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Abstract 
At the beginning of 2020, the Renewable Energy Vehicle (REV) team at the University of Western Australia 

(UWA) acquired a fully electric shuttle bus, later dubbed nUWAy. Upon purchase, all autonomous driving 

software used by the seller was erased from the vehicle’s on-board computer. The eventual goal of this entire 

project is to deploy nUWAy onto the UWA campus, where it would autonomously drive between the Reid 

Library and the Business School, acting as a bus for the general public. Path planning is one of the most critical 

elements of autonomous driving. The university campus is a constantly changing dynamic environment; as such, 

the vehicle must navigate safely throughout the designated routes. Path planners are divided into a global planner 

and a local planner. The global planner requires a map of the environment in order to function, it is responsible 

for calculating the most efficient route from its current position to some user-defined end point, this is known 

as the global path. On the other hand, the local planner aims to generate new paths according to the vehicle’s 

immediate environment, e.g. avoiding obstacles and undriveable terrain, while attempting to deviate from the 

global path as little as possible. Currently, a global path planner has already been implemented on the shuttle. 

The purpose of this research is to analyse different local path planning algorithms which can be installed on 

nUWAy’s infrastructure and make a detailed comparison via simulations to find out which one is the most 

suitable for a campus environment. The two that were researched and experimented were the Dynamic Window 

Approach (DWA) and the Timed Elastic Bands (TEB). nUWAy utilises the Robot Operating System (ROS), a 

framework designed for robotics development. ROS has libraries that implements these two algorithms. Testing 

was performed within the ROS stage simulation environment; both algorithms were tested in different scenarios 

and the behaviour of the vehicle was analysed. Finally, the results of both algorithms were compared to 

determine whether or not they are suitable for use on the UWA campus. 
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1. Introduction 

In recent years, the demand for automation has been 

on the rise. This is no different for the automobile 

industry, companies such as Tesla and Google have 

been researching electric and autonomous cars for 

urban driving. There are many different 

components that make up a fully functional 

driverless vehicle; sensor fusion, localisation, 

computer vision and path planning. Just to name a 

few. Path planning is one of the most crucial 

abilities of any autonomous vehicle. To put simply, 

it is the vehicle’s ability to plan a path between two 

points and to reach the destination as safely as 

possible. 

1.1. Project background 

In the beginning of 2020, the University of Western 

Australia (UWA) Renewable Energy Vehicle 

(REV) Project purchased an EZ10 Electric 

Cybercar, dubbed nUWAy. nUWAy is a 12-

passenger, fully electric vehicle that has fully 

automated driving capabilities. However, all 

existing autonomous software produced by 

Easymile was removed from the shuttle’s on-board 

personal computer (PC) upon purchase. All 

autonomous driving, navigation and path planning 

is being designed and implemented by the REV 

team via Ubuntu Linux and the robot operating 

system (ROS) framework. Some of the pre-installed 

onboard components include: a Linux PC 

(unknown specifications), one Curtis controller, 

two cameras (rear and front), six light detection and 

ranging (LiDAR) sensors and two touch screen 

displays. 

 

 
Figure 1: nUWAy shuttle 

The eventual goal of the nUWAy project is to 

deploy the vehicle onto the UWA campus, where it 

will autonomously drive between the Reid Library 

and the Business School, acting as a bus for the 

general public. This route could potentially change 

in the future to start from Ezone Central instead. 

 
Figure 2: Route between Reid Library and Business 

School 

 
Figure 3: Route between Ezone and Business School 

1.2. Scope 

At the beginning of this project, another student had 

already begun their research on global path 

planners. As a result, someone was required  to 

work on the local path planning. Path planning 

requires both a local and global planning algorithm, 

this will be discussed in further detail in the next 

section. At the time of writing this report, the 

nUWAy shuttle already has a high level global 

planner installed on the on-board computer and 

thanks to a low-level and basic local path planner 

developed by another student, it is able to drive 

autonomously. This local planner has no intelligent 

decision making and simply takes the global path 

generated by the global planner and divides it up 

into smaller segments which are then passed to the 

vehicle as drive commands. Using a low level local 
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planner such as this one has many drawbacks 

because the UWA environment is dynamic and 

changes constantly, to ensure the safety of 

pedestrians and other vehicles, the shuttle needs to 

have the ability to make smart decisions in real-

time; avoiding obstacles and other vehicles for 

example. 

 

The scope of this project is to research and analyse 

the different high level local path planners which 

have more advanced functionality and decide on the 

most suitable one for the nUWAy shuttle and use 

on the UWA campus. 

2. Literature review 

In the field of robotics and automation, the term 

path planning usually refers to an autonomous 

vehicle’s ability to plan a path between its current 

position and some user-defined goal, within a 

known environment. The path planning is divided 

into two sections; a global planner and a local 

planner. Both are discussed in further detail below. 

Before analysing complex algorithms, it was 

important to research the basics of path planning. 

The following section will outline the various areas 

of research that were reviewed throughout the 

project. Firstly, path planning is explored, followed 

by the different algorithms that were considered and 

compared. Finally, their implementation within the 

ROS framework were discussed. 

2.1. Localisation 

In order for an autonomous vehicle to successfully 

drive, it must know its own location within the 

environment it is travelling through. This means 

that nUWAy’s position and orientation must be 

updated and known at all times. Depending on the 

technology available, localisation can be achieved 

through a variety of devices, e.g. GPS and IMU [1]. 

2.2. Coordinate system 

There are two coordinate systems that need to be 

defined. Firstly, the global coordinates. This is the 

coordinate system of the map, which is used to 

pinpoint the location of the vehicle. Secondly, the 

vehicle has its own coordinate frame, also known as 

a local frame. The local frame is used to keep track 

of the vehicle’s pose, orientation and movement as 

it travels [1]. 

 
Figure 4: Combining global and local coordinates on 

one plane [1] 

2.3. Path planners 

2.3.1. Global path planner 

Assuming that a map of the driving environment 

has been provided, the role of the global path 

planner is to plan develop a driveable path between 

two user defined points. The planned path is 

determined based on the properties of the provided 

map. At the time of writing this report, the nUWAy 

bus uses a ROS implemented global path planning 

algorithm known as search-based planning library 

(SBPL). The algorithm was tested and installed by 

a previous student and is in working condition. 

2.3.2. Local path planner 

The main objective of the local path planner is to 

alter the path and movement of the vehicle as it tries 

to follow the global path. In contrast to the global 

planner, it does not rely on a complete map of the 

environment, but only on the immediate reading 

from lidars and sensors. In order to transform the 

global path as required, the local planner will 

generate new waypoints after detecting obstacles 

and/or undriveable terrain. Considering the 

constraints of the vehicle, a new path is calculated. 

This newly created path attempts to utilise different 

avoidance methods, while adhering to the original 

global path as much as possible [2]. The two main 

advanced algorithms which this report will focus on 

are the dynamic window approach (DWA) and 

timed elastic bands (TEB), both of which are 

described in 2.3.2.1 and 2.3.2.2 below. 

2.3.2.1. Timed elastic bands (TEB) 

A traditional “elastic band” refers a path which can 

morph and change to avoid collisions and make 

adjustments in real time. An elastic band is 

represented by a sequence of n intermediate vehicle 

poses. Each robot pose is denoted by the following 

vector: 
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Equation 1: Elastic band pose vector [3] 

x and y refer to the position of the vehicle with 

respect to the world coordinates and β refers to the 

vehicle orientation as an angle. 

 

The TEB algorithm augments the time intervals 

between all the intermediate robot poses, resulting 

in a sequence of n – 1 time differences, denoted by 

∆ti. Each of these ∆t values is the time it takes for 

the vehicle to move from one pose to the next. 

 
Equation 2: Sequence of time differences [3]  

Therefore, the TEB algorithm can be denoted as a 

tuple of the pose sequence and time difference 

sequence: 

 
Equation 3: Tuple of both sequences [3] 

 
Figure 5: TEB sequence of poses and time differences 

[3] 

TEB operates by constantly adapting and 

optimising the two sequences by using a weighted 

multi-objective optimisation in real time [3]. The 

objective function is denoted by: 

 

 
Equation 4: TEB objective function [3] 

The objective function is a weighted sum of fk 

constraints which rate the velocity and acceleration 

limits of the poses in terms of penalty functions. 

The penalties are based on the poses which result in 

the shortest and fastest trajectory. This makes TEB 

a very time-focuses algorithm, as it constantly 

attempts to find the next pose which results in the 

most efficient path. As a result, the local paths that 

it generates tends to have higher efficiencies than 

other algorithms.  

2.3.2.2. Dynamic window approach (DWA) 

The DWA is a commonly used sampling-based 

optimisation approach. In this algorithm, the search 

space is reduced to the velocities which are 

reachable under the dynamic constraints of the 

robot; e.g. its maximum steering angle, maximum 

speed, minimum speed, etc [4]. The algorithm 

firstly prunes the search space in an attempt to 

reduce the amount of possible paths that need to be 

considered. The search space of velocities is pruned 

using three steps. Firstly, DWA considers only 

circular trajectories, which are determined by pairs 

of translational and rotational velocities, this also 

results in a 2D search space. Assuming that the 

vehicle's rotational and translational velocities are 

controlled independently, the velocities can be 

modelled as a piecewise constant function in time. 

Under this assumption, the velocity trajectories can 

be modelled as a sequence of finite circular 

segments [4]. Next, only the admissible velocities 

are considered. Trajectories are considered 

admissible if the vehicle can stop before it results in 

a collision. Lastly, the admissible velocities are 

restricted by the dynamic window. The dynamic 

window contains only the admissible velocities 

which can be reached by the vehicle within the next 

simulation time interval, resulting in the search 

space being reduced even further. Figure 6 below 

shows an example of a dynamic window, indicated 

by the green square in front of the vehicle. 

 
Figure 6: Dynamic window and admissible velocities 

After the search space has been pruned, the 

algorithm will optimise the remaining velocities in 

the dynamic window using the following objective 

function: 
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Figure 7: Velocity optimisation function 

The “heading” function measures the progress 

towards the final goal. Its weighting is maximised 

if the vehicle is orientated so that it faces the goal 

directly. "dist" stands for distance. This function is 

a clearance measurement. It is the distance between 

the vehicle and the closest object along a trajectory. 

A trajectory that contains no obstacles at all is given 

the highest possible weighting. "vel" stands for 

velocity. This weighting function evaluates the 

robot's progress on the corresponding trajectory. Its 

value is simply the translational velocity. 

 

Each trajectory in the dynamic window is given a 

score based on this objective function, the trajectory 

with the highest score is deemed the most suitable 

path. The corresponding velocities are sent to the 

vehicle and the algorithm will repeat the process 

until the vehicle reaches its destination. 

 
Figure 8: DWA Rollout [5] 

Figure 8 above shows an example situation of the 

DWA algorithm in action. The blue square 

represents a vehicle. In this particular example, 

there are seven paths within the vehicles dynamic 

window, the maximum paths allowed in the 

dynamic window can usually be defined by the 

user. Out of those seven paths, three of them result 

in a collision, these will be instantly ignored. The 

figure does not show the end destination of the 

vehicle, but the remaining four paths will be chosen 

based on the one which has the highest scoring. 

2.3.3. Cost map 

A cost map is a representation of information that 

the path planners rely on, both the local and global 

path planners have their own distinct costmaps. 

Generally speaking, a costmap is a representation of 

the “cost” of traversing to different parts of the 

vehicle’s map [6]. Costmaps are commonly 

composed of cells, which make up a grid-type 

structure. Conceptually, the costmap for both 

planners are designed to perform the same function 

and provide the same utilities. But in practice, there 

is a slight difference between the two. As 

mentioned previously, the global planner requires a 

pre-recorded map of the environment in which the 

vehicle will travel through. The information stored 

in the global costmap comes from the recorded 

map. On the other hand, the local costmap only 

contains information that the vehicle can see from 

its current position, e.g. walking pedestrians and 

walls. This information is usually obtained through 

sensors and/or lidars. 

 
Figure 9: Example of a local costmap [7] 

Figure 9 above shows an example of a local 

costmap. The highlights are used to represent the 

difficulty of the vehicle traversing to those 

particular positions. For example, the blue highlight 

will represent a medium-high difficulty, because 

those positions are close to walls and the vehicle 

should try to avoid those areas. Similarly, the solid 

walls are given a purple highlight, which represents 

an extremely high difficulty, as it is impossible for 

the vehicle to drive through walls. 

3. Design philosophy 

This section goes through the methodology and 

steps followed during the designing phase of the 

project. 

3.1. Methodology 

After the initial researching phase of the project, it 

became clear that it was not possible for one person 

to design a path planning algorithm within the given 

time frame. As such, the project became more 

research and experimental focused. Rather than 

design something from scratch, it was more realistic 

to analyse the existing algorithms which are 

supported by the shuttle’s existing software 
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framework, compare their differences and 

ultimately decide on a suitable one for use on the 

UWA campus. 

3.2. Requirements 

The following requirements have been identified as 

being critically important for the success of this 

project: 

• Determining which criteria are the most 

crucial for assessing the suitability and 

efficiency of a particular path planner 

• Obtaining simulation results with each 

algorithm through vigorous testing in 

common driving scenarios 

• Determining which algorithm is the most 

suitable for the use of nUWAy in a campus 

environment 

3.3. The robot operating system (ROS) 

ROS is framework designed for robot software 

development. It is a collection of tools, libraries, 

and conventions that aim to simplify the task of 

creating complex and robust robot behaviour across 

a wide variety of robotic platforms. nUWAy utilises 

this framework in order to provide smooth 

communication between all onboard equipment (on 

board computers, sensors, LiDAR’s, GPS, IMU, 

cameras, etc). At its core, ROS utilities a node to 

node type communication system. A node refers to 

an instance of a process. All of these nodes are 

registered to a “ROS Master”. Which is the main 

computer that ROS is operating on. After 

registration these nodes are free to communicate 

with one another via a publish and subscribe 

messaging system. As mentioned previously in 

section 2.3.2, only two algorithms were analysed. 

This is because ROS has packages which 

implement these algorithms already. They are 

discussed in further detail in sections 3.3.5 and 

3.3.6. 

 
Figure 10: ROS communication structure [8] 

3.3.1. Navigation stack 

The navigation stack is a collection of nodes in the 

ROS framework that determines the motion 

planning of the vehicle. Conceptually, it is very 

simple. The stack takes in information from 

odometry and sensor streams. Based on the received 

data, it will output velocity commands to the 

vehicle [9]. 

 
Figure 11: ROS navigation stack setup [9] 

Figure 11 above shows the default navigation stack 

arrangement. There are three inputs which are 

required; sensor sources, the map and odometry 

sources. 

3.3.2. move_base 

move_base is the name of a provided ROS node that 

forms a major component of the navigation stack 

[10]. move_base aims to provide an interface for 

configuring, running and interacting with the 

navigation stack of nUWAy. Looking back at 

Figure 11, move_base is the group of nodes within 

the black rectangle. move_base is largely 

responsible for managing all of the autonomous 

path planning nodes. These nodes operate the local 

and global planners and their respective costmaps. 

The workflow of move_base is as follows: 

• The coordinates of the final goal of the 

vehicle are sent to the global planner as a 

geometry message 

• After receiving the final destination, the  

global planner will generate the optimal 

global path, which is calculated based upon 

the information in the global cost map 

• The global path is passed to the local 

planner, which breaks the path down into 

smaller and more manageable motions 

which get sent to the vehicle as velocity 

messages. Like the global planner, the local 

planner also has a costmap which it uses to 

obtain information about its surroundings. 
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3.3.3. ROS stage simulator 

Stage is the name of a basic simulation program in 

ROS. It provides a virtual 2-D world filled with 

user-defined objects, obstacles and robot models. 

The vehicle model will traverse through this world. 

 
Figure 12: An example of a simulated world in ROS 

stage where the blue square represents a vehicle and 

the gray lines represent walls and undriveable terrain 

3.3.4. RViz 

RViz shorthand for “ROS visualisation”. It is a 3D 

visualisation tool used for ROS applications which 

shows what the vehicle sees as it travels through its 

simulated environment. In this project, RViz is used 

to visualise the paths generated by both the global 

and local planner. 

 
Figure 13: An example of RViz showing nUWAy’s Lidar 

data [11] 

3.3.5. teb_local_planner 

This ROS package implements the TEB algorithm 

that was previously described in section 2.3.2.1. 

The current ROS implementation of this algorithm 

is designed for non-holonomic robots (car-like 

robots). 

 
Figure 14: TEB path without obstacles 

 
Figure 15: TEB path with obstacles 

Figure 14 and Figure 15 above shows an example 

of the paths generated by teb_local_planner. This is 

a diagnostics ROS node which has been included in 

the package, which allows the user to visualise the 

behaviour of the path due to obstacles. The vehicle 

model is not shown in these figures, but the vehicles 

current position is the where the line starts on the 

left and the goal is where the line ends on the right. 

The TEB generated path is composed of many red 

arrows in sequence, which represent the poses the 

vehicle will take as time passes.  

 

Traditionally, TEB algorithms have the tendency to 

get trapped in local optima, because the algorithm 

is incapable of traversing obstacles. As shown in 

Figure 15, when the first object is detected, a path 

is planned around it. But if that object moves to a 

different location, the algorithm still includes the 

object in its planned path, i.e. it doesn’t have the 

ability to realise that the obstacle is in a location that 

no longer needs to be part of the altered path. This 

is shown below in Figure 16, it becomes apparent 

that the first obstacle on the left is extremely far 

away from its starting position from Figure 15 and 

should be ignored by the algorithm, as it no longer 

stands between the current position of the vehicle 

and its end point. Thankfully, the teb_local_planner 

has a way around this via parallel planning.  
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Figure 16: TEB stuck in a local optima 

 
Figure 17: TEB generated parallel paths 

Figure 17 above shows the generated paths from 

parallel planning. The path with the red arrows 

indicates the best possible route out of the potential 

candidates.  

 
Figure 18: TEB no longer stuck in local optima due to 

parallel planning 

Looking at Figure 18 above, this is the same 

obstacle orientation as shown in Figure 16. 

However, because parallel planning has been 

activated, TEB is able to choose a more efficient 

path and ignore the obstacle altogether. 

3.3.6. dwa_local_planner 

This ROS package implements the DWA algorithm 

that was previously described in section 2.3.2.2. It 

is actually the default local planner that the 

navigation stack utilises. Unlike the 

teb_local_planner package, the dwa_local_planner 

package does not come with any diagnostic tools, 

which made it harder to visualise the basic 

behaviour of the algorithm within the ROS 

framework. 

 

In ROS the algorithm follows the same steps as 

described in section 2.3.2.2: 

1) Discretely sample in the robot's control 

space 

2) For each sampled velocity, perform 

forward simulation from the robot's current 

state to predict what would happen if the 

sampled velocity were applied for some 

(short) period of time. 

3) Evaluate (score) each trajectory resulting 

from the forward simulation, using a 

metric that incorporates characteristics 

such as: proximity to obstacles, proximity 

to the goal, proximity to the global path, 

and speed. Discard illegal trajectories 

(those that collide with obstacles). 

4) Pick the highest-scoring trajectory and 

send the associated velocity to the mobile 

base. 

5) Repeat 

Figure 19 below shows an example of DWA 

operation. The local costmap of the vehicle is also 

shown. The red line represents the global path and 

the shorter blue line represents the trajectory that 

was chosen after the control space is pruned and the 

admissible velocities within the dynamic window 

were scored. 

 
Figure 19: Example DWA operation in RViz 
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3.3.7. Vehicle modelling 

The ROS planners allow the user to specify a 

footprint model of the vehicle, which approximates 

the vehicle’s 2D shape. The footprint model is 

essential for optimisation and accurate simulations, 

as it determines the complexity of calculations and 

affects computation time [12]. 

There are a total of five footprint models to choose 

from: 

1) Point 

A single pixel point is used to represent the 

vehicle. This model results in the least 

amount of computation time as it requires 

very simple distance calculations. 

2) Circular 

A single circle with a user-defined radius is 

used to represent the vehicle. Calculations 

are similar to the point model, except with 

the added radius parameter. 

3) Line 

Vehicle is modelled using a line defined by 

a start point and end point. 

4) Two circles 

Vehicle is represented using two circles 

with user-defined radii and an offset value. 

Results in high computation times as two 

distance calculations are required, one for 

each circle. 

 
Figure 20: Two circle model [12] 

5) Polygon 

More complex vehicle models which are 

represented by shapes with many edges. 

The edges are defined by coordinate 

vertices. Computation time varies 

depending on the number of edges in the 

polygon. 

 

For the simulations, the line model is chosen as it is 

the most suitable for modelling vehicles that have a 

rectangular shape. The exact length and width of the 

line was chosen to represent the shuttle as closely 

as possible. 

 
Figure 21: Line footprint model [12] 

3.4. Final experiment setup 

The final experiment design involves comparing the 

performance of the two algorithms through fair 

testing simulation experiments. Firstly, the ROS 

system was setup on a personal MacBook Air, 

running Ubuntu 18.04. nUWAy uses the Melodic 

version of ROS, to ensure fair testing and 

consistency, this version of ROS was also installed 

locally to house the simulations. 

 

The simulations are setup using ROS stage and 

RViz, both of which have been described in section 

3.3. ROS stage requires the user to input a map file, 

which the simulator uses to build the simulated 

world for the vehicle. A map of the entire campus 

has been recorded and developed by a previous 

student. Unfortunately, this map is very large and 

resulted in the simulations performing very poorly,  

mainly due to limited processing power. This led to 

inconsistent results and constant software crashes. 

As a result, two smaller and more resourceful maps 

were used, both of which were included within the 

ROS navigation package. These maps have a much 

lower resolution and more simplicity. 

 

 
Figure 22: Corridor map 
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Figure 23: Maze Map 

Figure 22 and Figure 23 above show the example 

maps that were used throughout the simulations. 

The black lines in the maps represent walls, which 

the vehicle will not be able to drive through. When 

these maps are loaded into ROS stage, obstacles can 

be placed inside the virtual world. 

 

RViz is then used to send goal positions to the 

vehicle and visualise how the vehicle views its 

immediate environment and the behaviour of the 

path planners. Looking at Figure 24 below, the 

purple arrow is controlled by the user via a click and 

drag of the mouse. The location of the arrow on the 

map represents the destination coordinates of the 

goal and the direction of the arrows represents the 

orientation that the vehicle must finish in. In Figure 

24, the arrow is pointing upwards, which means that 

the vehicle must reach that destination with the 

front facing upwards on the map. 

 

 
Figure 24: Setting a goal in RViz 

 

In order to replicate the situations that the shuttle 

will encounter as it drives on campus, both 

algorithms will be simulated in the following 

scenarios: straight-line driving, static obstacle 

avoidance, simple turns, turning with limited space 

and complex manoeuvres. 

 

Straight line driving 

This is a very simple scenario that tests the local 

planner’s ability to stick to the global path when 

there are no path changes required. Although it 

might seem unnecessary, this is an extremely 

important test because approximately 80% of the 

route between the Reid Library and Business 

School is a straight road. As such, the algorithms’ 

ability to adhere to a straight global path must be 

confirmed. 

 

Static obstacle avoidance 

When driving along the designated route, there will 

be many cases where nUWAy will need to plan a 

path around obstacles. A common example would 

be parked security vehicles. On campus there are 

many security buggies that usually park towards 

one side of the road. nUWAy always be driving on 

the left hand side of the path, as a result there will 

be many cases where a parked vehicle needs to be 

avoided. Another potential need for avoidance will 

be road construction, where the vehicle will have to 

avoid undriveable terrain. 

 

Simple turns 

Along the two potential routes there are times when 

the shuttle needs to follow a curved path, next to 

James Oval for example, and also make simple 

turns. Once again, this is testing the planner’s 

ability to stick to the global path when no path 

changes are necessary. 

 

Turning with limited space 

There is one turn near the business school where 

there is limited room for turning, even driving the 

bus manually through this turn proved difficult at 

times. By implementing this scenario in the 

simulation, the intelligence of the algorithms can be 

tested to see if they can perform the necessary 

adjustments to the vehicle to perform the turn. 

 

Complex manoeuvres 

Although nUWAy mainly does simple straight 

driving, it will be a huge bonus if the vehicle can 
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perform manoeuvres such as reverse parking. This 

also further tests the limits and intelligence of the 

algorithms. 

 

In each of the scenarios mentioned above, the 

performance of each algorithm will be compared 

and discussed. Additionally, the following factors 

will also be discussed: computational intensity, 

parameter customisation, documentation and 

resource availability. 

4. Results 

The following section outlines the simulation 

results of the two algorithms. 

4.1. Straight line driving 

The corridor map is used to test the straight-line 

driving ability of both algorithms. The initial pose 

of the vehicle is set towards the upper wall of the 

corridor, to simulate the left-hand side of the road if 

the vehicle’s forward movement is towards the right 

of the map. 

 
Figure 25: The starting position of the vehicle for the 

straight-line driving test 

To no surprise, both algorithms perform the same in 

this scenario. Once the global path has been 

generated by the global planner, the local path 

simply follows it. This behaviour is expected, as 

there are no obstacles in the vehicle’s immediate 

viscinity and there is no need to deviate from the 

global path. 

 
Figure 26: RViz showing straight line driving using 

TEB 

 
Figure 27: RViz showing straight line driving using 

DWA 

Figure 26 and Figure 27 show the RViz display of 

the two planners during this scenario test. The path 

colours are set to different values for easier 

distinction. 

4.2. Static obstacle avoidance 

This test uses the same map setup as the previous 

straight-line test. Except this time, an obstacle is 

added, which is represented as a blue square in the 

ROS stage simulator. It is important to observe how 

the algorithms react when an obstacle is detected 

while the vehicle drives along the global path. Just 

like the previous test, the initial pose of the vehicle 

is set towards the top wall of the corridor. 

 

 
Figure 28: Initial position of the vehicle for straight 

line driving simulation 

 
Figure 29: Vehicle avoiding the obstacle in ROS stage 
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Figure 30: RViz showing the morphed path that TEB 

generates upon obstacle detection 

 
Figure 31: RViz showing the chosen simulated path that 

DWA has chosen to avoid the obstacle 

Both algorithms were able to successfully pass the 

test of this scenario. Once the vehicle detected the 

object, it appears on RViz. The local paths 

generated by the local planners successfully deviate 

the vehicle from the global path in order to avoid 

the obstacle. Once the vehicle has moved past the 

obstacle, the local planners bring the vehicle back 

onto the original global path and continues 

travelling along that path until it reaches the end 

goal. 

4.3. Simple turning 

The various walls and corners in the maze map were 

used to test the turning ability of the planners. For 

all the turns, both planners were able to make the 

necessary adjustments to avoid hitting corners and 

reach their goals. 

 
Figure 32: TEB doing a simple turn 

 
Figure 33: DWA doing a simple turn 

However, it is worth noting that TEB results in 

much smoother vehicle movement. With DWA, the 

vehicle is very jerky and shaky when it makes a 

turn. In practise, this could potentially lead to 

passengers becoming off balance, which is a safety 

risk. 

4.4. Turning tight corners 

The initial position of the vehicle is set near the 

maze wall to simulate the edge of the driveable 

terrain and a rectangular obstacle is placed on the 

corner to restrict the amount of room available for 

the vehicle to turn. 
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Figure 34: Initial starting position for the tight corner 

turn test, the blue obstacle is positioned to act as a wall 

 
Figure 35: Setting the destination for the tight corner 

turn 

 
Figure 36: RViz showing the TEB generated path for 

turning the tight corner 

The TEB algorithm successfully navigates the 

vehicle around the corner without any issues. The 

algorithm is intelligent enough to realise that there 

isn’t enough room for the vehicle to make the turn 

with its current distance from the wall. This can be 

seen in Figure 36. The red arrows show the 

morphed local path produced by TEB, which has 

deviated from the original global path (indicated by 

the green line), notice how the local path is not 

aligned with the global path and causes the vehicle 

to turn slightly outwards before performing the left 

turn. After the turn has started, the local path also 

goes back to following the global path. 

 

 
Figure 37: Vehicle colliding with wall while using DWA 

 
Figure 38: RViz showing vehicle collision and 

generated paths while using DWA 

Unfortunately, the DWA algorithm is not able to 

successfully perform the turn. Looking at Figure 38, 

after the destination is set, it seems that DWA is 

able to produce the first segment of the local path, 

which aligns with the direction of the global path 

(indicated by the orange line), but the physical 

movement of the vehicle does not obey the planned 

paths. Unfortunately, this problem was not 

successfully debugged, as there are many 

possibilities for the cause. 

4.5. Complex manoeuvres 

This scenario tests the planners’ abilities to make 

the vehicle perform a reverse park, starting at a 

reasonable distance from the parking space. A 

rectangular obstacle is placed parallel to the maze 

wall to represent a space for the vehicle to park.  
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Figure 39: Starting position of the vehicle 

Figure 39 above shows the starting position of the 

vehicle. In this test, the line of sight of the vehicle 

is also shown, which makes it easier to visualise the 

front of the vehicle. 

 

 
Figure 40: Setting the end goal and end pose using 

RViz 

 
Figure 41: TEB moving the vehicle towards the parking 

space 

 
Figure 42: RViz showing the local paths generated by 

TEB when performing a reverse park 

After receiving the end goal in the parking spot, 

TEB firstly brings the vehicle towards the parking 

spot. Figure 42 shows the decision making of the 

planner, after the blue rectangular obstacle has 

appeared in the vehicle’s detection range. The local 

path is morphed so that the vehicle performs a right 

turn, which then allows for a reverse motion to 

move the vehicle to the set goal with the correct 

orientation. Figure 43 below shows the finishing 

position of the vehicle. 

 
Figure 43: TEB successfully completing a reverse park 
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Figure 44: DWA fails to plan local paths required for 

reversing 

 
Figure 45: Final pose while using DWA 

On the other hand, DWA was not able to 

successfully perform a reverse park. The vehicle 

simply drives forward until it reaches the 

destination. It became extremely apparent in this 

experiment, that DWA has issues obeying the final 

orientation of the user defined goal. It is able to 

bring the vehicle to the end point, just without the 

correct orientation. Similar to the previous issue, 

where the vehicle drove into the wall, the 

orientation error was unable to be debugged 

successfully. 

4.6. Computational intensity 

Since there is limited computational power on the 

nUWAy shuttle and new software is constantly 

being added to it, it is important to note which 

algorithm is more resourceful. As mentioned 

previously, all testing and simulations were done on 

a personal laptop which had limited computing 

power. The CPU usage of the simulator is found by 

using the “activity monitor” program on the Ubuntu 

operating system. Throughout all the simulations, 

the CPU usage stayed fairly consistent for the two 

algorithms. However, TEB seemed to be the 

slightly less demanding algorithm, averaging at 

around 14% CPU usage. On the other hand, DWA 

resulted in the simulation process averaging at 

around 21% CPU usage. This is a minor difference 

but it is still worth keeping in mind. 

4.7. Ease of use, customisation and flexibility 

Ease of use is an important factor when comparing 

the algorithms because eventually they will be 

installed into the existing infrastructure of the 

shuttle and future students joining the project will 

need to learn how to operate them. As such, it is 

important that the algorithms are able to be easily 

integrated into nUWAy’s existing ecosystem. 

Because both of the packages which implement the 

algorithms are designed for use within ROS, 

installing them on a local machine was relatively 

straight forward. Installation on the nUWAy system 

should follow the exact same steps. Operating the 

algorithms is also extremely straightforward, all 

that is required is for a goal to be set using RViz. 

 

The parameter settings of the two algorithms can be 

modified by changing the values within their 

configuration files. The parameters allow the user 

to customise the behaviour of the vehicle and tune 

certain settings to optimise performance. As 

mentioned previously in section 3.3.7, the line 

model footprint was chosen, as it best represents the 

shape of the nUWAy shuttle. Both algorithms offer 

full customisation of the vehicle footprint, which 

means that the algorithms can be tuned to obey the 

physical dynamics and constraints of nUWAy. 

 

When it comes to the driving behaviour, TEB has a 

much wider range of parameters which can be 

customised. It also allows for more specific 

customisations. For example, when setting the 

minimum distance of the vehicle from obstacles, 

TEB allows the user to input specific numerical 

values, down to two decimal places. This is a great 

feature, as it allows the user to specify the exact 

distance from obstacles that is deemed safe. With 

the distance parameter settings of DWA, the user is 

unable to specify exact numeric values, only the 

obstacle weighting values. This means that it is 

ultimately up to the algorithm to decide the exact 

minimum distance between the vehicle and 

obstacles. 

 

TEB also has more optimisation settings, which 

adds flexibility. These settings allow the user to 
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control how strictly the vehicle must adhere to the 

weightings and penalties that the algorithm 

calculates from the costmap data. In practise, 

sometimes the vehicle will miss waypoints, miss the 

end goal or fail to reach the velocity that the 

algorithm passes to it. If the strictness is set to high 

values, the algorithm will think the vehicle has 

failed to respond to its commands, which leads to 

unwanted and unexpected behaviour. This was a 

common problem during testing of the global path 

planner. The shuttle would drive back and forth 

between two way points because one of them was 

missed by a small distance. By allowing the user to 

customise these strictness settings, it gives the 

vehicle more room for error without resulting in 

software crashes or unexpected behaviour. TEB 

offers many optimisation parameters for the vehicle 

speed, vehicle angular velocity, end goal tolerance 

and waypoint tolerance, just to name a few. On the 

other hand, DWA only offers a goal distance and 

path distance tolerance. 

4.8. Resource availability 

The ROS system operating on nUWAy will only get 

more complicated as newer software is constantly 

being added. As mentioned previously, there are 

many elements which are responsible for successful 

autonomous driving. If any of these elements run 

into any problems, the entire driving system 

collapses. Installing and debugging these planners 

can be a difficult task and any help from online 

resources and/or documentation can go a long way. 

By far, TEB is the newer and more popular 

algorithm. Not only does it have more online 

resources, it is also the topic of many more 

published papers. The ROS wiki also has a list of 

in-depth tutorials that guides the user through 

installation, testing and parameter tuning. For 

DWA, there are barely any guides or documentation 

on the ROS wiki and it is not nearly as popular as 

TEB. 

4.9. Summary of findings 

In the straight line test both algorithms behaved in 

the exact same way. This was a simple but 

important experiment that aimed to test the 

algorithms’ ability to follow the global path when 

no changes to the vehicles route were required. As 

expected, both algorithms were able to follow the 

global path without ever deviating from it. 

 

In the static obstacle test, once again both 

algorithms behaved in the exact same way. Once 

the obstacle appeared in the vehicles line of sight, it 

was shown on their costmaps and the algorithms 

were able to plan a path around the obstacle and 

deviate from the global path as required. 

 

In the regular turning test, both planners were able 

to successfully  turn corners without collisions. 

When needed, both planners could make subtle 

adjustments to their driving angles in order to create 

more space. However, because TEB results in 

smoother vehicle movement during turns, it is the 

superior planner in this test. 

 

In the tight corner turn test, only TEB was able to 

successfully turn the vehicle without collisions. 

TEB was intelligent enough to adjust the driving 

angle and create more space in order to make it past 

the corner in one smooth arc. On the other hand, 

although RViz showed that DWA was able to 

generate a local path, the vehicle was not able to 

comply, and simply drove into the wall. This 

happened every single time, after countless tests 

and parameter changes, DWA was never able to 

successfully complete the turn. 

 

In the manoeuvre test, the algorithms were tested to 

see if they could perform a reverse park. It became 

very obvious in this experiment that DWA is unable 

to obey the final pose set by the user. Whereas TEB 

was able to intelligently position the vehicle, make 

enough room for itself and reverse into the parking 

space. 

 

Unfortunately, the tests that DWA failed were not 

able to be debugged successfully. After many 

parameter changes, costmap setting changes and 

configuration file changes, the exact same problems 

still persisted. For the tight corner test, it can be seen 

that the algorithm actually produces the correct 

local path, but for some reason the vehicle in ROS 

stage is unable to follow. This is a very unusual 

problem that is likely due to software bugs in the 

actual simulator itself. Because the planner worked 

fine for the scenarios without the added obstacle, 

there is a possibility that there is some sort of 

version incompatibility which causes unexplained 

behaviour. The same can be said for the failure of 

the reverse park manoeuvre. 
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Additionally, TEB is less computationally 

intensive, offers more customisability, parameter  

settings and contains much more tutorials and 

documentation. 

 

After doing a side by side comparison of the two 

algorithms, it can be concluded that TEB is the 

more superior planner as it didn’t run into any errors 

during the experiment and was able to successfully 

pass all of the simulated scenarios. It seems to be a 

more intelligent algorithm than DWA, has better 

decision making and offers more customisation and 

flexibility. 

 

Test case TEB DWA 

Straight line driving ✓ ✓ 

Static obstacle avoidance ✓ ✓ 

Simple turns and curves ✓  

Tight corner turning ✓  

Complex manoeuvres ✓  

Computational intensity ✓  

Customisation and flexibility ✓  

Documentation and resource 

availability 

✓  

Table 1: TEB vs DWA results summary, ticks show the 

better algorithm in each comparison 

5. Future work 

This section will outline any possible improvements 

to the current research and future tasks that can 

expand upon the discussed functionalities. 

5.1. Performing more advanced simulations 

As mentioned in section 3.3.3, ROS stage is a very 

simple simulation tool. It can be argued that the 

simulation environment is not very realistic, as it is 

only modelled as a 2D world. A group of past 

students have developed a 3D map of the entire 

UWA campus within a simulation system known as 

CARLA. The CARLA simulator is an open-source 

simulator designed specifically for autonomous 

driving research. Unfortunately, during the duration 

of this research project the PC which runs the 

CARLA system was out of order and could not be 

used to test any of the discussed algorithms. If this 

system is fixed in the near future, it would be 

worthwhile to do additional testing with CARLA, 

as it offers a more realistic representation of the real 

world. 

5.2. Testing on nUWAy 

Simulations and comparisons can provide a general 

insight into the characteristics and tendencies of the 

algorithms, but their effectiveness in practice 

cannot be perceived until they have been integrated 

into the existing ROS system on the shuttle and 

thoroughly tested. Because the experiments suggest 

that TEB is the more suitable algorithm, it should 

be the first to be installed and tested. If nUWAy 

performs as the simulations suggest, then no more 

needs to be done. However, if it turns out to be 

unsuitable, then DWA should be tested. If problems 

still persist, then further research needs to be done 

on  the countless path planners outside of ROS and 

a custom ROS node needs to be developed by future 

students. 

5.3. Obstacle detection 

Since nUWAy currently drives using a pre-recorded 

map, it cannot recognise obstacles which appear in 

its immediate viscinity. There are many devices on 

the shuttle which allow for obstacle detection 

development. The TEB algorithm already has the 

ability to plan paths around static obstacles, the 

detection is the only thing that needs to be 

implemented. 

5.4. Dynamic obstacle avoidance 

The TEB package has dynamic obstacle avoidance 

capabilities included. However, due to the nature of 

the nUWAy shuttle and also the campus 

environment, it was decided for this project that 

such capabilities are not needed. The shuttle drives 

at an incredibly slow pace (near walking speed) and 

most dynamic obstacles that will be encountered are 

pedestrians. Due to the size of the vehicle and its 

speed, it is very unrealistic to make the vehicle 

manoeuvre around people, especially during the 

times between classes where the paths are 

extremely congested.  

6. Conclusion 

To conclude, the goal of this project was to 

investigate the different path planning algorithms 

which are available on the ROS framework. The 

Dynamic Window Approach and the Timed Elastic 

Bands algorithms were the two that were 

researched. Through simulation experiments, the 

performances of the two planners in different 

driving scenarios were observed and discussed. 

After testing and comparing them side by side in a 
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simulated environment, it was concluded that TEB 

outperforms DWA in a majority of the tests. Based 

purely on the simulation results, TEB is definitely 

the more suitable algorithm for the nUWAy shuttle 

as it didn’t run into errors during testing, is more 

efficient and has more to offer. However, 

simulation behaviour can be very different from 

real-world performance and some factors still 

remain unknown until testing has been done on the 

nUWAy shuttle. 
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