shall output correct file formatting.

10. The final design shall enable saving the current progress and resuming at a later

time.

11. The final design shall sufficiently be tested and be robust.

12. The final design shall include an error handling system that throws specific,
helpful, and sufficient warnings messages to avoid crashes.

Nachos

Hadi NAVABI 18

3.2.2. Block Programming Language (Google’s Blockly)

Block Programming is a visual-based programming language that is designed for
individuals with limited programming knowledge and expertise. It allows for easy
visualisation of all the available features of a language and enables easy drag-and-drop
interactivity of blocks for fast and easy development of any program. The blocks
represent the most fundamental functionality of the language and can be grouped,
attached, or nested together to create a larger program or functionality. From a specific
arrangement and grouping of blocks a program is created and with a more complex
organisation of blocks, programs can get more advanced and complicated.
Subsequently, these blocks can be converted to generate a textual representation of all
the blocks.

In the preliminary research phase of this project, numerous Block Programming
languages that seemed suitable for the requirements of the proposed system, were
identified. Blockly, Scratch, Snap, EduBlocks and more are great examples that sounded
promising as the base for Nachos. However, upon further investigation and careful
examining of their documentations, all of them were either completely based on
Google’s Blockly or were a close implementation of it. Additionally, Google’s Blockly is
the most well-designed, advanced, and the most used block programming language
that is currently available and accessible for developers. Hence, the decision to use
Blockly as the underlying implementation of Nachos was easily reached.

Google’s Blockly is a free and open-source JavaScript library for block programming. It
comes with extensive documentations, developer tools, forums, examples, and video
tutorials for development. The provided examples are very comprehensive and is a
great pathway for quick learning of all the features that is implemented and is accessible
for use. Additionally, Blockly Factory or Blockly Developer Tool [16], is the perfect tool
for the Blockly programming language as it enables developers to automate most of the
block creation and code generation for their Blockly implementation.

3.2.3. Framework (ReactJS)

Due to the specific requirements of Nachos as a client-side software, and its
requirement for accessibility on both MacOS and Windows, and due to the limitations
of Blockly as a JavaScript library, the decision for the Nachos application being
implemented as web application, was rather forced.

However, Nachos, as a JavaScript implementation of Blockly, could have been
implemented in almost all the popular frameworks such as React, Vue, Angular, and
even plain JavaScript. Furthermore, simple examples and implementations for all the

Nachos

Hadi NAVABI 19

named frameworks above was also provided by Blockly. Therefore, the decision to
choose a framework was rather difficult. Following investigation through Blockly’s
examples and documentation, and research for available resources, and taking into
account the compatibility of both Blockly and ReactJS with Node Package Manager
(npm), and considering my own experience and expertise in ReactJS, the decision for
ReactJS as the main framework for Nachos implementation was attained.

3.2.4. Conclusion

For the implementation of the proposed software for this project, due to the lack of any
current software, and due the high capacity for future development of Nachos by other
students, the emphasis on commonly used and well-known languages for the
implementation of Nachos was quite high. With the decision of Nachos being
implemented in JavaScript, Blockly and ReactJS this goal was also achieved. Therefore,
any future development and adding of new functionalities to the Nachos system will
hopefully have minimum learning curve and easy to start.

Nachos

Hadi NAVABI 20

3.3. Implementation
3.3.1. Overview

Nachos (Figure 9) is the proposed software that is implemented specifically for the
Nachi robotics manipulator and all its capabilities. It is a web-based application that uses
ReactJS as its main framework and Google’s Blockly for its core feature of being a
block-based programming application. Nachos consists of a two-page architecture for
comfortable navigation and simplicity.

Figure 9 Nachos (NachiOS). It’s an interface and simulation software for the Nachi robotics

manipulator that aims to provide easy accessibility and effortless programming for Nachi robotics
manipulator.

3.3.2. Two-page Architecture

For the ease of navigation and simplicity of the entire system, a simple two-page
architecture was implemented for Nachos application. The home page or the welcome
page (Figure 10) is a well-designed page that welcomes the user to the application and
guides them to their destination. From the home page, the user can get to the coding
page, access the available documentations, and get help.

After getting redirected to the coding page, the user is introduced to the Nachos core
functionality, which contains the Blockly implementation and can generate code that is
understood by the Nachi robotics manipulator. The coding page comprises of three
main sections. These sections are resizable according to the user’s preferences and can
be arranged in a split manner to contain both the Blockly workspace and the code
output section, or it can be arranged in full screen for larger programs.

Nachos

Hadi NAVABI 21

Figure 10 Nachos home page. It has the sole purpose of welcoming the user and guide them in the

right direction.

Figure 11 Nachos coding page (split view). It contains the Blockly implementation which is the core

functionality of Nachos. The sections are resizable according to the user’s preferences.

Nachos

Hadi NAVABI 22

Figure 12 Nachos coding page (full screen view).

The most important section in the coding page, is the workspace, which is the block-
based coding area that is powered by Blockly. The Blockly workspace contains two
sections, the grey toolbox on the left, which contains all the available blocks that is
usable for programming and is sorted into relevant categories, and the dotted white
workspace that the blocks can be dragged and dropped into. Any block that is located
within the white workspace will be converted into Nachi code and will be displayed on
the code output section. The default block in the workspace is the “START” block, which
is the main block and encompasses all other blocks (Figure 13). Essentially, the “START”
block contains an entire program within it and gets terminated by the “END” command.
A given workspace can only contain one “START” block and to avoid errors when
compiling the code on the Nachi Controller, it is strongly recommended to keep all
blocks within the “START” block. Additionally, the “START” command, takes two
inputs/parameters, that is, the number of the program, which will be used for the output
file during downloading of Nachi code, and the name for the program, that will be used
as a comment at the beginning of the output file.

Nachos

Hadi NAVABI 23

Figure 13 The "START" block. It's the main block that represents a program, encompasses all other

blocks, and is terminated by the “END” (FN92) command.

The next section is the code output section, that is represented by the colour green. As
explained previously, all the blocks that have been dragged and dropped into the white
workspace will be converted by the “NachosGenerator” into Nachi code.

The last section is the navbar at the top of the page and contains all the controls and
buttons required by the user. For short sessions, there are the “save” and “restore”
buttons that enable quick save and quick restore of all the blocks that are located inside
the workspace. For longer breaks, there are the “download” and “upload” buttons that
will output an XML file containing all the current blocks. This can also enable version
control of your code. To upload, click on the “upload” button and paste back the content
of the XML file. Finally, to convert and generate Nachi code click on the “generate”
button, when the program is finalised, download the generated Nachi code by clicking
on the “download” button to get correctly formatted output file with the correct name.

Nachos application, with its block-based programming approach and simple two-page
navigation is both easy-to-learn and easy-to-use.

3.3.3. Flow of Execution

Implementation of Nachos with a ReactJS framework follows a specific order of
execution. The application starts at “index.js”, which is then passed onto “App.js”.
“App.js” contains the routing of the entire web application, “/home” gets redirected to
the home page or “Home.jsx” of Nachos, and “/coding” gets redirected to the coding
page or “Coding.jsx”.

As expected, the coding page has a much larger complexity than the home page and
will subsequently load “Blocks.jsx” which contains all the defined blocks in the Nachos
application. The definition of these blocks is either in the Blockly library itself or defined
in the “NachosBlocks.jsx”.

Nachos

Hadi NAVABI 24

Figure 14 Flow of execution of Nachos.

3.3.4. NachosBlocks

To be able to implement the features and capabilities of the Nachi robotics manipulator,
a customised blocks needs to be defined for each and all of movement and function
commands that can be found in the manuals and the Nachi itself. Not only this requires
an intricate knowledge and understanding for each command, but also requires an
exhaustive testing regime for the command that is going to be implemented. Let’s
assume the “MOVEX” movement command that was explained previously (Figure 15).
The “MOVEX” command comprises of many parameters as inputs. For a robust system
such as Nachos, a full combination of the parameters was tested, compiled, and verified
through the Nachi Controller. This process is very time-consuming and specific, each
command will eventually have a list of requirements and specifications that needs to be
followed to avoid syntax errors during compiling and runtime errors during runtime.

Figure 15 The "MOVEX" block. It’s the main movement command and comprises of many

parameters for input.

Continuing with the “MOVEX” block, it contains four value inputs and one dummy inputs
[17]. “Position” value input can only accept two other block types, “JOINT” block (Figure
16), and “POSE” block (Figure 17). The “JOINT” block requires six joint parameters
(Figure 5) as inputs, and the “POSE” block requires three values for translation and three
values for rotation in XYZ coordinate system.

Nachos

Hadi NAVABI 25

Additionally, the “MOVEX” command has “Speed” value input that can enable
attachment of three speed type blocks. According to the manuals, the speed can be
specified in (a) TCP linear speed in “mm/s” unit, (b) time to reach next position in
“seconds”, and (c) a percentage of maximum power “%”.

For detailed explanation and more examples for the other parameters, refer to [7].
Furthermore, the code definition for each block can be found in “NachosBlocks.jsx”.

Figure 16 "MOVEX" block with "JOINT" block attached as an input to the “Position” value input.

“JOINT” block requires six joint parameters (Figure 5).

Figure 17 "MOVEX" block with "POSE" block attached as an input to the “Position” value input.
“POSE block requires three values for x, y, z coordinate system, and three other values for Rx, Ry,

and Rz.

3.3.5. NachosGenerator

Defining the block according to the manual is not sufficient for the conversion and
generation of Nachi code. Each Blockly block needs to have specific rules and
instructions to be able to convert the block and all its inputs to a specific language, in
this case Nachi code. “NachosGenerator” is the name dubbed for these rules and
instructions that have been implemented for the Nachos application.

Nachos

Hadi NAVABI 26

Similar to all other blocks, the “MOVEX” block requires specific NachosGenerator rules
and instruction to be able to convert and generate the correct Nachi code. The general
method is to first convert and generate the code for the input blocks. The input blocks
are the “Position” block, “Speed” block, “Acceleration” block, “Accuracy” block, and
“Interpolation” value. After the conversion of these blocks into Nachi code, the outputs
are passed to the “MOVEX” block, then an overall Nachi code is generated as the output
for the “MOVEX” block.

Specific implementation for the NachosGenerator rules and instructions for the
“MOVEX” command can be found in “NachosBlocks.jsx”.

3.3.6. Generated Code

After the completion of editing and rearranging of blocks in the Blockly workspace, the
user may want to generate the code. By clicking on the “generate” button, the
NachosGenerator gets triggered, and the conversion and code generation begins in the
background of the Nachos application. After the a few milliseconds, depending on the
size of the program, the generated code is displayed in the code output section.

Figure 18 The generated Nachi code for Figure 16. The generated code can be downloaded locally

by clicking on the “download” button in the navbar.

Figure 19 The generated Nachi code for Figure 17.

3.3.7. Conclusion

The implementation of Nachos application can now enable easy accessibility and
effortless programming of the Nachi robotics manipulator for all students, lecturers,
and supervisors. Nachos uses widely accessible JavaScript and ReactJS, so that the
development of Nachi programs can be done remotely and offsite. This can significantly
help with increase productivity and teamworking opportunities. Furthermore, the Teach
Pendant is no longer the only point of development, and individuals can more easily start
and finish a project independently. All the core functionality of the Nachi robotics
manipulator is now readily available and visualisable through the implemented Blockly
blocks, and the intricate knowledge and a full understanding of the Nachi robotics

Nachos

Hadi NAVABI 27

manipulator is no longer necessary. Even for complex programs and functionalities, with
the elicitation of the many manuals and resources, Nachi is no longer a black box and
can easily be understood through a light reading of the materials that is provided.

Figure 20 Full example of a simple program with its generated code. Program was coded through
the Blockly workspace. The code was generated via the NachosGenerator. The generated code was
compiled on the Nachi Controller without any syntax errors. The compiled code was then executed

on Nachi robotics manipulator successfully.

4. Projects
4.1. Previous Projects

The extension of the completed projects and previous works on the Nachi robotics
manipulator is heavily limited by the problems that are identified previously. Up until the
project handover, only the basic setup and instructions were established, and limited
functionalities, such as manual movement of the robot, creating small programs and its
automatic execution, was achieved using the Teach Pendant.

4.2. Concurrent Projects
4.2.1. Concrete 3D Printing

With the handover of the Nachi robotics manipulator as a research project, some on-
hold projects reignited and were in the works again. A major example of this, is the
“Concrete 3D Printing” project. A group of postgraduate civil engineering students
were attempting to use a robotics manipulator to 3D Print a concrete barrier. In
collaboration with me, they used various different programs, such as Slic3r [8] and

Nachos

Hadi NAVABI 28

RoboDK [9], to generate a specific 3D Printing program for Nachi robotics manipulator.
We effectively managed to accomplish their goal, after hours of collaboration, learning
different Nachi’s procedures and instructions, and teamwork across different UWA
departments and management.

Figure 21 Final Concrete 3D Print with the Nachi robotics manipulator. After many attempts and

overcoming challenges, the “Concrete 3D Printing” project were successful.

4.2.2. Relocation of Nachi

Another project that required my involvement was the planned temporary relocation of
Nachi robotics manipulator. The newly found manuals [2] were used to anchor the robot
in the correct way so that the weight was evenly distributed.

4.3. Future Projects
4.3.1. UWA’s new robotics unit

The splitting of UWA Robotics unit (GENG5508) into two is a potential prospect that
was inspired due to the massive educational opportunities that Nachi can provide to
students. Currently, the Robotics unit’s curriculum contains material from Mobile
Robots, that is thought through EyeSim simulation software [11], and Robot
Manipulators, that is thought through UR5 robots.

The addition of Nachi to this curriculum would enable the unit to be split into two units
of “Robotics: Mobile Robots” and “Robotics: Manipulators”. The new unit will introduce
the students to Nachi robotics manipulator, and the possibilities of true automation and

Nachos

Hadi NAVABI 29

large-scale assembly lines. The unit will be thought through Nachi and Nachos software,
which will be an ideal resource for students to get insight into the world of
manufacturing and industrial robotics manipulators.

4.3.2. Foam Design by UWA Design

With collaboration with UWA Design and Robotics, a new project was emerged. This
project aims to use the newly designed software (Nachos) and all the new information
that has been found, to generate a program to move pieces of foam timber and to
create an artform.

The project aims to utilise a unique vacuum gripper by UniGripper for pick and place of
the timbers [10]. However, for the gripper to be integrated with the program the I/O
signal commands need to be tested and implemented into the Nachos application.

5. Future Work
5.1. I/O Functionality

The IO (Input and Output) functionality of Nachi enables a massive opportunity for the
integration of various physical buttons and real-world sensors into the Nachos
application, as well Nachi programs. Currently, specific functionalities of the Nachi
robotics manipulator are limited by the lack of physical inputs and sensors from the real-
world and conditional statements cannot be influenced by the outside world which
limits the functionality significantly.

Figure 22 I/O signal arrangement. 5-volt input and output signals can used for use via sensors and

other functionalities (theoretically).

Nachos

Hadi NAVABI 30

As a future work, the input and output signals into the controller needs to be analysed
and exhaustively tested. An electrical engineering student is recommended for this
research project due to highly complex wiring within the Nachi Controller and high
voltage and current for operation.

This future work is absolutely crucial to enable any possibility of a fully functional gripper
or readings from a sensor or registering of a click of a button.

5.2. FTP implementation for Nachos
For the execution of the generated code by the Nachos application, it requires to be
transferred to the Nachi Controller. The full instructions and procedures for the transfer
of files are outlines in the “Code Conversion and Compile” document in the elicited
resources package, but as a general guideline, the downloaded output file from the
Nachos application needs to be transferred via FTP to the “program” folder on the
Nachi Controller. The FileZilla application is recommended for the FTP transfers.

However, as FTP is a well-known technology and is widely used, the transfer of the
textual representation of the generated code can theoretically be streamlined further
with a better integration with Nachos. The proposed project is the implementation of
the FTP protocol on the Nachos web application. The requirements of this project are
outlined below:

1. Nachos shall be able to connect to the Nachi Controller via the FTP protocol with
a click on the “Connect to Robot” button.
(Given that the computer is within the Nachi Controller’s proximity and connected to the router)

2. Nachos shall output the correct file containing the generated Nachi code (by

NachosGenerator) to the correct file path on the Nachi Controller (the
“Program” folder).

3. Nachos shall keep the FTP connection open until the “Disconnect” button is
clicked.

4. (Optional) Nachos shall be able to display all the already available programs on
Nachi Controller.

5. (Optional) Nachos shall be able to download or delete available programs on the
Nachi Controller.

6. (Optional) Nachos shall only have access to the “Program” folder on Nachi
Controller due to security concerns.

Nachos

Hadi NAVABI 31

5.3. “AX on Desk” Software
Even though, it seems like the execution of all programs will always be reliant on the
Nachi Controller and the FTP transfer, during the elicitation of the resources, there were
reports for a remote access of Nachi robotics manipulator through the “AX on Desk”
software. In fact, a manual specifically for this software was found with interesting
capabilities that have great potential and opportunities. Even though, the software was
never found, the opportunity to be able to control Nachi remotely is too considerable to
pass on. Therefore, this research project is strongly recommended and could result in
great findings.

5.4. Integration with third-party applications
Professionals nowadays use a variety of software to accelerate their workload. There
are many examples of such software, but some specific examples are RoboDK,
Grasshopper, Rhinoceros 3D and Slic3r.

During the work for the concurrent projects (4.2. and 4.2.1), some stakeholders
expressed their interest for the integration of Nachi with other available robotics
software, such as Grasshopper, RoboDK and others. Although, this was never fully
researched in this project (due to its out-of-scope nature), it could result in promising
findings and opportunities. Alternatively, some guidelines and instruction for these
third-part application, would render very useful for these professionals.

The focus are professionals that will be utilising Nachi as part of a larger project. These
individuals are already using these third-party applications and would like to import and
test their already generated Nachi code via Nachos.

5.5. Simulation
One of the main features of NachiOS that was proposed and was unable to be satisfied
due to its complexity, is the simulation capabilities within Nachos. “Nachos Simulation
Engine” shall model a six degrees-of-freedom robotic manipulator, that resembles
Nachi to some extent. The vision for this simulation will be taken mostly from RoboDK
(Figure 23), but also some inspirations from “Simulator for Articulate Robots” paper
(Figure 24) (by V. Oloworaran, 2020) [11] and “RoboSim” (Figure 25) which is a freely
accessible software [12].

The Nachos Simulation Engine shall display Nachi’s position, Nachi’s position during the
execution of a program, Nachi’s joint angle values, and Nachi’s pose values (translation
and rotation) in at least the XYZ coordinate system. Furthermore, the following
information and values shall be able to be manipulated through the simulation.

Nachos

Hadi NAVABI 32

Figure 23 RoboDK Simulation Software. RoboDK is a widely used and popular software for the

simulation of Robotics Manipulators. It displays most of the information that is required in Nachos.

Figure 24 Simulator for Articulate Robots [11].

Figure 25 RoboSim Software [12]. Originally written by Rainer Pollak in C, then adapted by Johannes

Schutzner in Java.

Nachos

Hadi NAVABI 33

6. References
[1] History of Nachi Robotic Systems. Nachi Robotics Systems, Inc.

Retrieved October 5, 2021, from https://www.nachirobotics.com/company-
information/nachi-history/

[2] Nachi Maintenance Service Manual – ST-F-01 series [AX20] (1108, MSTEN-208-
008, 001), 8th ed. Nachi Robotics System Inc, Japan.

[3] FD Controller Instructions Manual – Robot Language (1112, TFDEN-012-001, 001),
1st ed. Nachi Robotics System Inc, Japan.

[4] Robot Software. Nachi Robotics Systems, Inc. Retrieved July 10, 2022, from
https://www.nachirobotics.com/fd-controller/software/

[5] FD Controller Instruction Manual - Command Reference – Vol. 1 (FN0–365), 5th
ed. Nachi Robotics System Inc, Japan.

[6] FD Controller Instruction Manual - Command Reference – Vol. 2 (FN360-597), 5th
ed. Nachi Robotics System Inc, Japan.

[7] FD Controller Instruction Manual - Command Reference – Vol. 3 (FN598-end), 5th
ed. Nachi Robotics System Inc, Japan.

[8] Open-source 3D printing toolbox, Slic3r. Retrieved July 10, 2022, from
https://slic3r.org.

[9] Simulator for industrial robots and offline programming, RoboDK.
Retrieved July 10, 2022, from https://robodk.com/.

[10] J. Showell, "Timber Gripping and Handling with Unigripper - Romheld Automation
Pty Ltd", Romheld Automation Pty Ltd, 2022. [Online]. Available:
https://romheld.com.au/timber-gripping-with-unigripper. [Accessed: 23-Jul-
2022].

[11] Oloworaran, V. (2020). Simulator for Articulate Robots [Master's thesis].
https://robotics.ee.uwa.edu.au/theses/2020-RobotManipulator-Oloworaran.pdf

[12] RoboSim [Computer Software (Java)]. Retrieved from
https://robotics.ee.uwa.edu.au/robosim/

[13] Scratch for Developers. Scratch. Retrieved October 5, 2021, from
https://scratch.mit.edu/developers

Nachos

Hadi NAVABI 34

[14] Pasternak, E., Fenichel, R., & Marshall, A. N. (2017). Tips for creating a block
language with blockly. 2017 IEEE Blocks and Beyond Workshop (B&B).
https://developers.google.com/blockly/publications/papers/TipsForCreatingABl
ockLanguage.pdf

[15] Google/blockly: The web-based visual programming editor. GitHub.
Retrieved October 5, 2021, from https://github.com/google/blockly

[16] Blockly Developer Tool, Google’s Blockly. Retrieved July 10, 2022, from
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html.

[17] Define Blocks, Google’s Blockly Documentation. Retrieved July 10, 2022, from
https://developers.google.com/blockly/guides/create-custom-blocks/define-
blocks.

