
So�ware Architecture and
Hardware-in-the-loop Simulation for
an Autonomous Formula SAE Vehicle

Craig Brogle
21313578
The University of Western Australia
School of Electrical, Electronic and Computer
Engineering
Supervisor: Professor Dr. Thomas Braunl
Submitted: 22nd October, 2018
Word Count: 6137

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

1 Abstract

Simulation is a cornerstone of autonomous driving e�orts, allowing testing to occur more rapidly and
with significantly less risk than is possible with hardware platforms alone. Simulation systemsmust be
able to emulate a variety of sensors including cameras and LiDARs in order to allow high-level so�ware
such as image processing and path planning to be tested. In this paper, we present a hardware-in-
the-loop simulation system based on CARLA, which incorporates compute hardware identical to that
used on an autonomous vehicle platform in order to provide realistic constraints regarding available
processing power along with access to the sensors required to test high level so�ware. In addition,
we explore the Robot Operating System (ROS) based so�ware framework used on the FSAE vehicle.
Specifically, we detail how this so�ware framework satisfies the requirements of flexibility, extensibility,
and resiliency presented by its use in an autonomous vehicle, along with how its fulfilment of these
requirements was beneficial to the development of the hardware-in-the-loop simulation system.

Craig Brogle | 21313578 2

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

2 Acknowledgements

I would like to thank the following people and groups for their assistance in this project: Prof. Thomas
Bräunl for his constant guidance; the other members of the REV Autonomous team for their insight
and camaraderie; and friends and family for their support and encouragement over the course of the
year. I would also like to thank the sponsors of the REV Project including the Nvidia Corporation for
providing the Jetson TX1 and GPU under its GPU Grant Program, along with Synergy and Xsens.

Craig Brogle | 21313578 3

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

Contents

1 Abstract 2

2 Acknowledgements 3

3 Introduction and Motivation 6
3.1 Background . 6
3.2 Motivation . 6
3.3 Overview . 7

4 Literature Review 7
4.1 Background . 7
4.2 Autonomous Driving Platforms . 8
4.3 Autonomous Driving Simulation . 8

5 System Design 9
5.1 So�ware Framework . 9
5.2 Autonomous Driving Simulation . 10

6 Navigation and Path Planning 14
6.1 LiDAR System . 14
6.2 Camera System . 15
6.3 Path Planning . 16

7 Experiments and Results 17
7.1 So�ware Framework . 17

7.1.1 Performance . 17
7.1.2 Resiliency . 18

7.2 Autonomous Driving Simulation . 18
7.2.1 LiDAR Cone Detection . 19
7.2.2 Visual Cone Detection . 19
7.2.3 Compute Hardware Load . 21
7.2.4 Response Time . 22

8 Conclusion 23

9 Future Work 23

References 26

Craig Brogle | 21313578 4

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

List of Figures

1 Scenarios used for comparing real (a) and simulated (b) LiDAR and visual cone process-
ing outputs. 6

2 FSAE vehicle ROS node structure. 10
3 FSAE vehicle ROS node structure. 11
4 Autonomous driving simulator setup. 12
5 Autonomous driving simulator hardware diagram. 12
6 So�ware framework architecture with CARLA simulator interface. 13
7 Formula SAE so�ware development platform (a) and sensor rack (b) 15
8 Scenarios used for comparing real (a) and simulated (b) LiDAR and visual cone process-

ing outputs. 19
9 LiDAR based cone detection results from real (a) and simulated (b) scenarios. 20
10 Computer vision based cone detection results from real (a) and simulated (b) scenarios. 20
11 Computer vision based cone detection statistics from real and simulated scenarios. . . 21
12 Processor utilisation during LiDAR based cone processing based on simulated (a) and

real (b) input. 22
13 Vehicle response times for real and simulated vehicles. 22

Craig Brogle | 21313578 5

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

3 Introduction and Motivation

3.1 Background

The Renewable Energy Vehicle (REV) Project at UWA is currently focused on the development of au-
tonomous driving applications.This development has occurred predominantly on a hardware platform
consisting of a Formula SAE [1] race car converted to an electric drive [2] equipped with an IBEO LiDAR,
a combined inertial measurement unit (IMU)/GPS from Xsens and a number of cameras for sensing,
a Nvidia Jetson TX1 for compute, and full drive-by-wire capabilities [3]. At present, the goal for the
driverless FSAE project increase the level of autonomy of the vehicle as it drives around a race track,
from relying on waypoints placed manually through a Google Maps driven web interface [4], to relying
solely on input from the variety of sensors available on the vehicle. This should result in the vehicle
being capable of driving andmapping a semi-structured race track (with edges delineated by either
cones, as displayed in Fig. 7, or road edges) with no prior knowledge before generating an optimised
path and redriving the track at a greater speed.

(a) (b)

Figure 1: Scenarios used for comparing real (a) and simulated (b) LiDAR and visual cone processing outputs.

The viability of the hardware-in-the-loop simulation system outlined in this paper, especially in terms
of ease of integration andmaintainability, was influenced greatly by the current so�ware framework
utilised on the FSAE vehicle. As such, this so�ware framework will also be explored in this paper.

3.2 Motivation

The REV Project’s Formula SAE vehicle platform is equipped with a variety of hardware safety systems
andprovides a number of advantages, such as beingmechanically simple (resulting in lowmaintenance
requirements and allowing for modifications to be made with ease) and being able to provide ample
electrical power to the onboard sensors and hardware. However, given that is it a 250 kg vehicle
capable of speeds up to 50 km/h, it is subject to sometimes onerous safety requirements. In addition, it

Craig Brogle | 21313578 6

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

is not a road licensed vehicle, preventing testing from occurring on public roads. These issues provide
the motivation for the development of a hardware-in-the-loop simulation system, designed to allow
more frequent testing in a wider range of environments with no risk while still presenting the same
constraints on the available compute hardware. While the REV Project hasmade use of an autonomous
driving simulator in the past [5], it was decided that the lack of support for LiDARs as a sensor, the
outdated graphics, and the complexity involved in developing integrations with external systems
provided su�icient reason to move to a more modern simulation platform.

Unfortunately, while e�ort has been made to improve the architecture of the so�ware required by
the SAE car [6], it was found that the resulting so�ware remained highly coupled and lacked the
extensibility and flexibility that would allow for rapid iteration in future so�ware development e�orts.
In addition, the so�ware architecture was not resilient to failure, with an error in any component
capable of crashing the so�ware, and was not designed to incorporate the requirements presented by
an interface with an external driving simulator.

This paper outlines a new so�ware architecture focused on the goals of resiliency, flexibility, extensi-
bility and integration, which should allow future so�ware development to iterate more quickly and
with a higher degree of confidence in the base platform. It will then explore the development of the
hardware-in-the-loop simulation system that was made viable by the new so�ware architecture.

3.3 Overview

The remainder of this paper is organised as follows. Section 4 provides a summary of the current
state of autonomous vehicles and driving simulations. Section 5.1 introduces the current so�ware
framework utilised on the FSAE vehicle. Section 5.2 introduces the open-source so�ware used as the
basis for the driving simulator, and details the integration with the so�ware framework utilised on the
FSAE vehicle. Sections 6 outlines the sensors available on the FSAE vehicle and the equivalent sensors
available in the simulation so�ware, along with the path planning algorithms currentlu available on
the FSAE vehicle. Section 7 presents our experiments and results, followed by concluding remarks
being drawn in Section 8 and suggestions for further work being presented in Section 9.

4 Literature Review

4.1 Background

An autonomous car is one that is capable of sensing and reacting to its environment without human
intervention. SAE International defines six levels of driving automation based on the level of driver

Craig Brogle | 21313578 7

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

attentiveness and regularity of driver intervention required [7]. These range from systems that is-
sue automated warnings andmomentary interventions (Level 0) to systems that require no human
intervention at any time (Level 5).

Based on the above definition, deployment of autonomous driving systems began in 1978 with serial
production of the Anti-lock Braking System (ABS) [8], followed soon a�er by the development of
Traction Control Systems (TCS). These driver assistance systems have progressed to include Level 1
systems such as Adaptive Cruise Control [9] and Parking Assistance [10] and Level 2 systems such as
Tesla’s Autopilot, Volvo’s Pilot Assist, Cadillac’s Super Cruise and Mercedes-Benz Drive Pilot [11].

Althoughnot commercially available, progress is beingmadeonhigher level systems,with competitions
such as the DARPA Grand Challenge [12] and DARPA Urban Challenge [13] promoting research into
fully autonomous vehicles. Perhaps the most high-profile of these systems is Waymo’s (formally the
Google self-driving car project) Level 4 system having driven≈ 8million kilometres since 2009, with
an additional≈ 4.3 billion kilometres of simulated driving in 2017 alone [14].

These advances in autonomous vehicles have resulted in benefits in industry, demonstrated by projects
such as Rio Tinto’s fleet of autonomous haul trucks [15] and autonomous rail [16] being used to decrease
cost while maximising safety.

4.2 Autonomous Driving Platforms

While the bulk of autonomous driving platforms are closed source, Baidu has released an open-source
autonomous driving platform [17] with partners including car manufacturers such as Daimler, Ford and
Honda, and technology companies such as Intel, Microso� and Nvidia [18]. This platform is built on top
of a version of ROS, an open-source project that “provides a structured communications layer above
the host operating systems of a heterogenous compute cluster” [19]. In order to meet the demanding
requirements of autonomous vehicles,modifications have beenmade to allowdecentralisation, shared
memory transport and Protobuf message support [20]. In addition, a reference suite containing
localisation, perception, planning and control so�ware has beenmade available as a part of the Apollo
Auto project.

4.3 Autonomous Driving Simulation

Given the potential for uncertainty in the regulatory landscape to slow downprogress into autonomous
vehicles [21], companies such as Waymo [14], Cognata [22], rFpro [23] and Nvidia [24], as well as an
open-source collaboration between Intel, Toyota and the Computer Vision Center [18], are developing
autonomous driving simulators in order to allow autonomous vehicles to be trained and testedwithout
regulatory hurdles. In addition, simulated environments allow for testing of autonomous vehicles in

Craig Brogle | 21313578 8

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

scenarios which occur extremely infrequently in real-life testing and which may pose a danger to those
involved.

5 System Design

5.1 So�ware Framework

This section introduces the so�ware framework currently utilised on the FSAE race car. Given the use of
this so�ware as a development platform in an autonomous vehicle, it was imperative that it be flexible
and extensible, allowing for new components to be easily integrated, as well as resilient to so�ware
failures. This set of requirements led to a publish/subscribe so�ware architecture being utilised, as
it allows for highly decoupled so�ware to be developed with aminimal set of shared dependencies,
with each component (or series of components) needing only to conform to the expected input and
output message types. By extension, this also allows for components to be developed in di�erent
languages depending on their importance and required performance characteristics, reducing the
development time for simple, non critical components. The use of a publish/subscribe architecture
also allows components to be swapped in and out, simplifying the testing of di�erent solutions, and
providing simple methods of logging, data capture and data replay that don’t require modifying each
component individually.

Basedon the success of theApollo Autoproject [17], itwasdecided touseROS [19] toprovide thedesired
publish/subscribe functionality due to the resilience and performance that it displays. In addition,
this provides a series of potential future upgrades, from transitioning to the Apollo platform [20]
for improved performance due to sharedmemory transport for message passing, Protobuf message
support and decentralisation to reduce single points of failure, to adopting the complete Apollo Auto
platform should access to a supported hardware platform eventuate. The usage of ROS now ensures
that any components developed will be compatible at any stage in this upgrade path, while also
providing access to a large library of existing components and libraries, minimising the amount of
supporting code and number of utilities that must be developed by the group to support common
activities.

Based on the current goals of the REV Project, it was determined the so�ware framework would
initially require the nodes andmessage passing outlined in Fig. 2. Given the flexibility that the so�ware
framework provides this is an outline of the required functionality only, with the potential for some of
the nodes displayed to be broken down into a series of smaller components. For instance, development
of a variety of “Object Filter” nodes canbehastenedbydividing it into twonodes as demonstrated in Fig.
3, one to simply combine the incoming object arrays into a single array (“Object Array Concatenation”),
and another to perform the filtering (“Object Filter”). Development of nodes in this manner provides

Craig Brogle | 21313578 9

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

additional benefits, such as requiring only a single component to be modified should a new source of
object data be introduced, such as a radar system.

Low Level

Navigation/
Path Planner

Camera

Video Processing
- Cone Detection
- Road Detection

LIDAR

LIDAR Processing

Object Filter

Target PlannerFusion and
Localisation

IMU Odometry

Object
Arrrays

Object
Arrrays

Vehicle control commands (acceleration, steering angle)

Manual Waypoint
Input

Goal Points

Current Position

Wheel speeds, steering angle

Relative movement Absolute position

Cost
Map

Images
Point Cloud

Object Array

Figure 2: FSAE vehicle ROS node structure.

5.2 Autonomous Driving Simulation

As previously mentioned, the REV Project has made use of an autonomous driving simulator in the
past [5], however it was decided that the lack of support for LiDARs as a sensor, the outdated graphics,

Craig Brogle | 21313578 10

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

Object ArrayVideo Processing
- Cone Detection
- Road Detection

Object Array
LIDAR Processing

Object
Array

Object Array
Concatenation

Object
Array Object Filter Object Filter

Figure 3: FSAE vehicle ROS node structure.

and the complexity involved in developing integrations with external systems provided su�icient
reason tomove to amoremodern simulation platform. As such, the driving simulator developed is
centered around the CARLA open source driving simulator [18] due to its providing the desired sensors
and customisable scenarios without prohibitively expensive licensing or hardware requirements. By
default, CARLA provides access to data from a configurable suite of sensors including cameras and
LiDARs along with information regarding the current pose, velocity and acceleration of the simulated
autonomous vehicle through a Python API. In addition, CARLA provides access to information regarding
other simulated agents, allowing for the automated verification of results, and is developed in Unreal
Engine [25], a popular gaming and simulation engine, which ensures that tools and resources are
available for any future modifications to the system.

At present, the autonomous driving simulator consists of a computer (Intel i7-4770 processor, 8GB
DDR3-1066 RAM, Nvidia Titan X (Maxwell) graphics processing unit (GPU)) running the aforementioned
CARLA driving simulator and ROS simulation node which receives input from the Logitech G920 racing
wheel over a USB connection, and performs bidirectional communication with an Nvidia Jetson TX1
over a network connection, as shown in Fig. 5. With this set up, we are able to run CARLA at upwards of
30 frames per second (FPS) without impacting the performance of the FSAE so�ware running on the
Nvidia Jetson TX1 for the simple environments testing occurs in. This setup is displayed in Fig. 4 along
with the displays and racing seat used to provide a realistic driving environment.

The interface between the FSAE vehicle so�ware framework and the CARLA driving simulator was
greatly simplified due to the choice of ROS as a basis. ROS allows for inter-device communication over
a network connection, and the so�ware framework detailed in Section 5.1 allows for components or
groups of components to be trivially swapped in and out. This resulted in the interface consisting of
a single ROS node written in Python which retrieves sensor and environment data from the CARLA
application programming interface (specifically, two camera feeds, a LiDAR point cloud and pose and
velocity information of the vehicle), and published this information to the topics expected by the video
processing and LiDAR processing nodes. The node then receives control data from the navigation/path
planning node, which is used to create the control objects expected by CARLA for driving the simulated

Craig Brogle | 21313578 11

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

Figure 4: Autonomous driving simulator setup.

Nvidia Jetson TX1

FSAE software
framework

1 Gb Ethernet

DisplayPort/HDMI

Simulation PC

CARLA ROS Simulation
Node

1 Gb Ethernet

USB

Logitech G920
Racing Wheel

GbE
Switch

Displays

Figure 5: Autonomous driving simulator hardware diagram.

vehicle. This node acts in the place of the fusion and localisation, camera, LiDAR and low level nodes
presented in Fig. 2, resulting in the application architecture seen in Fig. 6.

The inter-device communication enabled by ROS is critical in allowing realistic compute hardware to be
used in the autonomous driving simulator. This allows the simulation so�ware and results validation
to be performed on a secondary device while the FSAE so�ware is run on a Nvidia Jetson TX1, identical
to the system installed on the FSAE vehicle. This allows for a high quality simulation to be run without

Craig Brogle | 21313578 12

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

Image Feeds
CARLA control

objects

Current
position Images

ROS Simulation Node

LIDAR points

Si
m

ul
at

io
n

Vehicle position

CARLA

Vehicle control
commands

Navigation/
Path Planner

Object Array

Cost
Map

Video Processing
- Cone Detection
- Road Detection

Object Array

Point Cloud

LIDAR Processing

Object Array

Object Filter

Object Array

Manual Waypoint
Input

Goal Points

Target Planner

Je
ts

on
 T

X1

Figure 6: So�ware framework architecture with CARLA simulator interface.

negatively impacting the high level so�ware performance, while still presenting similar performance
constraints to the high level so�ware. This ensures that so�ware tested successfully on the simulated
systemwill be able to perform almost identically on the real FSAE vehicle, which is verified in Section
7.2.3.

In replacing the low level node, the simulator interface also assumed responsibility for emulating
a number of the safety systems provided by the low level controller, such as allowing for manual
intervention to override the autonomous systems. This was achieved by handling manual input

Craig Brogle | 21313578 13

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

through either a keyboard or Logitech G920 racing wheel [26], and replicating the low level system’s
response to these inputs in the simulator interface. It is also possible to connect a small touch-screen
display to the Nvidia Jetson TX1 to provide an interface to the autonomous systems identical to that
found on the FSAE vehicle, allowing for user interface testing to occur in a safe environment.

The open-source nature of the CARLA open source simulator provides additional benefits, such as an
active community to provide troubleshooting and contribute features and performance and stability
improvements to the project. To date, the primary benefit has been in the ability to create custom
scenarios and import custom object meshes, however there is scope for actions such as creating new
types of sensors should the need arise.

6 Navigation and Path Planning

The FSAE car uses a combination of sensors (displayed in Figs. 7a and 7b) including LiDARs, cameras,
wheel odometry and an IMU, which are divided into four categories: a camera system, dead reckoning,
a LiDAR system and odometry. The driving simulator provides replacements for the LiDAR and camera
systems, andmakes the dead reckoning and odometry systems obsolete by providing exact positioning
in the simulated environment, allowing focus to be placed on camera and LiDAR systems with the
guarantee that the data regarding the cars positioning will be correct. This section will demonstrate
the sensors that aremade available by CARLA, and draw comparisons to the sensors currently installed
on the FSAE vehicle. It will also introduce the path planning algorithm which has been used as for
testing the simulator.

6.1 LiDAR System

The cone detection algorithm currently utilised on the FSAE vehicle relies on a single front-mounted 2D
SICK LiDAR [27], providing a 270° horizontal field-of-view with an angular resolution of 0.25–0.5° and
a range of up to 20m. CARLA provides a 360° LiDAR with a configurable range, number of channels,
rotation frequency, and upper and lower field-of-view limits [28]. In order to emulate the LaserScan
[29] data that is available through SICK’s LMS1xx ROS driver [30], the pointcloud_to_laserscan
ROS package [31] was used in conjunction with a CARLA LiDAR configuration with a narrow vertical
field of view. This combination allows a LaserScan to be produced with a configurable horizontal
field-of-view and angular resolution, hence matching the output produced by the physical LiDAR.

Craig Brogle | 21313578 14

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

(a)

XSens GNSS/INS

ibeo LUX LiDAR

FLIR Cameras

Autonomous Indicator

(b)

Figure 7: Formula SAE so�ware development platform (a) and sensor rack (b)

6.2 Camera System

The FSAE vehicle is currently equippedwith two FLIR Blackfly GigE [32] cameras. Each of these cameras
has a maximum resolution of 1288 × 964 pixels and is capable of working at 30 FPS. The cameras
make use of a global shutter, removing the need for the compute hardware to perform compensation
for rolling shutter e�ects [33], such as those presented in [34]. CARLA provides a direct analogue for
these cameras in the form of the ‘scene final’ cameras [28]. These are also global shutter cameras,
and CARLA provides facilities to configure the field-of-view, resolution and position of the cameras.
Using this feature, the simulation is configured to output two image streams at a resolution of 1288×
964 pixels each, placed the same distance apart to mirror the FLIR camera setup displayed in Fig. 7b.
The frame rate of the cameras provided by CARLA is tied to the FPS that the CARLA simulator is run
at. While it is possible to set a static FPS target in CARLA, this prevents the simulator from running in
real time which is incompatible with the FSAE so�ware framework. Instead, images are published to
the so�ware framework at the same FPS that CARLA runs at, with only the latest received image being
stored. The visual cone detection node then retrieves this image as needed at a frequency of between

Craig Brogle | 21313578 15

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

15 Hz and 30 Hz.

6.3 Path Planning

The FSAE control system has been implemented to deliver path planning routines to allow either
driving through a series of predefined waypoints, or in between a series of tra�ic cones placed on
either side of the vehicle. This paper will focus solely on the cone driving scenario, as this present a
higher level of complexity and required processing power in order to thoroughly test the simulation
system.

The current iteration of the path planning procedure uses obstacle detection of the cones to determine
the correct path. The current codeuses the sameas [35], but simplifies it to allow for quicker calculation.
Our cone driving module accepts cone locations from either the map, LiDAR or camera, classifying
them as objects. Then, the vehicle navigates to drive within the track formed by cones safely without
collision. Using a range of themaximum turning circle of the car, of both a le�-hand turn and right-hand
turn, it then looks at which predicted paths will intercept cones. The vehicle dynamics is thus limited
duringmotion planning whereby the steering angle does not exceed 25° . Our algorithmwill iterate
through all cones within the car’s range and calculate the best collision-free path to undertake, as
detailed in Algorithm 1.

Algorithm 1 Cone driving
1: procedure CONEDRIVE(cones in range)
2: init steering_range to [-25,25]
3: for all cones in range do
4: evaluate collision_rangewith cone
5: exclude the collision_range from steering_range
6: end for
7: if steering_range is empty then
8: stop
9: else if all steering_range≤ threshold then
10: select largest steering_range
11: else if all steering_range> threshold then
12: select steering_anglewith minimum change in current direction
13: end if
14: drive toward centre of steering_range
15: end procedure

Craig Brogle | 21313578 16

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

7 Experiments and Results

7.1 So�ware Framework

Verification of the suitability of ROS as the basis of the new so�ware framework was twofold: first proof
was required that ROS was capable of meeting the desired performance requirements, and secondly
there must be su�icient evidence that ROS is capable of providing the level of resiliency and fault
tolerance required for safety critical applications. These verifications are detailed in Section 7.1.1 and
Section 7.1.2.

7.1.1 Performance

Basic calculations and tests were performed in order to verify that ROS was capable of transferring
data at the rate that would be required by the FSAE so�ware. Calculating the required data transfer
rate consisted of counting the number of topics required by the outline of the so�ware framework
that was established in Fig. 2, andmultiplying this by the desired control update frequency. Based on
the presence of 11 topics and a desired update frequency of 15Hz, we can calculate that ROS will be
required to pass at least 165 messages per second as seen in Equation 1.

Message Rate = No. Topics× Update Frequency

= 11 × 15

= 165Messages per second

(1)

In order to verify that ROS was capable of handling at least this rate of message passing, a simple
application was developed. This consisted of the creation of a pair of ROS nodes, one node to publish
messages and one node to subscribe to them, with both nodes set to a frequency of 400 Hz, chosen to
provide additional headroom should additional nodes be introduced to the FSAE so�ware. Both nodes
then recorded the time di�erence between eachmessage that it sent or received, with success being
defined as having an average time between sending or receiving eachmessage that was, within a small
margin of error, less than or equal to 1

f = 1
400 seconds. Based on a sampling of 10000 points from

each the publisher and subscriber, it was found that the publisher node was capable of publishing
simple messages at an average rate of≈ 178kHz, and the subscriber capable of receiving messages
and performing basic processing at an average rate of≈ 8kHz. In both cases, ROS is able to massively
surpass the current performance requirements of the FSAE vehicle and any modifications that are
likely to occur in the near future. However, should a higher level of performance be required, the
Apollo platform is likely able to increase this performance through its introduction of sharedmemory
transport, which would be especially beneficial when utilising large message types such as images.

Craig Brogle | 21313578 17

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

7.1.2 Resiliency

There are a number of features of ROS that enable it to satisfy the requirements for resiliency posed
by the so�ware’s use in an autonomous driving platform. The first and most important of these is
the use of separate Linux processes for each node. By running each node on a di�erent process, it
is ensured that the failure of one node cannot result in the entire system crashing, as was observed
with the previous monolithic C++ so�ware architecture. This ensures that any bugs introduced to the
system during development are containedwithin a single node. In this way, it is possible for the vehicle
to continue to operate, albeit with reduced capabilities, in the event of a so�ware crash.

This capability to continue operating through themajority of so�ware crashes is complemented by the
variety of methods that are available tomonitor and restart ROS nodes, as well as methods of notifying
other nodes of crashes, which are then able to modify their behaviour to take into account the node
being unavailable for a brief time. The simplest of these is the roslaunch respawn parameter [36].
Setting this totrue in the roslaunch file of eachnode ensures that any node that dieswill automatically
be respawned. In addition to respawning nodes, ROS packages are available to easily define bonds
between nodes [37][38], which allow nodes to react immediately to the failures of other nodes. While
no work has been done yet in implementing this feature on the FSAE vehicle due to the rate at which
changes have continued to be made to the set of nodes required for driving and the use of controlled
test environments, this provides the ability for graceful error handling to be implemented before testing
occurs in less controlled environments, such as those involving other vehicles or pedestrians. In these
instances, it would be possible to perform actions such as smoothly passing control back to a human
operator, or automatically failing over from one sensor type to another, in the event of a node crashing.

While it should be noted that the ROSmaster node is currently a single point of failure in this system,
the work completed by the Apollo platform [39] team includes the decentralisation of ROS, which
removes this single point of failure by allowing other existing nodes to continue to comminicate even if
themaster node crashes, resulting in only aminor disruption to the system’s operation. While the FSAE
vehicle does not currently make use of the Apollo platform due to the basic ROS platform satisfying
current testing requirements, theApolloplatformhasbeen identifiedas aneasily implementedupgrade
path, which could easily replace the usage of ROS should the need for increased reliability be required,
such as by the start of testing in scenarios involving other vehicles or pedestrians.

7.2 Autonomous Driving Simulation

Verification of our simulation system came in the form of experiments related to LiDAR and vision
based cone detection, processor loadmonitoring and system response times, detailed in Sections 7.2.1
through 7.2.4.

Craig Brogle | 21313578 18

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

7.2.1 LiDAR Cone Detection

The aim of this experiment was to verify that the LiDAR output obtained from the simulation using the
method described in Section 6.1 was su�iciently similar to that generated by the SICK LiDAR available
on the FSAE vehicle in order to allow cone detection algorithms to be tested on the driving simulator.
This was achieved by simulating a scenario mimicing that of a previous test of the FSAE vehicle, and
verifying that a similar set of cones was detected by the same algorithm used in the FSAE vehicle test.
Using the real and simulated scenarios presented in Fig. 8, the outputs of the cone detection performed
on each scenario, displayed as red cylinders in Fig. 9, are su�iciently similar to allow testing of higher
level components such as path planning and object avoidance on the simulated system.

(a) (b)

Figure 8: Scenarios used for comparing real (a) and simulated (b) LiDAR and visual cone processing outputs.

7.2.2 Visual Cone Detection

This experiment aims to verify that the images available through CARLA’s camera sensors (described
in Section 6.2) are su�iciently similar to those generated by the FLIR Blackfly GigE cameras installed
on the FSAE vehicle that a visual cone detection algorithm is capable of producing similar results on
both images. A comparison of these results is given in Fig. 10. From this, it can be seen that cones are
identified successfully, however with a decreased range on the simulated image. It is expected that the
detection range on simulated images could be increased by incorporating some simulated images into
the training set.

In order to further verify that the images produced by CARLA’s camera sensors are su�iciently similar to
those generated by the FLIR Blackfly GigE cameras installed on the FSAE vehicle, a comparison between
the false positive (a cone is detected where no cone exists) and false negative (no cone is detected

Craig Brogle | 21313578 19

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

(a) (b)

Figure 9: LiDAR based cone detection results from real (a) and simulated (b) scenarios.

(a) (b)

Figure 10: Computer vision based cone detection results from real (a) and simulated (b) scenarios.

where a cone exists) cone detection rates on real and simulated footage was undertaken, the results
of which are available in Fig. 11. It can be seen in both the false positive and false negative scenarios
that a trend similar to that found through visual inspection can be identified. This trend has the visual
cone detection algorithm performing consistently worse in simulated scenarios, and is especially
pronounced in the worst case false negative detection rate, with the cone detection algorithm having a
≈ 50% false negative detection rate for simulated data in the worst case, compared to only≈ 25%
for real data. As mentioned previously, it is expected that this large discrepancy could be significantly
reduced by incorporating some simulated images into the training set of the cone detection agorithm.
It should be noted that there is a much less pronounced di�erence in the average cases for both false
positive and false negative detections, suggesting that in the majority of cases the outcomes from real

Craig Brogle | 21313578 20

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

and simulated data will be similar.

Given that the current path planner works on only a single frame, it was found that the increase in false
positive and negative detections in the simulated environments did not have any impact on the success
of the vehicle’s traversal of the cone track. It is expected that this will continue to be a non-issue in
nodes that are still to be developed, such as a global object map, as the nature of these nodes requires
that they be capable of dealing with transitory incorrect classifications and detections, given that these
occur when using real data as input. As such, the increase in false positive and negative detections
in simulated data can be presented in a positive light, as a measure that forces all new algorithms to
meet higher standards in terms of their resiliency to incorrect classifications made by nodes earlier in
the framework’s data flow, resulting in so�ware that is more resilient to conditions adverse to accurate
sensing and erroneous processing.

(a) (b)

Figure 11: Computer vision based cone detection statistics from real and simulated scenarios.

7.2.3 Compute Hardware Load

This experiment was designed to verify that the use of identical compute hardware (a Nvidia Jetson
TX1) in the simulation loop resulted in similar performance constraints to those presented by the
FSAE vehicle platform. This verification comes in the form of a comparison of the system resources
used in the real and simulated systems while performing a similar task, in this instance, LiDAR based
cone detection. Results were gathered by running the sysstat performance monitoring tools for
Linux [40] while the cone detection algorithms were operating on both systems. This utility captured
the percentage of the processor utilised by user and system processes at a frequency of 1 Hz for 120
seconds to allow an average to be computed, the results of which are displayed in Fig. 12b and Fig.
12a. From this figure, it can be seen that the hardware in the simulation loop had consistently higher
processor utilisation for user space processes, with an average of ≈ 25.2% (Fig. 12b) compared to
≈ 20.6% (Fig. 12a) for user space processes on the real system. Given that in both scenarios more than

Craig Brogle | 21313578 21

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

60% of processor time is spent at idle, it is unlikely that this di�erence in processor utilisation by user
space processes would significantly impact application performance, however additional performance
profiling such as measuring individual method call times could be implemented should significant
performance di�erences be detected which impact on the transition from the simulated to real test
environments.

0 20 40 60 80 100 120

20

40

60

80

100

Time (s)

U
til
is
at
io
n
(%
)

Idle
System
User

(a)

0 20 40 60 80 100 120

20

40

60

80

100

Time (s)

U
til
is
at
io
n
(%
)

Idle
System
User

(b)

Figure 12: Processor utilisation during LiDAR based cone processing based on simulated (a) and real (b) input.

7.2.4 Response Time

Given that the simulation involves transferring streams of images and other sensor data across a
network connection, verification is required to ensure that this does not introduce significant delays to
the response time of the system. This was achieved by sending a control command from the simulation
computer, measuring the time taken for the system to respond, and comparing this to the same
measure taken on the FSAE vehicle. The results of this experiment are presented in Fig. 13, where it
can be seen that the simulator had a significantly lower average response time. Given current testing
occurs predominantly at low speeds this is seen to be insignificant for current use cases, although
an artificial delay could be trivially added to the simulation system to better mimic the FSAE vehicle.
Alternatively, there is potential for a delay specific to each simulated vehicle to be introduced through
the process of adding new vehicle models to CARLA discussed Section 9.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Real

Sim

Time (s)

Figure 13: Vehicle response times for real and simulated vehicles.

Craig Brogle | 21313578 22

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

8 Conclusion

We have presented a hardware-in-the-loop autonomous driving simulation system that is capable
of simulating the various sensors available on the FSAE vehicle with su�icient detail that existing
LiDAR and computer vision based algorithms perform similarly when compared to real data. We have
detailed the architecture of the so�ware framework utilised on the FSAE vehicle, and how the use
of this framework was able to simplify the development of the hardware-in-the-loop simulation due
to its high degree of flexibility and extensibility. We have also verified that the so�ware framework
utilised on the FSAE vehicle provides suitables performance characteristics, and explored methods by
which the resiliency of the framework can be improved to ensure suitability for usage in safety critical
scenarios. Our design approach of utilising actively developed, open-source projects on commodity
hardware results in a relatively low-cost simulation solution that is nonetheless capable of generating
sensor data at a frame rate greater than that required for the FSAE vehicle’s so�ware framework. We
have shown that this system allows for so�ware to be tested in an environment that presents similar
performance constraints as the FSAE vehicle platform. Most importantly, we have verified that results
generated through use of this simulation system are transferrable to the FSAE vehicle for the group’s
current use cases.

9 Future Work

Over the previous year, various members of the REV Project have worked with the new so�ware
framework to developmodules relating to visual and LiDAR based cone detection, along with a local
path planning module which allows the vehicle to navigate a track with edges delineated by a series
of cones. In addition, a number of sample implementations for road edge and lane detection have
been generated, however are yet to be integrated with the vehicle’s path planning capabilities. The
integration of these independent modules should be the first priority in future works, as this will
complete the current base goals of autonomously driving a track with edges delineated by either cones
or road edges without prior knowledge.

In order to be capable of redriving a track at greater speed, a global path planner will be required. The
most basic requirement of this is highly accurate localisation of the vehicle. Although a highly-accurate
IMU/GPS device is currently available on the vehicle, it has not been integrated with the new so�ware
framework, and so is currently providing little benefit. To resolve this, a vehicle localisation node
should be prioritised which is capable of providing accurate positioning, at least relative to a starting
position. This will allow for a global map to be created, meaning that the vehicle is able to maintain
knowledge of objects that it detects a�er they move out of sensor range. This in turn will allow for
the development of a global path planner, that is capable of generating an optimised path around a

Craig Brogle | 21313578 23

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

complete track, as opposed to having the vehicle reacting only to what the sensors can detect at any
single moment.

In order to support these and other high-level so�ware modules, it is suggested that the driving
simulation system be extended in a number of ways. Firstly, a vehicle model more closely resembling
the FSAE vehicle available to the REV group both visually and in terms of vehicle mechanics (such as
suspension, acceleration and braking characteristics) should be incorporated into the simulation. This
would provide additional realism to the data generated, removing the need, for example, to account
for the excessive rotation that the default simulated vehicle encounters when accelerating, braking or
cornering, which results in the LiDAR detecting the groundmuch closer to the vehicle than occurs in
operation of the FSAE vehicle. Secondly, some form of error should be introduced to the positioning
data provided by the simulation system to the FSAE vehicle so�ware. This would allow for a variety of
visual and LiDAR based odometry techniques to be tested on the simulation system, with the added
benefit that the exact positioning data could still be made available for evaluating the e�ectiveness of
any solutions tested. Thirdly, a wider variety of test tracks should be developed, emulating both basic
race track type scenarios, along with more realistic road driving scenarios whichmay include other
vehicles and pedestrians. This will require modifications to bemade to the base simulation so�ware
(the CARLA driving simulator) to allow testing in Australian conditions, as currently all automated
tra�ic movement and scenario benchmarking is available only for maps where vehicles drive on the
right-hand side of the road. Fourthly, a task queue system could be implemented, allowing users of
the simulation to choose a sequence of scenarios to test so�ware on, and provide a summary upon
completion, allowing unsupervised testing to occur. This would rely heavily on the previous suggestion
for the availability of appropriate metrics. Finally, a simple user interface should be developed for the
simulation system, allowing the user to configure the simulated sensor suite, alongwith the scenario to
be entered and the version of the FSAE vehicle so�ware to be tested. This would significantly increase
the accessibility of the simulation system, reducing the need for future developers to be intimately
familiar with the internals of the simulation system in order to make basic changes. In the same vein,
consideration could be given to making the simulation system available over a remote connection,
allowing easier access to the system by future students. As an extension, a version of the simulation
system could be made available on a cloud platform. While this would be unable to provide the same
hardware-in-the-loop simulation due the inability to access a Nvidia Jetson TX1 in a cloud environment,
this could allow for multiple simulation environments to be run concurrently, allowing for either faster
testing of multiple scenarios by a single user, or simultaneous access by multiple users.

In addition to the above suggestions, which center around the current goals of autonomously driving a
track with no other vehicles or obstructions present, there is potential for significant future works to
occur with an aim to broaden the number of scenarios which the FSAE vehicle is capable of handling
autonomously. This could range from attempts to implement advanced driver assistance features
such as adaptive cruise control and lane keeping, to full vehicle autonomy in simple tra�ic scenarios,

Craig Brogle | 21313578 24

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

however testing of these would be significantly hindered by the lack of a road licensed vehicle.

Craig Brogle | 21313578 25

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

References

[1] S. International, “Student events.” [Online]. Available: https://www.sae.org/attend/student-events/

[2] “Self driving formula sae race car.” [Online]. Available: http://therevproject.com/vehicles/sae2010.
php

[3] T. Drage, J. Kalinowski, and T. Braunl, “Conversion of a formula sae vehicle to full drive-by-wire
capability,” UWA, 2013.

[4] T. Drage, “Development of a navigation control system for an autonomous formula sae-electric race
car,” UWA, 2013.

[5] S. Bradley, “Automotive simulation system,” Master’s thesis, University of Western Australia, 2009.

[6] S. Evans-Thomson, “Environmental mapping and so�ware architecture of an autonomous sae
electric race car,” UWA, 2017.

[7] S. O.-R. A. V. S. Committee and others, “Taxonomy and definitions for terms related to on-road
motor vehicle automated driving systems,” SAE International, 2014.

[8] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, “Three decades of driver
assistance systems: Review and future perspectives,” IEEE Intelligent Transportation Systems Magazine,
vol. 6, no. 4, pp. 6–22, 2014.

[9] P. I. Labuhn and W. J. Chundrlik Jr, “Adaptive cruise control.” Google Patents, oct~3-1995.

[10] J. L. Czekaj, “Semi-autonomous parking control system for a vehicle providing tactile feedback to
a vehicle operator.” Google Patents, apr~21-1998.

[11] J. Hughes, “Car autonomy levels explained.” [Online]. Available: http://www.thedrive.com/
sheetmetal/15724/what-are-these-levels-of-autonomy-anyway

[12] S. Russell, “DARPA grand challenge winner: Stanley the robot!” [Online]. Available: https://www.
popularmechanics.com/technology/robots/a393/2169012/

[13] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza, J. Derenick, J. Spletzer,
and B. Satterfield, “Little ben: The ben franklin racing team’s entry in the 2007 darpa urban challenge,”
Journal of Field Robotics, vol. 25, no. 9, pp. 598–614, 2008.

[14] “Waymo.” [Online]. Available: https://waymo.com/

[15] Available: http://www.riotinto.com/media/media-releases-237_23802.aspx

[16] “Rio tinto completes first fully autonomous rail journey in western australia.” [Online]. Available:
http://www.riotinto.com/media/media-releases-237_23264.aspx

[17] “Apollo auto.” [Online]. Available: http://apollo.auto/

Craig Brogle | 21313578 26

https://www.sae.org/attend/student-events/
http://therevproject.com/vehicles/sae2010.php
http://therevproject.com/vehicles/sae2010.php
http://www.thedrive.com/sheetmetal/15724/what-are-these-levels-of-autonomy-anyway
http://www.thedrive.com/sheetmetal/15724/what-are-these-levels-of-autonomy-anyway
https://www.popularmechanics.com/technology/robots/a393/2169012/
https://www.popularmechanics.com/technology/robots/a393/2169012/
https://waymo.com/
http://www.riotinto.com/media/media-releases-237_23802.aspx
http://www.riotinto.com/media/media-releases-237_23264.aspx
http://apollo.auto/

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

[18] A.Dosovitskiy, G.Ros, F. Codevilla, A. Lopez, andV.Koltun, “CARLA:Anopenurbandriving simulator,”
in Proceedings of the 1st annual conference on robot learning, 2017, pp. 1–16.

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: An
open-source robot operating system,” in ICRA workshop on open source so�ware, 2009, vol. 3, p. 5.

[20] “Apollo-platform.” [Online]. Available: https://github.com/ApolloAuto/apollo-platform

[21] J. S. Brodsky, “Autonomous vehicle regulation: How an uncertain legal landscape may hit the
brakes on self-driving cars,” Berkeley Tech. LJ, vol. 31, p. 851, 2016.

[22] “Cognata - deep learning autonomous simulation.” [Online]. Available: http://www.cognata.com/

[23] “RFpro.” [Online]. Available: http://www.rfpro.com/

[24] “Nvidia drive constellation.” [Online]. Available: https://www.nvidia.com/en-us/self-driving-
cars/drive-constellation/

[25] Epic Games, “Unreal engine.” [Online]. Available: https://www.unrealengine.com/en-US/what-is-
unreal-engine-4

[26] “G920 driving force racing wheel for xbox one and pc.” [Online]. Available: https://www.logitechg.
com/en-au/product/g920-driving-force

[27] SICK AG, “LMS111-10100.” [Online]. Available: https://www.sick.com/au/en/detection-and-ranging-
solutions/2d-lidar-sensors/lms1xx/lms111-10100/p/p109842

[28] “CARLA simulator - cameras and sensors.” [Online]. Available: https://carla.readthedocs.io/en/
latest/cameras_and_sensors/. [Accessed: 12-Sep-2018]

[29] “Sensor_msgs/laserscan message.” [Online]. Available: http://docs.ros.org/api/sensor_msgs/
html/msg/LaserScan.html

[30] Open Source Robotics Foundation, “LMS1xx.” [Online]. Available: http://wiki.ros.org/LMS1xx

[31] Open Source Robotics Foundation, “Pointcloud_to_laserscan.” [Online]. Available: http://wiki.ros.
org/pointcloud_to_laserscan

[32] FLIR Integrated Imaging Solutions, “Blackfly 1.3 mp color gige poe (sony icx445).” [Online]. Avail-
able: https://www.ptgrey.com/blackfly-13-mp-color-gige-vision-poe-sony-icx445-camera

[33] S. Lauxtermann, A. Lee, J. Stevens, and A. Joshi, “Comparison of global shutter pixels for cmos
image sensors,” in 2007 international image sensor workshop, 2007, p. 8.

[34] C. Liang, L. Chang, and H. H. Chen, “Analysis and compensation of rolling shutter e�ect,” IEEE
Transactions on Image Processing, vol. 17, no. 8, pp. 1323–1330, Aug. 2008.

[35] K. L. Lim, T. Drage, R. Podolski, G. Meyer-Lee, S. Evans-Thompson, J. Y.-T. Lin, G. Channon, M. Poole,
and T. Braunl, “A Modular So�ware Framework for Autonomous Vehicles,” in 2018 29th IEEE Intelligent

Craig Brogle | 21313578 27

https://github.com/ApolloAuto/apollo-platform
http://www.cognata.com/
http://www.rfpro.com/
https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/
https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.logitechg.com/en-au/product/g920-driving-force
https://www.logitechg.com/en-au/product/g920-driving-force
https://www.sick.com/au/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/lms111-10100/p/p109842
https://www.sick.com/au/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/lms111-10100/p/p109842
https://carla.readthedocs.io/en/latest/cameras_and_sensors/
https://carla.readthedocs.io/en/latest/cameras_and_sensors/
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://wiki.ros.org/LMS1xx
http://wiki.ros.org/pointcloud_to_laserscan
http://wiki.ros.org/pointcloud_to_laserscan
https://www.ptgrey.com/blackfly-13-mp-color-gige-vision-poe-sony-icx445-camera

So�ware Architecture and Hardware-in-the-loop Simulation for an Autonomous Formula SAE Vehicle

Vehicles Symposium, 2018, pp. 1780–1785.

[36] Open Source Robotics Foundation, “Roslaunch/xml/node.” [Online]. Available: http://wiki.ros.
org/roslaunch/XML/node

[37] Open Source Robotics Foundation, “Bondpy.” [Online]. Available: http://wiki.ros.org/bondpy

[38] Open Source Robotics Foundation, “Bondcpp.” [Online]. Available: http://wiki.ros.org/bondcpp

[39] “Apollo-platform.” GitHub Repository [Online]. Available: https://github.com/ApolloAuto/apollo-
platform

[40] S. Godard, “SYSSTAT.” [Online]. Available: http://sebastien.godard.pagesperso-orange.fr/

Craig Brogle | 21313578 28

http://wiki.ros.org/roslaunch/XML/node
http://wiki.ros.org/roslaunch/XML/node
http://wiki.ros.org/bondpy
http://wiki.ros.org/bondcpp
https://github.com/ApolloAuto/apollo-platform
https://github.com/ApolloAuto/apollo-platform
http://sebastien.godard.pagesperso-orange.fr/

	Abstract
	Acknowledgements
	Introduction and Motivation
	Background
	Motivation
	Overview

	Literature Review
	Background
	Autonomous Driving Platforms
	Autonomous Driving Simulation

	System Design
	Software Framework
	Autonomous Driving Simulation

	Navigation and Path Planning
	LiDAR System
	Camera System
	Path Planning

	Experiments and Results
	Software Framework
	Performance
	Resiliency

	Autonomous Driving Simulation
	LiDAR Cone Detection
	Visual Cone Detection
	Compute Hardware Load
	Response Time

	Conclusion
	Future Work
	References

