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Abstract 

In 2022, fully autonomous, driverless cars are still unavailable to the public. One of the primary benefits 

of autonomous vehicles is their potential to prevent or reduce the number of vehicle accidents caused 

by human error. However, the development of driverless car software is complex due to the 

development costs, safety, laws, and regulations associated with a licensed car for road usage. Mobile 

robots developed and tested in a laboratory environment are not constrained in such ways and offer a 

low-cost development platform to develop and test driverless car software. The Artificial Intelligence 

(AI), Machine Learning (ML), and Deep Learning (DL) models used in ADAS systems are typically 

computationally expensive in terms of speed and memory requirements. Today, some SBCs, such as 

the Jetson Nano, come with GPU cores, which is significant because GPU cores can be used for fast 

training and inferencing of DL models. This is due to the increase in parallel computing that can be 

achieved by a GPU (i.e., they often consist of 100s or even 1000s of cores) compared with a CPU that 

typically consists of 4 or 8 cores. This project aims to expand upon deep learning and autonomous 

driving algorithms developed by past UWA students with a Jetson Nano instead of a Raspberry Pi. The 

new system retains the same EyeBot I/O board but uses the Jetson Nano for computation rather than a 

Raspberry Pi. The Jetson Nano can run more complex DL neural networks at higher frame rates than 

the Raspberry Pi due to the utilization of GPU cores on the Jetson Nano. The literature review conducted 

for this project identified a gap. To date, there are no publicly available Australian traffic sign datasets. 

Therefore, one of the goals of this project was to develop a dataset and a model to detect and classify 

Australian traffic signs. The DL models used in this project include an end-to-end lane keeping model 

using PilotNet, a traffic sign recognition model using MobileNets-SSD, and a Convolutional Neural 

Network (CNN) model to recognise speed limit signs. The project successfully demonstrated the robot 

could navigate the track, and recognise Australian traffic signs and speed limits at an acceptable speed 

of 19.2 frames per second (FPS). In addition, this project has provided a platform using the UWA 

developed EyeBot I/O board and RoBIOS libraries to allow future students to expand and improve the 

robot’s autonomous capability using the Jetson Nano and an initial labelled dataset of Australian traffic 

signs. 
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1 Introduction and Background 

1.1 Introduction 

Today, most car manufacturers include level 0 to level 2 Advanced Driver Assistance 

Systems (ADAS) in their vehicles.  These levels are defined by the Society of 

Automotive Engineers (SAE) as the following [1]: 

 

Figure 1-1 Latest SAE levels of driving automation [1] 

 

One of the primary benefits of autonomous vehicles is their potential to prevent or reduce 

the number of vehicle accidents caused by human error [2]. Cars with these features are 

reported to have 14% reduced property damage liability claims [2]. The opposing view is 

that humans may misuse, disuse, or abuse automation technology [3]. Unfortunately, 

Tesla’s “Autopilot” feature has been misused numerous times and has caused fatalities on 

several occasions [4, 5]. 

 

Developing driverless car software is difficult due to the development costs, safety, laws, 

and regulations associated with a licensed car for road usage. However, mobile robots 

developed and tested in a laboratory environment are not constrained in such ways and 
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offer a low-cost and fast development platform for driverless car software and systems. The 

University of Western Australia (UWA) has been performing work in this area for many 

years. This project is based on previous UWA work undertaken but uses an improved 

hardware platform and a newly developed Australian traffic sign detection model and 

dataset. 

 

1.2 Background and History 

The following section describes the background and history of the relevant development of 

autonomous robots at UWA.  

 

1.2.1 Carolo Cup 

The Carolo Cup is a mobile robot autonomous driving international competition organized 

by the Technical University of Braunschweig, Germany [7].  It is a student competition 

that features three challenges: parking, free drive, and dynamic obstacle avoidance. 

 

Past UWA students have developed autonomous driving software and were able to adapt 

an EyeBot robot to do both lane keeping and traffic sign recognition based on the Carolo 

Cup rules [6, 8, 9]. Their lane keeping model used PilotNet, traffic sign recognition used 

colour segmentation for regions of interest (ROI) generation, and MobileNet for image 

classification [6]. However, the primary limitation in their project was the limited 

computing power of the Raspberry Pi 3B. For example, common object detection models 

such as SSD-MobileNet-V2 run at 1 FPS on the Raspberry Pi 3B compared to 39 FPS on 

the Jetson Nano (refer to Appendix 7.2). Therefore, their traffic sign recognition model was 

explicitly developed around this limitation, and the overall implementation with traffic sign 

recognition and lane keeping was able to run at a speed of 5 FPS [6]. 

 

The winning team from the Carolo-Master-Cup in 2021 was Team KITcar. They used a 

Jetson Nano (4GB) for computation, a camera combined with several distance sensing 

sensors, and no LIDAR for their entry [10]. The team’s navigation stack is shown in Figure 

1-2, and Dr. Drift car in Figure 1-3. 
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Figure 1-2 Team KITcar Navigation Stack [10] 

 

 

Figure 1-3 Carolo Cup winning Dr. Drift, made by Team KITcar [11] 

 

1.2.2 Track 

The track available for testing was a scaled-down version of a Carolo Cup track, as shown 

in Figure 1-4. The track consists of an intersection, parking bays, and a pedestrian crossing. 

This track is used as the controlled environment in this project to test and develop the 

robot’s autonomous driving software. 
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Figure 1-4 Scaled (1:2) Carolo cup track available to train and test on in the Robotics Laboratory 

[12] 

 

1.2.3 EyeBot 

Prof. Bräunl developed the EyeBot family of mobile robots with the latest revision, Eyebot 

7, developed in 2017 [13, 14]. These robots typically consist of: 

1. Two rear wheels and motors and a free to rotate front wheel to allow for steering. 

2. Raspberry Pi Model 3B or Model 4B for the onboard computational processing. 

3. 3 Position Sensitive Devices (PSDs) facing left, right, and in front. 

4. Touchscreen LCD screen. 

5. A single front-facing camera. 

6. An I/O board, as shown in Figure 1-6 is loaded with the latest RoBIOS-7 (Robot Basic 

Input / Output System) OS, which provides commands to interface with connected 

PSD sensors, camera, and motors.  

An EyeBot soccer robot is shown in Figure 1-5, and the Eyebot I/O board in Figure 1-6. 
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Figure 1-5 EyeBot SoccerBot [6] 

 

Figure 1-6 EyeBot I/O Board [14] 

 

1.2.4 EyeBot User Interface and RoBIOS Library 

The EyeBot user interface and Robot Basic Input Output System (RoBIOS) library were 

developed by Prof. Bräunl and past UWA students [14]. The Graphical User Interface 



8 | P a g e  
 

(GUI) and library commands provide an easy-to-use system for end-users to interact with 

sensors and motors connected to the I/O board. A screenshot of the GUI is shown in Figure 

1-7 [14]. 

 

 

Figure 1-7 EyeBot User Interface [14] 

 

1.2.5 EyeSim VR 

The EyeBot family of robots has an associated simulator called EyeSimVR, based on the 

Unity 3D game engine and uses the same RoBIOS libraries with virtual Eyebot robots [15]. 

It was used for training and testing the PilotNet model as the simulator allowed different 

tracks to be imported, including Carolo Cup tracks and access to the camera feed of the 

virtual robot as it navigates the track in the simulator as shown in Figure 1-8. Furthermore, 

although not used in this project, it is possible to create 3D traffic sign objects in Blender 

and import these into the simulator. This could potentially be used to train a Traffic Sign 

Recognition (TSR) model from images collected in the simulator. 
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Figure 1-8 EyeSim VR Carolo Cup track and traffic signs 

 

2 Literature Review 

2.1.1 Current Levels of Driving Automation 

Currently, Level 5 (full automation) has yet to be achieved. The highest level of driving 

automation achieved to date is level 4 by the Waymo Chrysler Pacifica [16]. This system 

uses LIDAR primarily for environment detection and computer vision as a backup. The 

reason why it is not considered Level 5 is due to working only in limited conditions. One 

of these conditions is only being able to operate in Phoenix, Arizona, although there are 

plans for deployment in San Francisco, California [17]. The highest SAE level achieved so 

far for a mass-production car sold to the public is level 3. This was for the Honda Legend 

Sedan using the Traffic Jam Pilot system [18]. Level 3 systems assume the authority for all 

manoeuvres in the determined scenario unless, through self-assessment, the system cannot 

continue and will alert the driver to take control of the vehicle [19]. Generally, most 

production cars today come with levels 0, 1, or 2 ADAS. The reason cars do not come with 

level 3 or higher ADAS is due to the cost of the sensors (mainly LIDAR), development 

costs associated with driverless car software and safety concerns. Examples of level 1 

ADAS include adaptive cruise control, emergency brake assist, lane-keeping, and lane-



10 | P a g e  
 

centering. Examples of level 2 ADAS include highway assist, autonomous obstacle 

avoidance, and autonomous parking [19]. Tesla’s Autopilot feature, similar to highway 

assist, is considered Level 2 automation [16].  

 

2.2 LIDAR vs Computer Vision 

LIDAR and Computer Vision are two techniques that autonomous cars can use to gather 

information about the road and the surrounding environment to make driving decisions. A 

LIDAR sensor pulses light to the environment and records what is reflected, mapping the 

surrounding environment [20]. Computer Vision uses the video feed from cameras 

connected to the car to gather information of its surroundings. Both systems are viable and 

not mutually exclusive; for example, the Waymo driverless car that achieves level 4 SAE 

autonomy uses both LIDAR and computer vision [20]. However, LIDAR sensors are 

significantly more expensive than cameras, and successful autonomous robots have been 

developed using camera systems only (e.g., Team KitCar’s Carolo Cup winning entry [15]). 

In addition, lane keeping, TSR, and speed limit recognition are typically done using a 

camera sensor. For these reasons, the project used a camera sensor only.  

 

2.3 Artificial Intelligence, Machine Learning, Deep Learning and Deep 

Neural Networks 

Abbass defines artificial intelligence as the automation of the decision-making process [8]. 

This is important in Autonomous driving as the vehicles need to make their own decisions 

based on sensory input. Both Machine Learning (ML) and Deep Learning (DL) are used in 

Artificial Intelligence systems. Machine learning consists of techniques and algorithms 

which enable computers to learn from data. DL utilizes multi-layered neural networks to 

make classifications from data [21].  Neural Networks combine multiple nonlinear 

processing layers, using simple elements operating in parallel and are based on the 

biological nervous system [22]. They consist of many layers: including an input layer, 

multiple hidden layers (i.e., giving rise to the name Deep Neural Network (DNN)), and an 

output layer, as shown in Figure 2-1 [22]. Learning occurs through the adjustment of 

weights whereby errors in the output layer are back-propagated through each hidden layer 

to the input layer, amending the weights in each layer [23].  
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Figure 2-1 Deep Learning model diagram [22] 

 

2.4 Convolutional Neural Networks 

Convolutional Neural Networks are a type of artificial neural network which is highly 

effective for computer vision tasks. They feature several types of hidden layers, most 

notably convolutional layers, which apply numerous filters to convolve the entire image to 

generate feature maps. The significant advantages of the convolution filter are reducing the 

number of parameters and identifying correlation between neighbouring pixels, which is 

vital for the learning process [24]. 

 

2.4.1 TensorFlow, Keras and TensorFlow Lite 

TensorFlow, Keras, and TensorFlow Lite are tools used to train and inference Deep 

Learning and Machine Learning models. TensorFlow is an open-source deep learning 

framework created by Google Brain and supports both multi-CPU and GPU-based 

executions [25]. Keras is a high-level Application Programming Interface (API) that 

interfaces with TensorFlow and makes building deep learning models easier and with less 

code [25]. TensorFlow Lite is a set of tools included in TensorFlow, enabling developers 

to run machine learning models on mobile, embedded, and edge devices [26]. It has several 

advantages over TensorFlow’s protocol buffer model format, such as reduced size (i.e., 

small code footprint) and fast inference (i.e., data is directly accessed without an extra 

parsing and unpacking step). Therefore, enabling TensorFlow Lite to be used efficiently on 

devices with limited computational and memory resources [26].  
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2.4.2 NVIDIA PilotNet 

NVIDIA is a corporation primarily known for its development and production of high-end 

consumer and professional graphics cards. They are also heavily involved in both Deep 

Learning and AI, often using hardware developed-in-house for training and inferencing. 

They have created their own end-to-end driving neural network architecture called 

PilotNet. A schematic of the architecture is shown in Figure 2-2. This software is a 

Convolution Neural Network  that learns to control a vehicle by using pixels from images 

taken with a front-facing camera and mapping them directly to steering commands 

[27].  An example of the saliency map generated by NVIDIA is shown in Figure 2-3. 

 

 

Figure 2-2 NVIDIA PilotNet CNN architecture [27] 



13 | P a g e  
 

 

Figure 2-3 PilotNet saliency example [27] 

 

2.5 Object Detection 

There are two main methods used for detecting objects. The first uses image classification 

as an input and will output a prediction for the object base on the classified image. This 

method is used when the position and size of the object are not relevant and when there can 

only be one object in each image. The second method directly detects and predicts the 

object. It also determines the object’s location with a bounding box [28]. Object detection 

models can also detect multiple objects in one image.  Examples of fast object detection 

DL models include Regions with Convolutional Neural Networks (R-CNN), Fast R-CNN, 

You Only Look Once (YOLO), and Single Shot Detectors (SSD). R-CNN and Fast R-CNN 

firstly identify objects that are expected to be found and then detect and classify objects 

only in those regions using a CNN. At the expense of accuracy for efficiency, SSD and 

YOLO eliminate proposal generation and the subsequent pixel or feature resampling stages 

and encapsulate all computation in a single step [29]. Speed is important for TSR as there 

is a small window when the traffic sign is in view of the camera when the vehicle is in 

motion. Therefore, TSR must run at an acceptable real-time speed that can detect traffic 

signs even at high speeds such as 100 km/hr. Thus, the speed of an object detection model 

is often just as vital as its accuracy in the context of TSR. 

 

2.5.1 SSD, MobileNet and MobileNet-SSD 

MobileNet is a class of efficient convolutional neural networks used for mobile vision 

applications such as image classification [30]. They are based on depth-wise separable 

convolutions and are specifically designed to execute on embedded systems [30]. Single 

Shot Detectors (SSDs) consist of a trained image classification network as a backbone 
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model and an SSD head, as shown in Figure 2-4. NVIDIA has trained a MobileNet-SSD 

object detection model using PyTorch that combines the SSD-300 (300x300 image input) 

Single-Shot MultiBox Detector with a MobileNet backbone, as shown in Figure 2-5. It is 

a popular network architecture for real-time object detection on mobile and embedded 

devices and was used by NVIDIA to successfully classify 19 objects in the Common 

Objects In Context (COCO) dataset [31].  

 

 

Figure 2-4 Typical SSD model with a backbone and head [29] 

 

Figure 2-5 NVIDIA MobileNet-SSD model [31] 

 

2.6 PyTorch, Open Neural Network Exchange and NVIDIA TensorRT 

PyTorch is an open-source machine learning framework that helps developers create 

machine learning models [32]. It is like TensorFlow and reduces the amount of code 

required to write and develop Machine Learning models. Open Neural Network Exchange 

(ONNX) provides an open-source format for AI, deep learning, and traditional machine 

learning models [33]. Finally, TensorRT is a software development kit built on the CUDA 
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GPU programming language allowing high-performance deep learning inferencing [34]. 

The TensorRT processing flowchart is shown in Figure 2-6. 

 

Figure 2-6 TensorRT flowchart [34] 

 

2.7 Transfer Learning 

Transfer learning uses existing DNNs trained for one application to be used for another 

application. This is done by taking the domains, tasks, and distributions used in training 

and testing for one application to be modified and trained on a different application [35]. 

In transfer learning, a typical task is to uncover the common features that can benefit each 

task. There are three types of transfer learning [12]: 

1. Inductive Transfer Learning aims to learn a new task in the same domain.  

2. Transductive Transfer Learning: learning aims to learn the same task in a new domain. 

3. Unsupervised Transfer Learning, where both domains and tasks are different. 

This type of learning is beneficial when data in the target domain is limited, which is the 

case for this project for TSR. 

 

2.8 Domain Randomization: 

Gathering data for DL models in a simulator is faster, more scalable, and lower cost than 

using a physical robot. Unfortunately, discrepancies between simulators and the real world 
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make transferring learnt behaviours from simulators to the real world challenging. Some 

of these discrepancies between the real world and simulators are the physics and the 

appearance. Domain randomisation is a way to increase the generalisation of models 

trained in a simulator. This is done by randomising environment variables and appearance 

of the simulator domain, which can ensure models generalize through the learning process 

by making variability high, hence improving performance in the real world [36]. 

 

2.9 Traffic Sign Detection and Datasets 

2.9.1 Traffic Sign Datasets 

There is a considerable amount of data on traffic signs throughout the world. This includes 

the German Traffic Sign Recognition benchmark dataset [37], German traffic sign 

detection benchmark [38], Russian Traffic Sign Images dataset [39], Swedish traffic signs 

dataset [40],  Belgian Traffic Sign dataset [41], American traffic sign dataset [42] and the 

Mapillary (European) traffic sign dataset [43]. Examples of the German traffic sign 

benchmark are shown in Figure 2-7 and the Mapillary traffic sign dataset in Figure 2-8. 

However, there is a gap in this area in Australia where there are no Australian traffic sign 

datasets freely available to the public. Researchers at QUT have made an Australian traffic 

sign dataset but have not released the dataset publicly for privacy concerns [44].  

 

 

Figure 2-7 German Traffic Sign Recognition Benchmark data examples [45] 
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Figure 2-8 Mapillary traffic sign dataset [43] 

 

2.9.2 Traffic Sign Recognition (TSR) 

NVIDIA has developed several SignNet models (i.e., traffic sign DNNs) to detect and 

classify traffic signs and traffic lights. They have collected data in the United States, 

European Union, and Japan. Data collection used eight cameras spread around the car, but 

model inference can be done via one front-facing camera, as shown in Figure 2-9. Some of 

the limitations that they note are [46]: 

1. Data was collected mainly during daylight, overcast, twilight, and non-rain conditions. 

Therefore, performance at night-time and in the rain is likely to suffer. 

2. Classification performance depends on the size of the traffic sign in the image frame. 

NVIDIA recommend traffic signs be 20 pixels or more in size to be accurately 

predicted. 

3. SignNet will not perform well in regions where data was not collected, such as 

Australia. 
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Figure 2-9 NVIDIA SignNet traffic sign detection example [47] 

 

In addition to NVIDIA, researchers at the Auckland University of Technology have made 

their own TSR model with their own New Zealand traffic sign dataset using SSD and 

YOLO object detection models [48]. These models rely on labelled datasets to classify 

traffic signs. The literature review did not find any datasets for Australian traffic signs; 

therefore, a key requirement for this project was to develop a dataset and method for 

classifying Australian traffic signs. Despite the lack of a dataset, some car manufacturers 

include TSR systems in their vehicles sold in Australia. Austroads have tested the TSR 

systems of several cars operating in Australia and New Zealand, as shown in Figure 2-10. 

Key findings from their report include [49]: 

1. Static speed limit detection was nearly 100% accurate. 

2. Speed limit detection would detect 40 km/hr school zones as a standard 40 km/hr speed 

limit but does not recognise the school zone hours to which the speed limit applies. 

3. The TSR systems tested cannot recognise traffic signs other than speed limit signs. 

4. The TSR systems tested have difficulties recognising electronic speed limits. 
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Figure 2-10 Vehicles with TSR tested by Austroad [49] 

 

An explanation for TSR being able to recognise speed limit signs in Australia nearly 100% 

accurately with no available dataset is likely due to the transferability of speed limit datasets 

from other regions in the world, as speed limits across the globe look similar. Interestingly, 

the report notes that the TSR systems tested in Australia can only detect and classify speed 

limit signs. This is no longer valid as Mazda, for example, advertise that their TSR can 

recognize ‘STOP’, speed limit, and ‘NO ENTRY’ signs on their Australian website [50]. 

Finally, the report notes TSR systems have difficulties in detecting and classifying 

electronic speed limits. This is a problem as electronic speed limits are becoming more 

prevalent in Australia, especially on highways and locations where temporary roadwork is 

occurring. Detecting and classifying electronic speed limit signs was not addressed in this 

project but could be a key area for future research projects. 

 

3 Design Process 

3.1 Raspberry Pi vs Jetson Nano 

The three relevant considerations that led to the choice of Single Board Computer (SBC) 

for this project in order of priority were fast inferencing, price, and memory. The Jetson 

Nano includes 128 Maxwell GPU cores, compared with the Raspberry Pi 4B, which only 

has a CPU and no GPU cores. The GPU cores can be utilized for fast inferencing of 

complex DNNs. The Jetson Nano and the Raspberry Pi have similar performing CPUs and 

an equivalent cost of around $80 [51, 52]. The last consideration was the memory, and the 

Jetson Nano comes with 2GB of ram compared to the 4GB of ram on the Raspberry Pi 4B. 
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Ultimately the decision was made to use the Jetson Nano over the Raspberry Pi due to the 

GPU cores. Furthermore, the prices were similar, and the memory limitations could be 

addressed using swap space if necessary. The Jetson Nano 4GB was not considered because 

the cost at the time was too high at ~$200, although it has been reduced in price to $140 

[53]. 

 

3.2 Porting EyeBot User Interface and RoBIOS Libraries 

A key concern was the compatibility of the EyeBot user interface, RoBIOS libraries, and 

the Jetson Nano. Porting this software to the Jetson Nano involved ensuring the correct 

packages were installed such as x11 and changing all file paths to reflect the different Linux 

home directories. Porting was successful and is shown in Figure 3-1. 

 

 

Figure 3-1 EyeBot User Interface and RoBIOS library on Jetson Nano 
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3.3 Hardware Constraints - Jetson Nano 2 GB Developer Kit 

3.3.1 Power Requirement – Jetson Nano 

The Raspberry Pi 3B and 4B and the Jetson Nano 2GB Developer kit require 5V and 2.5A 

for power. Therefore, the regulated voltage output from the EyeBot I/O board (i.e., when 

powered by a 7.2V battery), which power the Raspberry Pi’s should be good enough 

therefore to also power the Nano. However, the Nano needs more current when peripherals 

like the USB camera are connected. It was, therefore, required to add a mobile power bank 

to suitably power the Jetson Nano. The chosen power bank was a 10000 mAh power bank 

from Altronics that can supply 5V and a maximum of 3.6A is shown in Figure 3-2. At a 

nominal load of 2.5A, the battery life is approximately 4 hours which was reasonable for 

testing purposes. 

 

 

Figure 3-2 Mobile power bank used (5V 3.6A 10000mAh) [54] 

 

3.3.2 Camera Limitations 

There were some limitations due to using a single mono camera, mainly the dead zone (area 

under the camera in which the ground is out of view) and the lack of ability to determine 

the distance objects are from the robot. The different fields of view (FOV) of the Logitech 

C920 camera (refer [55]) used in this project are: 

• Diagonal FOV = 78° 

• Horizontal FOV = 70.42 ° 
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• Vertical FOV = 43.30 ° 

 The vertical FOV resulted in the robot having a dead zone of approximately 16 cm as 

tested using a white piece of paper as shown in Figure 3-3. 

 

Figure 3-3 16 cm camera dead zone based on white paper test 

Too much dead zone can be of concern in situations where the turn is too tight and the road 

lines move out of view of the camera. The dead zone can be improved by using a 

multicamera setup where one camera is pointed to the ground for Lane Keeping and another 

is pointed towards the horizon for TSR, or by using a camera with a greater vertical FOV. 

Additionally, to determine the distance objects are from the camera a stereo camera can be 

used instead of a mono camera or by pairing a mono camera with a LIDAR sensor. The 

Logitech C920 camera was used due to its availability, and easy installation in the space 

below the robot. 

3.4 Lane Keeping 

Lane keeping using PilotNet has been implemented and tested by various past UWA 

students [6, 9, 55]. This project implements a PilotNet model that uses red, green, and blue 

(RGB) images as inputs and will output steering values in degrees/sec and is trained using 

images from the EyeSim simulator. Data collection in the simulator was done manually by 

driving the robot around the track using an Xbox controller. Every steering input using the 

Xbox controller’s L1 and R1 buttons (refer Figure 3-4) saves the current camera image and 

the steering angle. Four tracks were used during training, shown in Figure 3-5, and 12 laps 

of each track were driven (i.e., six laps in each direction in the left lane). The model can 
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then be trained to predict steering in degrees/sec from images captured on the test track, as 

shown in Figure 3-6. 

 

 

Figure 3-4 Xbox controller, with L1 and R1 buttons labelled 

 

 

Figure 3-5 Tracks in EyeSim used for training 
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Figure 3-6 200x66 example images: straight, left, and right in which the predicted steering angles 

were -3, 13 and -12 respectively (degrees/sec) 

 

3.4.1 Domain Randomization and Data Augmentation 

Domain randomization and data augmentation techniques have been used to improve the 

performance of the PilotNet model trained using the simulator to the real test track, similar 

to past research work [12]. The domain randomisation techniques include randomising the 

colour of squares, size of squares, orientation of squares, and brightness of road marking 

lines on the track. This technique was used to create three variations of each track, as shown 
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in Figure 3-7.  The data augmentation techniques include flipping the image to double the 

dataset and adjusting blur, brightness, and contrast to increase the images’ variability, as 

shown in Figure 3-8 and Table 3-1 [12]. 

 

Figure 3-7 Randomisation of the colour of squares, number of squares, and orientation of squares, 

as well as the brightness of the road markings 

 

Table 3-1 Data Augmentation parameters. 

 

 

 

 

 

 

 

Figure 3-8 Data Augmentation example images 

Parameter Value 

Brightness [-0.2, 0.2] 

Blur Constant bilateral blur 

Contrast [-0.5, 0.5] 

Zoom [0, 0.2] 

Flip All images 
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3.5 Traffic Sign Recognition 

Because this project is not intended to compete in the Carolo Cup, it was decided to use 

Australian traffic signs rather than German ones. As discussed in the Literature Review, 

there is no existing traffic sign dataset for Australia available to the public; therefore, a new 

dataset was required. Unfortunately, typical ways of training traffic sign recognition using 

a suitably large, labelled (i.e., ~50,000 labelled images) dataset was impossible. This 

project, therefore, used a pre-trained MobileNet-SSD object detection model and applied 

transfer learning to recognise new classes of objects based on a limited dataset. Data 

collection was undertaken by driving the robot around the track using the PilotNet model. 

As the robot navigated the track, it would periodically save images from the robot’s 

perspective, which included mock Australian signs shown in Figure 3-9. These images 

were then manually labelled using an open-source program called LabelImg [56],  as shown 

in Figure 3-10. 

 

 

Figure 3-9 Australian Traffic sign subset 

 

Figure 3-10 Labelling traffic signs using LabelImg 
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3.6 Speed Limit Recognition 

One problem that arose from the traffic sign recognition was detecting and classifying 

different speed limits. The initial method used would tend to classify the speed limit with 

the most instances in training which at the time was the 80 km/h speed limit. The initial 

method could, however, differentiate between 40 and 80 km/h speed limits, likely due to 

the different shape and format of the speed limit sign. Therefore, speed limit detections 

were generalised to be speed limit signs regardless of the speed limit, as shown in Figure 

3-11. A third model using computer vision techniques which isolated the digits in a speed 

limit and passed these images to a digit classifier trained on the MNIST dataset (i.e., a large 

labelled dataset of hand-drawn digits from 0-9) was implemented as shown in Figure 3-12 

[57]. The CNN model code used is shown in Appendix 7.1. The computer vision techniques 

used to isolate the digits are: 

1. Grayscale conversion; 

2. Detect circle and convert all pixels to black which are not in the circle; 

3. Binarize the image using Otsu thresholding; 

4. Detect contours with a minimum and maximum size; 

5. Padding to retain aspect ratio; 

6. Resize the image to 28x28. 

 

 

Figure 3-11 Example of labelling all speed limits the same 
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Figure 3-12 MNIST example data [58] 

 

 

Figure 3-13 Ordered left-right, top-bottom computer vision steps specified earlier, to isolate the 

digits 
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3.7 Evaluating Success 

3.7.1 Autonomous Rate (AR) 

The autonomous driving rate is used as a measure for autonomous driving systems. 

NVIDIA defined the autonomous driving rate as follows [27].  

𝐴. R. = [1 −  
N(interventions)×6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

elapsed time [seconds]
] × 100%  (1) 

Their formula is biased toward slow-moving vehicles even if track performance is the same. 

Previous UWA students, however, considered this aspect and developed a formula that was 

independent of the speed of the vehicle [6] and the formula was as follows: 

𝐴. R. = [1 −  
N(interventions)

𝑁(track segments)×N(completed circuits)
] × 100% (2) 

 Where: 

1. Intervention is defined as any deviation outside the white lanes (i.e., front 

middle wheel crosses the line). This project does not distinguish between a 

near miss and failure like the past UWA students, as the car width used in this 

project is slightly larger than the width of the track, and therefore, near misses 

cannot be determined (refer Figure 3-21). 

2. Track segment is defined the same as the previous UWA students, whereby the 

number of track segments is the number of individual driving tasks, for 

example, transitioning from straight to turn and turn to straight, as shown in 

Figure 3-14. 

This project used the autonomous driving rate defined by the past UWA students (refer to 

equation (2)).  
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Figure 3-14 Track segmentation example 

3.7.2 Average Precision (AP) 

A popular method of measuring object detection model performance is using Average 

Precision. Average Precision requires definitions for True Positive (TP), False Positive 

(FP), True Negative (TN), and False Negative (FN). These are defined using the 

Intersection over Union (IoU) formula as defined in Equation (3) and visualised in Figure 

3-15 [59]. 

𝐼𝑜𝑈 =  
𝑡𝑟𝑢𝑡ℎ ꓵ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑡𝑟𝑢𝑡ℎ ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
   (3) 

Where: 

1. If the correct object is detected and IoU >= 0.5, then classify it as TP. 

2. If the correct object is detected and IoU < 0.5, then classify it as FP. 
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3. If an object is present and the model failed to detect it, classify it as FN. 

4. Lastly, TN is every part of the image where the model did not predict an 

object, and no object was there, which is not helpful and therefore ignored. 

Examples of TP, FP, and FN are shown in Figure 3-16. 

 

Figure 3-15 Intersection over Union visualized [60] 

 

 

Figure 3-16 TP, FP, FN object detection example [60] 

 

Precision is the accuracy of positive predictions defined in equation (4). Recall is the ratio 

of positive instances correctly detected as defined in equation (5) [61]. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (5) 

 

Both precision and recall are suitable measurements for model performance. However, a 

trade-off exists between precision and recall. Choosing a threshold for determining a class 

to be positive or negative will inversely affect precision and recall, as shown in Figure 3-17. 

AP encapsulates precision and recall and summarizes the precision-recall curve by AP 

across recall values from 0 to 1.  

 

Figure 3-17 Precision Recall trade-off visualised [61] 

 

3.7.3 Evaluating Speed Limit Recognition Performance 

This project uses an ad-hoc method to recognise speed limits. Detections from the TSR, 

classified as speed limits, are passed to the speed limit recognition model. Many images 

can be given to the model before a determination is made. This is because pictures can be 

too blurry, or too far away. Therefore, to assess the speed limit recognition, a test was 

developed to measure the angle and distance at which the speed limit could be recognised, 

as shown in Figure 3-18. 
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Figure 3-18 Speed Limit Recognition test method 

 

3.7.4 Evaluating Detection Range of TSR 

Finally, the range for detecting traffic signs at a consistent 60% confidence threshold was 

also measured, as shown in Figure 3-19. 

 

 

Figure 3-19 Traffic sign detection range assessment method 
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3.8 Final Design 

The robot’s final hardware design and size are shown in Figure 3-20 and Figure 3-21. In 

addition, a summary of the hardware components, DNN models, and important software is 

provided in Table 3-2. A flow chart showing the interaction of the software systems is 

shown in Figure 3-22.  

 

 

Figure 3-20 Final design of robot 

 

Figure 3-21 Size comparison of EyeBot SoccerBot used in previous projects (left) vs robot (right) 
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Table 3-2 System Components and Deep Learning Software Networks 

Hardware/Software Component 

Hardware EyeBot 7 I/O board 

10000 mAh mobile power bank 

Jetson Nano 2GB Developer Kit 

Logitech C920 USB Webcam 

7.2V battery 

3x PSD sensors 

2 Aslong 6V motors and wheels 

Metal prototype frame 

DNN models PilotNet – Lane Keeping 

MobileNet-SSD - TSR 

CNN – Speed Limit Recognition 

Important Software 

Versions 

Jetpack 4.6 

TensorRT 8.0.1 

CUDA 10.2 

Python 3.6 

TensorFlow and Keras 2.6.0 

 

 

Figure 3-22 Control Loop diagram 
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4 Results 

4.1 Lane Keeping  

4.1.1 Training Loss and Accuracy 

The dataset used to train the PilotNet model consisted of 30,542 images. It was trained over 

100 epochs at a learning rate of 0.001. Figure 4-1 shows the training and validation loss 

over those 100 epochs.  

 

Figure 4-1 Training results 

 

The training loss converges to a much lower value than the validation loss (refer Figure 

4-1). This indicates that the model overfitted the training data and had a significantly higher 

loss for data it hadn’t seen (i.e., validation images). Some methods to reduce the overfitting 

were attempted, such as reducing the initial learning rate and the learning rate during 

training and early stopping; however, this didn’t improve the overfitting and made the loss 

greater. The problem is likely caused by the dataset developed for this project. Possibly too 

much data augmentation was performed, and better validation loss convergence could have 

been achieved if only some images were augmented. Alternatively, the model could be 

changed from a continuous regression output to several discrete outputs such as left, slight 

left, straight, slight right, and right. 
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4.1.2 AR Test Results 

The robot’s autonomy was tested both on the simulator and the scaled version of the 

Carolo test track in the robotics laboratory. The test matrix used to determine AR in the 

simulator is summarised in Table 4-1. Testing was always done using the outer lane 

because corners on the inside lane can be too tight. The tracks used in the testing are 

shown in Figure 4-2 to Figure 4-5. 

 

Table 4-1 AR Simulator Test Matrix 

Test Number Track Number of 

Segments 

Lane Track seen in 

training? 

1 1 12 Left Yes 

2 1 12 Right Yes 

3 2 10 Left Yes 

4 2 10 Right Yes 

5 3 16 Left No 

6 3 16 Right No 

7 4 10 Left No 

8 4 10 Right No 

 

 

Figure 4-2 Track 1, 12 track segments in total (seen) 
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Figure 4-3 Track 2, 10 track segments in total (seen) 

 

Figure 4-4 Track 3, 16 track segments in total (unseen) 

 



39 | P a g e  
 

 

Figure 4-5 Track 5, 10 track segments in total (unseen) (pit lane is ignored) 

 

The AR results for the simulator testing are summarised in Table 4-2. 

 

Table 4-2 PilotNet Simulator Autonomy Rate Tests for Seen and Unseen Test Tracks 

Test 

Number 

Track 

Segments 

Lap 1 

Interventions 

Lap 2 

Interventions 

Lap 3 

Interventions 

Total 

Interventions 

A.R 

 

1 12 0 0 0 0 100% 

2 12 0 0 0 0 100% 

3 10 1 1 1 3 90% 

4 10 0 0 0 0 100% 

5 16 1 1 1 3 93.8% 

6 8 0 0 0 0 100% 

7 10 3 3 3 9 70% 

8 10 0 2 0 2 93.3% 

 

The average AR for the tracks that the PilotNet model was trained on using the simulator 

was 97.5%. This compares with 89.3% for the unseen tracks. This reduction is less than 

10% and could be attributed to the overfitting of the data. Using more tracks, a larger 

dataset, increasing domain randomisation, and including data that corrects the robot in 
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situations where it begins to deviate off the track would improve the generalisation and, 

therefore, the AR on unseen tracks. 

 

Testing for the Carolo real test track was done at different times to evaluate the effect of 

light in the robotics laboratory, and the test matrix is summarised in Table 4-3. Note the 

testing was conducted at UWA during May and always in the outside lane. 

 

Table 4-3 PilotNet Carolo Real Test Track Matrix 

Test Number Number of Segments Lane Time of Test 

1 12 Left Night 

2 12 Right Night 

3 12 Left Midday 

4 12 Right Midday 

5 12 Left 4:30 pm 

6 12 Right 4:40 pm 

  

The results for testing on the real Carolo test track are summarised in Table 4-4. 

Table 4-4 PilotNet Carolo Real Test Track AR Results 

Test 

Number 

Track 

Segments 

Lap 1 

interventions 

Lap 2 

interventions 

Lap 3 

interventions 

Total 

interventions 

A.R 

1 12 1 0 0 1 94.4% 

2 12 0 3 1 4 88.9% 

3 12 1 2 0 3 91.7% 

4 12 1 2 2 5 86.1% 

5 12 1 2 2 5 86.1% 

6 12 4 4 4 12 66.7% 

 

These results can be compared with previous student work that had AR scores of 100%, 

100%, and 66.7% for constant speeds of 50mm/sec, 100mm/sec, and 150mm/sec, 

respectively, when considering failures only (and not near misses) [6]. The results for this 

project are lower compared to the previous testing (i.e., the average AR for midday and 

night is 90.2%), however the difference isn’t unreasonable (<10%), considering time for 

this project was split amongst other tasks and not solely for training a PilotNet model. It 
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should be noted that the speed used in the testing for this project was not constant but 

used a formula as defined in equation (6) which allowed the robot to slow down around 

corners and speed up on straights. 

 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑆𝑝𝑒𝑒𝑑 (𝑚𝑚/𝑠) = 130 − 2.5 ∗ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑔𝑙𝑒 𝑠𝑝𝑒𝑒𝑑) (6) 

 

Additionally, the results show a decrease in AR depending on the time of day. AR at night-

time is highest, followed closely by midday, and then finally, a significant drop in AR 

occurs at 4.30 pm when the sun’s angle influences the image of the track the robot sees. 

The robotics laboratory has two sets of windows facing west and east, as shown in Figure 

4-6. This source of natural light in the robotics laboratory changes the performance of the 

PilotNet model at different times of the day due to the reflection from the track. More 

randomisation of the training images’ brightness and contrast could help the model’s 

generalisation in these conditions. Alternatively, mixing the data collected in the simulator 

with data collected on the real robot may improve the model’s performance in challenging 

lighting conditions as the model will be exposed to some of them during training. An 

investigation could be done by analysing the saliency map of the input in each layer of the 

model, but this was outside of the scope of this project. This is because a saliency map can 

reveal the pixels which have high activation and therefore are important to the model. It 

can then be inferred if the reflected light has high activation in the model or if it is only the 

road lines. An example is shown in Figure 4-7.  

 

Figure 4-6 Windows facing the East, West and image taken from robot during afternoon 
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Figure 4-7 Saliency map example in TensorFlow 1 [55] 

 

4.2 Traffic Sign Recognition 

4.2.1 Dataset Development 

The dataset for the traffic signs was developed by driving the robot around the Carolo track, 

taking pictures, and labelling them as described in section 3.5. A total of 1715 traffic sign 

images were labelled for training out of 3140 images. The distribution of traffic signs in 

the dataset are shown in Figure 4-8.  
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Figure 4-8 Australian traffic sign dataset class distribution (Note s4 refers to the SoccerBot, which 

was included in the training of the TSR) 

 

4.2.2 Training Loss 

The training validation loss of the model trained using Transfer Learning is shown in Figure 

4-9.  

 

 

Figure 4-9 Validation loss during training 
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This figure shows that the model’s training achieved the lowest validation loss and, 

therefore, the highest level of recognition after 26 epochs; hence this was the final model 

used. 

 

4.2.3 Measuring Traffic Sign Recognition Average Precision 

The average precision (AP) of the original MobileNet-SSD model was 0.676 when it was 

trained to recognise 19 objects in the COCO dataset [62]. The AP for each class is provided 

in Table 4-5. After applying Transfer Learning to this model with the Australian traffic sign 

dataset, the average precision across all classes was 0.634, as shown in Table 4-6. This is 

only slightly lower than the AP of the original model of 0.675. However, this is lower than 

AP results from researchers at the Auckland University of Technology. They measured an 

AP score of 0.9014 and 0.9770 using their SSD and YOLOv5 TSR models, respectively 

[48]. Unlike this project, which was on embedded hardware, their project used a powerful 

desktop computer. Similarly to this project, their dataset was small; they had 2182 labelled 

traffic signs and only eight classes of traffic signs [48]. Nevertheless, their AP results were 

high and could be used as a future benchmark for UWA projects.  

 

Comparing Table 4-6 and Figure 4-8 indicates that traffic signs with low occurrences in 

the dataset had a higher AP. For example, speed limit and pedestrian crossing had low 

occurrences in the dataset but high AP. In comparison, traffic signs with high occurrence 

in the dataset, such as give way and kangaroo crossing, had lower AP. This is contrary to 

the expectation that traffic signs with high occurrence in the dataset would be more 

accurately detected and classified. A possible explanation for this could be due to the 

additional images for these classes were of lower quality, and perhaps they were being 

labelled from a far distance in the training data, as shown in Figure 4-10. Otherwise, there 

are examples in Table 4-5 where some objects had low AP, including bottles and boats, 

compared to the mean AP, indicating a degree of variability is expected in this type of 

detection method. 
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Table 4-5 Original AP results for MobileNet-SSD model before Transfer Learning [62] 

Object Class Average Precision 

Aeroplane 0.674 

Bicycle 0.791 

Bird 0.612 

Boat 0.562 

Bottle 0.347 

Bus 0.774 

Car 0.728 

Cat 0.836 

Chair 0.514 

Cow 0.624 

Dining table 0.706 

Dog 0.785 

Horse 0.820 

Motorbike 0.796 

Person 0.704 

Sheep 0.607 

Sofa 0.755 

Train 0.823 

TV monitor 0.646 

Average Precision across all classes 0.676 

 

Table 4-6 AP for TSR after Transfer Learning 

Traffic Sign Average Precision 

Give way 0.419 

Kangaroo crossing 0.535 

No parking sign 0.461 

Parking sign 0.561 

Pedestrian Crossing 0.840 

Soccer Bot (S4) 0.666 

Speed limit sign 0.827 

Stop sign 0.761 

AP across all classes 0.634 
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Figure 4-10 Example of traffic sign which is labelled from a long distance 

 

4.2.4 Maximum Detection range 

The maximum detection range of each traffic sign is summarised in Table 4-7. Interestingly 

the 80 speed limit and 40 speed limit signs significantly differed in detection range. This is 

potentially due to the 40 speed limit being smaller within the overall school zone speed 

limit sign. The size of the traffic sign in the image affects the model’s ability to detect and 

classify accurately. Therefore, a better test in the future would be to consider the minimum 

number of pixels a traffic sign needs to be before 60% confidence threshold detection is 

made; this would mean it could be compared to other TSR models designed to detect full-

scale traffic signs on public roads. 

Table 4-7 Traffic Sign Detection Range – Consistent 60% Confidence Threshold. 

Traffic sign Distance (cm) 

Stop 47 

Give way 27 

Pedestrian crossing 36 

Kangaroo crossing 35 

No parking 45 

Parking 73 

80-speed 45 

40-speed 36 
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4.3 Speed limit recognition 

4.3.1 Dataset 

The dataset used for detecting the speed limits was the MNIST dataset [63]. The number 

of images used in training per class is shown in Figure 4-11. The validation accuracy and 

loss for classifying the speed limit digits are shown in Figure 4-12 and Figure 4-13.  

 

Figure 4-11 MNIST dataset distribution 

 

 

Figure 4-12 Validation accuracy over 10 epochs 



48 | P a g e  
 

 

 

Figure 4-13 Validation loss over 10 epochs 

 

The figures show a high level of accuracy and a low level of loss after ten epochs. The 

confusion matrix for the speed limit digit classification is shown in Figure 4-14.   

 

Figure 4-14 Confusion matrix for speed limit digit classification 
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The test accuracy achieved using this method was 99.3% which is similar to other image 

classifiers researchers have trained using this dataset [64, 65]. The confusion matrix shows 

the most incorrect predictions when the model attempts to predict a digit with ground truth 

seven instead of predicting digit two. This occurred six times out of 1027 classifications 

(refer Figure 4-14) and is likely due to the shape of a ‘2’ being similar to a ‘7’. 

 

An alternative method for classifying the speed limits would be to use the AS1744 series 

of fonts (i.e., the same font used to create speed limit signs in Australia) to create a dataset 

by making 1000s of slightly varied digits (from 0-9) in this font. This should be considered 

in future work and then compared to the performance of the digit classifier trained on the 

MNIST dataset. 

 

4.4 Speed Limit Manual Testing 

Manual testing was done to assess the speed limit recognition; the results are shown in 

Table 4-8. Speed limit signs were placed against a wall, and the robot moved to different 

angles from the centreline of the sign, as shown in Figure 4-15 and the maximum distance 

was measured for detection at each angle. 

 

 

 

 

 

 

Figure 4-15 Speed limit angle and distance recognition testing 

 

The model could not recognise any speed limits at angles greater than plus or minus 60°. 

Interestingly, the model could detect speed limits at positive 45° but not at negative 45°. It 

is unclear why this was the case, perhaps the testing was skewed in some way, or the 

lighting of the speed limit from the left and right direction could be different.  

Robot camera 

Speed Limit Sign 

+ve angle 
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Table 4-8 Manual Speed Limit Recognition Testing (ND = Not Detected) 

Speed 

Limit 

(km/h) 

Angle (°) 

+60 +45 +30 +15 +0 -15 -30 -45 -60 

110 ND 24 cm 30 cm 30 cm 33 cm 28 cm 30 cm ND ND 

80 ND 17 cm 31 cm 31 cm 34 cm 35 cm 29 cm ND ND 

50 ND 15 cm 31 cm 31 cm 34 cm 35 cm 29 cm ND ND 

40 ND 27 cm 31 cm 29 cm 32 cm 30 cm 26 cm ND ND 

 

4.5 Framerate 

The framerate for the TSR model only was, on average, 28 FPS, and the average framerate 

when the system was constantly detecting a 110-speed limit sign was 21 FPS. The overall 

framerate of the entire system with lane keeping, TSR, and speed limit recognition was, on 

average, 19.2 FPS. This is higher than the framerate of the previous project with TSR and 

PilotNet on the Raspberry Pi 3B, which was 5 FPS [6]. A robot with a high FPS will have 

high reactivity and is, therefore, more likely to recover from mistakes and drive better as it 

has more frames of data to either recognise a traffic sign or send a turn or drive command 

to the robot. Therefore, a framerate of 19.2 FPS can be considered a significant 

improvement. 

 

4.5.1 Combined AR – Lane Keeping, TSR and Speed Limit Recognition 

The total AR for testing the robot on the Carolo test track is summarised in Table 4-9. The 

test included four traffic signs requiring stopping (stop, give way, kangaroo crossing, 

pedestrian crossing) and four speed limit signs. These signs were then placed on the track 

by a second (i.e., unbiased) person. The vehicle’s speed is determined by the formula 

defined in Equation (6). The AR results are shown in Table 4-9, where traffic signs and 

speed limits are considered track segments and failure to detect these signs in the context 

of the circuit is deemed an intervention in equation (2). Images of the track with traffic 

signs are shown in Figure 4-16 and Figure 4-17. The test was done in the outside left lane 

at night and the turns added with the traffic signs resulted in 20 track segments per lap. 

 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 (𝑚𝑚/𝑠) = 80 + (𝑠𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡) − 2.5 × (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑔𝑙𝑒 𝑠𝑝𝑒𝑒𝑑) (6) 
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Figure 4-16 Test track with traffic signs, angle 1 

 

 

Figure 4-17 Test track with traffic signs, angle 2 
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Table 4-9 Total AR for PilotNet, TSR, and speed limit detection on Carolo Cup track 

Track 

Segments 

Lap 1 

Interventions 

Lap 2 

Interventions 

Lap 3 

Interventions 

Total 

Interventions 

AR 

20 3 2 4 9 85% 

 

The testing showed that the overall autonomy achieved was 85%. 7 of 9 interventions were 

due to traffic signs not being detected. These errors were primarily due to the angle and 

distance the robot approached the traffic sign causing the traffic sign to be out of range of 

the camera or out of the camera’s FOV. A wide-angled camera (such as a Fisheye lens 

camera) or multiple cameras could be used to solve this issue. 

 

5 Conclusions 

The research conducted for this project demonstrated the following: 

1. Replacing the Raspberry Pi with the Jetson Nano resulted in a significant improvement 

in the overall system speed.  The overall system, which included PilotNet for lane-

keeping, MobileNet-SSD for traffic sign recognition, and a CNN for determining speed 

limits, ran at an average of 19.2 FPS. This is a significant improvement compared to 

the previous UWA project, which ran at an average of 5 FPS. The robot with the Jetson 

Nano and EyeBot I/O board will provide an improved hardware platform for future 

research. 

2. The Literature Review identified that, unlike Europe and America, there are currently 

no publicly available Australian traffic sign datasets. As a result, a dataset, and a model 

to detect and recognise Australian traffic signs was successfully developed as part of 

this project. The model achieved an average precision of 0.634 which was slightly 

lower than the average precision before Transfer Learning. This, however, was also 

lower than the average precision recently achieved by researchers at the Auckland 

University of Technology, who scored 0.901 and 0.977 on New Zealand traffic signs. 

This area requires further work to understand why the New Zealand team achieved a 

better result and to apply this to future TSR systems developed at UWA. In addition, 

the TSR system could be used on the UWA shuttle bus, which will start testing on 

public roads soon. 

3. As defined by equation (2), the overall autonomy rate achieved was 85%. Most 

interventions were caused by the TSR not recognising certain traffic signs due to not 
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being in the camera’s view when at a close enough distance (i.e., due to turning). 

Further work in this area is required to improve the system by addressing its 

shortcomings. 

 

5.1 Future Work 

The following section discusses potential for future work. 

 

5.1.1 Traffic Sign Recognition 

The following area should be considered for improving the TSR system: 

1. Review the New Zealand team’s work [48] concerning their TSR system and 

determine whether there are improvements in their work that can be used and 

adapted to the UWA robot. 

2. Use the AS1744 series of fonts (i.e., the same font as the Australian traffic signs) 

to create a dataset by making 1000s of slightly varied digits (from 0-9) in this font. 

3. Stereo cameras such as the Oak-D cameras could be considered as an alternative 

to a single front-facing camera. They are a middle ground between computer vision 

and LIDAR as the left, and right cameras can be used to gather depth information 

in an image. It is especially compelling as this can be used in conjunction with TSR 

to determine the distance traffic signs and other objects are from the robot, as 

shown in Figure 5-1. 

4. Develop a TSR system that can recognise electronic speed limits, for example in 

Figure 5-2. 

 

 

Figure 5-1 Luxonis object detection example integrated with stereo camera to allow for detections 

to have their position relative to the camera estimated [66] 
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Figure 5-2 Electronic speed limit example [67] 

 

5.1.2 Lane Keeping, Predicted Trajectory. Intersection Logic and Pedestrian 

Crossing 

 

NVIDIA has adapted its PilotNet model to predict a car’s trajectory rather than its steering 

angle [68]. This has several advantages, including the ability to plan trajectories and 

therefore be able to avoid obstacles dynamically. Future work could also involve 

intersection control, as shown in Figure 5-3, whereby autonomous driving could decide to 

navigate left, straight, or right.  Another task could be to implement a pedestrian tracking 

feature such that the robot, when it stops at a pedestrian crossing, can safely cross when it 

detects no pedestrians are currently crossing, as shown in Figure 5-4 and as implemented in 

Team KitCar’s video demonstration [10]. 
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Figure 5-3 Intersection logic 

 

Figure 5-4 Pedestrian tracking for a pedestrian crossing 

 

5.1.3 Hardware Considerations 

When the three DNN models are running, approximately 3GB of memory is used as 

shown Figure 5-5. All 2GB of memory on the Jetson Nano is filled with 1GB of swap 

space being used. Furthermore, due to the lack of USB ports and lack of onboard WIFI, 

which causes one USB port to be used by a WIFI adaptor, there is no touchscreen LCD 

screen on the robot. Both issues could be addressed by upgrading to the Jetson Nano 

(4GB) version which has 2GB more memory and one extra USB port. 
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Figure 5-5 Screenshot of the resources used when the main script is running 
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7 Appendix 

 

7.1 CNN model code using TensorFlow 2 and Keras API [69]. 

 

 

 

7.2 NVIDIA Deep Learning Inference Performance Tests across popular SBC [70]. 

 

 

 


