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Abstract 
This thesis aims to continue the research of the ModelCar-2 project and develop a more 

functional and reliable autonomous driving system utilizing deep learning. In the previous 

ModelCar-2 project, a fully end-to-end method that applies PilotNet neural network was 

developed, involving a current image as input (the dataset was collected by Lidar drive mode and 

preprocessed) and a steering command and speed as outputs. This method achieved the Lidar-

based methods' performance while presenting advantages like higher and consistent frame rate 

and low cost. However, a significant drawback was no past information, imposing an error-

sensitive performance, especially in high speed and complex environments. Spurred by this 

deficiency, this thesis introduces two new models: CNN + LSTM and 3DCNN, aiming for 

autonomous driving in high-speed and complex environments. This is because in deep learning 

methods, despite the current image being damaged by external factors like vibrations and 

obstructions on the camera, they can still exploit past images to produce the right steering 

decisions. Furthermore, deep learning can learn more complicated driving skills like recovering 

from failures and turning around. While building these models, multiple influencing factors are 

discussed: memory capacity, dataset balance, TensorFlow version compatibility with Raspberry 

Pi, frame rate, and Raspberry Pi’s computing power. The three experiments investigated in this 

thesis challenge the CNN + LSTM and 3DCNN model against the original PilotNet and Lidar 

models. The first one involves a maze map in the EyeSim simulator, which can run several 

models simultaneously and compare their speed, autonomy, and reliability. The second 

experiment considers the 4th floor of the EECE building, where the models circle within a 

rectangular area separately, and we compare their speed, reliability and autonomy. Finally, the 

third experiment is in the corridor of the CME building, where the models turn around in a 

narrow corridor separately, and we compare their speed, reliability and autonomy. 
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1. Introduction 

1.1 Background 
The interest in autonomous vehicles (AVs) has increased exponentially in recent years. Even 

though AVs could fully replace human drivers at the current stage, there is an irreversible 

trend towards full driving automation. In 2018, the US Department of Transportation 

National Highway Traffic Safety Administration (NHTSA) reported that 94% of severe 

traffic accidents are caused by human error in the US [1]. AVs or computer-assisted driving 

systems can significantly reduce fatalities in accidents and thus are promising to solve this 

issue. However, there are still many challenges to overcome, as the demand for AVs is not 

only to be better than human drivers but also to be economical. Hence, the technology that 

can solve these two problems simultaneously is still an open research case.  

 

Currently, most AVs companies are using Lidar to collect data. It is accurate at sensing 

distances of the surrounding environment but extremely expensive [2], while an alternative 

solution is using a camera and exploiting machine learning algorithms. Since computers 

nowadays can learn from a large dataset, using the camera to collect self-driving data is 

cheap and severely reduces the time to program complex driving algorithms. If a camera with 

machine learning can reach the performance of Lidar, then there is a high probability that we 

can afford to market AVs.  

 

Figure 1 Camera view (left), Lidar view (right), copied from [3] 
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Table 1 Lidar vs Camera, pros and cons 

 Lidar with a driving algorithm Camera with a neural network 

Pro •  Stable and mature 

• Not sensitive to weather  

• Accurate 3D measurement 

 

• Can keep learning from new data 

• Cheap 

• Can drive in any area 

• Nice appearance 

• Can read traffic signs 

 

Con • can only drive in a precisely defined area 

• exceptionally costive 

• Need extra space for sensor 

 

• Need large amounts of data for training 

• Sensitive to weather  

• Rely on powerful machine learning 

• Need a lot of computing power (GPUs) 

 

 

In 2016 NVIDIA introduced PilotNet, an end-to-end Convolutional Neural Network that 

extracts raw pixels from a single front camera image as input and produces steering 

commands as output [4]. This network has been proved incredibly powerful, but there is still 

much space for improvement, e.g., adding memory to increase driving continuity. This 

upgrade to PilotNet can be implemented in several ways: at the input side by using optical 

flow to replace raw image as input or at the neural network side by employing Long Short-

Term Memory (LSTM) to combine it with CNN. Another example is to add future 

information to increase driving reliability. To implement this, trajectories like waypoints and 

Bezier curves can replace the direct control command at the output side. All these methods 

have the potential to achieve better steering results with more profound information.  

 

Figure 2 Training the PilotNet, copied from [4] 

In 2017, an RC car equipped with a Lidar sensor and a Raspberry Pi named ModelCar was 

developed as a research project by a previous student at the University of Western Australia 

(UWA). This ModelCar project provided a Lidar-based autonomous driving baseline [5]. Three 

years later, another student at UWA continued this project utilizing NVIDIA PilotNet and 

performed end-to-end deep learning research by modifying ModelCar with a wide-range camera 
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and a plastic plate. This project named ModelCar-2 provided a camera-based autonomous 

driving baseline [6]. The ModelCar-2 now has Lidar drive mode, manual mode, and PilotNet-

drive mode. These features satisfy the prerequisites for further autonomous driving research.    

   

Figure 3 ModelCar-2 Autonomous Driving Robot, copied from [6] 

1.2 Problem Statement  
This thesis aims to continue the research on the ModelCar-2 project and find a more functional 

and reliable autonomous driving system employing deep learning. In the previous ModelCar-2 

project, a fully end-to-end method applies the PilotNet neural network was developed, exploiting 

a current image as input and providing a steering command and speed as outputs. This method 

reached the performance of Lidar-based methods, affording some advantages like higher and 

consistent frame rate and low cost. However, it has memory constraints and does not exploit 

future information for path planning. These flaws lead to prone-overfitting and overall error-

sensitive performance, especially in high speed and complex environments [7], [8].  

There are two approaches to introduce memory in the system. One is to replace raw pixels of the 

input image with optical flow imagery. This strategy solves the overfitting problem, as, during 

training utilizing the original image, the neural network struggles to memorize every detail. 

However, filtering the critical information by optical flow means the neural network has less data 

to process. An alternative approach to increase the network’s memory is adding LSTM or 3D 

CNN in the PilotNet neural network. In this case, the neural network efficiently operates within a 

high-speed and complex environment, as despite the current image being damaged by external 

factors like vibrations and obstructions on the camera, the networks still have the past images to 

produce the proper steering and speed decisions. 
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Figure 4 Camera image (left), optical flow grayscale image (right)1  

To introduce future information in the system, we use a trajectory to replace the direct control 

command as output and add an additional controller that transfers the trajectory to control the 

commands. This thesis discusses two trajectory types: waypoints and the Bezier curve. 

Waypoints are the points represented in the ground 2D coordinates, while a Bezier curve is 

defined by a set of control points that fit the waypoints. With the involvement of future 

information, the indirect control commands are much more stable than the direct control 

commands. 

Several advanced neural network models, i.e., the CNN + LSTM + optical flow (pixels to 

control), CNN+LSTM (pixels to waypoints), and CNN+LSTM (pixels to Bezier Curves 

trajectory), will be discussed. Regarding the CNN+LSTM and 3DCNN, these networks will be 

constructed and compared against the PilotNet under the same experimental setup and various 

performance metrics, including autonomy, processing speed, mean lap time, and reliability. 

1.3 Document Structure 
The thesis consists of the following structure: Chapter 2 briefly reviews the development of AVs, 

the concepts and models of deep learning; Chapter 3 describes the design preparation for this 

project, including hardware, software, and neural network models’ architecture; Chapter 4 

presents the methods to implement this project and the methods to evaluate them; Chapter 5 

introduces the results of three experiments and compares the influencing factors; Chapter 6 

derives the conclusion and future work;  

 

 

 

 

 
1 Original video from https://www.youtube.com/watch?v=7BjNbkONCFw 
 

https://www.youtube.com/watch?v=7BjNbkONCFw
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2. Literature Review 

2.1 Autonomous Vehicles 
 

Society of Automotive Engineers (SAE) has defined a standard for AVs, ranging from Human 

drive (no automation) to Full automation, six different levels in total. This standard clears the 

goal of autonomous driving research, and apparently, no AVs have reached the final destination- 

Level 5 Full automation yet. The highest level of automation widely recognized to date is 

Waymo, formerly the Google self-driving car project, which reached Level 4 High automation. 

However, Waymo can only drive in a precisely defined area like Phoenix with the Lidar-based 

technique and is exceptionally costive. On the other side, Tesla cars, electric vehicles that utilize 

the camera-based approach, are currently at Level 2 Partial automation but learning very fast 

with an enormous amount of data coming worldwide [9]. While Waymo can only get data in 

Phoenix and is limited by its fleet size and cost, Tesla needs to improve its computer vision 

technology with machine learning. Therefore, it is reasonable to think that Tesla will take over 

the market in the foreseeable future. Elon Musk is even adamant about saying Tesla will reach 

Level 5 Full automation at the end of 2021 [10] and can drive on any raw road without modern 

infrastructure. While many experts do not believe him, this message still shows the incredible 

highness machine learning can achieve.     

 

Figure 5 Tesla Model S (left), Waymo (right), copied from [9] 
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Figure 6 SAE J3016 levels of driving automation, copied from [11] 

 

2.2 Deep Learning concepts and models 

2.2.1 Convolutional Neural Networks 

A Convolutional Neural Network (CNN) is a subset of deep neural networks (DNNs) widely 

used in image analysis. Inspired by the brain’s visual cortex, CNNs have two core elements: 

partially connected layers and weight sharing. Compared with conventional DNNs that use fully 

connected layers, these elements significantly reduce the number of parameters and connections 

of CNNs. 

CNNs basically consist of several convolutional layers, pooling layers, and fully connected 

layers. Convolutional layers apply multiple filters to the inputs simultaneously. These filters (or 

convolution kernels) are different sets of weights used for filtering the receptive field (part of the 

previous layer), so they can map multiple features no matter where they are. Pooling layers 

reduce the computational load by subsample (shrink) the size of input images. Two pooling 

approaches are commonly used: max-pooling to select only the max value in a receptive field as 

output and average-pooling to average the whole receptive field as output. Fully connected layers 

are the same as in regular DNNs. They connect all neurons in the current layer to every neuron in 

the previous layer [12].  

2.2.2 2016 NVIDIA PilotNet  

In 2016, NVIDIA launched its end-to-end CNN architecture called PilotNet. End-to-end means 

PilotNet can output steering command directly from image input and successfully drive an actual 
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vehicle on public roads [4]. This network is relatively simple, so it has a bunch of space for 

improvement. 

                   

Figure 7 PilotNet Architecture, copied from [4] 

 

2.2.3 Recurrent Neural Networks 

A Recurrent Neural Network (RNN) is another subset of DNNs, different from CNN, a 

feedforward neural network. RNN has connections that feed backward. This feature allows it to 

deal with sequential data. However, the standard RNN can only remember a few sequences back, 

and the exponentially decaying gradient during backpropagation causes the “Vanishing Gradient 

Problem,” so it has not been widely used [12].  

        

Figure 8 A layer of recurrent neurons (left) unrolled through time (right), copied from [12] 
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2.2.4 Long Short-Term Memory 

Long Short-Term Memory (LSTM) is developed to solve common RNNs shortages. LSTM 

Complicates its calculations with a cell, an input gate, an output gate, and a forget gate. 

These features allow it to achieve long-term memory and eliminate the “Vanishing Gradient 

Problem” [13]. LSTM networks are usually used to classify and predict time information. If 

there is a lag of unknown duration between the basic features in the time series, the LSTM 

network can also capture it well. In addition, the relative insensitivity to gap length is a 

significant advantage of LSTM over RNN and other sequence learning methods in many 

fields. 

 

Figure 9 LSTM cell structure, FC is Fully Connected Layer, copied from [12] 

 

2.2.5 3D Convolutional Neural Networks 

A 3D Convolutional Neural Network is a neural network that uses 3D filters (kernels). This 

network is beneficial in image processing because 3D filters can extract spatial and temporal 

features from a sequence of image inputs hence obtaining action information [14].  
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Figure 10 Comparison of 2D and 3D convolution, copied from [14] 

  

2.2.6 AdmiralNet Bezier Curve Predictor 

In 2020, the Cyber-Physical Systems Link (CPS) Lab at University of Virginia (UVA) developed 

a novel end-to-end deep learning model named AdmiralNet, combining the original PilotNet, 

LSTM, and 3D convolution. This network works well on both the photo-realistic F1 racing 

simulator and the 1/10 scale racecar testbed. Unlike the original PilotNet predicting steering 

command, they use AdmiralNet to predict Bezier Curve from pixels directly. CPS Lab compared 

four different deep learning approaches: PilotNet (pixels to control), CNN-LSTM (pixels to 

control), CNN-LSTM (pixels to waypoints), and CNN-LSTM (pixels to Bezier Curves 

trajectory). The results are impressive. AdmiralNet Bezier Curve Predictor outperforms all other 

approaches[7]. This experiment shows that the autonomous driving system's performance can be 

significantly improved by adding memory and predicting trajectory instead of the control 
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command.

 

Figure 11  A F1 style control plot for a test run (left), A plot of the path followed by several deep learning approaches, copied 
from [7] 

Table 2 F1 racing game closed-loop testing results, copied from [6] 

  

AdmiralNet Waypoint Predictor outputs predicted future waypoints with a sequence of images as 

input. The loss function is composed of position loss and velocity loss [7].  
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Figure 12 AdmiralNet Waypoint Predictor architecture, copied from [7] 

AdmiralNet Bezier Curve Predictor outputs predicted Bezier Curve control points of future 

waypoints with a sequence of images. This model's loss function is particular: besides position 

loss and velocity loss, it appends control-point loss to find the perfect control points for a 

sequence of waypoints [7].  

 

 

Figure 13 AdmiralNet Bezier Curve Predictor architecture, copied from [7] 
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2.2.6.1 Bezier curve principle  

A Bezier curve is a parametric curve based on Bernstein Polynomials. It has the following 

characteristics: use a few control points to fit a set of points into a smooth and continuous curve; 

reshape curve by changing control points; additional control points in part of the curve will not 

influence the overall shape [15]. Predicting Bezier curve control points instead of waypoints in 

path planning can vastly reduce the computational load and smooth the trajectory. 

 

Figure 14 Bezier curves and their control points, copied from [16] 

2.2.6.2 Trajectory Control 

Unlike fully end-to-end models that output direct control commands, trajectory outputs must be 

fitted into an extra control algorithm to generate steering and throttle commands. Traditional 

control algorithms like PID control, Bang-bang control are not suitable for high-speed driving 

because these controls cannot handle sharp turns. Pure pursuit control is capable of this task. It is 

first introduced in 1985 [17] and has an extensive application in vehicle path following. It 

defines a lookahead distance as a product of a tunable parameter and vehicle current speed, so 

the faster, the longer vehicle will look ahead. Once the lookahead point is selected from the 

waypoints, we can use simplified Ackermann forward kinematics to drive a curve toward it [18].  

                      

                     Figure 15 Pure Pursuit Control illustration, copied from [18] 
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2.2.7 Residual Neural Networks 

A Residual Neural Network (ResNet) is a neural network with skip connections (or shortcuts) 

between layers. A skip connection and several convolutional layers compose a residual unit. This 

unit typically uses Batch normalization as regularization and rectified linear unit (ReLU) as 

activation function. This neural network is often used in more profound neural network training 

and can solve the “Vanishing Gradient Problem,” hence speeding up learning [12]. 

 

Figure 16 ResNet structure, copied from [12] 

 

 

2.2.8 2020 NVIDIA new PilotNet  

Surprisingly, NVIDIA also experimented “pixels to trajectory” deep learning method and started 

just two years after their original PilotNet. In 2020, NVIDIA shared their current achievements 

in the paper The NVIDIA PilotNet Experiments. This paper introduces a new PilotNet method 

that outputs a predicted trajectory in the car’s local coordinate system. The ground-truth 

trajectory is derived from vehicle odometry, inertial measurement unit (IMU), and GPS, then the 

data and pixel input are filled in a modified ResNet. PilotNet can also be trained to output up to 7 

different trajectories, including lane stable, change to left lane (first half), change to left lane 

(second half), change to right lane (first half), change to right lane (second half), split right 
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branch, split left branch. An advantage of the new PilotNet is that it can be easily integrated with 

other systems like obstacle detection systems [19]. 

 

Figure 17 New PilotNet displaying the Region of Interest (ROI) and 7 desired trajectories, copied from [19] 

NVIDIA's new PilotNet has the following layers in sequence: NVIDIA's new PilotNet has the 

following layers in sequence: 

• One Batch norm year 

• Four residual layers 

• Two convolution layers 

• One flattened layer 

• Five linear layers 

 It takes a sequence of images as input and outputs various trajectories. For simplicity, we choose 

line stable as the only output trajectory [19].  

 

Figure 18 Basic blocks of new PilotNet, copied from [19] 

 

Figure 19 Full new PilotNet architecture, copied from [19] 
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2.2.9 Optical Flow Principle 

Optical or optic flow is the apparent movement velocities of objects attributable to relative 

motion between viewer and scene. It is extracted from two consecutive frames with space and 

time information and can be roughly divided into two categories: sparse optical flow and dense 

optical flow.  Lucas–Kanade method can calculate Sparse optical flow. This method is suitable 

for high noise images. Other methods like Horn–Schunck method and Gunnar Farneback method 

can calculate Dense optical flow. Horn–Schunck method uses flow smoothness assumption, 

while the Gunnar Farneback method uses polynomial expansion. Optical flow has extensive use 

in motion detection and video classification. As shown in Fig. 20, the motion of pixels is 

captured. 

  

Figure 20 Optical flow explanation, copied from [20] 

2.2.10 AdmiralNet with optical flow 

CPS Lab also tried optical flow with their AdmiralNet: optical flow + CNN + LSTM (pixels to 

control). Instead of only taking raw image pixels as input, they computed the optical flow vector 

field as additional input. The results are astounding. The RMSE of steering angle prediction was 

reduced 4 to 6 times [21].                   

Table 3 Comparison between steering angle predictions, copied from [21] 

 

AdmiralNet with optical flow contains original PilotNet, LSTM, and 3D convolution. To add 

optical flow, firstly calculate the optical flow vector fields by Farneback method, secondly 
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separate it into horizontal vector fields and vertical vector fields, finally combine these two 

channels with a grayscale image as three channel input [21]. 

  

Figure 21 AdmiralNet+optical flow architecture, copied from [21] 

3. Design 

3.1 Hardware 

3.1.1 ModelCar-2 Autonomous Driving Robot 

ModelCar-2 is available as a result of a previous student research project [6]. The components 

are as follow: 

Table 4 Hardware table 

Name Type Function 

RC car Traxxas Stampede XL-5 Actuator, platform 

Embedded Controller Raspberry Pi 4 Model B Central controller that 

connects all hardware 

Camera 5MP OV5647 Digital Camera 

with LS-40180 Fisheye Lens 

Deep learning data collector 

2D LIDAR Unit Hokuyo URG-04LX-UG01 

LIDAR 

Data collector, Lidar 

autonomous driving mode 

Handheld Controller Logitech F710 Gamepad Manual Driving control and 

program menu navigation 

Power Bank Rock space 10000 mAh 

power bank 

Power Raspberry Pi and the 

LIDAR unit 

Screen 3.5 Inch WaveShare LCD 

Touchscreen 

Display the user interface 

Battery Traxxas Battery, 3000mAh 

(NiMH, 7-C hump, 8.4V) 

Power RC car 
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3.2 Software 
Table 5 Software table 

Name Function 

RoBIOS2 The RoBIOS-7 library is an application programming interface (API) 

designed for the ‘EyeBot’ mobile robot family [22] and the ‘EyeSim’ 

mobile robot simulator [23], available programming languages including 

C, C++, and Python.  

TensorFlow/Keras3 Keras is an API for Python deep learning. In this project, we need Keras 

to build architecture for several neural network models.  

OpenCV4 OpenCV is an API for image processing. It can resize, rotate, crop, and 

re-format images. 

Pygame5 Pygame is an API for video game programming. The function needed 

here is joystick control commands.  

ServoBlaster6 ServoBlaster is software for Raspberry Pi servo control. It can send 

Pulse width modulation (PWM) signals to multiple servos via the 

general-purpose input/output (GPIO) pins. 

BreezyLidar7 BreezyLidar is software for receiving Lidar data, supporting Python and 

C++ in Linux computers. 

BreezySLAM8 BreezySLAM is software for processing Lidar data, supporting Python 

in Linux computers. It can generate SLAM maps from Lidar data. 

 

3.3 ModelCar-2 
Except for replacing the new battery and wrapping the tires with tape to reduce friction, the 

overall components of the ModelCar-2 have not changed. It should be noted that the cable 

 
2 https://robotics.ee.uwa.edu.au/eyebot/Robios7.html 
 
3 https://github.com/keras-team/keras 
 
4 https://github.com/opencv/opencv 
 
5 https://github.com/pygame/pygame 
 
6 https://github.com/richardghirst/PiBits/tree/master/ServoBlaster 
 
7 https://github.com/simondlevy/BreezyLidar 
 
8 https://github.com/simondlevy/BreezySLAM 
 

https://robotics.ee.uwa.edu.au/eyebot/Robios7.html
https://github.com/keras-team/keras
https://github.com/opencv/opencv
https://github.com/pygame/pygame
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster
https://github.com/simondlevy/BreezyLidar
https://github.com/simondlevy/BreezySLAM
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connecting the power bank and the Raspberry Pi must transmit a stable current of 2A. Otherwise, 

the SD card will be damaged due to an insufficient power supply.            

 

Figure 22 ModelCar-2 Appearance 

The ModelCar-2 uses the RoBIOS GUI as the low-level control program, so users can efficiently 

operate it via a touch screen or gamepad. There are three driving modes: manual, camera neural 

network, and Lidar. The manual drive mode uses the gamepad to control the speed and steer the 

robot, and image recordings are possible at a 30Hz frame rate. Lidar drive mode uses the Lidar 

sensor to measure the distance of the surrounding environment and then inputs these distances 

into a fine-tuned algorithm to calculate the speed and steering of the robot. The camera neural 

network drive mode uses the camera to capture images and then feeds these images into a trained 

neural network to generate the speed and steering of the robot. 

    

Figure 23 ModelCar-2 Program Main interface (left) Manual Drive Mode (right) 
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Figure 24 Camera Neural Network Drive Mode (left) Lidar Drive Mode (right) 

 

Arrows of different colors indicate the control flow of the three driving modes in Fig. 25.

 

Figure 25 Simplified Control Flow for ModelCar-2 
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3.4 Neural network models 
This part introduces the neural network models intend to design in the project.       

                                                                                  

Figure 26 Original PilotNet Architecture (left)  3DCNN Architecture (sequence length=5) (right) 
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Figure 27 CNN+LSTM Architecture (image c: current image, image c-i, i=1,2,3,4: past 4 images) 
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3.4.1 Original PilotNet 

The previous work experimented with the original PilotNet using speed as additional output and 

dropout for the deep network's regularization [6]. We adopt this architecture, which is illustrated 

in Fig.26 left diagram. Input normalization converts the image pixel values from (0-255) ‘uint8’ 

type to (0-1) ‘float’ type. The activation function used by the model is ‘ELU,’ and its output 

range is [0, inf]. If the input is not normalized, the activation function will encounter the 

“Exploring Gradient Problem”, so the next two models also applied input normalization. 

 

3.4.2 CNN+LSTM 

The CNN+LSTM model (Fig. 27) involves an LSTM layer between the fully connected layers 

(dense layer) and the 2D convolutional layers. Furthermore, the input changes from a single 

image to an image sequence (in this case, five images in a row), where the current image and 

past four images are input into five convolutional layers separately, which are then input into the 

LSTM layer together. The LSTM layer can extract information along the timeline and assist the 

model in making better decisions. This model also uses GlobalAveragePooling2D layers to 

replace the Flatten layers, where the latter layer transforms a multi-dimensional tensor into a 

one-dimensional tensor. This transformation has a risk of overfitting, especially for complex 

models. However, the GlobalAveragePooling2D layer solves this problem because it sums out 

spatial information and has no parameters to optimize. Batch Normalization transforms the data 

to a zero mean and a unit variance, reducing the “Vanishing or Exploring Gradient Problem,” 

affording a higher learning rate and speeding up the entire training process. 

 

3.4.3 3DCNN 

The 3DCNN model (Fig. 26 right diagram) uses 3D convolutional layers instead of 2D, with the 

additional dimension employed as a timeline. Specifically, when the input is an image sequence, 

it obtains both spatial and temporal information. The GlobalAveragePooling3D layer is similar 

to the GlobalAveragePooling2D layer but with an additional dimension for pooling. 

 

 

3.4.4 Other models 

Initially, several models were planned to be built, due to multiple reasons, the following ones 

were not developed:  

1. CNN+Optical flow 

2. ResNet (pixels to waypoints) 

3. CNN+LSTM (pixels to waypoints) 

4. CNN+LSTM (pixels to Bezier curve) 
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The CNN+optical flow model was intended to be built but was not due to time shortage. 

Nevertheless, the preliminary results show the potential of this model, with Fig.28 presenting the 

optical flow capturing the essential features, i.e., the walls’ edges.  

 

  

Figure 28 Optical flow in EyeSim Maze Drive View (Left: original image, right: grayscale image with optical flow) 

The ResNet (pixels to waypoints), CNN+LSTM (pixels to waypoints), and CNN+LSTM (pixels 

to Bezier curve) models require an IMU or GPS device to record waypoints for neural network 

training. These models were not built because no such devices were available during this project. 

Additionally, even if these models were built, the computing power required exceeds the 

available platform one as Raspberry Pi 4 can barely run the CNN+LSTM (pixels to control) 

model, with only input sequences. However, the pixel-to-waypoint and pixel-to-Bezier-curve 

models have input and output sequences, further increasing the computational load. 

 

 

4. Method 

4.1 Simulation 
Before any practical experiments, it is mandatory to try the neural network models on simulation, 

e.g., the EyeSim platform. The latter is a mobile robot simulator for the EyeBot family that can 

simulate a mobile car, which has attached a camera, Lidar, a PSD sensor, and an LCD screen for 

the camera and data display. 
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Figure 29 EyeSim Maze Map 

4.1.1 Data collection, preprocessing and augmentation 

Data collection 

A well-designed autonomous driving algorithm is preferred against a button control algorithm to 

reduce human error when obtaining data for the neural network's training. Thus, we apply a 

simulated Lidar-based algorithm to drive the ModelCar-2 in the maze map. During this process, 

we exploit the camera to capture images and store them with a labeled steering angle and speed 

until adequate training images are captured. 5,110 clockwise driving images and 5,166 anti-

clockwise driving images (10,276 images in total) were collected in the simulation experiment. It 

should be noticed that the Lidar drive mode captures 700 images per lap with a frame rate of 

10Hz, and thus, 10,276 images require 15 laps to collect, presenting an adequate training data 

density. The captured images with labeled steering angle and speed are stored in the npy format, 

a NumPy-array format that is small and expandable with additional information like labels. 

Considering the speed, 150 is the corresponding stop value. If the speed exceeds 150, the robot 

will drive forward. Otherwise, the robot will drive backward. In any case, the higher the value, 

the faster the robot moves. Regarding the steering angle, 150 is the value corresponding to a 

straight motion. If the steering angle exceeds 150 the robot turns left (maximum value is 200, 

corresponding to a 90-degrees left turning). Otherwise, the robot will turn right (100 is the 

minimum value, corresponding to 90 degrees right turning). Before the neural network training, 

the images are randomly split into three datasets: training, validation, and testing, with the latter 
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involving 0.4% of the total images, and the remaining imagery is split into a 4:1 training-to-

validation ratio. 

 

Figure 30 EyeSim Maze Map: Speed Data (left) and Steering Angle Data (right) Distribution 

Data preprocessing  

The driving program using RoBIOS API captures 320x240 RGB images. Each image is first 

converted to the YUV color space, then passes through a Gaussian blurring filter, and is finally 

resized to 200x66. The YUV color space helps adjust the brightness (further details on this 

process will be mentioned later). The Gaussian blurring filter smooths the resizing process and 

prevents image distortion [24]. Given that 200x66 is the input size of the original PilotNet, the 

entire PilotNet architecture is built based on this size, so there is no need to modify that. 

Additionally, a smaller size can help reduce the computational load, especially when generating 

image sequences for CNN+LSTM and 3DCNN models. 

Data augmentation 

Data augmentation increases the size of the dataset by generating variants of the data. This can 

improve the model’s generalization and robustness [25], but excessive augmentation generates 

much noise preventing the model from learning. Thus, the extent of data augmentation needs to 

be well considered. This thesis considers two data augmentation types: blurring and flipping. 

Blurring helps the model learn more holistic features without overlearning on the minutiae, while 

image flipping balances the uneven distribution of left and right steering data, eliminating the 

dataset’s inherent bias assisting the models' better learning. Each augmentation is randomly 

applied to 5% of the training data in a single batch.  
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Figure 31 Simulation Image preprocessing (left), Simulation Image Augmentation (right) 

 

4.1.2 Image sequence generation 

To generate an image sequence for the CNN+LSTM and 3DCNN models, we arrange the 

collected pictures in order and use a sequence-length window to slide from the beginning to the 

end by sliding one image at a time. Each sequence uses the labels of the last image. 

4.1.3 Model training 

The model training employs the bagging strategy. Bagging or bootstrap aggregation refers to the 

process of randomly sampling the dataset with replacement in each batch [12], significantly 

reducing the dataset’s variance. Avoiding overfitting and saving training time can be achieved by 

including early stopping, learning rate decaying, batch normalization, and dropout. This project 

has a total of three neural network models to train. Thus, we first fit the data into each model 

with its specific inputs and then train it on Ubuntu 19.04 with two NVIDIA 1080Ti GPUs. Once 

training finishes, we copy the models to the EyeSim model folder for further exploitation.  

Table 6 Basic parameter settings for model training 

Batch size Training steps Validation steps Epochs Early Stopping Learning rate schedule 

32 Number of raining 

image /batch size 

(If using data 

augmentation then 

times three) 

Number of 

validation image 

/batch size 

 

100 If the validation 

loss does not 

improve within 

10 epochs, stop. 

If the validation loss 

does not improve within 

four epochs, reduce it to 

one-fifth of the original. 

(Initial: 0.001, 

minimum: 0.000001) 

 

 

4.1.4 Validation and comparison methods 

Open-loop metrics consider the following: 
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i. Separate the training set and validation set with an 0.8 training ratio and then 

calculate the Mean Square Error (MSE) of each model.  

ii. Calculate the steering angle and speed accuracy of each model. 

iii. Display the saliency map to show the inner layer of each neural network model, with 

the highlighted saliency map being the model’s focus. If the model is appropriately 

learning, the walls’ edges should be the focus. 

The training loss (MSE), validation loss (MSE), steering angle accuracy, and speed accuracy are 

calculated in each epoch during the model training by Keras API. 

Saliency maps are shown after training using the Keras.vis API 9. 

 

Closed-loop metrics consider the following: 

We separately run the models in the EyeSim maze map and apply the following metrics: 

i.  Mean Lap time[18]: if a lap is note finished, the label “did not finish”  (DNF) is placed. 

ii. 𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑦 [3]: The percentage of time the network model drives the vehicle without 

human intervention.  

𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑦 =  (1 − 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ×  ℎ𝑢𝑚𝑎𝑛 𝑟𝑒𝑠𝑒𝑡 𝑡𝑖𝑚𝑒[𝑠𝑒𝑐𝑜𝑛𝑑𝑠]

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒 [𝑠𝑒𝑐𝑜𝑛𝑑𝑠]
)  × 100% 

The ModelCar-2 driving program has a pause function. Each time the robot hits a wall or stops 

moving, the pause button will be pressed and counted as an intervention. We set the manual reset 

time to 5 seconds. The elapsed time is the total time minus the pause time. 

 

 

4.2 Practical experiments 
This project considers two practical experiments: driving in a rectangular loop and turning 

around at a corridor with two dead ends. 

4.2.1 Data collection, preprocessing and augmentation 

Data collection 

We apply the Lidar-based algorithm to drive ModelCar-2 on the 4th floor of the EECE building 

and the Ground floor of the CME building.  

The 4th floor of the EECE building has a rectangular loop for the Lidar drive mode to run 

continuously (Fig.32 red zone). In the Lidar drive mode, we prioritize right-turning first and 

collect 30,679 clockwise driving images. Then we prioritized left-turning first and collected 

30,518 anti-clockwise driving images (61,197 images in total). The Lidar driving mode captures 

 
9  https://github.com/raghakot/keras-vis 
 

https://github.com/raghakot/keras-vis
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590 images per lap at a frame rate of 10Hz, and thus, 61,197 images require 104 laps to be 

collected. This data density far exceeds the simulation because the natural environment is more 

complicated, and data is unevenly distributed. As illustrated in Fig. 33, the steering angle in most 

pictures is marked as 150, i.e., the car is driving in a straight line. This unbalance causes the 

model to ignore a few turns and fails a correct learning process. Thus, more data are needed to 

compensate for this bias.  

 

 

 

Figure 32 UWA EECE 4th Floor Plan, copied from [5] 

 

Figure 33 EECE Building: Speed Data (left) and Steering Angle Data (right) Distribution 

The Ground floor of the CME building has a corridor with two doors (Fig.34 red zone). If we 

close the doors on both sides, the Lidar drive mode can drive and turn around in the corridor 

without stopping. This corridor is not wide enough for the robot to make a complete U-turn, so 

the robot moves as follows. It stays in the middle of the walls on both sides. If it encounters a 

dead end, it turns left until it approaches the wall, turns right, reverses, and finally turns left to 

the center of the road to repeat the initial steps. For this scenario, we collected 47,838 images. 

The Lidar drive mode captures 560 images in one round trip with a frame rate of 10Hz. Thus, 
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47,838 images need 86 rounds to be collected. The data density is sufficient, but due to the 

design defects of the Lidar's driving program, when encountering a dead end, the robot has a 

50% chance to turn left and a 50% chance to turn right. This inconsistent behavior is not 

conducive to the training of the neural network models, with data cleaning reducing this effect. 

Hence, we manually delete the images where the car turns to the right.  

 

 

 

Figure 34 UWA CME Ground Floor Plan 

  

Figure 35 CME Building: Speed Data (left) and Steering Angle Data (right) Distribution 

Data preprocessing  

Practical data preprocessing is mainly the same process as for simulation, except that the images 

are taken by a fisheye lens, requiring additional image processing to eliminate lens distortion. 

Precisely, the images are cropped 25% of the top and 25% of the bottom before being converted 

into YUV color space. 
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Data augmentation 

Practical experiments consider an additional data augmentation process, as the brightness of both 

places is changing due to sunlight. We randomly modify the image brightness within the range of 

[-20%, 20%] and utilize brightness modification on 5% of the training data in a single batch. 

 

  

Figure 36 Practical Image preprocessing (left), Practical Image Augmentation (right) 

 

Figure 37 Practical Image Augmentation: Brightness 

4.2.2 Model training 

Practical model training is identical to the simulation. Once finished, we copy the models to the 

Raspberry Pi model folder for further manipulation. 

4.2.3 Validation and comparison method 

The practical validation and comparison methods are identical to the simulation ones. 
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5. Results 

5.1 Simulation Results 
Table 7 Simulation models comparison.  

Test                              Model CNN+LSTM   3DCNN PilotNet Lidar 

Training Loss (MSE) 11.3484 34.6803 29.1005  

Validation Loss (MSE) 4.4548 17.8612 8.1348  

Speed Accuracy 32.94% 14.19% 24.28%  

Steering Accuracy 32.78% 13.72% 22.44%  

Mean Lap Time in maze (s) 73.45 73.61 73.94 76.89 

Autonomy 100% 100% 100% 100% 

Other settings: Batch size=32, Data augmentation=False, Training steps=3*(Number of training image/batch size), Validation 

steps=1.6*(Number of validation image/batch size). 

Open-loop test 

The CNN+LSTM model affords the best performance in the open-loop test, but the metrics 

utilized do not necessarily correlate with the real driving performance. This is because the Lidar 

drive mode used to collect data is not the optimal solution, as the neural network model may 

surpass the performance of Lidar during the learning process. The more the neural network 

model mimics the Lidar drive mode, the more it is restricted by the Lidar driving performance. 

  

Closed-loop test 

In the closed-loop test, each model is applied on six laps to calculate the mean lap time, and then 

each model is subjected to two 10-minute autonomy tests. The results show that the 

CNN+LSTM model affords the shortest time per lap, but each model learns from the same speed 

samples, suggesting that the CNN+LSTM model attains a better solution and travels a shorter 

route. Overall, all neural network models can drive perfectly in a clockwise and a 

counterclockwise 10-minute autonomy test without requiring any human. Additionally, all neural 

network models are much faster than the Lidar model they learned from. Furthermore, the results 

indicate that the Lidar drive algorithm does not apply optimal route planning, deliberately 

keeping a distance from each obstacle that significantly limits its driving performance. It is worth 

noting that amending to this method optimal route planning requires significant effort, while in 

contrast, neural networks learn optimal route planning automatically. 

 

Prediction 
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The prediction process of all neural network models is very similar. Here we use the 

CNN+LSTM model as an example. Although the last image of the sequence is illustrated, the 

corresponding predictions exploit five consecutive images as input. As presented in Fig.38, the 

predicted steering angles are significantly different from the actual ones, without suggesting that 

these predictions are not good, as these "wrong" predictions allow the neural network models to 

drive the robot better than the Lidar model. 

  

Figure 38 CNN+LSTM prediction in EyeSim maze map 

Obstacle avoidance test 

In this trial, we add new walls as obstacles to test the model’s ability to avoid obstacles in the 

simulation map. All neural network models react to obstacles and change their routes, indicating 

that the neural network models have successfully learned to recognize walls and plan routes 

based on them. For illustration purposes, the new walls (obstacles) in Fig.39 are marked in red. 

Despite the Lidar model avoiding these obstacles, this model is sometimes too sensitive and 

forces the robot to turn around. This performance suggests that to avoid these obstacles ideally, 

several adjustments have to be made to the Lidar algorithm every time it encounters a new 

environment limiting its effectiveness. While the neural network models adapt to the new 

environment well without any adjustment. 

 

Figure 39 Simulation models obstacle avoidance test 

Saliency Map 
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All neural network models have successfully highlighted the walls in the saliency map. For the 

PilotNet saliency map, the red dots (high saliency) are on the walls’ edges (Fig. 40). Regarding 

the CNN+LSTM and the 3DCNN, Figs. 41 and 42, respectively, illustrate the outline of the walls 

on each saliency map. 

In terms of wall recognition, 3DCNN manages a poorer performance than CNN+LSTM because 

3DCNN employs only three convolutional layers, while CNN+LSTM utilizes five. Additionally, 

CNN+LSTM has the same weight for each image within the image sequence, while 3DCNN 

gives the middle image the highest weight. This is because CNN+LSTM processes the temporal 

and spatial dimensions separately by first extracting the spatial features in the 2D convolutional 

layers and then inputting these features into the LSTM layer to extract the temporal features. In 

comparison, 3DCNN extracts both temporal and spatial features utilizing the 3D convolutional 

layers [26]. 

  

Figure 40 PilotNet saliency map in EyeSim maze map 
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Figure 41 CNN+LSTM saliency map in EyeSim maze map 

  

Figure 42 3DCNN saliency map in EyeSim maze map 
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5.2 Practical Results 

5.2.1 EECE rectangular loop 
Table 8 Rectangular loop models comparison.  

Test                              Model CNN+LSTM   3DCNN PilotNet Lidar 

Training Loss (MSE) 2.5974 4.8579 2.5347  

Validation Loss (MSE) 0.7065 1.9746 0.8791  

Speed Accuracy 82.89% 75.67% 81.86%  

Steering Accuracy 53.27% 40.90% 54.84%  

Mean Lap Time(s) 86.63 93.85 49.34 50.65 

Autonomy 64.64% 44.10% 100% 100% 

Other settings: Batch size=32, Data augmentation=False, Training steps= (Number of training image/batch size), Validation steps= (Number of 

validation image/batch size). 

Open-loop test 

In the open-loop test, the CNN+LSTM model attains the best performance. However, the 

models’ performance does not match the closed-loop tests due to data imbalance and lack of 

computing power. 

Closed-loop test 

In the closed-loop test, each model runs three laps clockwise and three laps anti-clockwise to 

calculate the mean lap time and autonomy. Among the neural network models, only PilotNet can 

drive steadily, with the remaining two models being affected by past images and either turned 

too early or too late. Hence, except PilotNet, all methods could not stay in the middle of the road 

when going straight. 

Prediction 

Here we use the CNN+LSTM model predictions to analyze its failure. In Fig.43, the left picture 

shows the model did not learn the fine adjustments, as, without fine adjustments, the robot 

cannot stay in the middle of the road due to hardware bias. The right picture depicts the case 

where the model turned prematurely because the actual size of the robot is relatively large 

compared to the camera (it is possible that the camera does not see the wall, but the tire is 

blocked). 
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Figure 43 EECE CNN+LSTM predictions 

Saliency Map 

All neural network models have successfully highlighted the walls’ edges in the saliency map. 

 

Figure 44 EECE PilotNet Saliency map 
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Figure 45 EECE CNN+LSTM Saliency map 

  

Figure 46 EECE 3DCNN Saliency map 
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5.2.2 CME corridor 
 

 

Table 9 Corridor models comparison.  

Test                              Model CNN+LSTM   3DCNN PilotNet Lidar 

Training Loss (MSE) 19.5104 22.2323 51.1504  

Validation Loss (MSE) 1.637 2.0445 7.3155  

Speed Accuracy 72.17% 60.03% 63.98%  

Steering Accuracy 36.05% 34.35% 33.72%  

Mean Lap Time(s) 107 108 143 56 

Autonomy 84.11% 78.70% 69.23% 100% 

Other settings: Batch size=32, Data augmentation=False, Training steps=1.7*(Number of training image/batch size), Validation 

steps=1.3*(Number of validation image/batch size). 

Open-loop test 

In the open-loop test, the CNN+LSTM model performs best, matching the performance of the 

closed-loop tests.  

Closed-loop test 

In the closed-loop test, each model runs six laps to calculate the mean lap time and autonomy. 

Among the neural network models, none can complete a lap without human interventions. 

Despite both CNN+LSTM and 3DCNN models effectively turning the car around at the dead-

end without human interventions, the car hit the left wall multiple times when driving straight. 

On the contrary, PilotNet affords the car to stay in the middle of the wall when going straight, 

but it is trembling at the dead end and cannot turn around. 

Prediction 

Fig.47 illustrates two predictions where the image is labeled with the wrong speed due to Lidar 

algorithm flaws, but the CNN+LSTM model predicts it correctly. In the latter figure, the left 

picture presents the case where the robot should drive forward, but the image is labeled as 

backward, and the right picture illustrates the opposite case. These interferences increase the 

training difficulty, but models with image sequences manage a greater tolerance. 
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Figure 47 CME CNN+LSTM predictions 

Saliency Map 

All neural network models have successfully highlighted the walls’ edges in the saliency map. 

 

Figure 48 CME PilotNet saliency map 

  

Figure 49 CME CNN+LSTM saliency map 
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Figure 50 CME 3DCNN saliency map 

 

5.3 Comparison of influencing factors 

5.3.1 Data augmentation 

Simulation 

Table 10 Simulation models with (second) or without (first) data augmentation comparison.  

Test                              Model Sim_CNN+LSTM  Sim_CNN+LSTM_A 

Training Loss (MSE) 46.8248 116.4086 

Validation Loss (MSE) 20.433 14.7844 

Speed Accuracy 14.71% 24.09% 

Steering Accuracy 10.82% 11.47% 

Other settings: Batch size=32, Training steps= (Number of training image/batch size), Validation steps= (Number of validation image/batch 

size). Training steps times three if data augmentation=True. 

In the simulation experiment, data augmentation successfully reduces the validation loss of the 

model and improves its speed and steering accuracy. However, the actual performance of the two 

(with and without data augmentation) is not that different. 

 

 

 

 

 



 
50 

 

EECE rectangular loop 

Table 11 EECE models with (second) or without (first) data augmentation comparison. 

Test                         Model EECE 

_CNN+LSTM 

EECE 

_CNN+LSTM_A 

EECE_PilotNet EECE_PilotNet_A 

Training Loss (MSE) 2.5974 13.8415 2.5347 2.7068 

Validation Loss (MSE) 0.7065 0.9791 0.8791 1.1525 

Speed Accuracy 82.89% 79.82% 81.86% 82.85% 

Steering Accuracy 53.27% 44.31% 54.84% 54.20% 

Other settings: Batch size=32, Training steps= (Number of training image/batch size), Validation steps= (Number of validation image/batch 

size). Training steps times three if data augmentation=True.  

In the EECE rectangular loop experiment, none of the data augmentations schemes impacted the 

model metrics, presenting a similar performance to not utilizing data augmentation.  

CME corridor 

Table 12 CME model with (second) or without (first) data augmentation comparison. 

Test                              Model CME_CNN+LSTM  CME_CNN+LSTM_A 

Training Loss (MSE) 62.716 414.071 

Validation Loss (MSE) 4.382 241.3056 

Speed Accuracy 59.71% 26.17% 

Steering Accuracy 28.69% 10.76% 

Other settings: Batch size=32, Training steps= (Number of training image/batch size), Validation steps= (Number of validation image/batch 

size). Training steps times three if data augmentation=True.  Data augmentation applied on 20% of data instead of 5% in a batch. 

In the CME corridor experiment, we applied excessive data augmentation, with the results 

indicating that excessive data augmentation preserves a high validation loss and does not afford 

the model to converge. 
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Figure 51 CME_CNN+LSTM model loss curve with (second) or without (first) data augmentation comparison. 

 

5.3.2 Batch size 
Table 13 EECE_CNN+LSTM with batch size 1024, 128, 32 (left to right) comparison 

Test                           Model EECE_CNN+LSTM_ 

B1024_A 

EECE_CNN+LSTM_ 

B128_A 

EECE_CNN+LSTM_ 

B32_A 

Training Loss (MSE) 15.5774 14.5048 13.8415 

Validation Loss (MSE) 6.2114 3.2392 0.9791 

Speed Accuracy 59.64% 72.19% 79.82% 

Steering Accuracy 25.46% 37.94% 44.31% 

* B stand for batch size, A stand for data augmentation. 

Other settings: Data augmentation=True, Training steps=3*(Number of training image/batch size), Validation steps= (Number of validation 

image/batch size). 

The debate on batch size has never been conclusive. Many researchers use large batch sizes 

because it improves the efficiency of GPU usage (parallel processing), but many experiments 

show that small batch sizes can produce good results in a shorter time [12]. In this experiment, 

the batch size has been adjusted many times, with Table 13 highlighting that a smaller batch size 

produces better models. This is reasonable, as the more significant the batch size, the more 

accurate the learning during each epoch, but the longer the learning time. The large batch size 

model will likely be stopped by early stopping before reaching the global optima. Although a 

model with a large batch size is more likely to produce the best results, the research time for this 

project is limited, and the goal of this experiment is not to reduce the validation loss but to attain 

the best real driving performance, so a small batch size is preferred.  
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5.3.3 Training and validation steps 
Table 14 Simulation models with or without more training/validation steps comparison 

                                Model                            

Test 

Sim 

_CNN+LSTM 

Sim 

_CNN+LSTM_ 

More_steps  

Sim_ 

PilotNet 

Sim_ 

PilotNet_ 

More_steps 

Training Loss (MSE) 46.8248 11.3484 18.1957 29.1005 

Validation Loss (MSE) 20.433 4.4548 9.2673 8.1348 

Speed Accuracy 14.71% 32.94% 25.20% 24.28% 

Steering Accuracy 10.82% 32.78% 24.77% 22.44% 

Normal steps: Training steps= (Number of training image/batch size), Validation steps= (Number of validation image/batch size). 

More steps: Training steps=3*(Number of training image/batch size), Validation steps=1.6*(Number of validation image/batch size). 

Other settings: Batch size=32, Data augmentation=False 

The model training uses the bagging method, and therefore data can be sampled multiple times 

within a batch. If (steps = size of dataset/batch size), then only 63.19% of the data will be 

sampled in an epoch, while if (steps =2*size of dataset/batch size) then 86.19% of the data will 

be sampled in an epoch, and if (steps =3*size of dataset/batch size) then 95.64% of the data will 

be sampled in an epoch.  

 

More training/validation steps ensure the best model training performance, but the training time 

increases substantially. From Table 14, the PilotNet presents the best training performance 

because more training/validation steps do not significantly reduce the model validation loss. 

However, the validation loss of the CNN+LSTM model drops significantly with more 

training/validation steps. This also shows that different models require different steps, with a 

more complex model usually requiring more steps. 

5.3.4 Memory capacity 

The 61,197 images collected in the EECE rectangular loop occupy 14.1GB of memory. 14.1x5 

(sequence length) = 70.5GB of memory is required to generate image sequences, but our 

computer has only 64GB, so we crop the images before creating the sequence (data 

preprocessing). The 320x340 RGB image is cropped to 200x66 YUV color space and is only 

17% of its original size, so the final image sequences are only 12GB in total, which is within the 

computer’s memory capacity. 

The computer’s memory size used to train the model determines the upper limit of the dataset, 

while more memory is needed to continue increasing the sequence length or sample size. 
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5.3.5 Quality of the dataset 
Table 15 Practical models with different input data.  

                                Model                            

Test 

EECE_ 

PilotNet_ 

30k 

EECE_  

PilotNet _ 

2x30k  

CME_ 

CNN+LSTM 

 

CME_ 

CNN+LSTM _ 

Data_cleaning 

Training Loss (MSE) 39.6818 3.0879 62.716 19.5104 

Validation Loss (MSE) 29.5848 2.3128 4.382 1.637 

Speed Accuracy 15.64% 81.67% 59.71% 72.17% 

Steering Accuracy 18.86% 50.94% 28.69% 36.05% 

EECE other settings: Batch size=1024, Data augmentation=False, Training steps=300, Validation steps=200. 

CME other settings: Batch size=32, Data augmentation=False, Training steps=1.7*(Number of training image/batch size), Validation 

steps=1.3*(Number of validation image/batch size). 

 

The data quality plays a decisive role during training the neural network model. The data quality 

of the simulation experiment is outstanding because the number of images labeled as a left turn, 

straight and right turn is the same.  

However, in reality, both datasets present several problems. The EECE PilotNet model is first 

trained with 30k images collected by Lidar driving counterclockwise, but the trained model is 

prone to turn left and hit the wall. After adding 30k images of clockwise driving with Lidar, the 

model enhances its driving stably. The CME CNN+LSTM model is first trained with 47k images 

collected by Lidar drive mode, but this Lidar algorithm has a 50% chance of doing left-turning 

and a 50% chance of doing right-turning when encountering a dead end. Thus, the trained model 

will tremble when it encounters a dead end because it cannot decide whether to turn left or right. 

After data cleaning (removing all the right-turning images), the model is trained on 43k images 

affording a smoother and faster turn at the dead end. 

 

5.3.6 TensorFlow compatibility 

Initially, this project employed TensorFlow 2.6.0, but due to the incompatibility of Raspberry Pi 

4, TensorFlow 1.13.0 was used. TensorFlow 1 can be installed on Raspberry Pi directly with the 

“pip install tensorflow” command, but TensorFlow 2 needs to install additional plug-ins. The 

CNN+LSTM model trained on TensorFlow 1 has 13Hz FPS on Raspberry Pi, but only 3Hz when 

trained on TensorFlow 2. The accuracy of TF1 and TF2 are the same, but the training time of 

TF2 is only half of TF1, so if in the future the Raspberry Pi can be fully compatible with TF2, 

then TF2 is a better choice. 

5.3.7 Speed decaying 

The speed used in this project is not the real speed but the control command to the motor, which 

has no effect on the simulation but has a significant impact on the actual experiment. The actual 
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experiment uses the ServoBlaster API to send PWM signals to control the speed of the robot. 

With 100% power, the LIDAR autopilot takes only 50 seconds to complete the rectangular loop 

of the EECE, but when the power drops to 60% it takes 59 seconds to complete. The drop in 

speed makes the time interval between the collected images inconsistent, with the models 

exploiting image sequences as input are very sensitive to it, which largely affects the training 

results of these models. 

The battery currently utilized is only 3000mAh, replacing it with a larger capacity battery 

eliminates the impact of insufficient power supply, but the speed still drops. The best way is to 

add an odometer to the robot, then employ it to get the actual speed and maintain the speed by a 

PID control algorithm.  

5.3.8 Steering bias 

In the actual experiment, the robot's steering is not perfectly balanced, and the manual driving 

mode reveals that the robot will slightly deviate to the left or right even under the command of 

straight ahead. Despite the neural network models are capable of correcting minor deviations 

during driving, only the Lidar algorithm can achieve 100% autonomy when the deviation is too 

large. Therefore, during the experiment, the front wheel screws need to be manually adjusted to 

keep the deviation within the tolerable range. 

In fact, this hardware bias can be used to build a more diverse dataset for neural network 

training. The current Lidar driving mode stays in the middle of the road when driving straight, so 

the corrective behavior after the deviation is not included in the dataset. By adding hardware 

deviations, the neural network model has more samples for extreme situations to learn from, 

which will significantly increase the stability and reliability of the neural network model. 

5.3.9 Frame rate 

 

Figure 52 Processing speed of all driving modes and neural network models 
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Corresponding FPS from Fig 52: Manual FPS= 30.35Hz, PilotNet FPS= 30.32Hz, 3DCNN 

FPS=16.33Hz, CNN+LSTM FPS=12.43Hz, Lidar FPS=10.11Hz 

The frame rate has a significant impact on the real-time robot driving performance. As the 

complexity of the model increases, the longer it takes for the model to predict. After comparing 

the input sequence length of the model, the number of neural network model layers, the 

TensorFlow version, and other factors, we find that the number of neural network model layers 

directly impacts FPS. The 3DCNN model of this experiment uses only three convolutional 

layers, while CNN+LSTM uses five convolutional layers and an additional LSTM layer. The gap 

in the number of layers imposes the FPS of the CNN+LSTM (12.43Hz) to be less than the 

3DCNN (16.33Hz). Increasing the convolutional layer of 3DCNN to five layers afforded the 

same FPS as CNN+LSTM.  

All neural network models have more minor fluctuations in processing than the Lidar model, 

which shows that the neural network models are more stable during operation. The stability will 

be a considerable advantage, especially when driving in high-speed and complex environments. 

Without replacing the raspberry pi with a higher-performance microcontroller, reducing the 

number of model layers can improve the model’s actual performance while not affecting the 

open-loop test results.  

To replace the Raspberry Pi with a more powerful microcontroller, the jetson with GPU is a 

good choice. CPS Lab at UVA, as mentioned in the literature review, also used it to do 

experiments and achieved remarkable results in its F1/10 autonomous racing research10. In the 

simulation, the FPS of CNN+LSTM and 3DCNN models are the same, if the neural network 

model is equipped with a microcontroller with GPU, then the FPS will no longer be a problem, 

and I believe that the results will be as good as the simulation experiment. 

 

 

 

 

 

 

 

 

 

 
10 https://deepracing.ai/ 
 

https://deepracing.ai/
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6. Conclusion & Future Work 

6.1 Conclusion  
This research verifies the significance of End-to-end learning for Autonomous driving systems 

and the original PilotNet model improvement by adding LSTM or 3D convolutional layers. The 

improvements are: 

The model can make more complex motions like turning around at a dead end: In the CME 

corridor experiment, the robot needs to make a series of moves to turn around at the dead ends. 

These actions are temporally sequenced, but PilotNet does not have access to temporal 

information, and these actions for it are like a single input corresponding to multiple outputs. 

Both CNN+LSTM and 3DCNN models solve this problem perfectly by virtue of their processing 

of temporal information. 

Recovery from failures: In the corridor, the robot may not succeed in a single turnaround at a 

dead end, but the CNN+LSTM and 3D CNN models repeatedly try until they succeed while 

PilotNet stops there. 

Lowering the MSE (Mean Square Error): In all experiments, the CNN+LSTM model achieved 

the best open-loop test performance. While the 3DCNN only had better open-loop test 

performance than PilotNet in the CME experiment, but this is because the 3DCNN tested only 

used three convolutional layers, if the 3DCNN uses the same number of convolutional layers as 

the other two models, it can achieve similar open-loop test performance as the CNN+LSTM 

model. 

Suggesting an ideal route and a faster speed: In the simulation experiment, all neural network 

models run through a lap faster than the lidar model, with the CNN+LSTM and 3DCNN models 

being slightly faster than the PilotNet model. This indicates that the neural network models 

optimize the route by themselves, and the addition of LSTM layer or 3D convolutional layers 

helps to optimize. 

It should be noticed that, in this experiment, the performance of the CNN+LSTM and 3DCNN 

models is limited by Raspberry Pi's computing power, as with low FPS, the model cannot turn in 

time if the speed is high. Additionally, the inconsistency of the gap between time steps due to 

speed decaying increases the difficulty of temporal information extraction. 

Besides, the data quality is more important than the model structure. No useful information can 

be obtained regardless of the model’s performance if a dataset is affected by too much noise.  

 

6.2 Future Work 
Future work shall include the following: 

Predicting waypoints using the Inertial Measurement Unit (IMU) to obtain future locations and 

optimize the path. IMU is necessary to obtain an accurate vehicle pose and comprises 

accelerometers, gyroscopes, and magnetometers that provide an attached object's angular rate, 
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acceleration, and orientation. This device uses a local coordinate system instead of a global 

coordinate system like GPS. GPS is unavailable for indoor applications, but IMU does not have 

this constraint. Using IMU-odometry fusion, we can derive the pose and direction of the attached 

vehicle, with MPU9250 being an excellent choice, as it is small, cheap, and compatible with 

Raspberry Pi. 

Adding different types of input, i.e., past steering angles and speeds. One feature of Lidar drive 

mode that no model can currently emulate is braking. The robot in this project can simulate the 

braking effect by reversing the motor. Still, when using images with brakes as a dataset, even a 

model using image sequences as input cannot tell when to brake. The driver considers the 

immediate view and the speed and direction when judging the brakes, so adding past speed and 

steering can help the neural network model learn more complex driving behavior. 

Exploiting optical flow and grayscale images as input instead of image sequences. Image 

sequences acquire temporal information but significantly increase the complexity of the neural 

network model and thus increase the processing time. In contrast, optical flow models can also 

acquire temporal information, but with lighter weight inputs and higher frame rates.  

Training neural network models to park. The action of turning around at a dead end is similar to 

parking. It may be possible to learn parking actions for CNN+LSTM and 3DCNN models. Still, 

it is more challenging to learn only with the front camera because the driver usually needs to 

look at the scene behind the vehicle and judge when parking. Installing an additional camera at 

the robot's rear, and using images from multiple cameras as input can solve this problem.  
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