

Student:
Daniel Trang (22003874)

Master of Professional Engineering (Electrical and electronic)

The University of Western Australia

Supervisor:

Professor Thomas Braunl

School of Electrical, Electronic and Computer Engineering

The University of Western Australia

Word Count (Abstract, acknowledgements and sections 1 to 6): 7705

Analysis of Local Path Planner for

Autonomous Driving

GENG5511 / GENG5512 Engineering

Research Project Thesis

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

1

Table of contents

Abstract ... 3

Acknowledgements ... 3

Nonclementure .. 4

List of figures .. 4

1. Introduction ... 6

1.1. Project background... 6

1.2. Scope .. 6

2. Literature review ... 7

2.1. Localisation .. 7

2.2. Coordinate system .. 7

2.3. Path planners .. 7

2.3.1. Global path planner ... 7

2.3.2. Local path planner .. 7

2.3.3. Cost map ... 9

3. Design philosophy ... 9

3.1. Methodology .. 9

3.2. Requirements ... 10

3.3. The robot operating system (ROS)... 10

3.3.1. Navigation stack ... 10

3.3.2. move_base .. 10

3.3.3. ROS stage simulator ... 11

3.3.4. RViz .. 11

3.3.5. teb_local_planner .. 11

3.3.6. dwa_local_planner .. 12

3.3.7. Vehicle modelling ... 13

3.4. Final experiment setup ... 13

4. Results ... 15

4.1. Straight line driving.. 15

4.2. Static obstacle avoidance ... 15

4.3. Simple turning .. 16

4.4. Turning tight corners .. 16

4.5. Complex manoeuvres ... 17

4.6. Computational intensity ... 19

4.7. Ease of use, customisation and flexibility .. 19

4.8. Resource availability .. 20

4.9. Summary of findings .. 20

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

2

5. Future work ... 21

5.1. Performing more advanced simulations ... 21

5.2. Testing on nUWAy .. 21

5.3. Obstacle detection .. 21

5.4. Dynamic obstacle avoidance .. 21

6. Conclusion ... 21

References ... 22

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

3

Abstract
At the beginning of 2020, the Renewable Energy Vehicle (REV) team at the University of Western Australia

(UWA) acquired a fully electric shuttle bus, later dubbed nUWAy. Upon purchase, all autonomous driving

software used by the seller was erased from the vehicle’s on-board computer. The eventual goal of this entire

project is to deploy nUWAy onto the UWA campus, where it would autonomously drive between the Reid

Library and the Business School, acting as a bus for the general public. Path planning is one of the most critical

elements of autonomous driving. The university campus is a constantly changing dynamic environment; as such,

the vehicle must navigate safely throughout the designated routes. Path planners are divided into a global planner

and a local planner. The global planner requires a map of the environment in order to function, it is responsible

for calculating the most efficient route from its current position to some user-defined end point, this is known

as the global path. On the other hand, the local planner aims to generate new paths according to the vehicle’s

immediate environment, e.g. avoiding obstacles and undriveable terrain, while attempting to deviate from the

global path as little as possible. Currently, a global path planner has already been implemented on the shuttle.

The purpose of this research is to analyse different local path planning algorithms which can be installed on

nUWAy’s infrastructure and make a detailed comparison via simulations to find out which one is the most

suitable for a campus environment. The two that were researched and experimented were the Dynamic Window

Approach (DWA) and the Timed Elastic Bands (TEB). nUWAy utilises the Robot Operating System (ROS), a

framework designed for robotics development. ROS has libraries that implements these two algorithms. Testing

was performed within the ROS stage simulation environment; both algorithms were tested in different scenarios

and the behaviour of the vehicle was analysed. Finally, the results of both algorithms were compared to

determine whether or not they are suitable for use on the UWA campus.

Acknowledgements
First and foremost, I would like to thank my project supervisor; Professor Thomas Braunl, for providing me

with the opportunity to work on such a unique and challenging project. Additionally, I would like to thank

Yuchen Du, Kyle Carvalho and the rest of the REV team for their hard work, support and assistance over the

course of the two semesters. I am very fortunate to have been able to learn and experience so much from this

project.

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

4

Nonclementure
DWA Dynamic window approach

PC Personal computer

ROS Robot operating system

SBPL Search-based planning library

REV Renewable energy vehicle

TEB Timed elastic bands

UWA The University of Western Australia

GPS Global positioning system

IMU Inertial measurement unit

List of figures
Figure 1: nUWAy shuttle .. 6
Figure 2: Route between Reid Library and Business School .. 6
Figure 3: Route between Ezone and Business School ... 6
Figure 4: Combining global and local coordinates on one plane [1] ... 7
Figure 5: TEB sequence of poses and time differences [3] ... 8
Figure 6: Dynamic window and admissible velocities .. 8
Figure 7: Velocity optimisation function... 9
Figure 8: DWA Rollout [5] ... 9
Figure 9: Example of a local costmap [7].. 9
Figure 10: ROS communication structure [8] ... 10
Figure 11: ROS navigation stack setup [9] .. 10
Figure 12: An example of a simulated world in ROS stage where the blue square represents a vehicle and the

gray lines represent walls and undriveable terrain .. 11
Figure 13: An example of RViz showing nUWAy’s Lidar data [11] .. 11
Figure 14: TEB path without obstacles ... 11
Figure 15: TEB path with obstacles .. 11
Figure 16: TEB stuck in a local optima ... 12
Figure 17: TEB generated parallel paths ... 12
Figure 18: TEB no longer stuck in local optima due to parallel planning ... 12
Figure 19: Example DWA operation in RViz ... 12
Figure 20: Two circle model [12] .. 13
Figure 21: Line footprint model [12] ... 13
Figure 22: Corridor map .. 13
Figure 23: Maze Map .. 14
Figure 24: Setting a goal in RViz .. 14
Figure 25: The starting position of the vehicle for the straight-line driving test ... 15
Figure 26: RViz showing straight line driving using TEB .. 15
Figure 27: RViz showing straight line driving using DWA .. 15
Figure 28: Initial position of the vehicle for straight line driving simulation .. 15
Figure 29: Vehicle avoiding the obstacle in ROS stage .. 15
Figure 30: RViz showing the morphed path that TEB generates upon obstacle detection 16
Figure 31: RViz showing the chosen simulated path that DWA has chosen to avoid the obstacle................... 16
Figure 32: TEB doing a simple turn .. 16
Figure 33: DWA doing a simple turn .. 16
Figure 34: Initial starting position for the tight corner turn test, the blue obstacle is positioned to act as a wall

 ... 17
Figure 35: Setting the destination for the tight corner turn ... 17
Figure 36: RViz showing the TEB generated path for turning the tight corner .. 17

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

5

Figure 37: Vehicle colliding with wall while using DWA .. 17
Figure 38: RViz showing vehicle collision and generated paths while using DWA ... 17
Figure 39: Starting position of the vehicle .. 18
Figure 40: Setting the end goal and end pose using RViz ... 18
Figure 41: TEB moving the vehicle towards the parking space .. 18
Figure 42: RViz showing the local paths generated by TEB when performing a reverse park 18
Figure 43: TEB successfully completing a reverse park ... 18
Figure 44: DWA fails to plan local paths required for reversing .. 19
Figure 45: Final pose while using DWA ... 19

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

6

1. Introduction

In recent years, the demand for automation has been

on the rise. This is no different for the automobile

industry, companies such as Tesla and Google have

been researching electric and autonomous cars for

urban driving. There are many different

components that make up a fully functional

driverless vehicle; sensor fusion, localisation,

computer vision and path planning. Just to name a

few. Path planning is one of the most crucial

abilities of any autonomous vehicle. To put simply,

it is the vehicle’s ability to plan a path between two

points and to reach the destination as safely as

possible.

1.1. Project background

In the beginning of 2020, the University of Western

Australia (UWA) Renewable Energy Vehicle

(REV) Project purchased an EZ10 Electric

Cybercar, dubbed nUWAy. nUWAy is a 12-

passenger, fully electric vehicle that has fully

automated driving capabilities. However, all

existing autonomous software produced by

Easymile was removed from the shuttle’s on-board

personal computer (PC) upon purchase. All

autonomous driving, navigation and path planning

is being designed and implemented by the REV

team via Ubuntu Linux and the robot operating

system (ROS) framework. Some of the pre-installed

onboard components include: a Linux PC

(unknown specifications), one Curtis controller,

two cameras (rear and front), six light detection and

ranging (LiDAR) sensors and two touch screen

displays.

Figure 1: nUWAy shuttle

The eventual goal of the nUWAy project is to

deploy the vehicle onto the UWA campus, where it

will autonomously drive between the Reid Library

and the Business School, acting as a bus for the

general public. This route could potentially change

in the future to start from Ezone Central instead.

Figure 2: Route between Reid Library and Business

School

Figure 3: Route between Ezone and Business School

1.2. Scope

At the beginning of this project, another student had

already begun their research on global path

planners. As a result, someone was required to

work on the local path planning. Path planning

requires both a local and global planning algorithm,

this will be discussed in further detail in the next

section. At the time of writing this report, the

nUWAy shuttle already has a high level global

planner installed on the on-board computer and

thanks to a low-level and basic local path planner

developed by another student, it is able to drive

autonomously. This local planner has no intelligent

decision making and simply takes the global path

generated by the global planner and divides it up

into smaller segments which are then passed to the

vehicle as drive commands. Using a low level local

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

7

planner such as this one has many drawbacks

because the UWA environment is dynamic and

changes constantly, to ensure the safety of

pedestrians and other vehicles, the shuttle needs to

have the ability to make smart decisions in real-

time; avoiding obstacles and other vehicles for

example.

The scope of this project is to research and analyse

the different high level local path planners which

have more advanced functionality and decide on the

most suitable one for the nUWAy shuttle and use

on the UWA campus.

2. Literature review

In the field of robotics and automation, the term

path planning usually refers to an autonomous

vehicle’s ability to plan a path between its current

position and some user-defined goal, within a

known environment. The path planning is divided

into two sections; a global planner and a local

planner. Both are discussed in further detail below.

Before analysing complex algorithms, it was

important to research the basics of path planning.

The following section will outline the various areas

of research that were reviewed throughout the

project. Firstly, path planning is explored, followed

by the different algorithms that were considered and

compared. Finally, their implementation within the

ROS framework were discussed.

2.1. Localisation

In order for an autonomous vehicle to successfully

drive, it must know its own location within the

environment it is travelling through. This means

that nUWAy’s position and orientation must be

updated and known at all times. Depending on the

technology available, localisation can be achieved

through a variety of devices, e.g. GPS and IMU [1].

2.2. Coordinate system

There are two coordinate systems that need to be

defined. Firstly, the global coordinates. This is the

coordinate system of the map, which is used to

pinpoint the location of the vehicle. Secondly, the

vehicle has its own coordinate frame, also known as

a local frame. The local frame is used to keep track

of the vehicle’s pose, orientation and movement as

it travels [1].

Figure 4: Combining global and local coordinates on

one plane [1]

2.3. Path planners

2.3.1. Global path planner

Assuming that a map of the driving environment

has been provided, the role of the global path

planner is to plan develop a driveable path between

two user defined points. The planned path is

determined based on the properties of the provided

map. At the time of writing this report, the nUWAy

bus uses a ROS implemented global path planning

algorithm known as search-based planning library

(SBPL). The algorithm was tested and installed by

a previous student and is in working condition.

2.3.2. Local path planner

The main objective of the local path planner is to

alter the path and movement of the vehicle as it tries

to follow the global path. In contrast to the global

planner, it does not rely on a complete map of the

environment, but only on the immediate reading

from lidars and sensors. In order to transform the

global path as required, the local planner will

generate new waypoints after detecting obstacles

and/or undriveable terrain. Considering the

constraints of the vehicle, a new path is calculated.

This newly created path attempts to utilise different

avoidance methods, while adhering to the original

global path as much as possible [2]. The two main

advanced algorithms which this report will focus on

are the dynamic window approach (DWA) and

timed elastic bands (TEB), both of which are

described in 2.3.2.1 and 2.3.2.2 below.

2.3.2.1. Timed elastic bands (TEB)

A traditional “elastic band” refers a path which can

morph and change to avoid collisions and make

adjustments in real time. An elastic band is

represented by a sequence of n intermediate vehicle

poses. Each robot pose is denoted by the following

vector:

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

8

Equation 1: Elastic band pose vector [3]

x and y refer to the position of the vehicle with

respect to the world coordinates and β refers to the

vehicle orientation as an angle.

The TEB algorithm augments the time intervals

between all the intermediate robot poses, resulting

in a sequence of n – 1 time differences, denoted by

∆ti. Each of these ∆t values is the time it takes for

the vehicle to move from one pose to the next.

Equation 2: Sequence of time differences [3]

Therefore, the TEB algorithm can be denoted as a

tuple of the pose sequence and time difference

sequence:

Equation 3: Tuple of both sequences [3]

Figure 5: TEB sequence of poses and time differences

[3]

TEB operates by constantly adapting and

optimising the two sequences by using a weighted

multi-objective optimisation in real time [3]. The

objective function is denoted by:

Equation 4: TEB objective function [3]

The objective function is a weighted sum of fk

constraints which rate the velocity and acceleration

limits of the poses in terms of penalty functions.

The penalties are based on the poses which result in

the shortest and fastest trajectory. This makes TEB

a very time-focuses algorithm, as it constantly

attempts to find the next pose which results in the

most efficient path. As a result, the local paths that

it generates tends to have higher efficiencies than

other algorithms.

2.3.2.2. Dynamic window approach (DWA)

The DWA is a commonly used sampling-based

optimisation approach. In this algorithm, the search

space is reduced to the velocities which are

reachable under the dynamic constraints of the

robot; e.g. its maximum steering angle, maximum

speed, minimum speed, etc [4]. The algorithm

firstly prunes the search space in an attempt to

reduce the amount of possible paths that need to be

considered. The search space of velocities is pruned

using three steps. Firstly, DWA considers only

circular trajectories, which are determined by pairs

of translational and rotational velocities, this also

results in a 2D search space. Assuming that the

vehicle's rotational and translational velocities are

controlled independently, the velocities can be

modelled as a piecewise constant function in time.

Under this assumption, the velocity trajectories can

be modelled as a sequence of finite circular

segments [4]. Next, only the admissible velocities

are considered. Trajectories are considered

admissible if the vehicle can stop before it results in

a collision. Lastly, the admissible velocities are

restricted by the dynamic window. The dynamic

window contains only the admissible velocities

which can be reached by the vehicle within the next

simulation time interval, resulting in the search

space being reduced even further. Figure 6 below

shows an example of a dynamic window, indicated

by the green square in front of the vehicle.

Figure 6: Dynamic window and admissible velocities

After the search space has been pruned, the

algorithm will optimise the remaining velocities in

the dynamic window using the following objective

function:

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

9

Figure 7: Velocity optimisation function

The “heading” function measures the progress

towards the final goal. Its weighting is maximised

if the vehicle is orientated so that it faces the goal

directly. "dist" stands for distance. This function is

a clearance measurement. It is the distance between

the vehicle and the closest object along a trajectory.

A trajectory that contains no obstacles at all is given

the highest possible weighting. "vel" stands for

velocity. This weighting function evaluates the

robot's progress on the corresponding trajectory. Its

value is simply the translational velocity.

Each trajectory in the dynamic window is given a

score based on this objective function, the trajectory

with the highest score is deemed the most suitable

path. The corresponding velocities are sent to the

vehicle and the algorithm will repeat the process

until the vehicle reaches its destination.

Figure 8: DWA Rollout [5]

Figure 8 above shows an example situation of the

DWA algorithm in action. The blue square

represents a vehicle. In this particular example,

there are seven paths within the vehicles dynamic

window, the maximum paths allowed in the

dynamic window can usually be defined by the

user. Out of those seven paths, three of them result

in a collision, these will be instantly ignored. The

figure does not show the end destination of the

vehicle, but the remaining four paths will be chosen

based on the one which has the highest scoring.

2.3.3. Cost map

A cost map is a representation of information that

the path planners rely on, both the local and global

path planners have their own distinct costmaps.

Generally speaking, a costmap is a representation of

the “cost” of traversing to different parts of the

vehicle’s map [6]. Costmaps are commonly

composed of cells, which make up a grid-type

structure. Conceptually, the costmap for both

planners are designed to perform the same function

and provide the same utilities. But in practice, there

is a slight difference between the two. As

mentioned previously, the global planner requires a

pre-recorded map of the environment in which the

vehicle will travel through. The information stored

in the global costmap comes from the recorded

map. On the other hand, the local costmap only

contains information that the vehicle can see from

its current position, e.g. walking pedestrians and

walls. This information is usually obtained through

sensors and/or lidars.

Figure 9: Example of a local costmap [7]

Figure 9 above shows an example of a local

costmap. The highlights are used to represent the

difficulty of the vehicle traversing to those

particular positions. For example, the blue highlight

will represent a medium-high difficulty, because

those positions are close to walls and the vehicle

should try to avoid those areas. Similarly, the solid

walls are given a purple highlight, which represents

an extremely high difficulty, as it is impossible for

the vehicle to drive through walls.

3. Design philosophy

This section goes through the methodology and

steps followed during the designing phase of the

project.

3.1. Methodology

After the initial researching phase of the project, it

became clear that it was not possible for one person

to design a path planning algorithm within the given

time frame. As such, the project became more

research and experimental focused. Rather than

design something from scratch, it was more realistic

to analyse the existing algorithms which are

supported by the shuttle’s existing software

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

10

framework, compare their differences and

ultimately decide on a suitable one for use on the

UWA campus.

3.2. Requirements

The following requirements have been identified as

being critically important for the success of this

project:

• Determining which criteria are the most

crucial for assessing the suitability and

efficiency of a particular path planner

• Obtaining simulation results with each

algorithm through vigorous testing in

common driving scenarios

• Determining which algorithm is the most

suitable for the use of nUWAy in a campus

environment

3.3. The robot operating system (ROS)

ROS is framework designed for robot software

development. It is a collection of tools, libraries,

and conventions that aim to simplify the task of

creating complex and robust robot behaviour across

a wide variety of robotic platforms. nUWAy utilises

this framework in order to provide smooth

communication between all onboard equipment (on

board computers, sensors, LiDAR’s, GPS, IMU,

cameras, etc). At its core, ROS utilities a node to

node type communication system. A node refers to

an instance of a process. All of these nodes are

registered to a “ROS Master”. Which is the main

computer that ROS is operating on. After

registration these nodes are free to communicate

with one another via a publish and subscribe

messaging system. As mentioned previously in

section 2.3.2, only two algorithms were analysed.

This is because ROS has packages which

implement these algorithms already. They are

discussed in further detail in sections 3.3.5 and

3.3.6.

Figure 10: ROS communication structure [8]

3.3.1. Navigation stack

The navigation stack is a collection of nodes in the

ROS framework that determines the motion

planning of the vehicle. Conceptually, it is very

simple. The stack takes in information from

odometry and sensor streams. Based on the received

data, it will output velocity commands to the

vehicle [9].

Figure 11: ROS navigation stack setup [9]

Figure 11 above shows the default navigation stack

arrangement. There are three inputs which are

required; sensor sources, the map and odometry

sources.

3.3.2. move_base

move_base is the name of a provided ROS node that

forms a major component of the navigation stack

[10]. move_base aims to provide an interface for

configuring, running and interacting with the

navigation stack of nUWAy. Looking back at

Figure 11, move_base is the group of nodes within

the black rectangle. move_base is largely

responsible for managing all of the autonomous

path planning nodes. These nodes operate the local

and global planners and their respective costmaps.

The workflow of move_base is as follows:

• The coordinates of the final goal of the

vehicle are sent to the global planner as a

geometry message

• After receiving the final destination, the

global planner will generate the optimal

global path, which is calculated based upon

the information in the global cost map

• The global path is passed to the local

planner, which breaks the path down into

smaller and more manageable motions

which get sent to the vehicle as velocity

messages. Like the global planner, the local

planner also has a costmap which it uses to

obtain information about its surroundings.

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

11

3.3.3. ROS stage simulator

Stage is the name of a basic simulation program in

ROS. It provides a virtual 2-D world filled with

user-defined objects, obstacles and robot models.

The vehicle model will traverse through this world.

Figure 12: An example of a simulated world in ROS

stage where the blue square represents a vehicle and

the gray lines represent walls and undriveable terrain

3.3.4. RViz

RViz shorthand for “ROS visualisation”. It is a 3D

visualisation tool used for ROS applications which

shows what the vehicle sees as it travels through its

simulated environment. In this project, RViz is used

to visualise the paths generated by both the global

and local planner.

Figure 13: An example of RViz showing nUWAy’s Lidar

data [11]

3.3.5. teb_local_planner

This ROS package implements the TEB algorithm

that was previously described in section 2.3.2.1.

The current ROS implementation of this algorithm

is designed for non-holonomic robots (car-like

robots).

Figure 14: TEB path without obstacles

Figure 15: TEB path with obstacles

Figure 14 and Figure 15 above shows an example

of the paths generated by teb_local_planner. This is

a diagnostics ROS node which has been included in

the package, which allows the user to visualise the

behaviour of the path due to obstacles. The vehicle

model is not shown in these figures, but the vehicles

current position is the where the line starts on the

left and the goal is where the line ends on the right.

The TEB generated path is composed of many red

arrows in sequence, which represent the poses the

vehicle will take as time passes.

Traditionally, TEB algorithms have the tendency to

get trapped in local optima, because the algorithm

is incapable of traversing obstacles. As shown in

Figure 15, when the first object is detected, a path

is planned around it. But if that object moves to a

different location, the algorithm still includes the

object in its planned path, i.e. it doesn’t have the

ability to realise that the obstacle is in a location that

no longer needs to be part of the altered path. This

is shown below in Figure 16, it becomes apparent

that the first obstacle on the left is extremely far

away from its starting position from Figure 15 and

should be ignored by the algorithm, as it no longer

stands between the current position of the vehicle

and its end point. Thankfully, the teb_local_planner

has a way around this via parallel planning.

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

12

Figure 16: TEB stuck in a local optima

Figure 17: TEB generated parallel paths

Figure 17 above shows the generated paths from

parallel planning. The path with the red arrows

indicates the best possible route out of the potential

candidates.

Figure 18: TEB no longer stuck in local optima due to

parallel planning

Looking at Figure 18 above, this is the same

obstacle orientation as shown in Figure 16.

However, because parallel planning has been

activated, TEB is able to choose a more efficient

path and ignore the obstacle altogether.

3.3.6. dwa_local_planner

This ROS package implements the DWA algorithm

that was previously described in section 2.3.2.2. It

is actually the default local planner that the

navigation stack utilises. Unlike the

teb_local_planner package, the dwa_local_planner

package does not come with any diagnostic tools,

which made it harder to visualise the basic

behaviour of the algorithm within the ROS

framework.

In ROS the algorithm follows the same steps as

described in section 2.3.2.2:

1) Discretely sample in the robot's control

space

2) For each sampled velocity, perform

forward simulation from the robot's current

state to predict what would happen if the

sampled velocity were applied for some

(short) period of time.

3) Evaluate (score) each trajectory resulting

from the forward simulation, using a

metric that incorporates characteristics

such as: proximity to obstacles, proximity

to the goal, proximity to the global path,

and speed. Discard illegal trajectories

(those that collide with obstacles).

4) Pick the highest-scoring trajectory and

send the associated velocity to the mobile

base.

5) Repeat

Figure 19 below shows an example of DWA

operation. The local costmap of the vehicle is also

shown. The red line represents the global path and

the shorter blue line represents the trajectory that

was chosen after the control space is pruned and the

admissible velocities within the dynamic window

were scored.

Figure 19: Example DWA operation in RViz

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

13

3.3.7. Vehicle modelling

The ROS planners allow the user to specify a

footprint model of the vehicle, which approximates

the vehicle’s 2D shape. The footprint model is

essential for optimisation and accurate simulations,

as it determines the complexity of calculations and

affects computation time [12].

There are a total of five footprint models to choose

from:

1) Point

A single pixel point is used to represent the

vehicle. This model results in the least

amount of computation time as it requires

very simple distance calculations.

2) Circular

A single circle with a user-defined radius is

used to represent the vehicle. Calculations

are similar to the point model, except with

the added radius parameter.

3) Line

Vehicle is modelled using a line defined by

a start point and end point.

4) Two circles

Vehicle is represented using two circles

with user-defined radii and an offset value.

Results in high computation times as two

distance calculations are required, one for

each circle.

Figure 20: Two circle model [12]

5) Polygon

More complex vehicle models which are

represented by shapes with many edges.

The edges are defined by coordinate

vertices. Computation time varies

depending on the number of edges in the

polygon.

For the simulations, the line model is chosen as it is

the most suitable for modelling vehicles that have a

rectangular shape. The exact length and width of the

line was chosen to represent the shuttle as closely

as possible.

Figure 21: Line footprint model [12]

3.4. Final experiment setup

The final experiment design involves comparing the

performance of the two algorithms through fair

testing simulation experiments. Firstly, the ROS

system was setup on a personal MacBook Air,

running Ubuntu 18.04. nUWAy uses the Melodic

version of ROS, to ensure fair testing and

consistency, this version of ROS was also installed

locally to house the simulations.

The simulations are setup using ROS stage and

RViz, both of which have been described in section

3.3. ROS stage requires the user to input a map file,

which the simulator uses to build the simulated

world for the vehicle. A map of the entire campus

has been recorded and developed by a previous

student. Unfortunately, this map is very large and

resulted in the simulations performing very poorly,

mainly due to limited processing power. This led to

inconsistent results and constant software crashes.

As a result, two smaller and more resourceful maps

were used, both of which were included within the

ROS navigation package. These maps have a much

lower resolution and more simplicity.

Figure 22: Corridor map

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

14

Figure 23: Maze Map

Figure 22 and Figure 23 above show the example

maps that were used throughout the simulations.

The black lines in the maps represent walls, which

the vehicle will not be able to drive through. When

these maps are loaded into ROS stage, obstacles can

be placed inside the virtual world.

RViz is then used to send goal positions to the

vehicle and visualise how the vehicle views its

immediate environment and the behaviour of the

path planners. Looking at Figure 24 below, the

purple arrow is controlled by the user via a click and

drag of the mouse. The location of the arrow on the

map represents the destination coordinates of the

goal and the direction of the arrows represents the

orientation that the vehicle must finish in. In Figure

24, the arrow is pointing upwards, which means that

the vehicle must reach that destination with the

front facing upwards on the map.

Figure 24: Setting a goal in RViz

In order to replicate the situations that the shuttle

will encounter as it drives on campus, both

algorithms will be simulated in the following

scenarios: straight-line driving, static obstacle

avoidance, simple turns, turning with limited space

and complex manoeuvres.

Straight line driving

This is a very simple scenario that tests the local

planner’s ability to stick to the global path when

there are no path changes required. Although it

might seem unnecessary, this is an extremely

important test because approximately 80% of the

route between the Reid Library and Business

School is a straight road. As such, the algorithms’

ability to adhere to a straight global path must be

confirmed.

Static obstacle avoidance

When driving along the designated route, there will

be many cases where nUWAy will need to plan a

path around obstacles. A common example would

be parked security vehicles. On campus there are

many security buggies that usually park towards

one side of the road. nUWAy always be driving on

the left hand side of the path, as a result there will

be many cases where a parked vehicle needs to be

avoided. Another potential need for avoidance will

be road construction, where the vehicle will have to

avoid undriveable terrain.

Simple turns

Along the two potential routes there are times when

the shuttle needs to follow a curved path, next to

James Oval for example, and also make simple

turns. Once again, this is testing the planner’s

ability to stick to the global path when no path

changes are necessary.

Turning with limited space

There is one turn near the business school where

there is limited room for turning, even driving the

bus manually through this turn proved difficult at

times. By implementing this scenario in the

simulation, the intelligence of the algorithms can be

tested to see if they can perform the necessary

adjustments to the vehicle to perform the turn.

Complex manoeuvres

Although nUWAy mainly does simple straight

driving, it will be a huge bonus if the vehicle can

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

15

perform manoeuvres such as reverse parking. This

also further tests the limits and intelligence of the

algorithms.

In each of the scenarios mentioned above, the

performance of each algorithm will be compared

and discussed. Additionally, the following factors

will also be discussed: computational intensity,

parameter customisation, documentation and

resource availability.

4. Results

The following section outlines the simulation

results of the two algorithms.

4.1. Straight line driving

The corridor map is used to test the straight-line

driving ability of both algorithms. The initial pose

of the vehicle is set towards the upper wall of the

corridor, to simulate the left-hand side of the road if

the vehicle’s forward movement is towards the right

of the map.

Figure 25: The starting position of the vehicle for the

straight-line driving test

To no surprise, both algorithms perform the same in

this scenario. Once the global path has been

generated by the global planner, the local path

simply follows it. This behaviour is expected, as

there are no obstacles in the vehicle’s immediate

viscinity and there is no need to deviate from the

global path.

Figure 26: RViz showing straight line driving using

TEB

Figure 27: RViz showing straight line driving using

DWA

Figure 26 and Figure 27 show the RViz display of

the two planners during this scenario test. The path

colours are set to different values for easier

distinction.

4.2. Static obstacle avoidance

This test uses the same map setup as the previous

straight-line test. Except this time, an obstacle is

added, which is represented as a blue square in the

ROS stage simulator. It is important to observe how

the algorithms react when an obstacle is detected

while the vehicle drives along the global path. Just

like the previous test, the initial pose of the vehicle

is set towards the top wall of the corridor.

Figure 28: Initial position of the vehicle for straight

line driving simulation

Figure 29: Vehicle avoiding the obstacle in ROS stage

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

16

Figure 30: RViz showing the morphed path that TEB

generates upon obstacle detection

Figure 31: RViz showing the chosen simulated path that

DWA has chosen to avoid the obstacle

Both algorithms were able to successfully pass the

test of this scenario. Once the vehicle detected the

object, it appears on RViz. The local paths

generated by the local planners successfully deviate

the vehicle from the global path in order to avoid

the obstacle. Once the vehicle has moved past the

obstacle, the local planners bring the vehicle back

onto the original global path and continues

travelling along that path until it reaches the end

goal.

4.3. Simple turning

The various walls and corners in the maze map were

used to test the turning ability of the planners. For

all the turns, both planners were able to make the

necessary adjustments to avoid hitting corners and

reach their goals.

Figure 32: TEB doing a simple turn

Figure 33: DWA doing a simple turn

However, it is worth noting that TEB results in

much smoother vehicle movement. With DWA, the

vehicle is very jerky and shaky when it makes a

turn. In practise, this could potentially lead to

passengers becoming off balance, which is a safety

risk.

4.4. Turning tight corners

The initial position of the vehicle is set near the

maze wall to simulate the edge of the driveable

terrain and a rectangular obstacle is placed on the

corner to restrict the amount of room available for

the vehicle to turn.

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

17

Figure 34: Initial starting position for the tight corner

turn test, the blue obstacle is positioned to act as a wall

Figure 35: Setting the destination for the tight corner

turn

Figure 36: RViz showing the TEB generated path for

turning the tight corner

The TEB algorithm successfully navigates the

vehicle around the corner without any issues. The

algorithm is intelligent enough to realise that there

isn’t enough room for the vehicle to make the turn

with its current distance from the wall. This can be

seen in Figure 36. The red arrows show the

morphed local path produced by TEB, which has

deviated from the original global path (indicated by

the green line), notice how the local path is not

aligned with the global path and causes the vehicle

to turn slightly outwards before performing the left

turn. After the turn has started, the local path also

goes back to following the global path.

Figure 37: Vehicle colliding with wall while using DWA

Figure 38: RViz showing vehicle collision and

generated paths while using DWA

Unfortunately, the DWA algorithm is not able to

successfully perform the turn. Looking at Figure 38,

after the destination is set, it seems that DWA is

able to produce the first segment of the local path,

which aligns with the direction of the global path

(indicated by the orange line), but the physical

movement of the vehicle does not obey the planned

paths. Unfortunately, this problem was not

successfully debugged, as there are many

possibilities for the cause.

4.5. Complex manoeuvres

This scenario tests the planners’ abilities to make

the vehicle perform a reverse park, starting at a

reasonable distance from the parking space. A

rectangular obstacle is placed parallel to the maze

wall to represent a space for the vehicle to park.

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

18

Figure 39: Starting position of the vehicle

Figure 39 above shows the starting position of the

vehicle. In this test, the line of sight of the vehicle

is also shown, which makes it easier to visualise the

front of the vehicle.

Figure 40: Setting the end goal and end pose using

RViz

Figure 41: TEB moving the vehicle towards the parking

space

Figure 42: RViz showing the local paths generated by

TEB when performing a reverse park

After receiving the end goal in the parking spot,

TEB firstly brings the vehicle towards the parking

spot. Figure 42 shows the decision making of the

planner, after the blue rectangular obstacle has

appeared in the vehicle’s detection range. The local

path is morphed so that the vehicle performs a right

turn, which then allows for a reverse motion to

move the vehicle to the set goal with the correct

orientation. Figure 43 below shows the finishing

position of the vehicle.

Figure 43: TEB successfully completing a reverse park

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

19

Figure 44: DWA fails to plan local paths required for

reversing

Figure 45: Final pose while using DWA

On the other hand, DWA was not able to

successfully perform a reverse park. The vehicle

simply drives forward until it reaches the

destination. It became extremely apparent in this

experiment, that DWA has issues obeying the final

orientation of the user defined goal. It is able to

bring the vehicle to the end point, just without the

correct orientation. Similar to the previous issue,

where the vehicle drove into the wall, the

orientation error was unable to be debugged

successfully.

4.6. Computational intensity

Since there is limited computational power on the

nUWAy shuttle and new software is constantly

being added to it, it is important to note which

algorithm is more resourceful. As mentioned

previously, all testing and simulations were done on

a personal laptop which had limited computing

power. The CPU usage of the simulator is found by

using the “activity monitor” program on the Ubuntu

operating system. Throughout all the simulations,

the CPU usage stayed fairly consistent for the two

algorithms. However, TEB seemed to be the

slightly less demanding algorithm, averaging at

around 14% CPU usage. On the other hand, DWA

resulted in the simulation process averaging at

around 21% CPU usage. This is a minor difference

but it is still worth keeping in mind.

4.7. Ease of use, customisation and flexibility

Ease of use is an important factor when comparing

the algorithms because eventually they will be

installed into the existing infrastructure of the

shuttle and future students joining the project will

need to learn how to operate them. As such, it is

important that the algorithms are able to be easily

integrated into nUWAy’s existing ecosystem.

Because both of the packages which implement the

algorithms are designed for use within ROS,

installing them on a local machine was relatively

straight forward. Installation on the nUWAy system

should follow the exact same steps. Operating the

algorithms is also extremely straightforward, all

that is required is for a goal to be set using RViz.

The parameter settings of the two algorithms can be

modified by changing the values within their

configuration files. The parameters allow the user

to customise the behaviour of the vehicle and tune

certain settings to optimise performance. As

mentioned previously in section 3.3.7, the line

model footprint was chosen, as it best represents the

shape of the nUWAy shuttle. Both algorithms offer

full customisation of the vehicle footprint, which

means that the algorithms can be tuned to obey the

physical dynamics and constraints of nUWAy.

When it comes to the driving behaviour, TEB has a

much wider range of parameters which can be

customised. It also allows for more specific

customisations. For example, when setting the

minimum distance of the vehicle from obstacles,

TEB allows the user to input specific numerical

values, down to two decimal places. This is a great

feature, as it allows the user to specify the exact

distance from obstacles that is deemed safe. With

the distance parameter settings of DWA, the user is

unable to specify exact numeric values, only the

obstacle weighting values. This means that it is

ultimately up to the algorithm to decide the exact

minimum distance between the vehicle and

obstacles.

TEB also has more optimisation settings, which

adds flexibility. These settings allow the user to

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

20

control how strictly the vehicle must adhere to the

weightings and penalties that the algorithm

calculates from the costmap data. In practise,

sometimes the vehicle will miss waypoints, miss the

end goal or fail to reach the velocity that the

algorithm passes to it. If the strictness is set to high

values, the algorithm will think the vehicle has

failed to respond to its commands, which leads to

unwanted and unexpected behaviour. This was a

common problem during testing of the global path

planner. The shuttle would drive back and forth

between two way points because one of them was

missed by a small distance. By allowing the user to

customise these strictness settings, it gives the

vehicle more room for error without resulting in

software crashes or unexpected behaviour. TEB

offers many optimisation parameters for the vehicle

speed, vehicle angular velocity, end goal tolerance

and waypoint tolerance, just to name a few. On the

other hand, DWA only offers a goal distance and

path distance tolerance.

4.8. Resource availability

The ROS system operating on nUWAy will only get

more complicated as newer software is constantly

being added. As mentioned previously, there are

many elements which are responsible for successful

autonomous driving. If any of these elements run

into any problems, the entire driving system

collapses. Installing and debugging these planners

can be a difficult task and any help from online

resources and/or documentation can go a long way.

By far, TEB is the newer and more popular

algorithm. Not only does it have more online

resources, it is also the topic of many more

published papers. The ROS wiki also has a list of

in-depth tutorials that guides the user through

installation, testing and parameter tuning. For

DWA, there are barely any guides or documentation

on the ROS wiki and it is not nearly as popular as

TEB.

4.9. Summary of findings

In the straight line test both algorithms behaved in

the exact same way. This was a simple but

important experiment that aimed to test the

algorithms’ ability to follow the global path when

no changes to the vehicles route were required. As

expected, both algorithms were able to follow the

global path without ever deviating from it.

In the static obstacle test, once again both

algorithms behaved in the exact same way. Once

the obstacle appeared in the vehicles line of sight, it

was shown on their costmaps and the algorithms

were able to plan a path around the obstacle and

deviate from the global path as required.

In the regular turning test, both planners were able

to successfully turn corners without collisions.

When needed, both planners could make subtle

adjustments to their driving angles in order to create

more space. However, because TEB results in

smoother vehicle movement during turns, it is the

superior planner in this test.

In the tight corner turn test, only TEB was able to

successfully turn the vehicle without collisions.

TEB was intelligent enough to adjust the driving

angle and create more space in order to make it past

the corner in one smooth arc. On the other hand,

although RViz showed that DWA was able to

generate a local path, the vehicle was not able to

comply, and simply drove into the wall. This

happened every single time, after countless tests

and parameter changes, DWA was never able to

successfully complete the turn.

In the manoeuvre test, the algorithms were tested to

see if they could perform a reverse park. It became

very obvious in this experiment that DWA is unable

to obey the final pose set by the user. Whereas TEB

was able to intelligently position the vehicle, make

enough room for itself and reverse into the parking

space.

Unfortunately, the tests that DWA failed were not

able to be debugged successfully. After many

parameter changes, costmap setting changes and

configuration file changes, the exact same problems

still persisted. For the tight corner test, it can be seen

that the algorithm actually produces the correct

local path, but for some reason the vehicle in ROS

stage is unable to follow. This is a very unusual

problem that is likely due to software bugs in the

actual simulator itself. Because the planner worked

fine for the scenarios without the added obstacle,

there is a possibility that there is some sort of

version incompatibility which causes unexplained

behaviour. The same can be said for the failure of

the reverse park manoeuvre.

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

21

Additionally, TEB is less computationally

intensive, offers more customisability, parameter

settings and contains much more tutorials and

documentation.

After doing a side by side comparison of the two

algorithms, it can be concluded that TEB is the

more superior planner as it didn’t run into any errors

during the experiment and was able to successfully

pass all of the simulated scenarios. It seems to be a

more intelligent algorithm than DWA, has better

decision making and offers more customisation and

flexibility.

Test case TEB DWA

Straight line driving ✓ ✓

Static obstacle avoidance ✓ ✓

Simple turns and curves ✓

Tight corner turning ✓

Complex manoeuvres ✓

Computational intensity ✓

Customisation and flexibility ✓

Documentation and resource

availability

✓

Table 1: TEB vs DWA results summary, ticks show the

better algorithm in each comparison

5. Future work

This section will outline any possible improvements

to the current research and future tasks that can

expand upon the discussed functionalities.

5.1. Performing more advanced simulations

As mentioned in section 3.3.3, ROS stage is a very

simple simulation tool. It can be argued that the

simulation environment is not very realistic, as it is

only modelled as a 2D world. A group of past

students have developed a 3D map of the entire

UWA campus within a simulation system known as

CARLA. The CARLA simulator is an open-source

simulator designed specifically for autonomous

driving research. Unfortunately, during the duration

of this research project the PC which runs the

CARLA system was out of order and could not be

used to test any of the discussed algorithms. If this

system is fixed in the near future, it would be

worthwhile to do additional testing with CARLA,

as it offers a more realistic representation of the real

world.

5.2. Testing on nUWAy

Simulations and comparisons can provide a general

insight into the characteristics and tendencies of the

algorithms, but their effectiveness in practice

cannot be perceived until they have been integrated

into the existing ROS system on the shuttle and

thoroughly tested. Because the experiments suggest

that TEB is the more suitable algorithm, it should

be the first to be installed and tested. If nUWAy

performs as the simulations suggest, then no more

needs to be done. However, if it turns out to be

unsuitable, then DWA should be tested. If problems

still persist, then further research needs to be done

on the countless path planners outside of ROS and

a custom ROS node needs to be developed by future

students.

5.3. Obstacle detection

Since nUWAy currently drives using a pre-recorded

map, it cannot recognise obstacles which appear in

its immediate viscinity. There are many devices on

the shuttle which allow for obstacle detection

development. The TEB algorithm already has the

ability to plan paths around static obstacles, the

detection is the only thing that needs to be

implemented.

5.4. Dynamic obstacle avoidance

The TEB package has dynamic obstacle avoidance

capabilities included. However, due to the nature of

the nUWAy shuttle and also the campus

environment, it was decided for this project that

such capabilities are not needed. The shuttle drives

at an incredibly slow pace (near walking speed) and

most dynamic obstacles that will be encountered are

pedestrians. Due to the size of the vehicle and its

speed, it is very unrealistic to make the vehicle

manoeuvre around people, especially during the

times between classes where the paths are

extremely congested.

6. Conclusion

To conclude, the goal of this project was to

investigate the different path planning algorithms

which are available on the ROS framework. The

Dynamic Window Approach and the Timed Elastic

Bands algorithms were the two that were

researched. Through simulation experiments, the

performances of the two planners in different

driving scenarios were observed and discussed.

After testing and comparing them side by side in a

GENG5551/5552 Research Project Final Report Daniel Trang - 22003874

22

simulated environment, it was concluded that TEB

outperforms DWA in a majority of the tests. Based

purely on the simulation results, TEB is definitely

the more suitable algorithm for the nUWAy shuttle

as it didn’t run into errors during testing, is more

efficient and has more to offer. However,

simulation behaviour can be very different from

real-world performance and some factors still

remain unknown until testing has been done on the

nUWAy shuttle.

References

[1] T. Braunl, Embedded Robotics: Mobile Robot Designa nd Applications with Embedded Systems, Berlin:

Springer, 2006.

[2] A. H. D. M. A. d. l. E. Pablo Marin-Plaza, “Global and Local Path Planning Study in a ROS-Based

Research,” Wiley, 2017.

[3] W. F. T. W. Christoph Rosmann, “Trajectory modification considering dynamic constraints,” 2012.

[4] W. B. S. T. Dieter Fox, “The Dynamic Window Approach to Collision Avoidance,” Pittsburg, 1997.

[5] “ROS.org,” [Online]. Available: http://wiki.ros.org/dwa_local_planner. [Accessed 24 3 2021].

[6] “ROS Answers,” [Online]. Available: https://answers.ros.org/question/309308/what-is-a-

costmap/#:~:text=A%20costmap%20is%20a%20fundamental,the%20ground%20is%20rough%2Fslop

ing.. [Accessed 3 5 2021].

[7] “Research Gate,” [Online]. Available: https://www.researchgate.net/figure/Left-Local-costmap-around-

the-robot-Right-Laser-scan-simulated-by-raytracing-30-points_fig6_326798547. [Accessed 2 3 2021].

[8] “Clearpath Robotics,” [Online]. Available:

https://www.clearpathrobotics.com/assets/guides/kinetic/ros/Intro%20to%20the%20Robot%20Operati

ng%20System.html. [Accessed 4 4 2021].

[9] J. S. Gill, “ROS.org,” [Online]. Available: http://wiki.ros.org/navigation/Tutorials/RobotSetup.

[Accessed 29 3 2021].

[10] N. Fragale, “ROS.org,” 03 09 2020. [Online]. Available: http://wiki.ros.org/move_base?distro=noetic.

[Accessed 2 4 2021].

[11] “The REV Project,” [Online]. Available: https://therevproject.com/vehicles/nuway.php. [Accessed 24 2

2021].

[12] C. Roesmann, “ROS.org,” [Online]. Available:

http://wiki.ros.org/teb_local_planner/Tutorials/Obstacle%20Avoidance%20and%20Robot%20Footprin

t%20Model. [Accessed 25 3 2021].

[13] C. Roesmann, “ROS.org,” 11 03 2020. [Online].

[14] O. K. Sean Quinlan, “Elastic bands: Connecting path planning and control,” Standford University,

Stanford.

