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Abstract

Transferring systems desinged in simulation to reality is a difficult undertaking. The
problem has been studied for decades, yet impedes the application and transferability
of systems to date. With the advent of deep learning this problem intensifies since such
systems are prone to overfitting. This thesis aims to employ deep learning methods to
help bridge the gap between simulation and reality, applied to a lane-following task. It
compares three different types of approaches to achieve this: Domain randomization,
domain adaptation, and meta-learning. Utilizing randomized synthetic data, regularization
between domains, and auxiliary datasets, these approaches learn a task from few examples
in reality. A new approach using a combination of domain adaptation and randomization
is proposed. All algorithms are implemented and evaluated on EyeBots, a mobile robotics
platform developed by the University of Western Australia’s Robotics and Automation
Lab. Experiments show promising results on a held-out test dataset and on a real-world
test course.
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Chapter 1

Introduction

1.1 Deep Learning in Autonomous Driving

There are two main approaches to machine learning: Reinforcement learning and imitation
learning. In reinforcement learning an agent is trained to take actions that maximize a
cumulative reward. Imitation learning or supervised learning is concerned with approxi-
mating a function, given input-output pairs. Both can been applied to autonomous driving
problems, [1], [2]. This thesis focuses on imitation learning, but all algorithms evaluated
here can also be adapted and applied in a reinforcement learning setting.
A number of different problem settings arise in autonomous driving, such as obstacle
avoidance, lane-following and lane-changing, parking. The environment can be uncharted
or subject to changes and intentions of other road users are unknown. Perception of the
environment is done by sensors, most prominently cameras and Lidar sensors. The focus
of this thesis is lane-following using a single camera.
Autonomous driving encompasses many different tasks, such as recognition of surroundings
and other vehicles, pedestrians, and traffic signs; prediction of future states of the envi-
ronment, most importantly the movement of other road users; and planning to navigate
successfully in the environment, integrating information about the it, [1]. Traditionally,
these tasks would be solved independently by different subroutines but recently end-to-end
learning has successfully solved a number of challenging tasks, ranging from autonomous
driving [2] to playing video games [3]. This thesis focuses on end-to-end deep learning,
i. e. mapping directly from sensor input to output action. End-to-end learning has the
advantage of optimizing internal representation but comes at the disadvantage of reduced
interpretability.

1.2 Motivation

The application of deep learning is hampered by its dependence on large datasets and
countless training iterations, [4]. Collecting large dataset can be expensive or even

1



impossible for some applications. Also, a model trained on a specific dataset does not
necessarily transfer well to another set of data. The error on previously unobserved data
is known as the generalization error, [5].
Generalization error becomes an issue when training on simulated data. Since simulated
data follows a different data-generating process than reality models trained in simulation
do not transfer to reality without taking additional measures. For example, Hoffmann et al.
report a drop in accuracy from 93 % to 54 % when deploying a semantic segmentation road
detection model trained in simulation to reality, [6]. Clearly, there exists a gap between
simulation and reality. This thesis aims to help bridge this gap.
Aside from the gap between simulation and reality there are other application for this
kind of knowledge transfer. For example, consider the effects day and night or the seasons
on the appearance of images. While the image of a road in summer differs from that of
a road in winter the two are related and an intelligent system ought to understand this
relation. Knowledge transfer is a universal problem in machine learning and not limited
to autonomous driving.

1.3 Aim of this Thesis

The aim of this thesis is to implement a lane-following algorithms using end-to-end deep
learning using as little labeled training data from reality as possible. Lane-following is to
be evaluated on a track in simulation and reality using an EyeBot vehicle. The track is
inspired by the Carolo-Cup, an annual competition of universities to advance autonomous
driving 1. To be able to run in real-time the runtime per iteration on the target platform
should be no higher than 100 ms. Three different approaches are compared in this thesis:
Domain randomization, domain adaptation, and meta-learning.
Domain randomization aims generalize to new domains by training on randomized data.
If training data in simulation is sufficiently diverse reality appears to be like just another
randomization, [4].
Domain adaptation tries to bridge the gap between reality and simulation by penalizing
models that behave differently in those two domains. This is often achieved by adding
loss terms to the objective function that penalize a distance metric, [7].
Meta-learning trains a model to be able to adapt to new tasks fast by incorporating
learning new tasks over and over again during training, [8]. A model can then be fine-tuned
on a few examples with a few gradient steps.

1.4 Chapter Outline

This thesis is structured as follows. Chapter 2 briefly describes fundamentals of deep
learning that are required for the following chapters. In chapter 3 a variety of approaches

1Visit carolo-cup.de for more information.

2

carolo-cup.de


to transfer deep learning from simulation to reality are explained. The hardware and
software used for implementation of few selected algorithms is described in chapter 4. In
the following chapter, chapter 5, experimental results are compared and discussed. Finally,
chapter 6 concludes this thesis and gives an outlook to future work.
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Chapter 2

Fundamentals

This chapter is not an introduction to deep learning. It assumes the reader is already
familiar with deep learning. This chapter merely states some important formulae and ideas
that serve as reference and are extended upon in the following chapters. For an in-depth
treatment of deep learning see the cited sources, first and foremost Goodfellow et al., [5].
First, Section 2.1 introduces nomenclature used throughout this thesis. Section 2.2 defines
loss functions and metrics that are commonly used in machine learning. Finally, Section 2.3
briefly describes some components of neural networks and the basic algorithm to train
them: gradient descent.

2.1 Nomenclature

The following overview sheds light on nomenclature used in this thesis. It is inspired by
Goodfellow et al., [5].

f(x; θ) A function f of x parameterized by θ
∂y
∂x

Partial derivative of y w. r. t. x
∇xy Gradient of y w. r. t. x

P (x | y) Conditional probability of x given y
x ∼ P A random variable x with distribution P

Ex∼P [f(x)] Expectation of f(x) w. r. t. P (x)

2.2 Losses and Metrics

This section describes common machine learning loss functions and metrics that are used
throughout this thesis. The difference between a loss function and a metric is that a metric
is not used to compute gradients during training but merely serves evaluation purposes.

4



Softmax

The softmax function produces a probability distribution over n classes. Typically it is used
to transform logits or unnormalized log-probabilities zi of the final layer to a probability
distribution. It is a generalization of the sigmoid function. The softmax function is defined
as follows.

softmax(zi) = exp zi
n∑
j=1

exp zj
(2.2.1)

Each softmax(zi) is between 0 and 1. The sum of all softmax(zi) is 1. Using a soft-
max output is convenient for maximum log-likelihood estimation because logarithm and
exponentiation cancel out, [5].

Categorical Cross-Entropy

Given two discrete probability distributions p and q, the cross-entropy H(p, q) is defined as

H(p, q) =
∑
i

pi log 1
qi

(2.2.2)

= −
∑
i

pi log qi. (2.2.3)

The categorical cross-entropy is often used as a loss function in classification settings. Let
p be the ground-truth labels and q be the output of a classifier. Further, let the labels be
one-hot encoded, i. e. . pi is 1 for the correct class and 0 otherwise. Thus, all summands
of Equation (2.2.2) are 0 except for one.

L1 and L2 Loss

The L1 loss is given by

L1 = ‖x‖1 (2.2.4)
=
∑
i

|x|, (2.2.5)

whereas the L2 loss is given by

L2 = ‖x‖2 (2.2.6)

= 2

√∑
i

x2. (2.2.7)

Both are commonly used in machine learning for regularization. The L2 loss is the distance
to the origin. It penalizes large values disproportionally. The L1 loss is the sum of absolute
values. It is useful when small deviations from zero should be penalized, [5].
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Accuracy

In binary classification, accuracy is defined as the proportion of correct results, i. e. true
positives and true negatives divided by the total number of positives and negatives.

binary accuracy = TP + TN
P + N (2.2.8)

In can be extended to multiclass classification by accumulating true positives for each
class and dividing by the total number of data points.

categorical accuracy =
∑TP∑P (2.2.9)

Cosine Similarity

Cosine similarity—also called cosine distance—is a measure of similarity between two
vectors. Given two vectors a and b it is defined as the inner product divided by the norm.

cosine similarity(a, b) = cos(θ)

= a · b
‖a‖‖b‖

(2.2.10)

The cosine similarity is between −1 and 1.

2.3 Neural Networks

This section briefly describes convolution, the building block of convolutional neural
networks (CNNs), before introducing two variations of them: depthwise separable convolu-
tions and inverted residuals with linear bottlenecks. It goes on to explain long short-term
memorys (LSTMs), a recurrent component of neural networks. Next, the idea behind
generative adversarial networks (GANs) is described. Finally, gradient descent is briefly
outlined as it is the basic method for training neural networks.

Convolution

Convolutions are a common neural network operation for data arranged in an array, such
as an image. They have contributed greatly to the success of neural networks. Three
advantages of convolutions over fully-connected layers are sparse interactions, parameter
sharing, and equivariant representations, [5].
Assuming a square input and output, let DF be the input height and width, DK be the
kernel width and height, and M and N be the input and output depth, respectively. A
convolution is parameterized by a D2

K ×M × N kernel K. It maps an input F of size
DF ×DF ×M to a DF ×DF ×N output G, given appropriate padding, as follows, [9].

Gk,l,n =
∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m (2.3.1)
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Convolutions have a computational cost of D2
K ·M ·N ·D2

F .

Depthwise Separable Convolution

Depthwise separable convolutions are a factorization of standard convolutions. They
were contrived by [10] and popularized by [9] through their application in MobileNetV1.
A depthwise separable convolution consists of a depthwise convolution and a pointwise
convolution. A depthwise convolution applies a single filter to every input channel. A
pointwise convolution applies a 1×1 convolution to the outputs of the depthwise convolution,
combining them. Given a depthwise convolutional kernel K̂ of size DK × DK ×M a
depthwise convolution can be written as

Ĝk,l,m =
∑
i,j

K̂i,j,m · Fk+i−1,l+j−1,m. (2.3.2)

The depthwise convolution is followed by a pointwise convolution to compute a linear
combination. The authors recommend following each of the two layers with batch normal-
ization and rectified linear unit (ReLU), [9]. Figure 2.3.1 contrasts depthwise separable
convolution filters with standard ones.

Figure 2.3.1: Comparison of standard, depthwise, and pointwise convolution filters.
Source: Howard et al. [9]

Depthwise separable convolutions reduce number of parameters and computational cost.
The computational cost of a depthwise separable convolution is D2

K ·M ·D2
F +M ·N ·D2

F .
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The reduction in computational cost and number of parameters compared to standard
convolutions is

Jstandard
Jseparable

= D2
K ·M ·D2

F +M ·N ·D2
F

D2
K ·M ·N ·D2

F

(2.3.3)

= 1
N

+ 1
D2
K

. (2.3.4)

A smaller computational cost accelerates training and inference while a smaller number of
parameters reduces the model capacity, [5].

Inverted Residual with Linear Bottleneck

Inverted residual with linear bottleneck blocks are used in MobileNetV2, an improvement
of MobileNetV1, [11]. They use residual connections between low-dimensional bottleneck
layers. The low-dimensional layers are linear while the high-dimensional expansion layers
are non-linear.
A bottleneck block takes a high-dimensional input and compresses it to a low-dimensional
intermediate representation. Then, it applies a filter before mapping it back to many
dimensions. The low-dimensional subspace embeds all necessary information. An expansion
block does the opposite of a bottleneck. It takes a low-dimensional input, expands it
to high dimensions, applies a filter, and maps back to low dimensions. Each layer uses
depthwise separable convolutions.
Residual connections were proposed to tackle degrading accuracy of networks that were
too deep to train, [12]. A residual connection is a connection between layers that are
not adjacent; they are a shortcut between layers. They help with convergence rate and
training stability. Residual connections are typicaly established between high-dimensional
layers with bottlenecks in between. Inverted residuals on the other hand connect low-
dimensional layers with expansion blocks between them. They are motivated by the fact
that low-dimensional layers contain all necessary information. Figure 2.3.2 juxtaposes
bottleneck, expansion, residual, and inverted residual blocks. Experiments suggest that
inverted residuals perform better if some layers are linear, [11].

Long Short-Term Memory

LSTMs are a special type of recurrent neural network (RNN) that were first introduced
in 1997 by Hochreiter and Schmidhuber, [13]. They are explicitly designed to capture
long term dependencies and have been successfully employed in a number of applications,
ranging from speech recognition to image captioning, [5]. LSTMs networks consist of a
sequence of cells. Each unit has a cell state c and a hidden state h, both of which can be
altered by previous states and inputs. Whether and to what degree the states are changed
depends on a number of gating mechanisms.
The forget gate controls how much of the previous cell state ct−1 is passed to the next cell
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(a) Bottleneck block

(b) Residual block

(c) Expansion block

(d) Inverted Residual block

Figure 2.3.2: Comparison of different bottleneck and residual blocks. A block consists of
multiple layers. Layer thickness indicates relative number of channels. Hatched texture
layers do not use non-linearities. The last layer in lighter color marks the beginning of the
next block. When stacked, bottleneck block and expansion block are the same, save for
the beginning and end of the stack. The same is true for residual and inverted residual
block, except the layers connected have different dimensions.

Source: Sandler et al. [11]

state ct. Given the weights Uf , Wf and bias bf the forget gate equation is given by

ft = σ(Ufxt +Wfhh−1 + bf ). (2.3.5)

The forget gate output ft is given by the sigmoid of the sum of bias plus weighted sum
of inputs xt and previous hidden state. It is in the interval [0, 1], where 0 means ”forget
everything” and 1 means ”remember everything”.
The second gate is the input gate. It determines how much new information is added to
the cell state. The input gate is given by

it = σ(Ugxt +Wght−1 + bg), (2.3.6)

where Ug, Wg, and bg are weights and biases. The input gate yields the intermediate cell
state c̃t.

c̃t = σ(Uxt +Wht−1 + b) (2.3.7)
The cell state is then updated by the following equation.

ct = ftct−1 + itc̃t (2.3.8)

It is the sum of previous cell state ct−1 and modified state c̃t, weighted by forget gate ft
and input gate it respectively.

9



The output gate controls what value to output and pass on to the next cell. It is computed
from input xt and previous hidden state ht−1 using output weights Uo and Wo and bias bo.

qt = σ(Uoxt +Woht−1 + bo) (2.3.9)

The new hidden state ht is given by the hyperbolic tangent of the output gate.

ht = tanh(ct)qt (2.3.10)

Figure 2.3.3 shows the structure of an LSTM cell.

Figure 2.3.3: Long short-term memory memory cell structure. Cell state c and hidden
state h are updated using input x and a number of additions, multiplications, sigmoid
units, and hyperbolic tangent operations.

Source: Olah [14]

Generative Adversarial Networks

GANs juxtapose two competing networks: Generator G and discriminator D. The
generator generates samples while the discriminator tries to distinguish generated sampled
from real ones. The objective for training generator G and discriminator D is given by

LGAN(G,D) = Ex[logD(x)] + Ex[log(1−D(Gx(x)))]. (2.3.11)

Both generator and discriminator are parameterized by a CNN. GANs can be used to
generate synthetic training data or to map images from one domain to another, [5].

Gradient Descent

Gradient descent and variations thereof are the most prevalent method for training neural
networks. Given a loss function L(θ) and its partial derivate w. r. t. parameters θ given by
∇θi−1L(θ) the objective can be minimized iteratively by subtracting the gradient from the
parameters, [5].

θi = θi−1 − α∇θi−1L(θ) (2.3.12)
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Here, α is a learning rate that determines the step size. Gradient descend moves parameters
in the direction that yield the best improvement of the objective function. The magnitude
of the learning rate is important for convergence and stability and needs to be set
carefully. Numerous improvement of gradient descent have been proposed using higher-
order derivatives or momentum, [5].
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Chapter 3

Transfer from Simulation to Reality

This chapter describes different approaches to bridge the gap between simulation and
reality. The first two sections give a brief introduction to the problem of domain transfer.
The remaining sections focus on three different categories to solve said problem: Domain
randomization, domain adaptation and meta-learning.
First, Section 3.1 explains transfer learning in general and different aspects of it. Then,
Section 3.2 looks at transfer from simulation to reality as a form of multi-task learning.
Many algorithm presented in the following three sections can be formulated as multi-task.
Section 3.3 describes domain randomization, a technique that aims to achieve generalization
by randomization of training data. The next section, Section 3.4 is concerned with domain
adaptation. Domain adaptation aims to generalize by minimizing some sort of loss
that measures discrepancy between domains. Finally, Section 3.5 presents meta-learning
algorithms that can be used to learn fast from few data points, which can be used to adapt
to a new domain.

3.1 Transfer Learning

Most machine learning models perform worse on data from a different distribution and
need to be retrained. Transfer learning acknowledges that training and test data can be
drawn from a different distribution. Collecting new data with labels and retraining can
be costly and impractical. Transfer learning aims to transfer knowledge to new tasks
and domains. It is motivated by the fact that humans, when confronted with a new
environment or new task, often benefit from previously learned tasks that are similar.
Let D = {X,P (X)} be a domain, where X is a feature space and P (X) is its marginal
probability distribution. Two domains are different if their feature space, its marginal
probability distribution or both are different. Given a domain D a task is defined by
T = {Y, f(Y )}, where Y is a label space and f is an unobservable objective function. Two
tasks are different if their label space, objective function or both are different.
In general there can be multiple source and target domains as well as multiple tasks. For
the remainder of this chapter only one source domain DS and one target domain DT
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with one task each (TS and TT , respectively) are considered. With the above definition of
domains and tasks transfer learning is formally defined as follows, [15].

Definition 3.1.1 Given a source domain DS and target domain DT with respective tasks
TS and TT , the objective of transfer learning is to maximize performance of a predictor fT
on TT using information from source domain and task, where DS 6= DT and/or TS 6= TT .

3.1.1 Types of Transfer Learning

There are several different types of transfer learning. When DS = DT and TS = TT the
problem becomes regular machine learning. For all other combinations a different type of
transfer learning occurs. Table 3.1 summarizes different types of transfer learning. The
different types of transfer learning are called inductive, transductive, and unsupervised
transfer learning. They are described in the following.

Table 3.1: Different types of transfer learning for different relationship between source and
target domains and tasks. Domains and tasks can be the same (=) or different but related
(6=), resulting in either inductive, transductive, unsupervised or no transfer learning. Table
inspired by Pan et al., [15].

Learning setting DS and DT TS and TT

No transfer learning = =

Type of transfer learning
Inductive = 6=
Transductive 6= =
Unsupervised 6= 6=

Inductive Transfer Learning

Inductive transfer learning is defined as learning a new task in the same domain, i. e. TS 6=
TT but DS = DT . This setting is also referred to as multi-task learning (cf. Section 3.2).
The task is source domain is exploited to improve performance on target task in the
same domain. Inductive transfer learning requires at least a few labeled data points in
target domain to induce the target task. An example for inductive transfer learning in
autonomous driving is to predict features of a road in addition to predicting the steering,
[16]. Both tasks are learned on data from the same domain. Learning multiple tasks can
improve generalization.

Transductive Transfer Learning

Transductive transfer learning aims to learn the same task in a new domain, i. e. TS = TT
but DS 6= DT . This setting is also referred to as domain adaptation (cf. Section 3.4).
It requires no labeled data in target domain, but can make use of such data if available.
Transductive transfer learning exploits unlabeled target domain data in combination with
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labeled source domain data to transfer a task across domains. An example for transductive
transfer learning is learning a task in simulation and transferring it to reality. The
task is identical but data in source and target domain have different marginal probability
distributions. This thesis focuses on transductive transfer learning to transfer deep learning
from simulation to reality.

Unsupervised Transfer Learning

In unsupervised transfer learning both domains and tasks are different, i. e. TS 6= TT and
DS 6= DT . The objective is to transfer one task to a different task in a different domain.
In general, no labeled data is available for the target task in target domain. Unsupervised
transfer learning is typically concerned with clustering or dimensionality reduction.

3.1.2 Approaches to Transfer Learning

There are several approaches to transfer learning. This section describes four common
approaches: instance, feature representation, parameter, and relational knowledge transfer.
Some of them are only applicable to certain types of transfer learning.

Instance Transfer

Instance transfer aims to transfer knowledge by weighting or sampling data from source
domain to match the marginal probability distribution in target domain. This is justified if
some of the data from source domain is assumed to be useful for the task in target domain.
The sampling procedure itself can be regarded as an optimization with the objective to
minimize target loss by sampling and weighting source data. Resampling or reweighting is
only suitable for domain adaptation if the domains shift is limited to a change in marginal
probability distribution, [17]. It can not bridge the gap between different visual domains.

Feature Representation Transfer

The goal of feature representation transfer is to find a feature representation that works
well in multiple domains or for multiple tasks. Feature representation transfer can be
achieved by additional loss terms that minimize a metric in feature space. Alternatively,
when training a model to perform multiple tasks in multiple domains more robust features
emerge. Feature representation transfer is applicable if source and target domain are
structurally similar but visually different.

Parameter Transfer

Parameter transfer aims to find model parameters that can be shared across domains or
tasks. The underlying assumption is that models for related tasks or domains should have
similar parameters. Often, parameter transfer is used to initialize model parameters in a
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reasonable way before fine-tuning on target domain data. Many deep learning applications
use models pre-trained on large datasets such as ImageNet, [5]. While the dataset is
unrelated to the specific task it provides a general-purpose feature extraction initialization.
Some meta-learning algorithms explained in Section 3.5 can be used for optimal parameter
initialization.

Relational Knowledge Transfer

Relational knowledge transfer differs from the other three approaches in that it explicitly
tries to establish a relationship between source and target domain. As opposed to the other
three approaches relational knowledge transfer relaxes the assumption of independent and
identitally distributed source and target domain. Relational knowledge transfer postulates
that a mapping between two related domains can be found. GAN-based approaches to
domain adaptation explained in Section 3.4.2 belong to this category.

3.2 Multi-Task and Multi-Domain Learning

Multi-task learning refers to learning multiple tasks at the same time. It is related to
inductive transfer learning (cf. Section 3.1.1). Multi-domain learning means to learning a
task in multiple domains. As such, it is related to transductive transfer learning (cf. Sec-
tion 3.1.1). In general, whenever more than one loss term is optimized, the problem setting
can be formulated as a multi-task problem, [18]. Analogously, whenever data from more
than one source is used, multi-domain learning occurs. Both are often employed with
the intention to improve generalization. Multi-task and multi-domain learning are closely
related. In a way, learning the same task in a new domain can be seen as learning an
additional task. Thus, many of the algorithms described in this chapter constitute a form
of multi-task learning.
It can be advantageous to learn multiple tasks simultaneously because by doing so a bias
is introduces, thereby preferring some hypotheses over others, [18]. Learning multiple
tasks results in an implicit data augmentation which reduces the risk of overfitting. In the
same way it can be advantageous to learn a task in multiple domains to generalize well.
Also, learning multiple tasks enables models to focus on relevant features, ignoring others.
Some features might be easier to learn for one task than another. Furthermore, multi-task
learning allows eavesdropping on other tasks to learn useful features, [16].
Multi-task and multi-domain learning is often implemented by parameter sharing. Pa-
rameter sharing is the practice of tying some or all parameters of two or more models
together. There are two forms of parameter sharing: hard parameter sharing and soft
parameter sharing. In hard parameter sharing weights of shared layers are set to the exact
same values. In other words, only one model with output layers for every task or domain
is used, separating task-specific layers and shared layers, [16], [19]. It can be shown to
reduce the risk of overfitting by N , where N is the number of tasks, [18]. On the other
hand, soft parameter sharing introduces a distance metric between parameters, [7]. Each
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task is solved by a separate model. The weights are regularized by a distance metric. This
enforces shared weights to be similar but not necessarily the same.
An important question in multi-task learning is which tasks to add to improve generalization.
The most obvious auxiliary task is a closely related task, [16]. Another possibility is an
adversarial task. An adversarial tasks is a task that should not be achieved. By reversing
the gradient of the adversarial loss performance on the main objective can be improved,
[20]. Also, an attention mechanism can be used to focus on informative features, [21]. A
recent addition to the array of auxiliary tasks is reproduction of input from low-dimensional
feature space via an auto-encoder, [22]. The auto-encoder enforces a representation that
is complete, i. e. the input can be reconstructed from it. In the three remaining sections
these ideas are explained in greater detail.

3.3 Domain Randomization

Many problems in machine learning require large amounts of training data. Simulations
can be used to lower the cost of collecting data. They are also often used to prototype
before working on a real system to prevent damage.
While simulations are invaluable they have limits when it comes to transferability. There
are two main differences between simulations and reality hampering successful transfer
between them: simulated physics and image rendering, [4]. First, simulated physics and
real system differ. If simulation parameters are not tuned the simulated system does not
capture reality. System identification can be used to optimize them, which can be time-
consuming and error-prone. Furthermore, many simulators have unmodeled effects such
as non-rigid bodies, gear backlash, and wear. Second, simulated sensors produce readings
that differ from their real-world equivalents. Images rendered in simulation are different
in terms of appearance and noise. High-fidelity image renderers come with significant
computational costs, offsetting the low-cost data collection in simulation. Low-fidelity
image renderers are faster but further increase what is called the reality gap. All of these
differences result in machine learning models trained in simulation to be unable to transfer
to reality.
Domain randomization offers a way to increase generalization to reality from simulation.
Instead of trying to match the real world in simulation as closely as possible simulation
parameters are randomized to vary physics and appearance. In effect, a model is trained
on a range of simulations. If the variability is high, models are able to generalize well, [4].
In general domain randomization is applicable to imitation learning and reinforcement
learning.
Domain randomization can be seen as a form of meta-learning. During training the network
is presented with new data and forced to adapt. This bears similarity to algorithms
described in Section 3.5.3.
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Uniform Domain Randomization

The most basic form of domain randomization is uniform domain randomization (UDR).
UDR randomizes simulation parameters uniformly in a given range. It can by applied
universally but requires expert knowledge to select parameter subject to randomization
and to choose their ranges.
Tobin et al. use domain randomization for robotic object localization and grasping, [4].
The objective is to map a camera image to object position in Cartesian coordinates. They
use a VGG-16 network trained using reinforcement learning. The following parameters
are randomized.

• Number, shapes, positions and textures of objects
• Background textures
• Position, orientation, and field of view of camera
• Lighting
• Noise added to images

For each training episode new parameters are sampled from a closed interval using a
uniform distribution.
Andrychowicz et al. extend domain randomizatin to physics parameters in addition to
appearance, [23]. The task at hand is manipulation of a cube by a robotic hand. They
randomize the following parameters.

• Dimensions and masses of links
• Damping coefficients of joints
• Actuator controller gains
• Surface friction coefficients
• Gravity vector

Also, a model for motor backlash and action delays is employed. However, many effects
remain unmodeled in simulation. Output noise is added to take any unmodeled behavior
into account.

Structured Domain Randomization

Structured domain randomization (SDR) acknowledges the structure inherent in a scene
during randomization using hierarchy. It has three layers: global parameters, context
splines, and objects. Prakash et al. use SDR for bounding box detection of cars, but it
can be adapted to other use cases , [24].
To generate a new scene in simulation a scenario s is selected at random from a range of
predefined scenarios. For bounding box detection of cars scenarios are different road types
and settings. Next, global parameters g such number of objects, lighting and weather
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conditions are sampled. Global parameters also determine splines c that model the course
of the road and surroundings. Splines are given a random color and texture such as grass
or asphalt color. Additional randomizations such as potholes or oil spills are superimposed.
In the last step objects o are placed on the splines. Figure 3.3.1 shows the hierarchical
generation of a scene using SDR.

Figure 3.3.1: Structured domain randomization. The structure is implemented using a
graph of conditional probabilities.

Source: Prakash et al. [24]

SDR poses constraints on the randomization process. These constrains can be formalized
as conditional probabilities. Given a random scene s ∼ p(s), global parameters are sampled
using g ∼ p(g | s). Having determined the global parameters g the splines are sampled
using c ∼ p(c | g). Continuing this patterns leads to the following expression.

p(I, s, g, c, o) = p(I | s, g, c, o)
no∏
j=1

p(oj | ci)
nc∏
i=1

p(ci | g)p(g | s)p(s) (3.3.1)

The probability of generating an image I depends on scenario s, global parameters g,
splines c, and objects o. Each item’s probability in the dependency chain depends on that of
its predecessors. This encodes the structure of the scene. SDR generates randomized scenes
with a plausible structure. In contrast, UDR samples each random variable independently
and hence does not have conditional probabilities between simulation parameters. Adding
structure to the scene can be more data efficient, [24].

3.3.1 Guided Domain Randomization

Guided domain randomization (GDR) seek to actively find a randomization scheme that
yield improved generalization.

SimOpt

The aim of SimOpt is to narrow down the distribution of parameter randomization required
for closing the reality gap, [25]. In UDR simulation parameters are sampled from a uniform
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distribution in fixed intervals. These intervals need to be tuned by humans, which requires
expert knowledge. If the interval is too wide training becomes inefficient since a lot of data
contains irrelevant or redundant information. On the other hand, if the interval is too
narrow no generalization is achieved. Ideally, the distribution of simulation parameters
would be just wide enough to bridge the gap to reality.
The SimOpt framework tries to improve the sampling procedure. It starts with an initial
distribution of simulation parameters pφ and improves on them iteratively. Let πθ,pφ be an
agent’s policy that is trained in a simulation using parameters sampled as ξ ∼ pφ. The
agent can be trained using standard deep reinforcement learning algorithms by maximizing
the expected cumulative reward as follows.

max
θ

Eξ∼pφ [Eπθ [R(τ)]] (3.3.2)

Given a discrepancy metric D the objective of SimOpt is to minimize the distance between
observed trajectories in simulation τ obξ and reality τ obreal. This can be achieved by minimizing
the following objective.

min
φ

Eξ∼pφ
[
Eπθ,pφ

[
D(τ obξ , τ obreal)

]]
(3.3.3)

Computing the discrepancy without further adjustments requires a roll-out of the policy
in reality. This can be expensive, time-consuming or even infeasible. However, the inputs
of the policy and observations to compute D(τ obξ , τ obreal) do not need to be the same. Thus,
Chebotar et al. propose to reuse previous roll-outs as long as the Kullback-Leibler (KL)
divergence between the parameter distributions used is sufficiently small. They use relative
entropy policy search to minimize Equation (3.3.3), a gradient-free optimization algorithm
suitable for working with a non-differentiable simulator. Figure 3.3.2 illustrates the training
procedure of SimOpt.

Figure 3.3.2: Overview of SimOpt framework. Agents are trained in simulation. The
discrepancy between roll-outs in simulation and reality is used to optimize simulation
parameter sampling.

Source: Chebotar et al. [25]
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Learning to Simulate

Learning to simulate (L2S) is an algorithm that tries to find domain randomization
parameters that generalize well to the target domain, [26]. The simulation configuration
that works best is not necessarily the one that resembles reality as closely as possible.
L2S has several advantages to UDR. The effect of UDR depends on domain knowledge
for defining and tuning intervals to sample from. By optimizing the way simulation
parameters are sampled the amount of human labor required is reduced. Furthermore,
smaller datasets can be used to achieve similar or better performance compared to UDR.
Therefore, training times are reduced.
In supervised learning settings the objective is to find a function fθ that minimizes the
loss, given training data sampled from a distribution p(x, y). The real distribution of data
p(x, y) is unknown and only a sample of size N is known. Simulated data is sampled from
a distribution q(x, y | ψ), where ψ are parameters of the simulation regarding rendering
and physics. While data from reality is limited, data in simulation is abundant.
The goal is to find simulation parameters ψ such that the loss L for fθ given validation
data Dval from target domain is minimized. L2S formulates this as a bilevel optimization
problem, optimizing simulation parameters ψ and model parameters θ jointly.

ψ∗ = arg min
ψ

∑
(x,y)∈Dval

L(y, fθ(x; θ∗(ψ))) (3.3.4)

θ∗ = arg min
θ

∑
(x,y)∈Dq(x,y|ψ)

L(y, fθ(x, θ)) (3.3.5)

The outer optimization Equation (3.3.4) finds simulations parameters ψ that generate
data in an optimal manner. The loss is computed on validation data using optimal model
parameters ψ∗. The inner optimization Equation (3.3.5) optimizes models parameters θ to
solve the actual task on data sampled from q(x, y;ψ).
Model parameters can be optimized straightforwardly using gradient descent. However,
Equation (3.3.5) depends explicitly on simulation parameters. To solve the problem
using gradient-based methods the inner optimization problem needs to be smooth, twice
differentiable, and have an invertible Hessian, [26]. In general, these constraints are not
satisfied. Hence, Ruiz et al. propose to use policy gradients to optimize ψ, [26].
Let π be a policy for generating simulation parameters ψ ∼ π. The simulation acts as a
generative model G(ψ) that yields data pairs (x, y) conditioned on ψ. During optimization
models are trained of generated datasets Dq(x, y | ψ) until convergence or for a fixed
number of iterations using gradient descent. This solves the inner bilevel optimization
problem. For the outer optimization task the data generation policy π is updated using the
negative loss on validation data, given a trained model, as reward. L2S bears similarities
with optimization-based meta-learning (cf. Section 3.5.3). The training procedure is
visualized in Figure 3.3.3. Note that unlike UDR L2S is not suitable for zero-shot learning
because it requires a labeled validation set.
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Figure 3.3.3: Schematic of the learning to simulate procedure. Synthetic data Dq(x,y|ψ) is
generate in simulation parameterized by φ. A model is trained to solve the main task on
this data. The model performance on a validation set is used to train a policy to find
better simulation parameters.

Source: Ruiz et al. [26]

Active Domain Randomization

Active domain randomization (ADR) deems some randomizations more informative than
others and focuses on those during training, [27]. Informative, in this context, refers to being
more efficient at achieving generalization across domains. Instead of sampling simulation
parameters uniformly, ADR introduces a sampling policy to find parameters that generate
more simulation instances. The sampling policy is implemented using Stein variational
policy gradient (SVPG) to learn an ensemble of policies or particles. The randomization
space is regarded as a search space for optimization. Mehta et al. use deep reinforcement
learning to solve the main task as well as the search for randomization parameters. Each
particle’s state is a set of randomization parameters. Since the agent trained on simulation
instances changes over time, the optimization of simulation parameters is non-stationary.
The ADR algorithm works as follows. At the beginning agent policy and SVPG particles
are initialized randomly. Multiple simulation instances Ei are generated using SVPG
particles as simulation parameters. The current agent policy πθ is rolled out in these
environments. The resulting trajectories τi are compared to a roll-out of the agent in
a reference environment Eref by the discriminator Dψ. The discriminator is trained for
binary classification between randomized environment and reference environment. The
reference environment is not used for training the agent directly; the agent is trained on
randomized simulations only.
The discriminator reward rD is given by

rD = logDψ(y | τi ∼ πθ(.;Ei)). (3.3.6)

The discriminator is rewarded for exploring regions of the search space that evoke different
behavior in the agent than the reference environment. Thus, the discriminator iteratively
finds harder environments while the agent becomes better at adapting to diverse settings.
Training two competing networks that each make each others objective harder is reminiscent
of GANs. Figure 3.3.4 illustrates the ADR training loop.
ADR and L2S both optimize simulation parameters to achieve generalization. While L2S
is concerned with the performance of a model on a small labeled validation set from target
domain ADR compares the roll-out of a trained model between simulation and reality.
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Figure 3.3.4: Active domain randomization. Various simulation instances (c) are generated
by a simulator (b) using parameters (h) provided by SVPG particles (g). For each
simulation instance the agent policy(d) is rolled out to find those instance that are difficult.
This is done by comparing them to a reference environment (a) by the discriminator (e)
which learns a reward (f). The reward is used to train SVPG particles to find parameters
that are challenging for the current agent, closing the loop.

Source: Mehta et al., [27]

Randomized to Canonical Adaptation Network

Randomized to canonical adaptation networks (RCANs) learn to map simulated and
real images to a canonical representation without using real world data, [28]. They use
randomized simulations to translate from real images to shared domain. Thus, they are
a hybrid of domain adaptation and domain randomization. They fall into the category
of input-level domain adaptation as describes in Section 3.4.2, operating on raw input
images. The RCAN framework introduces a third domain along with source and target
domain: the canonical domain. The canonical domain is an abstract representation of the
scene, lacking real world detail and noise. It contains the essence of the scene in uniform
colors and constant lighting. No randomizations are present in the canonical simulation.
Learning with domain randomization can sometimes slow training down or destabilize it,
[28]. By reducing the visual complexity, learning from a simplified canonical representation
is easier.
The translation from randomized simulation and reality to canonical representation is
done using an image-conditioned generative adversarial network. The generative part G
maps an image from any domain to canonical. During training, the generator is presented
with tuples (xs, xc,mc, dc), where xs is a source image from the randomized domain, xc is
an image from canonical domain matching the source image, mc is a segmentation mask,
and dc is a depth image. Randomized and canonical image need to be paired, i. e. each
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randomized image needs to have a canonical counterpart. This is achieved by collecting
data in each simulated scenario twice, once with randomizations and once without. After
the GAN is trained, the main task can be solved using reinforcement learning or imitation
learning. Figure 3.3.5 outlines how images are mapped to a common domain using the
generator before training an agent.

Figure 3.3.5: Randomized to canonical adaptation network. Images from simulation and
reality are mapped to a canonical domain in which the agent is trained.

Source: James et al. [28]

The objective of RCAN is to learn a generator G(xs) → {xa,ma, da}, where xa is the
generated canonical image, ma the generated segmentation mask, and da the generated
depth image. The generator is trained by minimizing the difference between generated
and canonical image while also making sure the semantic and depth information is similar.
This is achieved using a combination of three loss terms: Lx(xc, Gx(xs)) for visual equality,
Lm(mc, Gm(xs)), for semantic equality, and Ld(dc, Gd(xs) for depth equality. The weighted
sum of equality losses is given by

Leq(G) = Exs,xc,mc,dc [λxLx(xc, Gx(xs)) + λmLm(mc, Gm(xs)) + λdLd(dc, Gd(xs)], (3.3.7)

where λx, λm, and λd are weights. Individual loss terms are computed using L1 or L2 loss
between pixel values. At the same time, the discriminator is trained to distinguish between
generator output and actual canonical image. The generator is trained to minimize the
standard GAN loss (cf. Equation (2.3.11)) and equality loss jointly, i. e.

min
G

max
D

LGAN(G,D) + Leq(G). (3.3.8)

The main task is learned in canonical domain. No real data is used during training the
generator. RCAN relies on domain randomization to generalize translating real images to
canonical domain. If this fails, any behavior learned from canonical images is unlikely to
succeed.
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DeceptionNet

DeceptionNet uses a neural network for pixel-level randomization, [22]. While a task
network is trained to solve the task at hand, a deception network is trained hinder the
task network by perturbations. The task network T (x; θT )→ ŷ is a CNN that maps input
image x to prediction ŷ. The deception network D(xs, θD)→ xd is an auto-encoder that
takes an input from source domain xs, encodes it in a low-dimensional latent vector z,
and decodes it to a deception image xd. In contrast to regular auto-encoders, [22] propose
multiple decoding modules Mi. The deception image xd is the weighted sum of decoder
module outputs, i. e. xd = ∑

iwiMi(z), where wi are masks. A decoding module can
change some characteristics of the input image, for example background, light, distortion,
or noise.
Training is done using a min-max approach similar to GANs in two alternating steps. The
task loss is minimized while the deception loss is maximized. Formally, the objective is
given by

min
θT

max
θD

LT (T (D(x; θD), y; θT )). (3.3.9)

In the first step weights of the task network θT are frozen—i. e. they are not updated—
by setting their gradients to zero. An input image is transformed by the deception
network and fed through the task network. The task loss is computed and its gradients
reversed (cf. Section 3.4.1). Thus, the deception network is trained to disturb the task
network. In the second step weights of the deception network θD are frozen and the task
network is trained using deceptive images. Hence, it becomes robust to domain changes.
The training procedure is illustrated in Figure 3.3.6.
No real world images are required for training DeceptionNet. DeceptionNet is similar
to ADR and L2S but unlike them DeceptionNet operates on directly pixels instead of
optimizing simulation parameters.

Figure 3.3.6: DeceptionNet architecture and training. Input images are transformed by a
deception network. The task network is trained on transformed images. Training alternates
between deception and task network.

Source: Zakharov et al. [22]
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3.4 Domain Adaptation

Domain adaptation is a field in machine learning that attempts to transfer models form
one domain to another. This can be achieved by learning a transformation between them
or by finding domain-invariant feature representations. Two different kinds of domain
adaptation are presented in the following sections: Feature-level and input-level domain
adaptation. The former operates on feature representations in different domains while the
latter is concerned with transforming inputs, [29].

3.4.1 Feature-level

Feature-level domain adaptation aims to find feature representation that allow a network
to be trained in source domain and deployed in target domain. Thus, feature-level domain
adaptation can be considered to be a form of feature representation transfer learning.
Three approaches are introduced: Domain classification with gradient reversal, deep
domain confusion (DDC), and weight regularization across domains. The latter is a hybrid
approach to transfer learning, combining feature representation transfer with parameter
transfer. All of them introduce additional loss terms, making them multi-task learning
algorithms.

Domain Classification with Gradient Reversal

Domain classification with gradient reversal is a method to produce domain-invariant
features, [20]. It uses labeled data from source domain and unlabeled data from target
domain.
Domain classification with gradient reversal uses one network with two outputs. The
network predicts the output class or variable y for classification and regression, respectively.
It consists of three parts: feature extractor Gf(θf), predictor Gy(θy), and eponymous
domain classifier Gd(θd), each with their own set of parameters θ. Typically, the feature
extractor is a CNN that maps an input x to a flattened feature tensor f . A series of fully
connected layers (FCLs) maps features to y, an output class vector for classification or an
output variable for regression problems. Parallel to that a second stack of FCLs maps the
same feature tensor to a domain label d. The domain classification network architecture is
detailed in Figure 3.4.1.
During training, data from source and target domain are mixed and presented to the
network. Source domain data is assumed to be labeled completely and the objective loss
Ly can readily be computed. On the other hand, only few or even none of the target
domain examples have ground truth labels available. For those no objective loss can be
computed; it is set to zero. The objective loss, if it is available, can be minimized using
standard optimization techniques. In addition to the objective loss a domain classification
loss Ld is computed from the domain label. The domain classification loss should be
maximized since the network should not be able to tell source and target domain apart.
Equivalently, the negative classification loss is to be minimized. This motivates the
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Figure 3.4.1: Domain classification with gradient reversal. Feature extractor network
Gf (θf ) extracts features f from input image x. Class label y is predicted from features by
the predictor network Gy(θy). In parallel, a domain label d is predicted by the domain
classifier network Gd(θd. The reversed domain classification gradient is used to attain
domain-invariant features.

Source: Ganin et al. [20]

introduction of the gradient reversal layer. The gradient reversal layer, located between
feature tensor and domain classifier, multiplies the gradient of all subsequent layers by −1
during backpropagation. Formally, the domain classification loss is given by the following
equation.

L = Ly(yi, Gy(Gf (xi; θf ); θy))− λLd(yd, Gd(Gf (xi; θf ); θd)) (3.4.1)

A weight hyperparameter λ can be used to balance the two terms. Parameter updates
using gradient descent with step size µ take the following form.

θf ← θf − µ
(
∂Ly
∂θf
− λ∂Ld

∂θf

)
(3.4.2)

θy ← θy − µ
∂Ly
∂θy

(3.4.3)

θd ← θd − µ
∂Ld
∂θd

(3.4.4)

Parameters of predictor and domain classifier are updated using their respective loss.
The shared parameters of the feature extractor are updated using both losses. Thus,
discriminative, domain-invariant features are produced. Minimizing two losses jointly
makes domain classification with gradient reversal a multi-task learning algorithm.
Adding a domain classification loss can be viewed as a form of regularization. This
regularization favors networks that can not distinguish between domains.
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Deep Domain Confusion

An approach similar to adding a domain classification loss was proposed by Tzeng et al., [30].
Instead classifying the domain, a domain confusion loss is added. The domain confusion
loss encourages features to be domain-invariant by minimizing a metric between source
and target domain features. DDC can be applied to semi-supervised and unsupervised
domain adaptation.
The domain confusion loss makes use of maximum mean discrepancy (MMD). MMD is
a metric defined on two distributions. It operates on a representation of distributions
given by a mapping φ : X → H, where H is commonly referred to as reproducing kernel
Hilbert space (RKHS). When applying MMD for domain adaptation of neural networks
the distributions in question are source and target domain data XS and XT , respectively.
The representation is given by a forward pass through the network. The MMD is then
given by the difference of means of two distributions.

MMD(XS, XT ) =

∥∥∥∥∥∥ 1
|XS|

∑
xS∈XS

φ(xS)− 1
|XT |

∑
xT∈XT

φ(xT )

∥∥∥∥∥∥ (3.4.5)

Given a task loss Ly(y,XL) for labeled data XL (from source and possibly target domain)
the objective of DDC is stated as follows.

L = Ly(y,XL) + λMMD2(XS, XT ) (3.4.6)

By minimizing task loss and MMD between features jointly both discriminative and
domain-invariant features are found. The domain adaptation layer that computes the
domain confusion loss is typically placed after a fully-connected layer close to the output.
Figure 3.4.2 shows the network architecture used for DDC.

Weight Regularization Across Domains

Rozantsev et al. combine MMD with weight regularization, [7]. While acknowledging
that maximizing feature invariance can be used for domain adaptation, the authors state
that forcing weights to be shared across domains can be adverse to generalization. Most
approaches for domain adaptation described in this chapter use one set of parameters for
all domains and jointly minimize objective loss along with some form of domain invariance
loss. In contrast, weight regularization allows model parameters to diverge within bounds
for different domains.
Weight regularization uses a two-stream architecture. The source stream is pre-trained
on data from source domain only. It serves as a starting point for weights. The second
stream is trained on unlabeled target data. While the source stream can be trained using
a classification loss, e. g. softmax, in general no such loss is available for the target stream
since no labels are provided. The target stream is trained using a domain discrepancy loss
such as MMD. Additionally, weights between corresponding layers of source and target
stream are regularized. Figure 3.4.3 illustrates the two-stream architecture using various
loss terms.
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Figure 3.4.2: Deep domain confusion architecture. Two losses are minimized during training:
classification loss to solve the main task and domain confusion loss to achieve domain
invariance. The domain confusion loss is computed between abstract, high-dimensional
feature vectors near the final layer. The weights of all layers are shared between source
and target domain as indicated by dotted lines.

Source: Tzeng et al. [30]

The combined loss of both streams is given by

L(θs, θt) = Ls(θs) + Lt(θt) + λwLw(θs, θt) + λdLd(θs, θt) (3.4.7)

Source and target classification loss Ls(θs) and Lt(θt) depend only on their respective
parameters. If target domain data is fully unlabeled Lt(θt) is zero. The MMD loss
encourages feature distributions between source and target domain to be aligned. It
is defined in Equation (3.4.5). Weight regularization on the other hand ensures model
parameters of source and target stream do not diverge too far. This allows differences in
parameters to arise but at the same time ties them together. Individual loss terms are
weighted with hyperparameters λw and λd.
The weight regularization loss is defined as the L2-norm between two sets of parameters.

Lw(θs, θt) =
∑
i

∥∥∥θsi − θti∥∥∥ (3.4.8)

Weight regularization between source and target network is similar to weight decay
described in Section 4.4.3. The difference is that while weight decay draws weights back
to the origin, weight decay for domain adaptation keeps weights in a hypersphere around
source stream parameters. In fact, setting θs = 0 leads to the weight decay Equation (4.4.1).
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Figure 3.4.3: Weight regularization across domains. Two networks with separate weights
are trained on data from their respective domain. A domain discrepancy loss encourages
domain-invariant features. At the same time, weights are regularized to prevent overfitting
to a particular domain.

Source: [7]

To explicitly model a transformation between source and target stream parameters a linear
transformation can be added in the following way,

Lw(θs, θt) =
∑
i

∥∥∥aiθsi + bi − θti
∥∥∥, (3.4.9)

where ai and bi are learnable parameters that describe the domain shift. Other transfor-
mations are conceivable.

3.4.2 Input-level

Input-level domain adaptation aims to find a mapping from one domain to another. It
tries to make data form source domain appear as if it were sampled from target domain.
Many recent approaches use GANs to model this mapping. An advantage of input-level
domain adaptation is interpretability: Transformed input images are easier to interpret
than feature vectors. This comes at the disadvantage of increased computational cost and
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potential instability during training. The computation cost poses further constrains on
image size.

Pixel-Level Domain Adaptation

Pixel-level domain adaptation (PixelDA) is an input-level approach to domain adaptation,
[29]. Given labeled images in source domain and unlabeled images in target domain it
seeks to find a mapping from one domain to the other using a GAN. Once this mapping is
found learning the main task is straightforward.
PixelDA consists of three networks: A generator G(xs, z; θG) → xf , a discriminator
D(x; θD) → {real, fake}, and a task network T (xf ; θT ) → ŷ. The Generator maps an
image from source domain to target domain, given a noise vector z, creating fake images
xf . On the other hand, the discriminator is trained to distinguish between real and fake
target domain images xt and xf . The task network is trained on source domain and fake
target domain images xs and xf . No target domain images are used for training the
task network. Figure 3.4.4 visualizes the high-level architecture of PixelDA and how the
sub-networks are related to each other.

Figure 3.4.4: Relationship between generator G, discriminator D, and task network T for
PixelDA. Generator and discriminator are trained so that the generator outputs source
domain images in the style of the target domain. The target network is trained on these
images in conjunction with source domain images.

Source: Bousmalis et al. [29]

Generator and discriminator follow the standard GAN design of Equation (2.3.11), with
the addition of a task loss LT and content-similarity loss LC .

min
θG,θT

max
θD

LGAN(G,D) + λTLT (G, T ) + λCLC(G) (3.4.10)
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The task loss can be any loss that is suitable for the task, for example categorical cross-
entropy (cf. Section 2.2). Bousmalis et al. propose to use masked pairwise mean squared
error (MPMSE) for content-similarity loss, defined as

LC(G) = Exs,z
[1
k

∑
(d ◦m)2 − 1

k2

(∑
d ◦m

)2
]
, (3.4.11)

where d = xs −G(xs, z) is the pairwise difference between source image xs and generator
output xf = G(xs, z), m is a binary mask, and ◦ is the Hadamard or element-wise matrix
product, [29]. The binary mask m is used to select the foreground. MPMSE penalizes
differences between pairs of pixels. It encourages the generator to reproduce the overall
shape of objects in the foreground but allows small variations.

Cycle-Consistent Domain Adaptation

Cycle-consistent adversarial domain adaptation (CyCADA) extends PixelDA by introduc-
ing cycle-consistency, [6]. The cycle-consistency or reconstruction loss is meant to enforce
semantic consistency of generated images. This is supposed to help generate more realistic
target domain images and reduce training instability. CyCADA also combines image-level
adversarial learning with feature-level adversarial learning inspired by Ganin et al., [20].
Again, the aim is to find a transformation from one domain to another to generate suitable
training data to solve the main task.
Like PixelDA, CyCADA consist of three networks: generator G, discriminator D, and task
network T . As usual, the generator maps a source domain image to target domain image,
i. e. GS→T (xS) = xT . In CyCADA, the same generator is also used to map the generated
target domain image back to source domain, i. e. GT→S(xT ) = GT→S(GS→T (xS)) = xS. In
other words, the reconstruction loss demands that GT→S(GS→T ) = I, where I is identity.
Also, the generator should be able to map a target domain image to a source domain and
image and back, i. e. GS→T (GT→S(xT )) = xT . The reconstruction loss uses the L1 norm
to achieve this.

Lcyc =E[‖GT→S(GS→T (xS))− xS‖1]
+E[‖GS→T (GT→S(xT ))− xT‖1] (3.4.12)

In addition to cycle-consistency of images CyCADA enforces a semantic consistency.
Semantic consistency is achieved if source domain images xs and generated target domain
images GS→T (xs) are classified in the same way by the source task network fS. Given an
arbitrary task loss Ltask and source domain labels yS the semantic consistency loss is given
by

Lsem =Ltask(yS, fS(xS))
+Ltask(yS, fS(GS→T (xS))). (3.4.13)

The intention of semantic consistency is that the transformation applied by GS→T should
preserve information about the content of the image.
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Semantic consistency can be thought of as task network output consistency. Another
form of consistency introduced by CyCADA is feature consistency. Feature consistency
is inspired by feature-level domain adaptation techniques. It seeks to maintain similar
feature representations for different domains and is implemented by a GAN loss using an
additional feature-level classifier Dfeat.

Lfeat = logDfeat(fT (GS→T (xs))) + log(1−Dfeat(fT (xt))) (3.4.14)

The feature-level discriminator is trained to tell feature vector of task network fT applied
to real and generated target domain images xT and GS→T (xs), respectively, apart.
The final CyCADA loss is given by the sum of all losses explained above plus the standard
GAN loss.

LCyCADA = Ltask + LGAN + Lcyc + Lsem + Lfeat (3.4.15)

Figure 3.4.5 visualized how the losses are related to individual components of CyCADA.

Figure 3.4.5: Overview of cycle-consistent adversarial domain adaptation. The generator
G is trained to generate target domain images while the discriminator D is trained to
differentiable between generated and real target domain images (shown in green). In
addition, the generator is trained to reconstruct source domain images from target domain
images generated by itself using a cycle-consistency loss Lcyc shown in red. The semantic
consistency loss Lsem is shown is gray. Shown in yellow is an additional feature-level GAN
loss Lfeat. The task network fT is trained on generated target domain images to perform
the main task, in this case semantic segmentation (shown in purple).

Source: Hoffmann et al. [6]

3.5 Meta-Learning

Many deep learning algorithms require a large amount of data to perform well. In contrast,
humans are able to learn new task after a few attempts by leveraging knowledge from
previous tasks. Such behavior is desirable in neural networks. A learning setting in which
a network is required to learn a new task few examples is called few-shot learning. When
no data for the target task is given the setting is called zero-shot learning.
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Meta-learning attempts to optimize the learning process itself. It is also called ”learning
to learn”. There are three different types of meta-learning: metric-based, model-based,
and optimization-based.

3.5.1 Metric-Based

Metric-based meta-learning classifies new classes based on a metric to known examples
of other classes. It is conceptually related to nearest neighbor methods for classification.
Metrics are computed between feature embeddings that are subject to optimization. In
the following two metric-based meta-learning algorithms are described: Siamese networks
and matching networks.

Siamese Networks

Siamese networks were first proposed in 1994 by Brombley et al. for signature verification,
[31]. They rate similarity of inputs by computing a metric between extracted features.
Similar input images are expected to be close together in feature space. Thus, they are
likely to belong to the same class. This can be conceptualized as an image matching
algorithm.
Siamese networks consist of two sub-networks that are tied together by a distance function
between their respective high-level features. The weights are shared between both sub-
networks. There are no restrictions on the architecture of the sub-networks other than that
they must be deterministically compute a feature vector. Figure 3.5.1 shows an exemplary
shallow Siamese network with an input layer, a hidden layer, a distance layer, and an
output layer. There are two inputs (x1, x2), one for each twin. Each twin applies the
same hidden layers in the forward pass. In the distance layer a metric is applied to the
outputs of the hidden layer. The original paper proposes to use the cosine of the angle
between these feature vectors (cf. Equation (2.2.10)), [31]. Koch et al. use the L1 norm
instead, [32]. A fully-connected output layer with sigmoid activation functions yields the
normalized similarity score between two inputs.
During training, the network is presented with pairs of images (x1, x2) randomly sampled
from a dataset. These images either belong to the same class or not. The Siamese network
performs binary classification by thresholding the similarity score output. The cross
entropy loss function (cf. Equation (2.2.2)) is used to compute the loss value and update
the weights, [32].
Networks based on the Siamese architecture can be used for one-shot classification. Take
a network trained for verification on an image dataset. Consider a test image x and a set
of images {xc}Cc=1 of classes c = 1, . . . , C, none of which were used during training. For
each pair (x, xc) determine the similarity by feeding it through the Siamese network. The
predicted class of x is the one with the greatest similarity, i. e. ŷ = arg max

c
pc. To illustrate,

imagine a network trained on a glyphs from a number of alphabets that is confronted with
glyphs from new alphabet drawn by different people and having to decide which glyphs

33



Figure 3.5.1: Siamese network. Two inputs are fed through a neural network. A distance
between high-dimensional feature embeddings is computed to determine whether the
inputs belong to the same class or not.

Source: Weng [33]

represent the same character. Evidently, the computational cost is proportional to the
number of classes. Siamese networks are similar to nearest neighbor classification.
Koch notes two properties of Siamese networks, [34]. First, Siamese networks are symmetric,
meaning that for a pair of two images it does not matter which image is fed into which
input. Second, Siamese network predictions are consistent, i. e. similar images yield similar
features. This assumption is the basis of why Siamese networks work. In light of recent
advancements in adversarial attacks on neural networks, in particular one pixel attacks, this
assumption can be doubted, [35]. Two extremely similar images that are indistinguishable
by humans can be shown to result misclassification by neural networks, fooling them.

Matching Networks

Matching networks use a memory mechanism to take advantage of a small labeled support
set, [36]. They are similar to Siamese networks in that they try to measure similarity
between images to classify from a few examples. In contrast to Siamese networks training
and testing is done on the same task.
Matching networks make use of a set of labeled images for the task. This support set S
contains k examples of labeled images {(xi, yi)}ki=i, making this a k-shot learning algorithm.
A Matching network classifies a test image x by defining a probability distribution over
outputs ŷ

P (ŷ | x, S) =
k∑
i=1

a(x, xi)yi, (3.5.1)

where a(x, xi) is an attention mechanism. Equation (3.5.1) expresses output probability as
a linear combination of support set labels. It can be understood as a form of associative
memory because it associates input with similar examples in the support set, [36].
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For the attention mechanism the softmax over cosine distances between embeddings is
used. Recall the definitions of softmax and cosine distance form Section 2.2. Inserting
Equation (2.2.10) in Equation (2.2.1) yields the following expression for the attention
mechanism.

a(x, xi) = softmax(cosine similarity(f(x), g(xi)))

= cosine similarity(f(x), g(xi))
k∑
j=1

cosine similarity(f(x), g(xj))

=

f(x)g(xi)
‖f(x)‖‖g(xi)‖
k∑
j=1

f(x)g(xi)
‖f(x)‖‖g(xj)‖

(3.5.2)

In Equation (3.5.2) fθ and gθ are embedding functions, parameterized by θ. Embedding
functions map an input x to a feature vector z ∈ Rnz . In this context CNNs are used to
implement them, mapping an image input to a point in feature space. The embedding
function gθ is used to map examples from S to feature space while fθ is used to embed the
input. Instead of embedding each labeled example in isolation, Vinyals et al. propose a full
context embedding, where gθ(xi, S) considers the entire support set when embedding xi,
[36]. This allows the network’s embedding to be optimized, e. g. to differentiate between
two examples that have similar embeddings but belong to different classes. Embedding
functions and linear combination of labels are visualized in Figure 3.5.2.

Figure 3.5.2: Matching network. Four support set examples are embedded by gθ. An input
image is embedded by fθ and the cosine similarity to support set embedding is computed.
The output class is a linear combination of support set classes weighted by similarity.

Source: Vinyals et al. [36]

For training matching networks tasks Ti are samples from a distribution of tasks p(T ),
where each tasks is a collection of input data and labels. The task is split into a labeled
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support set S and an unlabeled batch B. Formally, the training objective is given by

θ = arg min
θ

∑
Ti∼p(T )

∑
S,B∼Ti

∑
x,y∈B

L(y, P (ŷ | x, S, θ)). (3.5.3)

The objective is to minimize the loss of predicting labels ŷ for data x in the unlabeled
part of Ti, given support set S.

3.5.2 Model-Based

Model-based meta-learning enhance neural networks additional components to learn
from few examples. The following section explains memory-augmented neural networks
(MANNs), neural network with added memory for fast learning.

Memory-Augmented Neural Networks

MANNs use an external memory to reduce the cost of learning. The external memory can
be used to store and load information, [37]. This allows for fast learning from new data.
MANNs are based on Neural Turing machines (NTMs), [38]. NTMs add addressable
memory to neural networks. They consist of two parts: a memory bank and a memory
controller, embodied by a neural network. A block diagram of a NTM is shown in
Figure 3.5.3.

Figure 3.5.3: A Neural Turing machine. The controller recieves an external input and
moves the read and write heads accordingly. The heads interact with the memory bank,
producing the output.

Source: Graves et al. [38]

A NTM’s memory can be thought of as an N ×M matrix, where N is the number and M
the size of memory locations. Interaction with memory is done through read and write
operations. Given a weight vector wt of length N at time t a read operation on memory
matrix Mt is given as follows.

rt =
N−1∑
i=0

wt(i)Mt(i) (3.5.4)
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Writing is divided into two parts: erasing and adding. To erase memory the following
operation is performed, given an erase vector et ∈ (0, 1).

M̃(i) = M(i) + (1− wt(i))et (3.5.5)

The new value can then be written to the modified memory M̃t(i) with add vector at in
the following way.

M(i) = M̃(i) + wt(i)at (3.5.6)

Santoro et al. propose a least recently used access (LRUA) module for writing. The new
value is written to the memory location that was used least recently. This encourages
encoding of relevant information. All operations of a NTM are differentiable, making it
trainable by gradient descent methods, [38].
The weight vector in Equations (3.5.4) to (3.5.6) are produced by read and write heads.
Reading and writing to memory taking into account a weight vector is a blurry memory
addressing mechanism. There are two types of addressing: content-based and location-
based. Content-based addressing takes a key vector k of length M and compares it to
each row Mt(i) in memory. The key vector k is the output of a neural network. A
similarity score is computed for each pair (k,Mt(i)). The authors of the original NTM
paper propose a softmax cosine similarity metric (cf. the matching network attention
mechanism, Equation (3.5.2)), [38]. As a result similar inputs and rows in memory produce
higher weight values. For location-based addressing, a shift vector st is applied to the
weight vector.

wt(i) =
N−1∑
j=0

wt(j)st(i− j) (3.5.7)

Note that Equation (3.5.7) is a convolution in 1D.
During training a MANN stores representation information in memory. This information
can be retrieved later to classify new examples. Information retrievel is done by content-
similarity. Among other advantages, the use of a memory block makes multiple forward
passes as used by many metric-based meta-learning algorithms redundant.

3.5.3 Optimization-Based

LSTM Meta-Learning

LSTM meta-learning aims to find an initialization and update rule for parameters that
lead to good performance in few-shot learning settings, [39]. It uses an LSTM cell for
storing and updating model parameters.
Ravi and Larochelle propose to use an LSTM cell to learn an update rule, using the
cell state to represent learnable model parameter, [39]. Recall the gradient descent
Equation (2.3.12).

θt = θt−1 − α∇θt−1Lt
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The update step can be formulated as cell state update of an LSTM (cf. Equation (2.3.8))
by setting ft = 1, ct−1 = θt−1, it = αt, and c̃t = −∇θt−1Lt.

ct = ftct−1 + itc̃t (3.5.8)

Input and forget gate are optimized during meta-training. In parametric form, the input
gate equation for LSTM meta-learning is given by

it = σ(Wi · [∇θt−1Lt, Lt, θt−1, it−1] + bi), (3.5.9)

where [·, ·] denotes a concatenation of vectors. In the context of LSTM meta-learning the
input gate can be thought of as the learning rate. The input gate controls to what degree
the gradient is applied to the parameters. It is a function of current gradient, current loss,
previous parameters and previous learning rate. In a similar manner the forget gate can
be parameterized as follows.

fg = σ(Wf · [∇θt−1Lt, Lt, θt−1, ft−1] + bf ), (3.5.10)

There is no equivalent to a forget gate in gradient descent. However, Ravi and Larochelle
note that this mechanism can help escape from local minima, [39]. Gradient descent always
retains the full value of previous parameters, relying on the gradient to be non-zero. If
the gradient vanishes the learning algorithm can be stuck at a local minima. By having
the option to scale parameters at every update step it becomes possible to escape such
situations. In addition to the update rule the initial cell state c0 is learned during training
to provide an optimal initialization for model parameters.
During meta-training training and test dataset Dtrain and Dtest are sampled from a
distribution of datasets. A copy of parameters is updated using Equation (3.5.8) by
training on batches of Dtrain. After T training steps these parameters are evaluated on
Dtest. Finally, the meta-learner’s parameters are updated using the loss on the test set.
The training procedure is illustrated in Figure 3.5.4.
The LSTM meta-learning algorithm requires the computation of second-order derivatives
which is computationally expensive. Ravi and Larochelle assume that gradients of the
learner are independent of gradients of the meta-learner, thus avoiding the computation of
higher-order derivatives. They show experimentally that their proposed LSTM meta-learner
outperforms existing approaches.

Model-Agnostic Meta-Learning

Model-agnostic meta learning trains a model on a multitude of tasks with only few examples
and training steps to produce parameters that generalize well to new tasks. It does not
make any assumption on the model other than that it is trained with gradient descent,
making it model-agnostic. It can be applied to classification, regression, and reinforcement
learning with fully-connected, convolutional or recurrent neural networks.
The objective of meta-learning is to produce a parameterization that is useful across many
tasks, thus being adaptable to new ones by fine-tuning. In other words, the loss functions
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Figure 3.5.4: LSTM meta-learning. The learner updates model parameters on batches
of training data (Xi, Yi). After T steps the meta-learner updates meta-parameters using
Equations (3.5.8) to (3.5.10).

Source: Ravi and Larochelle [39].

should be sensitive to new tasks. A high sensitivity to new tasks means small changes to
model parameters θ cause large changes in the loss value L(θ). Figure 3.5.5 visualizes loss
sensitivity.

Figure 3.5.5: Model-agnostic meta learning. Model parameters θ are optimized during
meta-training such that adapting to new tasks (θ1, θ2, and θ3) requires only a few gradient
steps.

Source: Finn et al. [8]

Consider a set of tasks T for supervised learning. Each task Ti consists of input-output
tuples (xi, yi). During the meta-learning phase the model is trained on samples of n tasks
drawn from a distribution p(T ). For each task k examples are sampled, loss LTi(fθ) and
gradients ∇θLTi(fθ) are computed and task-specific parameters θi′ are computed with
gradient descent as follows (cf. Algorithm 1, line 6).

θ
′

i = θ − α∇θLTi(fθ)

The parameters trained on this task for one or more training step are then tested on
held-out samples of the same task. The loss LTi(fθ′i) of a model f with parameters θ′i on

39



these test samples is to be minimized.

min
θ

∑
Ti∼p(T )

LTi(fθ′i) = min
θ

∑
Ti∼p(T )

LTi(fθ−α∇θLTi (fθ)) (3.5.11)

It measures how well the the model generalizes when trained on a new task. The test
error of learning from k samples is used as training error for meta-learning. Applying
the gradient descent update rule of Equation (2.3.12) to the objective formulated in
Equation (3.5.11) leads to the folowing expression.

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi(fθ′i)

= θ − β∇θ

∑
Ti∼p(T )

LTi(fθ−α∇θLTi (fθ)) (3.5.12)

Equation (3.5.12) computes the gradient of a gradient, in other words a second-order
partial derivative. Experiments have shown that first-order model-agnostic meta learning
(FOMAML), a first-order approximation of MAML, can be sufficient, [8]. Algorithm 1
outlines the complete MAML algorithm.

Algorithm 1 Model-agnostic meta learning, [8]
Require: p(T ): distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: Evaluate ∇θLTi(fθ) with respect to k examples
6: Compute adapted parameters with gradient descent: θ′i = θ − α∇θLTi(fθ)
7: end for
8: Update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi(fθ′i)

9: end while

Two different step size parameters or learning rates are used, α for the task update
step and β for the meta update step. After meta-learning the model performance is
evaluated on tasks held out from meta-training. In contrast to other initialization methods
MAML optimizes fast adaptability to new tasks. A network pre-trained using this
framework is faster at adapting to new tasks than random initializations or generic
ImageNet initializations. To adapt to a new problem parameters trained with meta-
learning need to be fine-tuned on samples of a new task.
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Chapter 4

Implementation

This chapter explains the implementation of algorithms to transfer learned behavior from
simulation to reality. First, different approaches presented in chapter 3 are compared in
section 4.1 and a selection of them is chosen to be implemented. Then, section 4.2 describe
the hardware and software used in experiments, namely EyeBot and EyeSim. Section 4.3
sheds light on the process of collecting data in simulation and reality. Finally, section 4.4
describes details regarding training such as network architecture and measures to prevent
overfitting.

4.1 Comparison and Selection of Approaches

This section compares approaches to bridge the gap between simulation and reality
presented in chapter 3. There are three main categories of such approaches: Domain
randomization (section 3.3), domain adaptation (section 3.4), and meta-learning (sec-
tion 3.5). Each of them has a number of subcategories with advantages and disadvantages
for different types of problem settings. For each main category an algorithm is selected to
be implemented in this thesis and subsequently evaluated.

Domain Randomization

Among the domain randomization techniques GAN-based GDR have come to dominate
others in the past few years. They show great performance on benchmark datasets
such as MNIST and work well for real-world applications, [22], [28]. However, they are
computationally expensive since they encompass training multiple networks. Furthermore,
they are potentially unstable during training. Some of them require occasional real-world
roll-outs or a labeled validation dataset.
Unguided domain randomization on the other hand is less computationally expensive when
it comes to generating a synthetic dataset. It simply varies selected parameters uniformly
in a given range. There is no guarantee for its success since no optimization of parameters
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is done. It relies on expert knowledge to select which simulation parameters to randomize.
However, it has often been shown to yield good results, [4], [23].
The necessity of real-world roll-outs and labeled validation dataset are in conflict with
the goals set out in section 1.3. For reasons of simplicity and to limit the scope of this
thesis unguided domain randomization is selected. The task at hand—following a lane—is
relatively simple compared to grasping objects of unknown shape as done by Tobin et
al., [4]. There are less degrees of freedom in the actuator and the environment is more
well-defined.

Task Loss

Figure 4.1.1: Schematic domain randomization. A network is trained using large amounts
of randomized synthetic data to learn the target task. Generalization to target domain is
achieved through diversity of training data.

Domain Adaptation

Input-level domain adaptation is closely related to GDR using GANs. It suffers from the
same drawbacks: high computational complexity and training instabilities. Furthermore,
there is an additional disadvantage: If one were to use a GAN to map a real-world image
to another domain at test time before presenting the task network with its input, said
GAN needs to be able to run in real-time. EyeBots use a Raspberry Pi 4 with limited
computational power. Thus, input-level domain adaptation with image translation in
real-time is likely infeasible.
Among the feature-level domain adaptation algorithms weight regularization combined
with domain confusion stands out (cf. section 3.4.1). According to Rozantsev et al. it
achieves high accuracy on the Office dataset, a common domain adaptation benchmark
dataset, [7]. It is the most complex feature-level domain adaptation approach presented in
this thesis with respect to the number of loss terms and hyperparameters is has. However,
it is still simple to implement but may require some tuning of loss weights. Thus, weight
regularization with added domain confusion is chosen.
Furthermore, a variation of conventional domain adaptation is implemented. The source
dataset generated in simulation is replaced with a randomized dataset. The coalescence
of domain adaptation and randomization has the potential to yield better generalization
results.
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Figure 4.1.2: Schematic domain adaptation. Two networks are trained simultaneously:
The source network is trained to perform the main task while the target network is trained
to be domain-invariant. Weights of the two networks are regularized to prevent divergence
while allowing minor adjustment.

Meta-Learning

Metric-based meta-learning can be shown to be able to correctly classify previously unseen
examples. Typically, they use an appropriate metric to compare feature representations.
This requires multiple forward passes at test time. For reasons stated above this is infeasible
on the hardware used.
Model-based meta-learning does not require multiple forward passes. It uses a memory
mechanism to store information and retrieve it as they see fit. This makes them superior
for applications with limited computational resources. However, they require modification
of the network architecture which is undesirable.
Optimization-based meta-learning appears to solve issues that metric-based and model-
based meta-learning entail. It has no impact on the runtime at test time and does not
dictate a particular network architecture. MAML is chosen since it outperforms LSTM
meta-learning, [8].

4.2 Hardware and Simulation Environment

This section described hardware and simulation environment used in the experimental
part of this thesis. Experiments are carried out on EyeBots and in EyeSim.

43



W
e
ig

h
t

R
e
g

u
la

ri
za

ti
o
n

Source Domain

Target Domain

Task Loss

Domain 
Discrepancy 

Loss

Figure 4.1.3: Schematic domain adaptation and randomization. This setting is similar
to domain adaptation, except source domain data is replaced by randomized data. Thus,
the target network is adapted to a plethora of source domains instead of merely a single
manifestation.

Meta-Training

Fine-Tuning

Task Loss

Task Loss

Sample
Task

Figure 4.1.4: Schematic meta-learning. During meta-training the network is trained on
tasks sampled from a collection of tasks. It is trained explicitly to learn new tasks fast.
Then, it can be fine-tuned on the target domain task using few data and iterations.
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4.2.1 EyeBot

EyeBot is an embedded controller for robotics applications developed by the University of
Western Australia (UWA) Robotics and Automation Lab, [40]. Its most recent version
is based on a Raspberry Pi 4, using Raspbian 10 (Buster) as its operating system. The
controller is connected to an IO-board via USB. The IO-board includes hardware and
software drivers for various sensors and motors. Among the sensors are three infrared
distance sensors, a Raspberry Pi camera module, and encoders to read motor positions.
Two servo motors can be controlled independently. Optionally, an LCD screen can be
connected to the Raspberry Pi. An Ethernet port and Wi-Fi connection are available.
Figure 4.2.1 depicts an Eyebot following a lane.

Figure 4.2.1: Photo of an EyeBot following a lane.

A software library called RoBIOS provides an abstraction layer for sensors and motors.
It comes with C, C++ and Python bindings. To use it, the user needs to include an
eyebot.h file if using C or C++. For Python an eye.py module can be imported. The
API provides access to sensor readings, camera image, basic image processing, LCD display,
and a differential driving interface. A full list of available functions can be found in [40].

4.2.2 EyeSim

EyeSim VR is a simulation environment that simulates EyeBot functionality, [41]. It is
based on the Unity game engine. Sensor readings and robot movement are simulated in
real-time. Robots in EyeSim respond to the RoBIOS API. It is possible to create and load
custom robot models, objects, and environments. EyeSim can be used to prototype and
test algorithms in a safe environment. It is not meant to be photo-realistic. Figure 4.2.2
shows a screenshot of EyeSim.
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Figure 4.2.2: Screenshot of EyeSim VR.

4.3 Data Collection

This section describes the process of collecting data for experiments with EyeBots. In
the context of this thesis data refers to image-action-pairs. Images can be taken from
a real or simulated robot. Data collection differs between the two domains because
additional information about robot position is available in simulation. For some of the
real-world images no ground-truth action is available. All datasets used in experiments
are summarized in table 4.11.

Table 4.1: Overview of datasets used in experiments.

Domain # Dtrain # Dval # Dtest

Reality (labeled) 2000 500 500
Reality (unlabeled) 8000
Simulation 10000 2000
Domain Randomization 10000 2000

During data collection the robot is controlled using differential driving with a constant
linear velocity. The angular speed controls the steering direction. Angular speed is
normalized to [−1, 1] for training, where positive values steer left, negative values steer
right and zero means go straight. To simplify the problem the continuous angular speed is
discretized to five classes with values [−0.7−0.25, 0.0, 0.25, 0.7].. The classes correspond to
”hard right”, ”slight right”, ”straight”, ”slight left”, and ”hard right”, respectively. While

1All datasets are publicly available at https://www.kaggle.com/felixwege/
eyebot-autonomous-driving-dataset.
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discretization of steering may cause loss of precise steering for difficult maneuvers it is
sufficient for lane-following as demonstrated by Xu et al., [42].

Simulation

Data collection in simulation is automated to gather large amounts of data effortlessly.
An EyeSim world file resembling the simplified Carolo-Cup course is used as shown in
figure 4.2.2. EyeSim provides some additional functions that give information about
position and velocity of the vehicle that is unavailable in reality. This information is used
to implement a PID controller to follow the road. The controller has two input variables:
distance between vehicle and lane center as well as difference between vehicle heading and
desired heading to follow the road. Controller gains are tuned by hand.
Images retrieved by the RoBIOS API are available in various resolutions with a 4:3 aspect
ratio. To reduce file size and computational cost images are downsampled to 160× 120
pixels. Note that all information about the course is in the bottom half of the image.
Hence, images are cropped to the bottom 160× 60 pixels, further reducing size and cost.
Images are saved with three color channels using the Portable Network Graphics format.
Actions are saved in a comma-separated values file. Data collection is done at 10 Hz. An
example image from simulation is shown in figure 4.3.1b.
Gathering data in simulation in an automated fashion enables collection of almost arbitrary
amounts of data. For experiments conducted in this work 10000 simulated training images
and corresponding steering angles are recorded. To supplement training data a validation
set of 2000 labeled images is collected. Additionally, 8000 unlabeled images are collected
to be used for domain adaptation.

(a) Reality (b) Simulation (c) Domain Randomization

Figure 4.3.1: Example images from the perspective of an EyeBot in reality, simulation,
and domain randomization as they are used for training. The three images depict a similar
scenario but differ in appearance.

Domain Randomization

Data collection for domain randomization follows the procedure outlined in the previous
section, except that the floor texture is randomized. The floor texture is randomized
by pasting colored squares on a canvas and superimposing the road markings on top.
Domain randomization data collection is discussed in detail in section 3.3. An example
image collected using domain randomization is shown in figure 4.3.1c. In total 10000
training images and 2000 validation images are gathered using domain randomization.
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Since domain randomization and data collection in simulation can be automated, large
amounts of data can be collected with little effort.

Reality

Data collection in reality is less straightforward since no perfect knowledge about vehicle
position and velocity is available. Different solutions are conceivable. For example, one
could implement a lane-following using classical image processing and control theory.
Alternatively, EyeBots can be controlled remotely while recording data. Since only a small
amount of labeled data from reality is required this approach is chosen. The vehicle is driven
around the course manually to collect 2000 training and 500 validation data. An example
image collected in reality is shown in figure 4.3.1a. In addition, 500 test images are gathered.
There are used to evaluate and compare performance of algorithms in the following sections.
They are never used for training or validating models or hyperparameters. The simplified
Carolo-Cup course as it is set up in the UWA’s Robotics and Augmentation Lab is shown
in figure 4.3.2.

Figure 4.3.2: Photo of an EyeBot on the Carolo-Cup track.

4.4 Training

4.4.1 Software Libraries

All software in this thesis are written in the Python programming language, using common
packages such as NumPy for array operations and OpenCV for image processing. Tensor-
Flow 2 is used to implement deep learning algorithms. It is chosen over other frameworks
such as PyTorch because is offers more support and optimization for deployment on mobile
and embedded devices. Version 2 of TensorFlow offers some advantages over version 1, for
example eager execution, cleaner API and a more ”pythonic” style.
TensorFlow has integrated Keras, a high-level interface to constructing and training deep
learning models. Keras comes with numerous models, layers, loss functions, optimizers,
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metrics, and utilities. It also provides base classes from which to inherit, making it easy
to implement custom objects.
While Keras provides useful tools to train simple models, advanced deep learning algorithms
often require the implementation of a custom training loop. To train a model using gradient
descent, the following steps are necessary: Forward pass of input tensors, computation of
loss, computation of gradients w. r. t. trainable parameters, and update of said parameters.
Implementing a custom training loop gives full control over implementation of extravagant
architectures, loss functions and gradient updates described in chapter 3. TensorFlow’s
GradientTape is used for automatic gradient computation. It can be used as a Python
context manager. Within the context all trainable variables and operations using them
are recorded.
TensorFlow 2 offers eager execution which simplifies debugging. Ordinarily, TensorFlow
constructs a computational graph from operations. When using eager execution all
operations are evaluated immediately. However, this has a negative effect on execution time.
TensorFlow 2 introduces a Python function decorator tf.function. Python functions
that are annotated with this decorator are converted to tensorflow graph operations to
speed up computations.
The input pipeline utilizes TensorFlow’s Dataset API. With this API large dataset can be
handled. It can be used to apply transformations and data augmentation to data. Dataset
objects can consume Python generator expressions. When iterating over a dataset only the
current batch is loaded into memory. Each input tensor is of size nbatches×h×w×nchannels,
where h and w are image height and width, respectively. Actions are one-hot encoded
after discretization, resulting in a nbatches × nclasses tensor.
To monitor performance during training TensorBoard is used. TensorBoard can visualize
losses, metrics, models, images, and other data. During training, losses and metrics are
evaluated on the training set during each step. Periodically, the model is evaluated on
the validation set and images with predicted and ground-truth are saved. Evaluation and
writing to TensorBoard is done using custom callbacks that are called at the beginning
and end of every step and epoch.
Models and their parameters are saved using TensorFlow’s SavedModel format. A saved
model contains all operation and weights associated with a model. It can be loaded to
continue training or used for deployment. At regular intervals the current model is saved.
In addition to that, n models with the best performance w. r. t. to a selected metric are
kept. This constitutes a form of early stopping. Details on early stopping and other
regularization techniques are described in section 4.4.3.
TensorFlow Lite offers tools to optimize performance on mobile and embedded devices.
Mainly, it consist of two components: a converter and an interpreter. The converter
can transform a saved model into a serialization that can be process by the interpreter,
optimizing size and performance by quantization of weights. Instead of using the default
of 32 bit floating point numbers for weights, 8 bit integers can be used to reduce file size
by up to 4 times and performance by a similar factor. This is explored in section 4.4.2.
The interpreter can load an optimized model and perform inference.

49



Ultimately, models are supposed to run on an Eyebot with Raspberry Pi. At the time of
writing this thesis Raspbian 10 does not support TensorFlow 2. For inference on EyeBots
all saved models are converted to a TensorFlow 1 compatible format before deployment.

4.4.2 Network Architecture and Hyperparameters

Training neural networks often involves several hyperparameters, such as learning rate,
weight decay, and the network architecture itself. Hyperparameter are not optimized during
training, but have an influence on it. Hyperparameter optimization is a field of interest of
its own, with approaches ranging from grid or random search to evolutionary algorithms,
[5]. In this thesis most hyperparameters are set to sane default values. Only learning rate
and domain adaptation weights are optimized. Table 4.2 lists hyperparameters used in
experiments. Some of the parameters, such as learning rate, dropout rate, and weight
decay, are further explained in the following sections. This thesis uses the Adam optimizer
in all experiments, [43].

Table 4.2: Hyperparameters

Hyperparameter Value
Input shape 160× 60× 3
Batch size 128
Epochs 1000
Learning rate 10−4

Dropout rate 0.5
Label smoothing 0.1
Weight decay 0.01

MobileNetV2

Before conducting any other experiments the network architecture is determined. Two
architectures are compared: MobileNetV2 and a CNN that has the same number of layers
as MobileNetV2 with the same input and output dimensions. Figure 4.4.1 shows the
basic network architecture2. MobileNetV2 has 19 inverted residual with linear bottleneck
layers (cf. section 2.3), [11] It has 2, 290, 437 trainable parameters. In contrast, a CNN
with the same layer structure has 5, 208, 357 trainable parameters. This has an impact on
model capacity, accuracy, inference speed, and file size. The two different networks are
compared in the following experiment.

Experiments Networks are trained on 2000 labeled images from reality to compare the
architectures. To increase inference speed they are converted to TF Lite. Four different

2Network architecture figure was generated using https://github.com/HarisIqbal88/
PlotNeuralNet.
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Figure 4.4.1: The Network architecture is based on MobileNetV2. It uses a custom head
with two outputs: A 5-way classification for steering and a binary domain classification
(both shown in purple). Feature maps of convolutions are shows in yellow. The number of
filters is written underneath each feature map. The input dimension is 160× 60× 3. As
the size is reduced by pooling operations or strided convolutions the number of filters is
increased. Except for the output layer the network is fully convolutional.

networks are compared: CNN, CNN (TF Lite), MobileNetV2, and MobileNetV2 (TF Lite).
Their accuracy on the test set and inference time on an EyeBot are compared in table 4.3.
Figure 4.4.2 shows box plots of inference times.

Table 4.3: Comparison of MobileNetV2 and CNN, with and without TF Lite. The accuracy
is computed on the test set of 500 images. Time per iteration is the median of 1000
iterations on an EyeBot.

Network # Params Accuracy Time/it
CNN 5.2 M 90.20 % 142 ms
CNN (TF Lite) - 90.00 % 77 ms
MobileNetV2 2.3 M 91.00 % 140 ms
MobileNetV2 (TF Lite) - 90.40 % 66 ms

Results All networks achieve upwards of 90 % accuracy on the test set. There is no
significant difference in accuracy between MobileNetV2 and equivalent CNN for this task.
TF Lite conversions have a slightly lower accuracy than their unconverted counterparts.
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Figure 4.4.2: Box plots of inference time of different models on an EyeBot. Models
converted to TF Lite are twice as fast as their counterparts. MobileNetV2 is slightly faster
than its CNN equivalent.

However, the time per iteration of unconverted networks is twice as long. The median
iteration time of MobileNetV2 on an EyeBot is 140 ms while the network converted to
TF Lite only takes 66 ms. TF Lite is vital to meeting the runtime requirement set out in
section 1.3. Given that MobileNetV2 converted to TF Lite is the fastest at almost no loss
in accuracy, this architecture is chosen for all remaining experiments.

Learning Rate

Learning rates are crucial for training deep learning models, [44]. In the gradient descent
update equation (2.3.12) the learning rate α determines to what extend the gradient is
applied to trainable parameters. If the step size is too small training converges slowly or
becomes stuck in a local minimum, [5]. Higher learning rates can yield faster convergence
and escape local minima. However, they can cause overshooting and divergence. Often
the learning rate is decayed during training to find a balance between exploration and
exploitation.
To find a sensible initial learning rate the following algorithm is implemented. Starting
from a learning rate that is far too small the learning rate is increased exponentially after
every step. Loss and gradient are computed and network parameters are updated. The
loss is monitored during this procedure. Typically, the loss decreases slowly at first but
decreases increasingly faster. At a certain point the loss reaches a minimum and increases
again. This is the point where a large learning rate causes divergence. At this point
training is aborted. The point where the loss decreased the fastest is a suitable learning
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rate to start training with. Algorithm 2 exemplifies this algorithm. This learning rate
algorithm is based on [44]. An example of learning rate finding is shown in figure 4.4.3.

Algorithm 2 Learning rate finder
Require: γ > 1

1: Initialize α
2: while α < threshold or loss not divergent do
3: Compute loss, update weights
4: α← γ · α
5: end while
6: Return α where loss decreased most

Figure 4.4.3: The learning rate (shown in orange) is increased exponentially until the
training loss explodes. Training loss is plotted against a semi-logarithmic scale. It decreases
slowly at first, decreases increasingly faster as the learning rate grows until the loss explodes.
The optimal learning rate occurs at the dashed line.

4.4.3 Measures to Prevent Overfitting

This section briefly describes measures to prevent overfitting that are common practice in
deep learning.

Data Augmentation

Data augmentation is a technique to generate new data for training applying transforma-
tions to existing training data. It is especially effective for computer vision applications.
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Images can be translated, rotated, flipped, and changes to brightness, contrast, and hue
can be made to multiply the amount of data, [5]. Also noise can be added. Table 4.4 list
randomized translations that are applied.

Table 4.4: Data augmentation parameters

Randomization Value
Brightness [−20 %, 20 %]
Contrast [50 %, 100 %]
Salt and Pepper Noise 1 %
Flip vertically 50 %

Weight Decay

Weight decay, also known as squared L2 weight regularization, penalizes model parameters
θ for growing too large. To perform weight decay the L2 norm, i. e. the squared sum of all
weights, is added the loss L(θ), resulting in a new loss L̃(θ).

L̃(θ) = α

2 θ
T θ + L(θ) (4.4.1)

Here, α is the weight decay rate. It is divided by two to make the gradient more convenient.
In this thesis α = 0.01 for all experiments. The gradient is given by

∇θL̃(θ) = αθ +∇θL(θ). (4.4.2)

The gradient descent update step with weight decay can be expressed as follows.

θi = θi−1 − ε∇θL̃(θ)
= θi−1 − ε(αθ +∇θL(θ))
= (1− εα)θi−1 − ε∇θL(θ) (4.4.3)

Weight decay shrinks the weights in every update. Thus, weights are encourages to remain
reasonably small, [5].

Early Stopping

Another measure to prevent overfitting is early stopping. Early stopping exploits a common
phenomenon when training models with sufficient capacity to overfit. Often, the training
loss decreases steadily. However, the validation loss, after initially decreasing, starts to
increase again. After this point the model starts to overfit, [5]. Figure 4.4.4 shows a typical
learning curve. The model parameters that lead to the lowest validation loss are likely to
perform well on the test set. Early stopping proposes to prefer these parameters and stop
training when the validation loss has not decreased for some time. In this thesis every
model is trained for 1000 epochs and the best-performing one on the validation set is used
for testing.
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Figure 4.4.4: Typical U-shaped learning curve of a model overfitting. The training loss,
shown in blue, decreases steadily. The validation loss stops decreasing and increases again
after a certain number of iterations.

Dropout

Dropout is related to ensemble learning, i. e. training multiple models to perform the
same task and averaging their output, [5]. It is computationally inexpensive. Dropout is
implemented by removing a random subset of units from a network during training (by
multiplying them with zero). The probability of an individual unit being ”dropped” is
given by the dropout rate (cf. table 4.2). During inference all units are used. Dropout
reduces the risk of overfitting by encouraging robust features and redundant paths.

Batch Normalization

Batch normalization is an adaptive reparametrization that facilitates training of deep
neural networks. In practice neural networks are trained in batches, i. e. multiple input
images are processed in parallel. Gradients are averaged across the batch and applied to
the weights. Batch normalization proposes to replace the batch of activations H of each
layer with the following expression at training time.

H̃ = H − µ
σ

(4.4.4)

The activations H are normalized by subtracting the mean µ and dividing by the standard
deviation σ of the batch of activations. This operation is included in back-propagation.
Thus, the gradient can not increase mean or standard deviation of activations. At test
time a moving average of activations can be used. While batch normalization was initially
proposed to improve optimization it also has a regularizing effect, [5].
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Chapter 5

Evaluation

This chapter describes experiments conducted with algorithms selected in section 4.1. All
algorithms are evaluated on a test dataset of 500 real images as explained in section 4.3
w. r. t. categorical accuracy. Real world lane-following capabilities are evaluated using an
autonomy rating.
At first, naive transfer from simulation to reality is explored in section 5.1. Domain
randomization results are discussed in section 5.2. Next, section 5.3 explores the application
of unsupervised and semi-supervised domain adaptation to lane-following. In section 5.4
MAML and its first-order approximation are compared. Trained networks are demonstrated
to learn the detection of reasonable road features in section 5.5. Finally, all of the above
approaches are deployed on an EyeBot and their performance in reality is evaluated in
section 5.6 Two different settings are contrasted: 20-shot learning and 0-shot learning.

5.1 Transfer Learning

This section describes transfer learning using a pre-trained MobileNetV2 for lane-following.
The network is pre-trained on ImageNet. It is fine-tuned on data from simulation and
reality to explore the effect different amounts of data from those domains has.

5.1.1 Transfer Learning to Simulation

Experiments Before moving on to real data, this sections shows that the chosen
architecture and hyperparameters are capable of solving the problem in simulation. A
number of models are trained using increasing numbers of data to verify the amount of
data is sufficient. Each model is trained for 1000 epochs. Measures against overfitting as
described in section 4.4.3 are used. The model with the highest validation accuracy is
used for comparison.

Results Figure 5.1.1 shows classification accuracy for models trained with amounts
of data ranging from 100 to 10000 examples. Training and validation dataset consist
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Figure 5.1.1: Classification accuracy for models trained with 100, 200, 500, 1000, 2000,
5000, and 10000 simulated images on a logarithmic x-axis. Training and validation accuracy
are high while there is a large gap in performance when testing real data.

of simulated images while the test set consists of real images. Accuracy on training
and validation dataset are generally high, starting at 74.25 % training accuracy and
68.99 % validation accuracy for 100 examples and increasing steadily as the amount of
data becomes larger. With 10000 training images training accuracy rises to 99.99 % and
validation accuracy reaches 95.80 %. The test accuracy on the other hand is no higher than
45.80 %. This experiment shows there is a gap between reality and simulation. However,
training with larger amounts of synthetic images does increase performance on test dataset.
In 5-way classification the chance of guessing the correct class is 20 % and 45.80 % is
significantly above that. This shows that while the two domains are certainly different
there is some information shared between them.

5.1.2 Transfer Learning to Reality

Experiments In the next experiment models are trained on real data. As outlined in
section 4.3 only 2000 labeled training images from reality are available.

Results The results are shown in figure 5.1.2. For 100 data points training accuracy
is 81.94 %, validation accuracy is 59.26 % and test accuracy is 47.20 %. They increase
continuously as the amount of training data is increased. The highest test accuracy is
90.93 % when using all 2000 labeled images. For small amounts of data the gap between
training, validation, and test accuracy is large. This likely happens due to overfitting
to small amounts of data. As the amount of data is increased the gap shrinks while all
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Figure 5.1.2: Classification accuracy for models trained with 100, 200, 500, 1000, and
2000 real images on a logarithmic x-axis. The gap between training, validation, and test
accuracy shrinks when using larger amounts of data.

accuracies increase. This reveals that 100 labeled images are insufficient for the problem
at hand. Collecting more data is likely to improve performance but time-consuming. The
following chapters evaluate ways to improve performance without collecting more data.

5.2 Domain Randomization

This sections describes and evaluates the application of domain randomization (cf. sec-
tion 3.3) to lane-following.

Experiments Domain randomization is implemented in simulation to generate random-
ized synthetic images. The EyeSim world file specifies a 550× 550 pixel image that is used
as floor texture. The Carolo-Cup scene uses a dark gray background with road markings
(see figure 4.2.2). To apply domain randomization the background image is randomized
during data collection. The gray background is replaced with colored squared resembling a
patchwork rug. Figure 5.2.1 shows a screenshot of EyeSim with randomized floor texture.
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Figure 5.2.1: Bird’s-eye view of randomized floor texture in EyeSim.

The following parameters are randomized using a uniform distribution.

• Color of squares
• Size of squares
• Orientation of squares
• Road marking brightness

The color of squares is randomized by choosing a random RGB value. Their size is a
random value between 10 and 100 pixels and the random orientation is between 0◦ and
89◦. The brightness of road markings is randomized to 50 % to 100 % of its original
value. Figure 5.2.2 shows nine examples of images as they are collected using domain
randomization.

Results Figure 5.2.3 shows classification accuracy for models trained with amounts of
randomized data ranging from 100 to 10000 examples. Training and validation dataset
are collected using domain randomization while the test set consists of real images.
For 100 images there is a large gap between training and validation and test accuracy.
Training accuracy is at 77.14 % while validation and test accuracy are at 40.00 % and
31.53 %, respectively. This shows that learning a task using randomization is more difficult.
Compared to using real data this is low, but this already is an improvement over using
simulated data. The improvement becomes larger as more domain randomization data are
used. When using 10000 images the test set accuracy rises to 60.80 %, which is an increase
by 15 percentage points. This demonstrates that domain randomization is suitable to
bridge the reality gap at least partially.
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Figure 5.2.2: Nine examples of domain randomization images from the perspective of the
vehicle. The floor texture consists of squares of different colors, sizes and orientations.

Figure 5.2.3: Classification accuracy for models traine with 100, 200, 500, 1000, 2000,
5000, and 10000 real images on a logarithmic x-axis. Test set accuracy increases as larger
amounts of domain randomization data are used, outperforming models trained on regular
data from simulation.

5.2.1 Ablation Study

Experiments To evaluate the influence of different randomizations an ablation study
is conducted. For each type of randomization a new dataset of 10000 images is collected
where only this parameter is varied while others are fixed. One of them varies the size,
another one the orientation, and the last one randomizes the brightness of road markings.
All datasets except for one use squares of random color. These experiments are compared
with using all randomizations combined and with using no randomization at all, i. e. using
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synthetic images as described in section 5.1.1. Table 5.1 summarizes the results of the
ablation study.

Table 5.1: Results of the domain randomization ablation study. ”None” means that no ran-
domization is employed, i. e. data from simulation as discussed in section 5.1.1. Combined
means that all randomizations are applied as discussed in the previous experiment.

Randomization Accuracy
None 45.80 %
Color of squares 53.20 %
Color & size of squares 54.40 %
Color & orientation of squares 59.60 %
Road marking brightness 48.40 %
Color & road marking brightness 55.80 %
Combined 60.80 %

Results Replacing the gray background texture with colored squares achieves 53.20 %
accuracy, a 7.4 percentage point gain over un-randomized synthetic images. Adding squares
of random size and color yields an additional improvement by 1.2 percentage points over
only using random colors. Using a random orientation for colored squares has the largest
positive impact on performance. With an accuracy of 59.60 % this is almost as good as
using all randomizations. Using a gray background with randomized brightness of road
markings results in a slight increase by 2.6 percentage points to 48.40 %. Finally, using
colored squares in conjunction with random road marking brightness results in 55.80 %
accuracy.
The experiments show that using domain randomization with colored squares of random
orientation offers the largest benefit. Even using colored squares of fixed orientation results
in a large improvement. Randomizing the size of squares only yields a small improvement
compared to squares of fixed size. The same is true for varying the road marking brightness.
In conclusion, all of the randomization parameters have an impact on performance, with
colored squares with random orientation having the largest.

5.3 Domain Adaptation

This section describes experiments conducted using domain adaptation and discusses
results. Domain adaptation is evaluated in two different settings: Unsupervised and
semi-supervised. In unsupervised domain adaptation no labeled target domain data is
provided. Semi-supervised domain adaptation makes use of a small amount of labeled
target domain data. Before any experiments are conducted loss weights λw and λd of
equation (3.4.7) are optimized.
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5.3.1 Optimization of Loss Weights

Domain adaptation using weight regularization and domain confusion has two major
hyperparameters: weight regularization weight λw and domain confusion weight λd. The
former controls to what extend the weight regularization loss is reflected in the total loss.
The latter determines how much to penalize the difference between source and target
domain feature representation. Note that the weight regularization loss is different from
weight decay described in section 4.4.3. It is applied to the difference of weights between
models trained on source and target data.
Hyperparameter optimization is a vast field of research and this work cannot possibly cover
more than a fraction of it. The two simplest algorithms for hyperparameter optimization are
grid search and random search. Grid search evaluates a finite set of hyperparameter values
spread uniformly or logarithmic in a given interval. The best-performing combination of
hyperparameters on a validation set is chosen for further experiments. The cost of grid
search grows exponentially with the number of hyperparameter in consideration. Random
search selects random hyperparameter values in a given range and evaluates them on a
validation set. In many applications random search is more efficient than grid search, [5].
Thus, domain adaptation weights are optimized using random search.

Experiments Random search using log-uniform sampling is implemented to find good
values for domain adaptation weights. Both λw and λd are sampled in [10−3, 103]. To
perform log-uniform sapmling uniform sampling is exponentiated. In total 28 trials are
done, each with a new sample of weights. In the interest of short training times networks
are trained on a subset of training data; 2000 images are used, 1000 labeled images from
simulation and 1000 unlabeled images from reality.

Results Figure 5.3.1 shows results of random search experiments. The accuracy is
computed on the validation set consisting of real images to quantify the capability to
generalize. It varies greatly throughout the experiments, ranging from 23.40 % to 48.20 %.
The highest accuracy is achieved for λw = 2.434 and λd = 0.9987. In general, larger values
for λw perform better than small values, although there is a high variation. On the other
hand, large values λd are detrimental to validation accuracy. Values account 1 perform
well, with an additional cluster of values around 3 · 10−3. Random search for optimal
domain adaptation weights serves as an ablation study. The fact that optimal weights are
far from the lower bound demonstrates that both of them have a contribution.
The highest accuracy at 48.20 % is only slightly higher than the accuracy achieved when
training on synthetic data only, but domain adaptation is expected to perform better
when trained on the full dataset. More on that in the following sections.

5.3.2 Unsupervised Domain Adaptation

Experiments Unsupervised domain adaptation forbids the usage of any labeled target
domain data. Thus, 10000 labeled images from simulation and 10000 unlabeled images
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Figure 5.3.1: Random search for domain adaptation loss weights. Each figure depicts a
side-view on the axis of interest of a three-dimensional scatter plot. The color of dots
indicates levels of accuracy. A blue dot represent low accuracy while red is used for large
values.

from reality are used. Generalization to target domain is achieved through encouraging
domain-invariant features and parameter-tying. All experiments are conducted using the
hyperparameters discussed in section 5.3.1. Domain adaptation with weight regularization
requires two networks at training time: One network for source and one network for
target domain. The source domain network is pre-trained on synthetic data. Target
domain network weights are tied—but not shared—with source domain network weights
as described in section 3.4.1.
Two different experiments are conducted. In the first experiment synthetic data from
simulation is used as is. The second experiment uses domain randomization data for the
source domain. This setting is called domain adaptation and randomization.

Results Table 5.2 summarizes unsupervised domain adaptation results. Unsupervised
domain adaptation achieves 63.80 % accuracy on the real-world test set. This is a significant
improvement over using data from simulation only. Performance can be improved further
by domain adaptation and randomization. This yields an accuracy of 64.20 %.

5.3.3 Semi-Supervised Domain Adaptation

Experiments This section discusses semi-supervised domain adaptation applied to the
lane-following problem. Recall that semi-supervised means that only part of the images
are labeled. Two semi-supervised experiments are conducted: one with 100 labeled real
world images and one with 2000 labeled real world images. The rest of the real world
images for a total of 10000 are unlabeled. Thus, no classification loss can be computed for
them. However, they contribute to weight regularization and domain confusion loss. In
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addition to 10000 (partially labeled) real world images 10000 labeled synthetic images are
used. Domain adaptation is compared to training on few real images only, to training on
real images in combination with simulation images without domain adaptation, and to
training on domain randomization plus a few labeled real images.

Results Table 5.2 lists semi-supervised domain adaptation results. Semi-supervised
domain adaptation using 100 labeled images from reality achieves a test set accuracy of
65.80 %. This is a 15.60 percentage point improvement compared to training on simulated
and real images without adding domain adaptation loss terms. Notably, training on
synthetic images in combination with real images improves performance compared to
training on few real images only—even without domain adaptation. Adding synthetic
images acts as a regularization and helps prevent overfitting to a small dataset. Semi-
supervised domain adaptation with randomization further improves test set accuracy to
67.20 %. The higher diversity of a randomized dataset appears to be favorable for the
emergence of domain invariant features through domain adaptation.
When increasing the number of labeled real world images to 2000 all approaches show
significant performance improvement. All of them achieve upwards of 90 %, with domain
randomization and real world images yielding the best result. At this point domain
adaptation does not offer that much of a benefit since 2000 images are sufficient to learn
the task regardless.

Table 5.2: Comparison of semi-supervised and unsupervised domain adaptation. Five
different approaches are compared: training on labeled real data only, training on synthetic
data and labeled real data, training on domain randomization (DR) and labeled real data,
domain adaptation (DA), and domain adaptation with domain randomization (DAR).
Note that ”Sim + real” and ”DR + real” do not actually use real data in the unsupervised
setting. The best results are marked bold.

Unsupervised Semi-supervised
# real labels 100 2000
Real only - 47.20 % 90.20 %
Sim + real 45.80 % 50.20 % 90.40 %
DR + real 60.80 % 62.00 % 90.80 %
DA 63.80 % 65.80 % 90.20 %
DAR 64.20 % 67.20 % 90.60 %

5.4 Meta-Learning

This section describes and discusses results of meta-learning applied to lane-following.
MAML and its first order approximation FOMAML are implemented as described in
section 3.5.3.
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Experiments Since MAML is model-agnostic the same network architecture as in the
other experiments can be used. Networks are first meta-trained on a subset of the ImageNet
dataset 1. The subset contains 200 classes with 500 training images and 50 validation
images each for a total of 10000 images. The classes range from animals and plants to
humans in various contexts to inanimate objects and scenes. Networks are meta-trained
for 60000 iterations as done by Finn et al, [8].
Meta-learning is evaluated in a 1-shot, 5-shot, and 20-shot setting, where k-shot learning
means that for each class k images are present. Section 4.3 established that there a 5
different classes. Thus, in 20-shot learning a total of 100 images are used in each iteration.
During meta-training 5 classes are sampled from all available tiny ImageNet classes. For
each classes k images are sampled. The network is trained on those as described in
section 3.5.3. After a number of epochs the network is fine-tuned on the lane-following
task using k real world images per class.

Results Table 5.3 lists results for meta-learning applied to lane-following. Three different
settings are compared: 1-shot, 5-shot, and 20-shot learning. Accuracy is computed on
the real world test set (cf. table 4.1). 1-shot learning achieves an accuracy of 43.40 %,
5-shot learning achieved 59.20 %, and 20-shot learning reuslts in 75.20 % accuracy. The
more training images are used, the higher the accuracy, as one would expect. Notably,
the improvement is large even in 1-shot learning. In this setting, meta-learning greatly
outperforms training on data without meta-learning.

5.4.1 First-Order Approximation

Experiments Experiments conducted with FOMAML are the same as the previous
ones, except that the first-order approximation as described in section 3.5.3 is used. Again,
1-shot, 5-shot, and 20-shot learning are compared to evaluate the influence of the amount of
data. Finn et al. observe that an approximation shows almost no degradation in accuracy
but at the same time speed up training significantly. This experiment seeks to verify that.

Results Results of first-order meta-learning are summarized in table 5.3 along meta-
learning without approximation. For each of the three settings FOMAML exhibits about
2 to 4 percentage point loss in accuracy. In 20-shot learning 73.60 % accuracy is achieved.
FOMAML achieves similar results to MAML but training times are reduced since no
second-order derivatives are required.

5.5 Visualization of Road Feature Detection

To demonstrate that networks are actually learning a meaningful representation to predict
steering angle the network activation are visualized. Starting at the last layer, network

1Tiny ImageNet available under https://tiny-imagenet.herokuapp.com/.
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Table 5.3: Comparison of MAML and its first-order approximation. Meta-learning is
evaluated in three different settings: 1-shot, 5-shot, and 20-shot learning.

1-shot 5-shot 20-shot
Real only 22.80 % 30.40 % 47.20 %
MAML 43.40 % 59.20 % 75.20 %
FOMAML 40.20 % 55.80 % 73.60 %

activations are visualized by averaging the activation of the feature maps, scaling them up
to the previous layer’s activations, multiplying them together, and repeating this procedure
until the input layer is reached, [45]. A deconvolution is used to scale feature maps up.
The accumulated activations are thresholded and overlain onto the input image in bright
green. The procedure is summarized in algorithm 3.

Algorithm 3 Visualize network activations
Require: Trained network f(θ∗), input image x

1: activations ← f(x; θ∗)
2: accumulated ← 1
3: for activation in activations do
4: activation ← Average(activation)
5: activation ← Deconvolution(activation) . Scale up to next layer
6: accumulated ← accumulated · activation
7: end for
8: accumulated ← Threshold(accumulated)
9: Overlay accumulated activation on x

Figure 5.5.1 shows an four example images of visualized network activations. The network
in question is trained with the MAML approach is evaluated. Evidently, the network
learns to detect road markings in order to predict steering, especially those that are in the
foreground. Road markings in the foreground are more informative about the course of
the road than those in the background. The networks visibly struggles to make sense of
the crosswalk. A detailed visualization of different networks can be found in appendix A.

5.6 Comparison

This section presents results of domain randomization, domain adaptation, and meta-
learning applied to lane-following evaluated on the real world Carolo-Cup track. The
best-performing ones of each category are compared in a 20-shot and 0-shot setting. A
photo of the track is shown in figure 4.3.2.
Inspired by Bojarski et al. an autonomy rating (AR) is used to measure the ability to
follow a lane by counting the number of interventions required, [2]. An intervention is
required when the vehicle would depart from its course and leave the road otherwise. They

66



Figure 5.5.1: Visualization of Network Activations. Bright green pixels indicate high
activations which in turn are responsible for the network output.

define AR as follows.

AR =
(

1− Ninterventions · 6 s
t[s]

)
· 100 % (5.6.1)

The AR is given by multiplying the number of interventions by 6 s, diving by the elapsed
time, and subtracting the result from 1. In other words, one intervention every minute
equals a 10 percentage point loss of autonomy. At 10 or more interventions every minute
the AR is clipped to zero. Here, a discrete-time autonomy rating is proposed.

AR =
(

1− Ninterventions · 100
Nsteps

)
· 100 % (5.6.2)

Instead of dividing the number of human interventions by time it is divided by the number
of total time steps and multiplied by 100. Thus, one intervention every 1000 steps causes
a 10 percentage point loss of autonomy. For reference, the completion of one lap of the
Carolo-Cup track takes about 1000 steps. A human intervention is required if the EyeBot
leaves its lane.

5.6.1 20-shot Learning

Experiments Five different networks trained on 100 labeled real world images compared,
i. e. in a 20-shot setting. A baseline is given by training using a network pre-trained on
ImageNet and fine-tune it on the 100 images. It is compared to semi-supervised domain
adaptation with and without domain randomization. These two are contrasted with
meta-learning and its first-order approximation. Autonomy rating is computed over one
completion of the course in clockwise and one completion in counterclockwise direction for
each approach.
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Results Table 5.4 reports accuracy on the test set and autonomy rating on the test course
for 20-shot learning. Meta-learning achieves the highest accuracy at 75.20 %. All domain
adaptation, randomization, and meta-learning exhibit significantly better performance
than the baseline. The autonomy rating of all approaches is well above above 70 %.
Semi-supervised domain adaptation with randomization achieves the highest rating at
78.11 %. It slightly outperforms meta-learning.
The baseline achieves an AR of 58.42 % which is surprisingly high given that its accuracy
is far lower than that of all other approaches. This can be explained by the fact that to it
is not necessary to always predict the correct outcome to complete the course. However,
this model exhibits some perplexity at the crosswalk (see figure 4.3.2). Thus could be
caused by the fact that the crosswalk is barely represented in the training data and might
be missing or underrepresented in the 100 labeled real world images. Domain adaptation
is affected less by the crosswalk since it was trained on 10000 synthetic images from
simulation, among them many with crosswalks.

Table 5.4: Comparison of domain adaptation and meta-learning in a 20-shot setting.
Accuracy on the test set and autonomy rating on real world Carolo-Cup track are compared.
The best results are marked bold.

Accuracy Autonomy Rating
Real only 47.20 % 58.42 %
Semi-supervised DA 65.80 % 73.49 %
Semi-supervised DAR 67.20 % 78.11 %
MAML 75.20 % 77.01 %
FOMAML 73.60 % 75.39 %

Network activation for networks used here are visualized in appendix A.1 and appen-
dices A.4 to A.7. It can be seen that better-performing networks generally cause fewer
spurious activations, i. e. activations that ostensibly do not represent meaningful road
features. Such activations sometimes appear to occur at the border of the image or in
reflections. They are symptoms of overfitting. The fact that MAML and semi-supervised
domain adaptation with randomization have less spurious activations goes on to show that
the help bridge the gap between simulation and reality.

5.6.2 0-shot Learning

Experiments Four approaches are evaluated in a 0-shot setting. Domain randomization
and unsupervised domain adaptation with and without randomization are compared
against a baseline that is trained on synthetic data only. Meta-learning is not application
to 0-shot learning since it requires at least a small amount of labeled target domain data.
Likewise, fine-tuning on real data is not possible.
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Table 5.5: Comparison of domain adaptation and meta-learning in a 0-shot setting.
Accuracy on the test set and autonomy rating on real world Carolo-Cup track are compared.
The best results are marked bold.

Accuracy Autonomy Rating
Sim only 45.80 % 54.95 %
DR 60.60 % 68.53 %
Unsupervised DA 63.80 % 67.77 %
Unsupervised DAR 64.20 % 71.61 %

Results Table 5.5 reports accuracy and autonomy rating for 20-shot learning. Relying
only on synthetic data with no means of adapting achieves surprisingly good results. While
the accuracy is only 45.80 % the AR is 54.95 %. This means that about 5 interventions
are required to complete the track. In general, most interventions are required at the
intersection (see figure 4.3.2). Unsupervised domain adaptation with randomization
exhibits the best performance in 0-shot learning at 71.61 % autonomy rating. Domain
randomization stands out since through its simplicity and good relative results. Without
any additional loss terms or other measures it is able to generalize from randomized
synthetic images to reality. However, it often goes zig-zag like in straight segments of the
course. Note that it is possible to follow the lane with 5-way classification even though
the curve radii vary between 25 cm to 50 cm.
Network activation for networks used here are visualized in appendices A.2 to A.5 Again,
some networks exhibit more spurious activations than others. Notably, unsupervised
domain adaptation is missing out on many road markings. Adding domain randomization
alleviates this circumstance.
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Chapter 6

Conclusion and Outlook

This chapter summarizes results, draws a conclusion and gives an outlook to future work.

6.1 Conclusion

This thesis set out to bridge the gap between simulation and reality. In Chapter 3 an
extensive survey of existing approaches is given. Three different types of approaches
are compared: Domain randomization, domain adaptation, and meta-learning. For each
type an approach is selected and is considered for implementation and evaluation in the
proceeding Chapters 4 to 5. All implemented algorithms are evaluated on a held-out test
dataset and on a real-world test course using a model car.
The results of the previous chapter have demonstrated that it is possible to develop a deep
learning system for lane-following in the absence of labeled training data in target domain.
When such data is available results can be improved further. Among all approaches
compared in this thesis model-agnostic meta learning achieved the highest accuracy on
the test set at 75.20 %. In lane-following experiments on a test track semi-supervised
domain adaptation and randomization achieved the highest autonomy rating at 78.11 %.
Visualizations of network activations have shown that networks learn to detect road
markings in order to predict steering. Models have an average runtime of 66 ms which is
well below the target of 100 ms.
Domain randomization achieved good results with relatively little effort. It significantly
outperformed synthetic data without randomization and works in a 0-shot setting. Also,
it is agnostic of the target domain. Domain adaptation achieved slightly better results.
However, domain adaptation is tailored to a specific target domain. Using domain
randomized data for domain adaptation has been shown to yield even better results.
Finally, meta-learning performed best on the test set at the cost of extensive meta-training.
Its first-order approximation reduced meta-training times while achieving similar results.
While few-shot and zero-shot learning for lane-following is possible none of the approaches
presented here can surpass training on a large labeled dataset of real world data. For
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applications where system failures incur large costs collecting such datasets is mandatory.
Still, domain randomization, adaptation, and meta-learning can be beneficial.

6.2 Outlook

Among domain randomization and adaptation approaches those based on GANs are most
promising. They have been discarded in this thesis on the basis of computational costs
and to limit the scope, but they show a lot of potential and should be considered for future
research. Using GANs, more realistic and diverse synthetic training data can be generated,
improving accuracy on the test set.
A recently proposed extension of MAML combines meta-learning with online learning, [46].
Online learning trains on sequences of data, updating the model after each step. Experience
from previous tasks can be utilized to update model parameters in the current step. Online
meta-learning achieves better results on a number of benchmark tasks than MAML.
All experiments in this thesis were based on the same model architecture: MobileNetV2.
While the runtime requirements have been met using inverted residual blocks with linear
bottlenecks and TF Lite conversion the model might be larger than necessary. The
conversion with TF Lite happens after training. It is conceivable to optimize the model
architecture at training time for reduced size, memory usage, and inference time. A number
of approaches to achieve this have been proposed, [47]. For example, model pruning seeks
to remove redundant parameters, thereby reducing model size and number of operations.
Knowledge distillation aims to train a compact model to reproduce the output of a larger
model. Furthermore, the number of layers and feature map sizes can be optimized using a
genetic algorithm.
MobileNetV2 is a feedforward network without recurrence. Thus, it fails to capture
temporal relationships between consecutive data. However, consecutive input-output pairs
are related to each other. Introducing recurrent units that are able to model temporal
relations could lead to better results. For example, one could add LSTM cells between the
final feature vector and the output vector, [48]. This has almost no impact in inference
time since LSTMs require few operations compared to the existing architecture. However,
some adjustments in the data and training pipeline are necessary.
Accuracy and autonomy rating of the best-performing models presented here are about
75 %. While this is sufficient to follow the lane most of the time there is room for
improvement. One possibility to achieve better results is to take a trained model, deploy
in on the real world track, and fine-tune it using reinforcement learning. This is a common
approach in robotics, where reinforcement learning takes countless iterations and is often
destructive. The trained model exhibits the expected behavior except for a few cases.
In terms of parameter space, the model parameters are close to optimal and only a few
adjustment are necessary.
A different approach to improve results is using semi-supervised learning to automatically
label data. Semi-supervised learning can be used to make predictions on unlabeled data
and then use said data and the predicted labels to train a better model. This is called
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pseudo-labeling or self-training. Recently, a new semi-supervised learning algorithm called
FixMatch has been proposed that outperforms other approaches and requires minimal
amounts of data, [49]. FixMatch uses consistency regularization and strongly augmented
input data to enforce that the model makes similar predictions for strongly perturbed
images. It can be used to label large amounts of unlabeled data. Even if some of the labels
are erroneous, training a new predictor on these artificial labels can improve performance
on the target domain task.
This thesis presented three approaches to solve a simple lane-following task on a small
test course, which is more of a toy problem. The next step would be to add tasks such as
object detection for other vehicles and traffic signs as well as obstacle avoidance. Other
tasks such as lane-switching, overtaking, and behavior at intersections and crossroads are
topics of interest. Furthermore, the extension to new and more diverse environments is a
necessary next step.
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Appendix A

Detailed Visualization of Network
Activations

This chapter contains detailed visualizations of network activations overlain on 10 example
images in bright green. The following networks are considered: A network trained on 100
real images (appendix A.1), a network trained on 10000 simulated images (appendix A.2),
a network trained on 10000 randomized images (appendix A.3), a network trained using
unsupervised domain adaptation (appendix A.4), a network trained using unsupervised
domain adaptation and randomization (appendix A.5), a network fine-tuned on 100
images using MAML (appendix A.6), and a network fine-tuned on 100 images using
FOMAML (appendix A.7). All visualizations are created with algorithm 3.
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A.1 Real Only

Figure A.1.1: Real Only
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A.2 Sim Only

Figure A.2.1: Sim Only
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A.3 Domain Randomization

Figure A.3.1: Domain Randomization
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A.4 Domain Adaptation

Figure A.4.1: Domain Adaptation
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A.5 Domain Adaptation and Randomization

Figure A.5.1: Domain Adaptation and Randomization

82



A.6 MAML

Figure A.6.1: MAML
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A.7 FOMAML

Figure A.7.1: FOMAML
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