

Increasing Reliability of an Autonomous Vehicle

Stack in Robot Operating System 2

Author:

Lemar Haddad (22496083)

Supervisor:

Prof. Thomas Bräunl

School of Electrical, Electronic and Computer

Engineering

A thesis submitted in partial completion of the requirements for the degree of

Master of Professional Engineering

(Software)

at

University of Western Australia

June 2022

Word Count: 7997 (including abstract)

i

THESIS DECLARATION

I, Lemar Haddad, certify that:

This thesis has been substantially accomplished during enrolment in this degree.

This thesis does not contain material which has been submitted for the award of any other

degree or diploma in my name, in any university or other tertiary institution.

In the future, no part of this thesis will be used in a submission in my name, for any other

degree or diploma in any university or other tertiary institution without the prior approval of

The University of Western Australia and where applicable, any partner institution responsible

for the joint-award of this degree.

This thesis does not contain any material previously published or written by another person,

except where due reference has been made in the text and, where relevant, in the Authorship

Declaration that follows.

This thesis does not violate or infringe any copyright, trademark, patent, or other rights

whatsoever of any person.

This thesis contains only sole-authored work, some of which has been published and/or

prepared for publication.

Signature: Lemar Haddad

Date: 4/6/2022

ii

ABSTRACT

The University of Western Australia (UWA) acquired an autonomous shuttle bus, nUWAy, in

2020. Students combined open-source software with their own software to build an

autonomous stack, currently in Robot Operating System 2 (ROS2) platform. The aim of

nUWAy is to provide a student-run service offering autonomous rides at UWA. The operators

of the service are students who should not require any technical knowledge outside of basic

training to run the drives. Though autonomous demonstrations have been completed

successfully by technical students, there have been overwhelming instances where nUWAy has

been unable to complete drives due to software instability issues. These issues require a

technical knowledge of the stack to recover from. If left unresolved, these issues will arise in

regular drives where non-technical operators will be forced to engage technical resources to

recover the software, resulting in unpleasant experiences for passengers and operators. This

project aims to improve reliability of the software stack, so that it is more usable by non-

technical operators.

Autonomous software issues and failures were tracked and categorised over 56.75 hours, to

identify areas of reliability improvement. The focus areas of localisation and launch were

selected for improvement. Localisation was migrated from SLAM Toolbox to Adaptive Monte-

Carlo Localisation, leading to significant increases for mean time to failure (MTTF) from 8.2

minutes to 55.9 minutes. Furthermore, a software monitoring node (SMN) was designed to

identify and recover from failures. SMN handled start-up of the system on 2 PCs, through a

desktop icon, and monitors the status of software components. This led to increases for launch

MTTF from 31.8 minutes to 1230 minutes. Overall, failures which caused system crashes were

reduced, with MTTF of the system improving from 6.5 minutes to 123 minutes.

iii

TABLE OF CONTENTS

Thesis Declaration.. i

Abstract .. ii

Table of Figures .. v

List of Tables ... vi

Acknowledgements ... vii

1 Introduction ... 1

2 Literature Review .. 2

2.1 General Reliability & Usability of Software Systems .. 2

2.1.1 Software Reliability Assessment .. 3

2.1.2 System Reliability Metrics ... 3

2.1.3 Software Fault Tolerance ... 3

2.2 Reliability in ROS2 ... 8

2.2.1 ROS2 Launch .. 8

2.2.2 Apex OS .. 9

2.2.3 Bond .. 9

2.2.4 SW Watchdog .. 9

3 Process / Methodology .. 9

3.1 Recording Failure Data ... 9

3.1.1 Categories .. 10

3.1.2 Severity ... 11

3.2 Initial Reliability Evaluation ... 11

3.3 Localisation Stack ... 12

3.3.1 Current Solution: SLAM Toolbox .. 13

3.4 Software Monitoring Node .. 16

3.4.1 Design Options: Self-Checking Component ... 17

3.4.2 Design ... 18

iv

4 Results and Discussion .. 21

4.1 Localisation Reliability Improvements .. 21

4.1.1 Map Loading ... 21

4.1.2 Pose Estimates ... 22

4.2 Software Monitoring Node .. 23

4.2.1 Checkpointing .. 24

4.2.2 Limitations... 25

4.3 Overall Reliability Measurements ... 26

5 Conclusion and Future Work ... 27

5.1 Future Work .. 28

6 References ... 29

7 Appendices .. 32

7.1 Appendix A: Failure Log Data .. 32

v

TABLE OF FIGURES

Figure 1: The EasyMile EZ10 shuttle bus, called nUWAy. [3] ... 1

Figure 2: A component, which illustrates the flow of the three exceptions [16, p. 3]... 5

Figure 3: A recovery block component, with variants and an adjudicator [16, p. 4] ... 6

Figure 4: N-Version program model [10, p.19] ... 7

Figure 5: Self-Checking Software with Acceptance Tests [10, p. 19].. 7

Figure 6: Interface board in nUWAy. .. 10

Figure 7: Failure portions by category and severity, from the initial reliability study which yielded 686 total

failures over 56.75 hours. ... 12

Figure 8: nUWAy (left) in the real world and localised on a generated map (right) using SLAM Toolbox

localisation mode. .. 13

Figure 9: ST uses both laser scans from LiDAR sensors as well as IMU readings for odometery, to generate a

map of an area in mapping mode. Localisation mode uses this map to output an occupancy grid as well as a

map frame and transformation of vehicle coordinates to map coordinates, which are used for navigating the

vehicle around an area. .. 14

Figure 10: A map created with ST (left) along with the UWA paths this map represents marked in red (right). . 14

Figure 11: A resolution of 0.05 (left) and 0.3 (right) for the same area of UWA. Note how the scans can

converge to a single black line representing a wall on the right. .. 15

Figure 12: ST is used for mapping and saving a map as a PGM file. A map server will load this static map

along with publishing a static frame to represent the map coordinate system. AMCL will localize the vehicle to

the map, creating a transformation from vehicle coordinates into map coordinates. .. 16

Figure 13: Psuedocode of the overall operation of the SMN. ... 19

Figure 14: Psuedocode of SMN component which handles startup of a system component. 19

Figure 15: Psuedocode of SMN component which checks if a node within the system is running, by checking the

node list as well as listening on topics the node publishes. ... 20

Figure 16: Psuedocode for the SMN component which checks the entire system, file by file. If a node has failed,

it will perform recovery behaviour. ... 20

Figure 17: Psuedocode for the SMN component responsible for recovering a file. It will restart the file, check

that it has been recovered, and then perform checkpointing. .. 21

Figure 18: AMCL can successfully load maps far more consistently than ST. The same data is shown in two

formats, to illustrate both the rate of failure per hour as well as the portion of successes versus failures. 22

Figure 19: Pose estimate requests in AMCL less likely to fail than within ST. The same data is shown in two

formats, to show the rate of failure per hour as well as portion of successes for each localisation tool. 23

Figure 20: The monitor reporting an issue which has triggered a restart for the safety LiDAR node. Debug

information is provided for technical operators. .. 23

Figure 21: RViz before crashing (top), after being restarted and missing the map (middle). SMN will recover the

last loaded map (bottom). ... 24

Figure 22: A vehicle’s previous position is recovered (right), indicated by a loaded vehicle model, after a failure

of the localisation system (left). ... 25

vi

Figure 23: MTTF for the initial and final reliability evaluation shows the increases, particularly in localization

and launch which were both targeted. ... 26

Figure 24: MTTF for severity levels between the initial and final evaluation show significant decreases in

targeted medium severity failures.. 27

LIST OF TABLES

Table 1: An extract from Table 4 of [4, p. 40]. This protection method has guided the design of our SMN. 17

Table 2: An extract from the initial reliability examination, demonstrating descriptions of failures encountered,

as well as their category and severity. This includes data from the first 2 days of testing. 32

vii

ACKNOWLEDGEMENTS

I would like to thank Professor Thomas Bräunl for supervising my project. His guidance and

support were invaluable during this project. I am grateful for the massive learning experience

he provided me, and the regular time he dedicated to myself and the other REV students. I

would also like to thank Adjunct Associate Professor Robert Reid for the industry advice and

experience he was able to provide for the numerous hurdles I faced within the project. Finally,

I would like to thank my peers within the REV team for all the work and support which made

this outcome possible. Specifically, Kieran Quirke-Brown, Thomas Copcutt, Zhihui Lai, Jai

Castle and Zack Wong for their continued work alongside me on nUWAy.

1

1 INTRODUCTION

In early 2020, the Renewable Energy Vehicle (REV) project acquired an EasyMile EZ10

electric shuttle bus (Figure 1), fitted with sensors for autonomous driving. Since then, the REV

team, made up of students and professors at the University of Western Australia (UWA), have

built an autonomous driving software stack by combining open-source and student created

software. The intent is for the vehicle to achieve SAE level 3+ Automation [1], meaning it can

achieve conditional autonomous driving under supervision. The bus, nUWAy, is intended to be

a platform to offer rides to students at the UWA Crawley campus, operated by non-technical

people. These operators will not have any knowledge of the software stack and will only serve

to set the route of the bus and intervene when necessary during drives. nUWAy has successfully

completed several autonomous drives by technical operators on campus to date [2].

Figure 1: The EasyMile EZ10 shuttle bus, called nUWAy. [3]

The EasyMile EZ10 bus is outfitted with four SICK 2D LMS safety light detection and ranging

(LiDAR) sensors, two 4-layer SICK 3D LD-LRS localization LiDARs, and two Velodyne

VLP-16 LiDARs with 16 layers. There are mono black and white cameras fitted to the front

and back of the bus, as well as two Global Positioning Service (GPS) antennas and an Internal

Measurement Unit (IMU) for accurate localisation. nUWAy contains two PCs and a Hercules

board. A dual-core Intel i7 PC does low-level processing, while an NVIDIA Xavier with a

Volta architecture GPU handles most autonomous driving tasks.

The current software is built upon Robot Operating System 2 (ROS2) Foxy, implementing

several open-source packages and student-written code. The current system is unreliable and

requires a thorough knowledge of the software to operate and ensure that all modules are

2

operational. The setup or recovery of the software to attempt an autonomous drive can be

lengthy, with many failures often encountered during start-up of the system and after extended

periods of operation. In this state, nUWAy is unfit for handover to non-technical operators and

could result in unpleasant experiences for users of the service as well as operators. This could

lead to reluctancy to use the service, a negative image of autonomous vehicles and negative

publicity towards the university. As a research platform, solutions are tested on nUWAy for

evaluation and research, but there exists a need to focus on improving overall system reliability

so that the service is less prone to failure.

We aim to utilise reliability techniques to evaluate the current state of the system and identify

areas which would benefit from reliability improvement the most. Fault tolerance techniques

will be explored to design and implement a system monitor which is able to recover processes

automatically. The goal is to make the service more reliable and operable by non-technical

people.

2 LITERATURE REVIEW

2.1 GENERAL RELIABILITY & USABILITY OF SOFTWARE SYSTEMS

The IEEE, in Std. 1633-2016, defines software reliability (SR) as “the probability that software

will not cause the failure of a system for a specified time under specified conditions” [4, p. 17].

Furthermore, a fault is defined as “a manifestation of an error in the software” [4, p. 16]. A

failure can be a result of a fault occurring and resulting in the loss of expected behaviour of

software. SR is different to hardware, in that software will not wear-out or experience increased

failures over time unless it is changed. While hardware failures are typically physical in nature,

software failures stem from faults in design of the software, attributed to human errors or

oversight [5]. Keene [6] presented characteristics to differentiate SR from hardware reliability

(HR). Specifically, external conditions don’t affect SR but can affect inputs to the software

program, software faults usually become apparent under certain conditions, a software fault

can cause several system failures or errors, and two identical programs will behave in the same

way. This final point has the implication that, unlike HR, SR cannot be increased through

running the same program in multiple instances for redundancy. Rather, redundancy can be

achieved through different implementations doing the same task, termed design diversity.

Furthermore, Keene [6] also introduced the repairable system concept, where periodic restarts

can fix software problems.

3

2.1.1 SOFTWARE RELIABILITY ASSESSMENT

There are three major classes of assessing SR [7]: Black-box reliability (BBR); software

metric-based reliability (SMBR); and architecture-based reliability (ABR). BBR is an

estimator based on failure observations during testing or operation, wherein the software is

given inputs and the user expects outputs, without considering the details of the

implementation. SMBR reliability analyses the software implementation itself, considering

factors such as code complexity and development process. ABR breaks down a software

system into smaller components and predicts reliability of a system through the reliability data

of these components.

2.1.2 SYSTEM RELIABILITY METRICS

A common way of quantifying system reliability is mean time to failure (MTTF), given in

Equation 1.

𝑀𝑇𝑇𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑛 𝑇𝑒𝑠𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

Equation 1: Mean time to failure

In a repairable system, mean time to repair (MTTR) evaluates the time taken to recover the

system from a failure to an operational state. For a system, maximising mean time between

failure (MTBF) and minimising MTTR is ideal as the system will possess high availability.

System availability is given in Equation 2.

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅

Equation 2: Availability. Note MTBF is equivalent to MTTF here.

2.1.3 SOFTWARE FAULT TOLERANCE

Software that is fault tolerant can detect and recover from a software fault so the system can

continue to provide it’s specified functionality [8].

2.1.3.1 Single-Version Software Fault Tolerance

These techniques revolve around fault tolerance in a single version of a software system.

2.1.3.1.1 Error Detection

Self-protection and self-checking are important properties of structural modules in software

[9]. Self-protection is the ability of a component to protect itself from errors in its input, while

self-checking is the ability of a component to prevent propagation of internal errors to other

components [10]. T. Anderson [11] presents methods for error detection, as follows.

4

Replication checks have multiple components to perform the same function. Timing checks

can be done for systems with timing constraints. Reversal checks use outputs to determine the

inputs for functions which have an inverse. Coding checks have redundancy attached to the

information of their outputs, which can be used to check if the output is correct. Reasonableness

checks use known properties of the data to detect if there are unreasonable values which

indicate error. The trade-off of error detection is system performance, as detection requires

extra computation for each error case or code segment that is being checked [10].

2.1.3.1.2 Exception Handling

Functions have preconditions which, if fulfilled, allow them to behave “normally”. If violated,

an exception handling mechanism allows the program to raise or handle the exceptional case

[12]. In fault tolerant systems an exception should be considered in the context of the event

that triggered it, effects on the system and mitigation of the exception [13]. B. Randell [14]

identified 3 types of exceptions, as follows. Interface exceptions occur when an invalid request

is sent to a component, and it is the responsibility of the requestor to handle this exception.

Local exceptions occur when an error is detected within its own operation and should be dealt

with ideally in a way which the component can continue operation after exception handling.

Finally, a failure exception should come from the requested component to notify the requestor

that it was unable to fulfil the request it was tasked with. It is therefore essential to design the

system around containment of errors, so that they are not propagated to other components.

2.1.3.1.3 Checkpoints and Restart

To recover software in a single version system, the most common technique is checkpoint and

restart [6, 13]. Faults in the delivery phase are typically able to be remediated with a restart, as

they are state-dependent and transient [10, 15]. In [11], the advantages of checkpoint and restart

recovery is that it is independent of the fault or propagation of the fault, can detect unanticipated

faults, is generalized and simple. Checkpoints can be implemented as either static or dynamic

checkpoints [10]. Static checkpointing sets a checkpoint at the beginning of a component and

returns to this point when restarted after an error occurs. This allows error detection at the

output, generalised without having to embed these checks within the component. The problem

is that the expected time to complete operation of a component increases exponentially as the

size of the component increases. Therefore, this type of checkpointing is effective on small

modules [10]. Dynamic checkpointing uses state information at various points in execution so

that when an error is detected, restart occurs at a point closer to where the error occurred rather

than starting from the beginning. In general, it is possible to achieve linear increase in execution

5

for operation as the component increases in size [10]. Checkpoints for state must be valid, else

the error may occur infinitely if invalid state is used.

2.1.3.2 Multi-Version Software Fault Tolerance

These techniques revolve around multiple versions of software to provide a fault tolerant

system.

2.1.3.2.1 Recovery Block

The recovery block was developed in the 1990s by B. Randell and J Xu [16]. A system is made

up of a set of components, each receives requests and produces responses. A request which

cannot be satisfied must return an exception. Recovery blocks work on the three exception

types identified in [14], described in section 2.1.3.1.2. Figure 2 illustrates an idealized

component.

Figure 2: A component, which illustrates the flow of the three exceptions [16, p. 3]

Although this approach can provide software resilient to catastrophic failures, it is argued that

this is not enough for fault tolerant software. Therefore, a recovery block (illustrated in Figure

3) should have design diversity through at least two software variants which perform the same

operation in different ways, as well as an adjudicator to check the results of the software

variants. The adjudicator is shared between all variants, and will chose the primary variant’s

output as long as it passes the acceptance tests of the adjudicator [17].

6

Figure 3: A recovery block component, with variants and an adjudicator [16, p. 4]

The recovery block method is complex and costly to implement due to the design diversity

requirement.

2.1.3.2.2 N-Version Software

N-Version software is like N-way hardware. Redundancy of N systems exists with a voter to

determine the correct output of the software [18]. The software must be design diverse in its

implementation, so that even if one software version fails, the system can continue to function.

It is encouraged that different languages, design philosophies and environments are used for

each implementation, with development groups having as little interaction between each other

as possible, to have the highest level of diversity between designs [8]. It is argued that even

with this approach, different teams can still make similar mistakes, which was verified in a

1986 experiment [19]. Also, there is argument around how the voter can be certain which

output is correct out of several options. Meanwhile, the recovery block method is more robust

as it tries to ensure the program will not reach an incorrect state, whereas there are no controls

around exception handling in N-version software. Figure 4 illustrates the model.

7

Figure 4: N-Version program model [10, p.19]

2.1.3.2.3 Self-Checking Software

Self-checking software uses multiple software variations as well as an adaptation that each

software version has its own independently developed acceptance tests [10, 20]. These

acceptance tests differentiate it from recovery blocks. The self-checking software model is

illustrated in Figure 5. Output is taken from the highest ranked version which passes acceptance

tests. In [21], a simple self-checker is presented as software embedded to continually check

results over a large number of executions. It should have a high probability to eventually detect

any errors, with a low probability of a false alarm. It is stated that the checks are different to

other fault tolerance techniques in that they are statistically independent of the original

algorithm and do not double or triple the runtime cost or overhead of the functionality being

checked.

Figure 5: Self-Checking Software with Acceptance Tests [10, p. 19]

8

It was found in [22], self-checking software was able to detect faults that were not identifiable

by N-Version software, as self-checking software is able to identify internal state of a system

through tailored acceptance tests. Conversely, the study also found that the effectiveness of the

acceptance tests varied greatly from programmer to programmer, with some placing tests in

poor places or devising tests which flagged non-existent errors.

2.2 RELIABILITY IN ROS2

While there are several packages in ROS aimed at monitoring [23], fault tolerance [24, 25] and

reliability [26], the list for ROS2 is less extensive. The overall ROS2 system is aimed at reliable

computing in real time through the utilisation of Data Distribution Service (DDS) [27], but an

average system is still made up of many nodes which can fail with the many inputs received in

a complex environment. While reliability increases with each release of ROS2 and with regular

updates to core packages [28], there is still a need for recovery when failures occur, for a system

such as nUWAy to be usable by non-technical users.

2.2.1 ROS2 LAUNCH

ROS2 by default utilises the Launch system to enable running of multiple ROS2 executables,

known as nodes. nodes can be launched together with a launch file (LF). Launch will detect if

a node’s operating system process terminates and report it to the user. Inbuilt into ROS2

Launch is the ability to respawn a node when this happens or shut down every node in the LF

if the process is deemed critical by the user [29]. While this is good for some stateless nodes

which fail with their operating system being terminated, it does not consider several cases. The

first case that has been experienced within our software stack is where the node for safety

LiDAR sensors starts before the drivers for the LiDAR are ready. In this case, the node exists

but is not publishing anything, and requires a restart of the node after the driver has started to

fix. The data is needed for other systems such as localisation and navigation later in the launch

sequence, so the entire system must be restarted for operation. The second case is that some

nodes can benefit by restarting with checkpointing, where state from before the process

terminated can be utilised. An example could be saving the last position the robot was in map

coordinates, and re-sending this when the localisation node is restarted, saving operators from

having to re-localise the robot.

ROS2 launch supports a lifecycle manager, which can provide deterministic start up and shut

down of nodes through node states. The lifecycle manager does not track situations where the

nodes have crashed or are in deadlock, after the node has started up.

9

2.2.2 APEX OS

Apex OS is a ROS2 fork intended for safety-critical applications. The list of intended

applications includes shuttle vehicles, and it is ISO 26262 certified [30]. Features include

elimination of unsafe code constructs, fully deterministic software execution, lifecycle

managed nodes and complete documentation. Apex OS is a commercial product, and the nature

of the stringent standards it aims to uphold can rule out some open-source packages, limiting

research for university students.

2.2.3 BOND

Bond creates links between two processes, which can time out or be broken by a process,

allowing the other process to know if the other has terminated [31]. This can allow processes

to implement recovery behaviours if termination is detected. This requires explicit creation of

links between programs, by implementing the bonds on both processes. This means open

source ROS2 packages need to be modified if they do not use bonds, restricting the ability to

stay up to date with the main package branch and requiring knowledge of the package code to

modify it for bonds.

2.2.4 SW WATCHDOG

SW Watchdog [32] is a package which implements readers, which listen on topics for output

and trigger a transition to the inactive state for a node, upon a node not meeting specified DDS

quality of service (QoS). It also implements heartbeat watchdogs, which asserts liveliness of a

node irrespective of any published topics. The user is able implement a system-level response

to restart a process, for example. This package works does not work with Fast RTPS, since it

does not implement QoS. Fast RTPS is the default rmw implementation for ROS2 Foxy. There

is also support for checkpoint behaviour which has not been implemented by the developers.

SW Watchdog is still in active development and is intended to replace the function of Bond.

3 PROCESS / METHODOLOGY

In this section, we will apply some of the principles covered in the literature review to assess

reliability and perform reliability improvement tasks based on the assessment.

3.1 RECORDING FAILURE DATA

To perform reliability improvement, a baseline assessment of reliability is required. This will

be henceforth referred to as the initial reliability evaluation. For this baseline, we use BBR

testing, as there are many components that work together within our autonomous system. The

10

aim is to identify where reliability issues lie, including frequency and severity, and use this to

prioritise focus to the most problematic components of the system. During a 56.75-hour test

period, attempting to autonomously drive on campus, a set of failure modes were defined, and

each categorised based on which part of our autonomous system they originated from –

localisation, low-level, driving and launch. Furthermore, each failure would be ranked by a

severity level, of low, medium, or high. Failure severity is defined based on the impact to the

operators and to the availability of the system. This is essentially how much effort it takes to

recover the system back to a driveable state.

3.1.1 CATEGORIES

The low-level category encompasses any failure between the PC sending drive-control data

and the motor controllers. A student-developed Hercules based interface board (Figure 6)

transfers PC commands to motor controller commands for steering and velocity.

Figure 6: Interface board in nUWAy.

The launch category includes anything which prevents the system from launching the

autonomous stack correctly. A failure means that part of the system has not started correctly,

preventing the system from driving after starting or restarting.

The localisation category includes anything related to providing the transformation between

the vehicle’s real-world position and position within a map. This includes successfully loading

the map, being able to specify an estimate for position with the map, termed a pose estimate,

as well as maintaining a reasonable estimation of the vehicle’s position within the map over

time.

The driving category involves anything which affects the vehicle from getting from a starting

position to a goal. This can include being unable to plan a path to a goal, unable to follow a

path, operator intervention or failed recovery behaviour.

11

3.1.2 SEVERITY

Low severity failures are transient failures where the software stack does not crash. These can

be recovered by operator intervention. For example, if the system drives to an undesirable

position and abandons autonomous control, this can be recovered through the operator

providing a new goal pose for the system to replan a drive toward. These low severity failures

can usually be reduced over time through further tuning of parameters, which is only possible

if drives are regular enough to gather good data. At the time of the initial reliability study, this

was not the case.

Medium severity failures are those where one or more components of the autonomous software

stack crash. The vehicle is not able to autonomously drive until the crashed system is recovered.

This is done through a technical operator restarting the software stack. A non-technical operator

should not be expected to identify which component has crashed or how to restart it, so we

assume this is unrecoverable without technical support.

High severity failures require at least a power cycle of the entire system. The system is

unrecoverable even by restarting the software stack in this case. Sometimes, these issues may

not be recovered through a system restart. These are catastrophic, as they render the system

undriveable for a large period.

3.2 INITIAL RELIABILITY EVALUATION

From the 56.75 hours of time on test, 686 failures were recorded. This is equivalent to a MTTF

of 4.96 minutes. An extract from failures recorded is available in Appendix A. Within this,

some tasks have a clear distinction of failure versus success, such as loading a map or driving

to a goal position. These tasks are therefore recorded as a failure or a success whenever they

are performed. For other tasks, such as correct localisation within a map, there can be a clear

failure observed (such as being in an incorrect position within the map and not recovering

without operator intervention), but success is observed the rest of the time, so in this case only

failures are recorded.

Figure 7 demonstrates that the largest portion of failures experienced where within the

localisation category. 60.2%, or 413 failures, were experienced within the testing period. To

make a meaningful improvement to reliability, we will focus on this category. The next highest

failure statistic came from driving tasks. As driving still required much tuning and relied on

reliable localisation and launch to be able to gather driving data for improvement, this category

would not be a top priority of focus. The severity of these failures was also mostly low (see

12

Appendix A). Therefore, it follows that if other failures are reduced, this category would

become much easier to refine through tuning. Launch would also be a focus of refinement, as

launch related failures prevent both localisation and driving. It is important for operators to be

able to rely on a system to start correctly, to be able to reliably operate the service without

technical assistance.

The most common failures were of medium severity, meaning parts of the software stack would

need to be restarted by technical operators. This is illustrated in Figure 7. These failures would

therefore result in downtime of the system while they were manually restarted.

Figure 7: Failure portions by category and severity, from the initial reliability study which yielded

686 total failures over 56.75 hours.

Following the initial reliability study, in the following sections we focus on the localisation

stack as well as mitigating launch issues and other general software crashes through a software

monitoring node. The overall aim is to improve reliability through reducing medium severity

crashes, increasing MTTF and making the recovery of the system automated so that non-

technical operators can run the service.

3.3 LOCALISATION STACK

A major area for improvement was within the localisation software stack. The localisation stack

is responsible for providing an estimate of a vehicle’s position within a generated map, and this

is used for path planning in autonomous drives (Figure 8). It is important that this estimated

position is accurate, otherwise the vehicle may demonstrate erratic behaviour. We will

investigate the current architecture responsible for localisation, and experimentally try to refine

our approach in an attempt at improving the reliability of this aspect of the autonomous system.

13

Figure 8: nUWAy (left) in the real world and localised on a generated map (right) using SLAM

Toolbox localisation mode.

3.3.1 CURRENT SOLUTION: SLAM TOOLBOX

At the time of the initial reliability study, SLAM Toolbox (ST) was being used for localisation.

ST is primarily a mapping tool which builds upon Open Karto [33]. Although the main

operation is simultaneous mapping and localisation (SLAM), ST features a localisation mode,

which does not save any alterations to the generated map. This is important, as a map’s quality

may degrade over time if localisation isn’t accurate all the time. Figure 9 illustrates a simplified

overview of the architecture. ST uses laser scans from the LiDAR sensors as well as IMU

information to generate a map of an area, in mapping mode (Figure 10). This map is transferred

to navigation software as an occupancy grid, which represents free, occupied, and unknown

space around the vehicle. The map frame is also published, with ST providing transformation

of vehicle coordinates into map coordinates, to represent the vehicles position within the map.

In localisation mode, the map is loaded into an occupancy grid, but is unaltered beyond local

changes, which are unsaved. Therefore, the map will not change from day to day but can be

used for localising within.

14

Figure 9: ST uses both laser scans from LiDAR sensors as well as IMU readings for odometery, to

generate a map of an area in mapping mode. Localisation mode uses this map to output an occupancy

grid as well as a map frame and transformation of vehicle coordinates to map coordinates, which are

used for navigating the vehicle around an area.

Figure 10: A map created with ST (left) along with the UWA paths this map represents marked in red

(right).

The main reliability issues experienced with ST were loading maps and providing pose

estimates. Map loading is the process where a map is deserialised into an occupancy grid, so

that it can be utilised for localisation. When a map was attempted to be loaded, it would often

15

crash the entire ST process, with no descriptive error messages. Each time a map would be

loaded, a pose estimate would be required to be provided as an estimate of the vehicle’s initial

position within the map. This was because GPS coordinates would not align exactly to the map

beyond the initial point at which the map started. Sometimes, providing this pose estimate

would crash ST, with a similar undescriptive error message. Since many times multiple pose

estimates are required for good localisation performance, this would often crash the system,

and then the map would have to be reloaded. This would result in a cycle of trying to recover

the system on start up. Several experiments would be trialled before reconsidering the entire

architecture for localisation.

3.3.1.1 Experiment 1: Parameter Tuning of SLAM Toolbox

Parameter tuning was performed to reduce the computational load ST would require. The most

significant parameter change was reducing `resolution` from 0.05 to 0.3 (Figure 11). With this

change, we experienced much less lag in our operation with large maps, as well as being able

to generate even larger maps without significant performance degradation. Loop closures were

also more accurate. Although this was advantageous for mapping, the localisation issues with

map loading and pose estimates were not resolved.

Figure 11: A resolution of 0.05 (left) and 0.3 (right) for the same area of UWA. Note how the scans

can converge to a single black line representing a wall on the right.

3.3.1.2 Experiment 2: Different Installation Methods for SLAM Toolbox

ST was initially installed from the deb package manager. Building ST from source did not

provide any improvements to our reliability issues. Running our software stack on a more

powerful PC also still experienced crashing when loading the same maps. It was recommended

16

for production robots that ST be installed as a snap, an isolated install. This was claimed to

have optimisations improving performance by 10x [34]. Unfortunately, the snap was not

compiled for the ARM64 architecture that the Nvidia Xavier PC uses.

3.3.1.3 Final Solution: AMCL for Localisation

Adaptive Monte Carlo Localisation (AMCL) uses an adaptive particle filter size to localise the

robot against a map [35]. AMCL uses a static portable gray map (PGM) file, rather than a pose

graph for its map representation. While ST serlialises a posegraph and data file for each map it

stores, of size approximately 300 megabytes for the campus, AMCL uses a PGM file, size 4

megabytes for the same area. The new solution is illustrated in Figure 12. ST is still used for

mapping as it can save maps as PGM files. Map Server then loads in a map into a ROS

Occupancy Grid, which AMCL can use to localise against and provide the transformation from

vehicle coordinates into map coordinates. This solution was found to have favourable results,

which will be demonstrated in section 4.1.

Figure 12: ST is used for mapping and saving a map as a PGM file. A map server will load this static

map along with publishing a static frame to represent the map coordinate system. AMCL will localize

the vehicle to the map, creating a transformation from vehicle coordinates into map coordinates.

3.4 SOFTWARE MONITORING NODE

To reduce technical operator assistance on board nUWAy, a system is required which acts as

a technical operator may, henceforth referred to as software monitoring node (SMN). The SMN

should sequentially launch processes, ensuring each has started properly. SMN should

regularly monitor ROS2 nodes and topics to ensure they are still running. Finally, the SMN

should report any crashes to the operator, and attempt to recover the software stack, by

restarting components as well as providing checkpointing where it could reduce the

intervention an operator would need to perform. The SMN should be generic, so that it can

continue to be utilised as the software stack evolves with more features or different packages.

17

The aim of SMN is to enable non-technical operators to run nUWAy, even if software crashes

occur. SMN is modelled around principles demonstrated in Table 1, from IEEE Std 1633-2016.

Table 1: An extract from Table 4 of [4, p. 40]. This protection method has guided the design of our

SMN.

3.4.1 DESIGN OPTIONS: SELF-CHECKING COMPONENT

Three design options were considered for the self-checking aspect of the SMN.

3.4.1.1 Option 1: Bond

Bond, presented in section 2.2.3, could be utilised to monitor the software operation and trigger

restarts when necessary. This would provide advantages of very fast detection speed and high

reliability when detecting failures. This solution requires modification of each ROS2 package

used in nUWAy, to create a bond between the package and SMN. This is infeasible when

considering the imposed constraint of a generic system which can continue to be used as

nUWAy’s software changes.

3.4.1.2 Option 2: SW Watchdog

SW Watchdog, discussed in section 2.2.4 contains watchdog timer functionality. Like bond,

this allows for fast detection of failures, as well as not requiring modification to each package,

unlike Bond. This solution requires either Cyclone DDS or Fast DDS, rather than Fast RTPS,

for the rmw implementation that ROS2 uses [32]. Furthermore, each package needs to be

encapsulated as a ROS2 lifecycle node. This means modification is required to setup

operational states for each package.

3.4.1.3 Option 3: Node and Topic Checker

ROS2 features API calls to retrieve a list of active nodes within the system. It also allows

subscription to topics within the system, which can be used to assert liveliness of a process

18

within the software stack. This does not require any modification to ROS2 packages in the

system. The disadvantage of this approach is speed of detection of failure. It often takes several

seconds for a node to be removed from the active node list. Topic checks need to allow for

significant time redundancy to account for temporary performance degradation when

monitoring liveliness of a topic, to avoid false positive failure detections.

3.4.1.4 Final Decision

For the specific conditions nUWAy required, as an experimental vehicle still in active

development, Option 3 was selected. It would provide SMN with the most flexibility in

configuration. Even though failure detection speed would be significantly slower than bond or

SW Watchdog, the SMN is not intended as a safety feature, as the purpose of the operator is to

intervene if any undesirable behaviour is observed. Furthermore, Navigation2, responsible for

autonomous vehicle control, utilises Bond as well as a lifecycle manager. If any node

associated with autonomous driving fails, the entire stack will immediately be shut down,

disabling autonomous control.

3.4.2 DESIGN

Figure 13 demonstrates the general operation of the SMN. A configuration file is provided,

which defines the ROS2 nodes to launch, in the form of LFs. Also provided is a frequency,

which defines how often the checks to the system occur. For each LF provided, the system will

start the process within a new window. After it has started, the LF will be checked to ensure it

is running. If it has not started properly, the LF is attempted to be recovered through a restart,

with a larger timeout period. If recovery is unsuccessful, the system is shutdown, and this is

reported to the user. Otherwise, each LF is started sequentially and ensured to be running before

the next file is started. Once all the files are running, the system will periodically check the

entire system. If a component of the system is unable to be recovered during this phase, the

entire system is shut down and started sequentially again, to clear any state-related issues that

may have arisen. This behaviour continues until the operator requests that the system is

shutdown.

19

Figure 13: Psuedocode of the overall operation of the SMN.

In Figure 14, an LF is started, or restarted if it is already running. After starting, the system

waits a user-specified number of seconds to allow the LF to start. The file is then checked by

the process described in section 3.4.1.3, the pseudocode is given in Figure 15. Whenever a

topic is checked, the timeout period for declaring the LF as failed is 1/10th of the expected

frequency of the topic. This allows for any temporary performance degradation of the system,

minimizing false positives of LF failures.

Figure 14: Psuedocode of SMN component which handles startup of a system component.

20

Figure 15: Psuedocode of SMN component which checks if a node within the system is running, by

checking the node list as well as listening on topics the node publishes.

The entire system is checked on a user-specified frequency, as shown in Figure 16. If any LFs

are found to have failed, attempted recovery, in Figure 17, will be performed. This attempted

recovery consists of restarting the LF, and if it is successfully recovered, performing

checkpointing behaviour to recover any necessary state information. If the system is not

recovered, the timeout for the file to start is increased by 50%, to allow for any system

performance degradation. If the LF is unrecoverable, this is reported to the user, and a full

system restart is triggered.

Figure 16: Psuedocode for the SMN component which checks the entire system, file by file. If a node

has failed, it will perform recovery behaviour.

21

Figure 17: Psuedocode for the SMN component responsible for recovering a file. It will restart the

file, check that it has been recovered, and then perform checkpointing.

4 RESULTS AND DISCUSSION

Another reliability assessment was performed after the SMN and AMCL were implemented

into the system. This will be referred to as the final reliability evaluation. Within this

evaluation, the same failure modes from Appendix A were recorded, to measure the extent of

improvement to our system. Since this testing period was 20.5 hours, compared to the initial

period of 56.75 hours, we will use MTTF to make comparisons. We start by comparing AMCL

to ST for localisation, followed by discussion of SMN and finally demonstrate overall

reliability improvements to the system.

4.1 LOCALISATION RELIABILITY IMPROVEMENTS

Overall, large improvements in reliability were observed from moving our localisation system

from ST to AMCL. Our focus will be on the issues of loading maps and providing pose

estimates, which were discussed as the most impactful issues of ST in section 3.3.1.

4.1.1 MAP LOADING

Demonstrated in Figure 18, ST was failing approximately 75% of the time when attempting to

load maps. Maps of the same size and areas of campus were used for both tests. AMCL, in

comparison, was successful in loading the maps over 97% of the time. Note that AMCL was

restarted many times in testing to attempt to get a similar frequency of map loading as was

being performed by ST, even though this was not required by the system.

22

Figure 18: AMCL can successfully load maps far more consistently than ST. The same data is shown

in two formats, to illustrate both the rate of failure per hour as well as the portion of successes versus

failures.

4.1.2 POSE ESTIMATES

After loading a map, a pose estimate is required to provide a better estimate of the vehicle’s

position within the map, after which the localisation tool will be able to localise the vehicle.

Several of these may be required to refine a good estimate, due to human error when inputting

these estimates in the user interface. About 1/3rd of these would fail in ST (Figure 19) crashing

the process. This would mean the process would have to be restarted, including reloading the

map. With AMCL, the success rate of this operation was over 95%. This had the effect of

increasing operator confidence that this operation would work, meaning the operator could give

multiple pose estimates in a row to refine their estimate, without worrying about the system

crashing. This effect can be seen in the frequency of pose estimates per hour by tool. Even

though AMCL maps were successfully loaded about 80% more per hour compared to ST, the

number of successful pose estimates for AMCL was 192% higher than ST. Operators were less

concerned with providing a good estimate the first time to minimise the risk of the system

failing, so would refine their estimate over more attempts. It should also be noted that the failure

mode for AMCL pose estimates was different to ST. AMCL would freeze for several minutes

before updating the pose estimate in failures recorded, rather than crashing. These instances

were still recorded as failures, the response time of the system was unacceptable.

23

Figure 19: Pose estimate requests in AMCL less likely to fail than within ST. The same data is shown

in two formats, to show the rate of failure per hour as well as portion of successes for each

localisation tool.

4.2 SOFTWARE MONITORING NODE

SMN was implemented as a ROS2 node within Python, and can be found at [36]. The reasons

for using Python was mainly for the libtmux library [37], allowing Tmux sessions to be created

and controlled within Python. The system was tested both in a local ROS2 environment with

the Gazebo simulator, as well as on nUWAy. Whenever a LF failed, the software would report

this to the user. For technical diagnosis, the Tmux window which the failure took place in

would also be provided, so that a technical operator could attach to the session and examine

the logs for debugging. This is demonstrated in Figure 20.

Figure 20: The monitor reporting an issue which has triggered a restart for the safety LiDAR node.

Debug information is provided for technical operators.

The most notable benefit the SMN provided was in launch of the system. Firstly, the SMN was

packaged as a single desktop icon, which would start a SMN session on both PCs and start

everything sequentially. This meant start-up was easy and often successful, even resolving

issues such as a race condition we experienced with LiDAR drivers which would cause start

up to fail previously. The improvements to launch of the system will be demonstrated in section

4.3.

24

Figure 21: RViz before crashing (top), after being restarted and missing the map (middle). SMN will

recover the last loaded map (bottom).

4.2.1 CHECKPOINTING

Checkpoints were implemented in two scenarios. The first checkpointing system implemented

was to reload the map if our visualisation software, RViz, had crashed and was restarted. In

this situation, usually a technical user would need to send a command to reload the specific

map file. Although the system was still capable of autonomous control and this was an issue

purely with the visualization software, this would be crucial for an operator to ensure

localisation remained correct and monitor the planned path that the vehicle was driving along.

25

Therefore, this checkpoint was useful for continuing a drive which would otherwise be aborted

before the SMN was implemented. This is demonstrated in Figure 21.

Checkpointing was also implemented which could recover the position of the vehicle within

the map coordinate system. Periodic vehicle positions were saved, so in the event of a failure

of the localisation system the previous known position could be used to reinitialise the vehicle,

which could save an operator from having to relocalise the vehicle within the map (Figure 22).

While this system was tested and worked as intended while stationary, there was never a

scenario where the localisation system crashed during an autonomous drive. Therefore, the

benefits it could provide weren’t realised in typical operation of the service.

Figure 22: A vehicle’s previous position is recovered (right), indicated by a loaded vehicle model,

after a failure of the localisation system (left).

4.2.2 LIMITATIONS

Several limitations of the SMN were observed on nUWAy, that were not experienced in

simulation environments. There was an issue where sometimes, after a ROS2 node crashed and

was recovered by the SMN, the node would no longer appear on the ROS2 node list. Therefore,

the SMN would declare the node as failed and continuously restart it, even though it was

functioning correctly. Restarting the ROS2 daemon did not resolve this issue. A PC restart

seemed to be the only way to resolve this issue. Interestingly, and possibly related, was that

sometimes when a ROS2 process would crash, some of its child processes would not stop. This

also led to unexpected behaviour, such as unresponsive nodes, even once they had restarted.

This could be resolved through stopping all ROS2 processes on the PC.

26

4.3 OVERALL RELIABILITY MEASUREMENTS

Clear improvements were made to the reliability of the localisation stack through utilising

AMCL instead of ST, shown in Figure 23. MTTF increased from 8.2 minutes to 55.9 minutes.

This means it is significantly more likely that the localisation stack will not experience failure

during operation. Furthermore, the SMN allowed significant reliability improvements to be

made to launch, increasing MTTF from 31.8 minutes to 1230 minutes. Note that driving and

low-level systems were not targeted, so any perceived improvements could be from not

recording as many failures in testing or from modifications that other students working

concurrently on nUWAy made. With a far less problematic launch and localisation system,

opportunity exists to run more regular autonomous drives, which allows data collection and

tuning to improve the driving reliability.

Figure 23: MTTF for the initial and final reliability evaluation shows the increases, particularly in

localization and launch which were both targeted.

Medium severity failures, most common within the initial reliability evaluation, have been

significantly reduced by reliability improvement tasks, as demonstrated in Figure 24. MTTF

increased for medium severity failures from 6.5 minutes to 123 minutes. Therefore, crashes of

the system were far less frequent. Furthermore, not illustrated in the figure but important to

note, the SMN would restart and recover crashed nodes in most cases. Therefore, the system

has become far more useable for operators, as it is far less likely to fail in a significant manner.

Note that low and high severity failures were not targeted by the reliability improvement tasks

performed in this paper, so the increase in high severity MTTF is due to less failures recorded

27

in the period of operation. Only 2 high severity failures were recorded in the final reliability

evaluation over 20.5 hours.

Figure 24: MTTF for severity levels between the initial and final evaluation show significant

decreases in targeted medium severity failures..

5 CONCLUSION AND FUTURE WORK

This work aimed to evaluate the reliability of the nUWAy autonomous shuttle bus, and to

improve reliability of the autonomous system. This is to make the system more usable by non-

technical operators, who will be the primary operators of the service on the UWA campus.

Using BBR testing, the reliability of the system was evaluated and used to focus on localisation

and launch reliability.

AMCL replaced ST for localisation, which saw significant improvements to the reliability of

localisation, MTTF increased from 8.2 minutes to 55.9 minutes. A SMN was developed,

utilising failure detection, isolation, and recovery techniques to recover from medium severity

failures experienced in the system. The implementation of SMN greatly increased the reliability

of launch, with MTTF increasing from 31.8 minutes to 1230 minutes. Furthermore, the system

was able to detect when ROS2 nodes had crashed and take appropriate recovery behaviour to

restart and checkpoint the ROS2 node where applicable. This was packaged into a single

desktop icon for maximum ease-of-use by non-technical operators of the system.

Overall, medium severity failures were greatly reduced, with MTTF rising from 6.5 minutes to

123 minutes. This meant the system would experience far less crashing, allowing for greater

focus to lie in improving driving systems rather than debugging frequent crashes. While this

28

work is a good start to improving reliability of the system, it is strongly recommended that

future students continue to focus on improving reliability over time. The SMN provides a good

basis to improve and expand upon for monitoring the system.

5.1 FUTURE WORK

Suggested based on the limitations of the SMN discussed in section 4.2.2, would be to

implement process-level monitoring (PLM), rather than ROS2 topic and node monitoring. It is

clear from implementation that there are cases where the ROS2 node list is not representative

of the state of the system, causing false failure flagging by the SMN. PLM would also greatly

improve the time to detect an error, which is currently slow (magnitude of several seconds to a

minute). Either PLM, or SW Watchdog, presented in section 3.4.1.2, could be considered for

this. A good investigation would be into mean time to repair (MTTR) of SMN, to measure the

time taken to recover the system. This was overlooked in this paper due to time constraints but

would allow mean time between failure (MTBF) to be used as a more representative metric of

reliability for this system.

Furthermore, multi-version software fault tolerance (discussed in section 2.1.3.2) may be useful

for nUWAy. For example, it could be trialled by running multiple driving algorithms in

parallel. If the primary driving algorithm were to fail, failover could move to a simpler backup

driving algorithm while recovering the primary driving algorithm. This would allow seamless

continuation of driving, rather than the vehicle stopping when some failure is encountered.

Finally, upgrading the system from ROS2 Foxy to ROS2 Galactic is recommended for the

stability improvements it brings to its core packages [38], in use on nUWAy.

29

6 REFERENCES

[1] Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road

Motor Vehicles, J3016_202104, S. International, April 2021. [Online]. Available:

https://www.sae.org/standards/content/j3016_202104/

[2] J. Reid, "Students first to build 'brains' of autonomous bus," 18 Jun 2021. [Online]. Available:

https://www.uwa.edu.au/news/article/2021/june/uwa-students-first-in-australia-to-build-

brains-of-autonomous-bus

[3] T. Braunl. "The REV Project." http://revproject.com (accessed 8 September, 2021).

[4] "IEEE Recommended Practice on Software Reliability," IEEE Std 1633-2016 (Revision of

IEEE Std 1633-2008), pp. 1-261, 2017, doi: 10.1109/IEEESTD.2017.7827907.

[5] R. L. Michael, Handbook of software reliability engineering. McGraw-Hill, Inc., 1996.

[6] S. J. Keene, "Comparing Hardware and Software Reliability," Reliability Review, vol. 14, 4,

pp. 5-21, December 1994 1994.

[7] I. Eusgeld, F. Fraikin, M. Rohr, F. Salfner, and U. Schiffel, Software Reliability. 2005, pp. 104-

125.

[8] C. Inacio. "Software Fault Tolerance." Carneigie Mellon University.

https://users.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/index.html (accessed Apr.

21, 2022).

[9] R. J. Abbott, "Resourceful systems for fault tolerance, reliability, and safety," ACM Comput.

Surv., vol. 22, no. 1, pp. 35–68, 1990, doi: 10.1145/78949.78951.

[10] W. Torres-pomales, "Software Fault Tolerance: A Tutorial," 12/21 2000.

[11] P. A. Lee, T. Anderson, J. C. Laprie, A. Avizienis, and H. Kopetz, Fault Tolerance: Principles

and Practice. Springer-Verlag, 1990.

[12] Cristian, "Exception Handling and Software Fault Tolerance," IEEE Transactions on

Computers, vol. C-31, no. 6, pp. 531-540, 1982, doi: 10.1109/TC.1982.1676035.

[13] Fault-tolerant computer system design. Prentice-Hall, Inc., 1996.

[14] B. Randell, "System structure for software fault tolerance," IEEE Transactions on Software

Engineering, vol. SE-1, no. 2, pp. 220-232, 1975, doi: 10.1109/TSE.1975.6312842.

[15] J. Gray, "Why Do Computers Stop and What Can Be Done About It?," in Symposium on

Reliability in Distributed Software and Database Systems, 1986.

[16] B. Randell and J. xu, "The Evolution of the Recovery Block Concept," 1995, p. 1.

[17] B. Johnson, "An introduction to the design and analysis of fault-tolerant systems," pp. 1-87,

02/01 1996.

[18] C. Liming and A. Avizienis, "N-VERSION PROGRAMMINC: A FAULT-TOLERANCE

APPROACH TO RELlABlLlTY OF SOFTWARE OPERATlON," in Twenty-Fifth

https://www.sae.org/standards/content/j3016_202104/
https://www.uwa.edu.au/news/article/2021/june/uwa-students-first-in-australia-to-build-brains-of-autonomous-bus
https://www.uwa.edu.au/news/article/2021/june/uwa-students-first-in-australia-to-build-brains-of-autonomous-bus
http://revproject.com/
https://users.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/index.html

30

International Symposium on Fault-Tolerant Computing, 1995, ' Highlights from Twenty-Five

Years'. 27-30 June 1995 1995, p. 113, doi: 10.1109/FTCSH.1995.532621.

[19] J. C. Knight and N. G. Leveson, "An experimental evaluation of the assumption of

independence in multiversion programming," IEEE Trans. Softw. Eng., vol. 12, no. 1, pp. 96–

109, 1986, doi: 10.1109/tse.1986.6312924.

[20] J.-C. Laprie, J. Arlat, C. Béounes, and K. Kanoun, "Definition and Analysis of Hardware and

Software-Fault-Tolerant Architectures," Computer, vol. 23, pp. 39-51, 08/01 1990, doi:

10.1109/2.56851.

[21] T. Reinhart, C. Boettcher, and S. Tomashefsky, "Self-checking software: improving the quality

of mission-critical systems," in Gateway to the New Millennium. 18th Digital Avionics Systems

Conference. Proceedings (Cat. No.99CH37033), 24-29 Oct. 1999 1999, vol. 1, pp. 2.D.4-2.D.4,

doi: 10.1109/DASC.1999.863702.

[22] N. G. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall, "The use of self checks and voting

in software error detection: an empirical study," IEEE Transactions on Software Engineering,

vol. 16, no. 4, pp. 432-443, 1990, doi: 10.1109/32.54295.

[23] C. Burbridge. "watchdog_node." Strands Project.

https://strands.readthedocs.io/en/latest/strands_apps/watchdog_node.html (accessed 4 June,

2022).

[24] P. Kaveti and H. Singh, "ROS Rescue: Fault Tolerance System for Robot Operating System,"

in Robot Operating System (ROS): The Complete Reference (Volume 5), A. Koubaa Ed. Cham:

Springer International Publishing, 2021, pp. 381-397.

[25] S. Marok, "Flexible Fault Tolerance for the Robot Operating System," Master of Science in

Electrical Engineering, Faculty of California Polytechnic State University, Cal Poly, 2020.

[Online]. Available: https://digitalcommons.calpoly.edu/theses/2127/

[26] M. Lauer, M. Amy, J. Fabre, M. Roy, W. Excoffon, and M. Stoicescu, "Engineering Adaptive

Fault-Tolerance Mechanisms for Resilient Computing on ROS," in 2016 IEEE 17th

International Symposium on High Assurance Systems Engineering (HASE), 7-9 Jan. 2016 2016,

pp. 94-101, doi: 10.1109/HASE.2016.30.

[27] Y. Liu, Y. Guan, X. Li, R. Wang, and J. Zhang, "Formal Analysis and Verification of DDS in

ROS2," in 2018 16th ACM/IEEE International Conference on Formal Methods and Models for

System Design (MEMOCODE), 15-18 Oct. 2018 2018, pp. 1-5, doi:

10.1109/MEMCOD.2018.8556970.

[28] S. Macenski, F. Martín, R. White, and J. G. Clavero, "The Marathon 2: A Navigation System,"

in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 24 Oct.-

24 Jan. 2021 2020, pp. 2718-2725, doi: 10.1109/IROS45743.2020.9341207.

[29] W. Woodall. "ROS 2 Launch System." https://design.ros2.org/articles/roslaunch.html

(accessed.

https://strands.readthedocs.io/en/latest/strands_apps/watchdog_node.html
https://digitalcommons.calpoly.edu/theses/2127/
https://design.ros2.org/articles/roslaunch.html

31

[30] "Apex OS." Apex.AI. https://www.apex.ai/apex-os (accessed June 4, 2022).

[31] S. Glaser. "bond." http://wiki.ros.org/bond (accessed April 5, 2022).

[32] P. Robbel. "SW Watchdog." ROS Safety. https://github.com/ros-safety/software_watchdogs

(accessed 5 April, 2022).

[33] S. Macenski and I. Jambrecic, "SLAM Toolbox: SLAM for the dynamic world," Journal of

Open Source Software, vol. 6, p. 2783, 05/13 2021, doi: 10.21105/joss.02783.

[34] S. Macenski. "Slam Toolbox." https://github.com/SteveMacenski/slam_toolbox (accessed June

1, 2022).

[35] B. P. Gerkey. "AMCL." http://wiki.ros.org/amcl (accessed June 1, 2022).

[36] L. Haddad. "nuway_ros2_monitor." UWA REV. https://github.com/uwa-

rev/nuway_ros2_monitor (accessed June 2, 2022).

[37] T. Narlock. "libtmux." https://libtmux.git-pull.com/ (accessed June 2, 2022).

[38] "ROS 2 Galactic Geochelone." ROS.org. https://docs.ros.org/en/foxy/Releases/Release-

Galactic-Geochelone.html (accessed 3 June, 2022).

https://www.apex.ai/apex-os
http://wiki.ros.org/bond
https://github.com/ros-safety/software_watchdogs
https://github.com/SteveMacenski/slam_toolbox
http://wiki.ros.org/amcl
https://github.com/uwa-rev/nuway_ros2_monitor
https://github.com/uwa-rev/nuway_ros2_monitor
https://libtmux.git-pull.com/
https://docs.ros.org/en/foxy/Releases/Release-Galactic-Geochelone.html
https://docs.ros.org/en/foxy/Releases/Release-Galactic-Geochelone.html

32

7 APPENDICES

7.1 APPENDIX A: FAILURE LOG DATA

Table 2: An extract from the initial reliability examination, demonstrating descriptions of failures

encountered, as well as their category and severity. This includes data from the first 2 days of testing.

Failure Description Severity

Specific

Category Date: 7-Feb 9-Feb

Time

Started: 11:00 10:15

Pack

Up

Time: 16:30 16:00

Hurcules

Related

Major

Failure

Screen becomes

garbled/no display,

unable to rearm or

drive, power cycle

of board required

High Low-Level Failure 0 1

 Success N/A

Software

Driver

Related

Safety lidar

drivers don't

load

Not rearmable, no

safety lidars on

startup, bus pc stack

restart fixes

Medium Launch Failure 5 4

 Success 0 0

Bus

positioning

issue

Bus continues

driving infinitely on

map when stopped,

crashing everything.

High Low-Level Failure 0 1

 Success N/A

33

Entire bus shutdown

required to fix

Slam

Toolbox

Related

Map load

failure

(Process

dies or Rviz

crashes)

Slam toolbox

process dies while

deserializing a map,

or rviz window

crashes and cannot

be reopened. Full

stack restart required

Medium Localisation Failure 17 32

 Success 5 11

Unable to

stay

localized

Bus drifts off map

and does not correct

back onto it. New

pose estimate

required.

Low Localisation Failure 2 0

 Success N/A

Pose

estimate

causes stack

to crash

Multiple pose

estimates in a row

(and sometimes a

single one) cause the

entire stack to crash

Medium Localisation Failure 6 9

 Success 18 10

Nav Stack

Related

Nav stack

does not

start

properly

Missing parts of the

stack such as local

costmap or

global/local path

Medium Launch Failure 0 1

 Success 23 43

34

planner. Full stack

restart required

Local

planner is

unable to

follow a

path

Bus drives to an

undesireable

location as a result

of poor path

following, or poor

local path planning

Low Driving Failure 1 10

 Success 4 13

Local

planner fails

to plan a

path

Local planner fails

to plan a path as a

result of dynamic

obstacles and does

not attempt recovery

(vehicle/path

constraints,

pedestrians, objects

blocking path)

Low Driving Failure 2 13

 Success 2 0

Performance

Related

Severe lag

in stack

(Caused by

Slam

Toolbox)

Loading a large map

results in large frame

skips and unstable

performance, bad

path following and

localization

Medium Localisation Failure - -

 Success

Transform

errors (Nav

Stack)

Path plan cannot be

completed due to

transform errors

(extrapolation into

the past/future)

Medium Driving Failure - -

 Success

35

