
Remote control of Autonomous Surface Vessels

Aaron Goldsworthy, 21108324

October 31, 2018

Supervisor
Dr Thomas Bräunl

Abstract

This thesis concerns two different autonomous surface vehicle (ASV) platforms, the first
being the Solar Powered Autonomous Boat (SPAB) constructed as a previous student project
at UWA and the second being a Liquid Robotics Wave Glider owned by L3 Oceania. The
challenges and approaches involved in both projects differed but the ultimate goal in both was
create and enhance the remote control and automation capability of the two vehicles. Both
vehicles are fitted with 3G mobile telecommunications systems, and the WG is additionally
fitted with an Iridium satellite communications modem. In the case of the Wave Glider, remote
communications are achieved using a control protocol using simple messaging service (SMS)
over 3G and Iridium. In the case of the SPAB, autonomous control is done using the mobile
data capability of a 3G modem. The SPAB regularly logs telemetry data, retrieves commands
and parameters from a remote control server using a Representational State Transfer (REST)
application programming interface.

Acknowledgements
This research is supported by L3 Oceania Pty Limited, Fremantle WA

Word count: 7281

1

Contents

I Solar Powered Autonomous Boat 5

1 Introduction 5
1.1 Completed Work and Background . 5
1.2 Problem Statement . 5
1.3 Literature Review and Similar Projects . 6

1.3.1 REST . 6
1.3.2 SOAP . 6
1.3.3 Model-View-Controller . 6

2 Hardware Upgrades 6
2.1 3G Modem . 7
2.2 Raspberry Pi . 7

3 Remote Server Creation 7
3.1 JSON Message Format . 7
3.2 Index.cgi . 9
3.3 Command.cgi and requestCommands.cgi . 9
3.4 data.cgi . 9
3.5 db/spabLocation.db . 9

4 Local Server Creation 9
4.1 Firmware Repository . 9
4.2 Telemetry Manager . 10
4.3 Mavlink Manager . 10
4.4 Operating System configuration . 10

5 Results 10

6 Conclusions and Future Improvements 10
6.1 Suggested Hardware Improvements . 11
6.2 Suggested Server Improvements . 11
6.3 Suggested Client Improvements . 11

7 Source and Resources 12

II L3 Oceania Wave Glider 13

8 Background 13
8.1 L3 Oceania Payload Board . 14
8.2 Problem Statement . 14

9 Payload Upgrades 14
9.1 Wave Glider Model . 14
9.2 Sensor Manager . 15
9.3 Wave Glider Manager . 15
9.4 SMS command parser . 15
9.5 Liquid Robotics Protocols . 16

10 Documentation 16
10.1 User Interface . 16

11 Test Deployment 17

12 Conclusion and Future Improvements 18

2

III Apache Server Creation 19

13 Apache Web Server Common Gateway Interface(CGI) tutorial 19
13.1 Pre-requisites . 19
13.2 Secure Shell . 19

13.2.1 Linux and OSX . 20
13.2.2 Windows . 20

13.3 Apache and NGiNX . 20
13.3.1 Web Root . 21
13.3.2 cgi-bin . 21

13.4 Uploading Files . 21
13.4.1 Linux & OSX . 21
13.4.2 Windows . 21
13.4.3 Permissions . 21

13.5 Writing a Script . 21
13.5.1 Shebang . 21
13.5.2 CGI packages . 22
13.5.3 HTTP header . 22
13.5.4 Displaying HTML . 22
13.5.5 Example Python CGI script . 22

13.6 Accessing a Database . 23
13.6.1 Creating the database . 23

13.7 Client Side Scripting . 23
13.8 Sending Data to the Server . 23

13.8.1 Webforms . 23
13.8.2 Sending POST/GET requests from an external script 24
13.8.3 Java Script Object Notation (JSON) . 24

13.9 Security . 25
13.9.1 Be aware of Threats . 25
13.9.2 Basic Authentication . 25
13.9.3 HTTPS . 25

List of Figures
1 The UWA Solar Powered Autonomous Boat . 5
2 New hardware components . 6
3 New hardware components . 7
4 Remote Server Architecture . 8
5 Client Server Architecture . 9
6 Remote Telemetry From SPAB . 11
7 Description of Wave Glider propulsion . 13
8 Structure of the float as provided by Liquid Robotics. 14
9 Payload Board Diagram . 15
10 Wave Glider Architecture . 16
11 PuTTY User Interface . 20

List of Tables
1 Table of Abbreviations . 4
2 Useful source Repositories . 12
3 Supported Wave Glider Commands . 17
4 Results from Wave Glider Field Trial . 17

Listings
1 Logging JSON . 8
2 Command JSON . 8

3

Table 1: Table of Abbreviations

Abbreviation Definition
API Application Programming Interface
CGI Common Gateway Interface
GPIO General Purpose Input/Output
HTTP(S) Hyper Text Transfer Protocol (Secure); Common document transfer protocol
INS Inertial Navigation system
IP Internet Protocol
JS Java Script; programming language supported by web browsers
JSON Java-Script Object Notation; a method of describing binary data with text
KF Kalman Filter
MATLAB MATrix LABoratory; program for numerical analysis
PPP Point-to-Point Protocol
REST Representational State Transfer; a web application architecture
RFC Request For Comments; document describing a technical standard
RPi Raspberry Pi
SLIP Serial Line Internet Protocol
SMS Simple Messaging Service
SOAP Simple Object Access Protocol
SPAB Solar Powered Autonomous Boat
TLS Transport Layer Security; A protocol which provides encryption

and server authentication. Replaced Secure Sockets Layer (SSL)
UDP Universal Datagram Protocol; Connectionless Internet protocol
USB OTG USB On The Go; a USB device that can act as both a master and a slave
WAFO Wave Analysis for Fatigue and Oceanography; module for MATLAB
W3C World Wide Web Consortium
WG Wave Glider
WGMS Wave Glider Management System
XML Extensible Markup Language

4

Part I

Solar Powered Autonomous Boat
1 Introduction

1.1 Completed Work and Background
The UWA Solar Powered Autonomous Boat (SPAB) is an ongoing masters student project under

the supervision of Thomas Bräunl. Initial construction, automation and short range wireless
communication has been completed by students John Hodge and John Borella. Hodge’s design
report[1] and Borella’s design proposal[2] both provide detailed descriptions of these systems.
The main design features are differential drive using two electric propeller modules, a marine

grade solar panel, a battery management system for solar panels, 4 sealed lead acid batteries and
automation using an Ardupilot micro-controller. The SPAB itself is pictured in Figure 1.

Figure 1: The UWA Solar Powered Autonomous Boat

1.2 Problem Statement
The goal of the SPAB project is to create a long range, endurance, autonomous water craft for
research purposes. The solar powered design so far has been conducive to that aim. However, in
order to maximize the use of the long mission life a method of updating missions and retrieving

mission data needs to be established over long range communications without user action.
Without this, the platform is limited in its long range capabilities due to the requirement of
having an operator monitor it nearby. The goal of this part of the project is then to create a
system enabling the SPAB to communicate over mobile networks and eventually over satellite
networks or any other way that internet access can be obtained. In order to achieve this some
additional processing and communications hardware was added along with the necessary server

and client components. These three broad components are covered in sections 2, 3 and 4.

5

1.3 Literature Review and Similar Projects
1.3.1 REST

REST is a stateless protocol that is designed to be compatible with and make use of HTTP
methods to upload and download data, typically as JSON [3]. The standards governing REST

are numerous and extensive and are best summarized at https://restfulapi.net/. REST was
originally conceived by Roy Fielding in his 2000 dissertation [4]. Fielding described his REST

architecture as being designed around leveraging the constraints of the World Wide Web. Those
constraints and therefore principals of a good REST API are:

1. Uniform interface - Resources should be synonymised with a web page.

2. Client-server - Client application and server application must be able to evolve separately
without any dependency on each other.

3. Stateless - Each and every request is treated as new.

4. Cacheable - Caching should be applied to resources when possible.

5. Layered System - Different layers can be handled by different physical systems.

6. (Optional) Code on Demand - Executable code can be returned.

1.3.2 SOAP

SOAP is a competing web application standard based on XML. SOAP did not achieve RFC
standard status but a specification is maintained by the W3C [5]. SOAP consists of three parts:
an envelope that defines a framework for describing what is in a message and how to process it, a
set of encoding rules for expressing instances of application-defined data types, and a convention

for representing remote procedure calls and responses. SOAP is designed to be protocol
independent, but is primarily associated with HTTP. Using SOAP was undesirable due to

increased complexity compared to REST.

1.3.3 Model-View-Controller

MVC is a general software engineering architecture for designing user interactive systems. It is
not a standard per-se rather an design pattern[6]. It splits an application into the components:
The Model, the View and the Controller. I received influence from the MVC architecture to

design the SPAB web server. The Model refers to a unified method of storing the current state of
the interactive system. All other interfaces interact with the model. The View, refers to how
information is presented to the user and the Controller refers to the method in which the user
acts on the model. By splitting the application into these three components independence and

encapsulation can be achieved. For example different visualizations of the same data can be done
by having multiple different Views and multiple users can interact with multiple Controllers.

2 Hardware Upgrades
Some additional hardware has been added to the SPAB in order to support the integration of
remote command and data logging from the SPAB. Figure 2 and 3 displays the location and

mounting of the new hardware components.

Figure 2: New hardware components

6

https://restfulapi.net/

Figure 3: New hardware components

2.1 3G Modem
A F2414 Four-Faith 3G modem was added as the remote communications radio. 3G was selected
as it is known that 3G coverage extends around Rottnest Island and because the 2G network in
Australia is being decommissioned. This modem is designed for transparent remote monitoring of

sensors.
This modem is configured in ’TELNET’ and data trigger mode. In TELNET mode, the modem
acts as a transparent and complete network and transport stack. Bytes which arrive at the serial
interface are sent to remote location without being altered. In data trigger mode, the modem

remains in standby mode until it receives the byte sequence ’don’. When it receives that trigger
it connects to the remote server and begins transmitting data. At the end of the transaction the
connection is torn down by the remote server as is typical of Apache web server. In order to

simplify development, this modem is managed in software using the python class F2414Modem.py.
Documentation for this class can be found within the python module as doc-strings. The modem
is best configured using a Windows application provided by the manufacturer and downloaded
for free from the product page listed in Table 2. A text file ModemConfig.txt found at the local

server repository in Table 2 can be used by the configuration application to restore the
configuration of the modem if the configuration becomes undone.

2.2 Raspberry Pi
A Raspberry Pi Zero W has been added to the SPAB. This RPi was added for a number of

reasons. The first reason is to make interfacing the with the 3G modem easier and secondarily to
interface with other sensors in the future, for example salinity and temperature sensors. The RPi
is powered using a 12V to 5V USB regulator. The modem is connected using a USB to serial

cable and the Ardupilot and is connected to the RPi using the UART found in the GPIO header.
Between the Ardupilot and the RPi is a 5 V to 3.3 V logic level converter. It is important that
this component remains in place as the RPi will be damaged if exposed to voltage levels above

3.3V on the GPIO pins.

3 Remote Server Creation
The remote management server is implemented as a stack of the Linux, Apache, SQLite3 and
Python components. Together these components form a REST API. Section 13 describes a

complete tutorial on bringing these components together to form a functional server on a host
purchased from a third-party. Not all possible features of a REST API have been implemented so

far, but having the architecture of the system designed around REST means that additional
REST features could be implemented without having to change the architecture. The

architecture of components are outlined in figure 4. All code and documentation for the remote
server can be found in Table 2.

3.1 JSON Message Format
The SPAB application client should issue POST requests containing logging data to data.cgi in
JSON either periodically, when it reaches a way point or both. An example for this format is
found in Listing 1. Similarly, the SPAB application client should perform a GET request to

7

db/SpabLocations.db

requestCommands.cgi logging.cgi Index.cgi command.cgi

UserSPAB

js/map.js

Figure 4: Remote Server Architecture

requestCommands.cgi periodically in order to receive new commands from the server in JSON.
An example command JSON string is given in Listing 2.

[
{
timestamp: 1536551550,
latitude: -31.9505,
longitude: 115.8605,
temperature: 301.3
salinity: 35.5
},
{
timestamp: 1536552678,
latitude: -30.1505,
longitude: 116.8705,
temperature: 299.1
salinity: 35.5
}

]

Listing 1: Logging JSON

[
{"type":"command"},
{
id: 1,
action: "moveTo",
timestamp: 1536551550,
latitude: -31.9505,
longitude: 115.8605
},
{
id: 2,
action: "moveTo",
timestamp: 1536552678,
latitude: -30.1505,
longitude: 116.8705
}

]

Listing 2: Command JSON

8

3.2 Index.cgi
This is the first page presented to the user accessing the web interface. It displays the history of
recorded locations on an interactive JS map. The map is created using the Leaflet.js plugin.
Information on how to develop with this plugin can be found at https://leafletjs.com.

3.3 Command.cgi and requestCommands.cgi
Command.cgi presents a form for the user to enter commands to be stored in the web server

database. Commands stored as pending in the database will be given to the SPAB the next time
the SPAB requests new commands from requestCommands.cgi.

3.4 data.cgi
This page is primarily for interaction with the SPAB only. This is the page that handles logging

data from the SPAB and stores it in an SQLite3 database.

3.5 db/spabLocation.db
This SQLite3 database contains all location, command and other data that might be of interest
to the SPAB or web application. An additional script file initSpabDB.sql found in the remote

server repository can be used to recreate this database if required. It is also useful for getting an
idea of the database schema.

4 Local Server Creation
The client application than runs on the RPi embedded in the project is split into three main
parts. The Telemetry Manager, the Mavlink manager and the SPAB model. Each of these

respective parts is covered in detail in this section. In addition to the python scripts, some Linux
system configuration needs to be done to ensure correct functioning of the application. The

current architecture of the python client is shown in Figure 5.

Raspberry Pi Zero W

SpabModel.py

MavlinkMonitor.pyTelemManager.py

F2414Modem.pyModem

Ardupilot

therevproject.com/spab

Mavlink
Serial

Figure 5: Client Server Architecture

4.1 Firmware Repository
The Ardupilot firmware is based on the work of previous students work. I have repackaged and
re-hosted this firmware at the location indicated in 2 in order to simplify the build process. The
previous version required a number of bug fixes to the code, checking out older commits and

patches applied to the code that are no longer used. This version of the firmware is hard forked
from the original Ardupilot repository at the appropriate commit and has all the relevant patches
included. In order to upload to the Ardupilot on the SPAB, connect to the Ardupilot using a
micro-USB cable. Specify the location of the USB port using export PORT=/dev/ttyACM0 on a

9

https://leafletjs.com

Linux system. Then use make apm2-upload while in the APMRover2 directory to build and
upload the firmware.

4.2 Telemetry Manager
The TelemManager.py class defines the actions the SPAB should take in response to the modem.

It subscribes to the F2414Modem.py class, decodes the JSON from the command server and
executes the corresponding commands. It also regularly packages logging data such as last GPS

location and uploads it to the remote monitoring server.

4.3 Mavlink Manager
communication with the Ardupilot is performed using the Mavlink protocol described in this
online documentation [7]. The pymavlink module installed as part of this repository closely

implements the protocol and is the basis for the class which responds to mavlink messages. More
message handlers can be created by writing a handler function and registering the function in the

list of delegates.

4.4 Operating System configuration
There are a number of small tasks that need to be done in order to prepare the RPi. Cron is used
to automatically start the client application as soon as it boots. This is done by running crontab
-e, following the prompts and adding the task @reboot /home/pi/spab.sh. spab.sh is a Bash
script which maintains the functioning of python application and redirects outputs to a text

logging file. In order to use the RPi UART for a purpose other than the Linux console, the block
console=serial0,115200 needs to be removed from /boot/cmdline.txt. Add the blocks

enable_uart=1 and dtoverlay=pi3-disable-bt to the file /boot/config.txt this will ensure
the hardware UART in enabled and the Bluetooth module is disabled for power saving reasons.

sudo systemctl disable hciuart should also be run in order to disable the Bluetooth
configuration service since the Bluetooth module is disabled. These steps are also covered in the

README.md file for repository.
As the previously mentioned commands will detach the Linux console from the GPIO headers, it
is recommended to develop on the RPi Zero by connecting a USB hub to the USB OTG port and

attaching peripherals including the F2414 modem to the USB hub.

5 Results
Pictured in Figure 6 is a screen shot taken during a functionality test at Matilda Bay to the

South of the UWA campus. In this test the SPAB began to successfully send telemetry data to
the remote server as soon as it was powered on without any further interaction by the user. To
confirm the commanding functionality, new commands were entered in the command.cgi page
and the receipt of these commands was confirmed using the APM Planner application - A

third-party real time application designed for the control of Ardupilot drones. The short range
radio and APM Planner compatibility remains in place for short range control, however new

commands from the remote server will overwrite commands sent by APM Planner.

6 Conclusions and Future Improvements
This project lays the ground work for development. While not all possible mission features have
been added yet, the current implementation and architecture has proven robust on each occasion
it has been tested. Extending each component should be possible without causing incompatibility

with any of the other components, allowing the task to be split among a number of future
students. Many possible improvements to the SPAB could be done in the future with the

following being a sample.

10

Figure 6: Remote Telemetry From SPAB

6.1 Suggested Hardware Improvements
The F2414 modem presents some limitations in that it is both a transport and network layer
device. It is not very flexible and most python libraries expect to act on a network interface
instead of a serial port. It may be possible to emulate a network interface using a serial

connection using either a SLIP or PPP compatible modem. It maybe possible to use SLIP with
the F2414 modem by changing the configuration. Using this method, integration of security like
encryption and the construction of HTTP messages could be simplified over the current method

of manually constructing HTTP strings. SLIP is described in RFC 1055 [8].
Additional stasis sensors could be added. For example a humidity sensor could be used to
potentially detect a hull breach. Battery voltage sensors would also be useful to give an

indication of remaining mission time to the remote server.

6.2 Suggested Server Improvements
The application could be improved to provide filtering functionality, for example only showing
markers in a certain date range, displaying additional information such as battery levels and

sensor readings at each location. Achieving this will require multiple edits to both receiving pages
data.cgi and displaying pages index.cgi. Currently, the only command supported by the
command.cgi page is to go to a location. Additional commands and entire missions could be

created from this page and sent to the SPAB provided there is an appropriate Mavlink
approximation for the commands. The command interface could be made more interactive, for
example a clickable map to set way points, rather than manually entering decimal degrees.

Security has so far been limited for the remote server. Currently all pages are public where only
authorized users should be able to send commands to the SPAB. This could be achieved by
adding HTTP Basic Authentication to the command page and additionally adding it to the

logging page. Getting HTTP Basic Authentication to work through the F2414 modem has so far
proved difficult, but it should be possible.

6.3 Suggested Client Improvements
The client application should be extended to handle more Mavlink packet types and extend the
number of commands that can be written to the Ardupilot. Additionally, as new sensors are

added to the SPAB the readings of these sensors should uploaded to the server.

11

7 Source and Resources
The following table 2, gives the location of all existing resources for this project. The ’Old

Repository’ contains the work of previous students in building the SPAB and may prove to be
useful for future work. In particular it contains schematics, drawings, bill of materials and
mechanical design documentation for the project. Other third-party resources previously

mentioned in this document are also here for convenience.

Component Location
Remote Server https://github.com/formahult/Spab-cgi

Client Application https://github.com/formahult/pyspab
Ardupilot Firmware https://github.com/formahult/spab-pilot

Old Repository https://github.com/thepowersgang/fyp-boat
This Document https://www.overleaf.com/project/5bbae1bbfeddef2f871912c0

Leaflet https://leafletjs.com
F2414 Modem https://en.four-faith.com/f2414-wcdma-ip-modem.html

Table 2: Useful source Repositories

12

https://github.com/formahult/Spab-cgi
https://github.com/formahult/pyspab
https://github.com/formahult/spab-pilot
https://github.com/thepowersgang/fyp-boat
https://www.overleaf.com/project/5bbae1bbfeddef2f871912c0
https://leafletjs.com
https://en.four-faith.com/f2414-wcdma-ip-modem.html

Part II

L3 Oceania Wave Glider
8 Background

The Liquid Robotics Wave-glider is an ASV with a unique method of passive propulsion. The
Wave Glider consists of a surface float containing the main payload and a tethered underwater
glider section. Hydrofoils on the underwater glider convert vertical motion of the float due to
waves into forward motion as depicted in Figure 7. A rudder on the glider that can be used to
change the course of the wave-glider is the sole actuator. The motion of the Wave Glider is

therefore dependent on the surrounding sea conditions. The float section includes dry boxes for
multiple internal user payloads, once of which is occupied by the payload board being developed
by L3 Oceania. A central dry box contains an integral control server included with purchase of
the wave glider which manages the charging of batteries and routes data between user payloads
and payloads in the underwater glider including the servo which controls the rudder. There is no
scope to alter this control server, so all development must be done on the user payload board
being developed by L3 Oceania. The surface float is also fitted with masts for antennas and

sensors, and photo-voltaic panels to recharge the on board batteries[9].

Figure 7: Description of Wave Glider propulsion

The Wave Glider to be used in this thesis is provided by L3 Oceania and is fitted with a
proprietary payload board providing satellite communications over the Iridium network, cellular

communications over 3/4G, and close range radio communication using XBee. A GPM300
acoustic modem also developed by L3 Oceania can be fitted to the glider for underwater

communications. The float contains a payload board developed by L3 Oceania in the aft payload
bay. The Wave Glider also contains a proprietary command and control payload contained in a
central dry box. The purpose of this controller is to route communications between multiple

payload devices on the the float and the underwater glider. Commands to the underwater glider
must therefore be routed through this control server. The surface payload contains an Inertial
Measurement Unit(IMU), a Global Navigation Satellite System (GNSS) receiver, temperature,
pressure and humidity sensors for stasis monitoring. The sensors and communications data is
routed using micro-controllers on the payload board. High level on board decision making and
control is intended to be performed by a Raspberry Pi (RPi) attached to the payload board.

13

Figure 8: Structure of the float as provided by Liquid Robotics.

8.1 L3 Oceania Payload Board
L3 Oceania had previously created a custom circuit board to integrate the various hardware

components together. The key components are the RPi 3 running a Mono C] stack, an Ethernet
microcontroller, a serial and sensor management microcontroller, a connection for an Iridium

modem and a 3G modem. Figure 9 points out each of these components.

8.2 Problem Statement
The intended use of the Wave Glider is the CUUUWi project to create a gateway between

subsurface acoustic communications and surface radio communications. Liquid Robotics provides
an Internet based infrastructure for remotely controlling a fleet of Wave Gliders using their

proprietary system. Although functional, the system is reliant on Liquid Robotics owned servers
and is somewhat cumbersome to use. As one of the purposes of the system is to function as a

mobile gateway it was desirable for the control interface to make use of the already existing SMS
interface. The task was therefore two fold: to create a compatible implementation of the

protocols used by Liquid Robotics to communicate with the Command and Control box and to
extend the SMS interface to give control access of the Wave Glider to users over SMS.

9 Payload Upgrades
The payload board provides a number of UDP servers for each of the various types of data it
produces. Subscribing to these servers is simply done by sending a packet to the relevant port
number on the payload board. The payload board will send data using UDP to whichever IP
address last contacted it. Each of the management classes subscribe using this method to the
data servers. Figure 10 describes the architecture of the CUUUWi system components that are

relevant to my involvement in the project.

9.1 Wave Glider Model
This singleton class contains the current state of the Wave Glider for reference by the various
other components in the system. Sensor data and locations are stored here for example. This

ensures that there is only one single representation of the Wave Glider at a given time and data
sources don’t fall out of sync.

14

Figure 9: Payload Board Diagram

9.2 Sensor Manager
This is the simplest management class added to the RPi server. A binary structure containing
the most recent sensor readings is received from the Ethernet channel and decoded into the
relevant data structures stored in the Wave Glider model class. The payload board needs to

regularly respond to status requests from the command and control box. When this occurs the
stored sensor data is returned to the command and control box.

9.3 Wave Glider Manager
The most complex class, this class is responsible for appropriately responding to decoded Level 2
protocol packets. It has many tasks including notifying the RPi operating system of power down
messages, responding correctly to enumeration and status requests and also to send commands to

the command and control box if new commands have been queued.

9.4 SMS command parser
The SMS command parser decodes strings into abstract command objects along with their

arguments whenever a SMS message is received. The abstract command objects are passed to the
appropriate module for execution. This parser is also capable of composing responses from the

same abstract objects in order to return acknowledgements and information back to the caller. In
order to provide a degree of security, the SMS controller will only respond to messages from users

and phone numbers that have previously been stored in the authorisation database.

15

LR
C&C Box

SMS

WG
Model

IridiumGPS 3G
Modem

GPS
Manager
NMEA
Parser

Level 3
Proto

Level 2
Proto

WG
Manager

Sensor
Manager

Sensor
Nest

Parser

Level 2
Msgs

NMEABinary
#Strings

Commands

Figure 10: Wave Glider Architecture

9.5 Liquid Robotics Protocols
There are two main types of protocols used by Liquid Robotics named in the documentation as

Level 2 and Level 3. The Level 2 protocol functions on the serial connection between the
command and control box and a number of payload boards. The Level 2 protocol is designed
around enumeration and discovery of payloads, passing payload data and power control. The
Level 3 protocol is designed primarily for remote communications and control of the command

and control box itself. The Level 3 protocol is what is typically passed over IP or XBee channels.
In order to achieve control of the command and control box from the payload one has to create
Level 3 packets and encapsulate them in Level 2 packets. As the Level 2 protocol is strictly a

master/slave relationship, there is unfortunately little real time control and the payload must wait
until it is polled before it can pass a command. Additionally, the architecture of the command

and control box doesn’t seem to allow executed Level 3 commands to return data through Level 2
messages. This limits the possible functionality of the system but objectives remain achieved.

The Level 2 Liquid robotics protocol needed to be additionally implemented in C++ in order for
the serial and Ethernet controller chips to interpret and route the packets.

10 Documentation
In addition to the functionality itself I completed documentation on implementation details.

These documents are stored on the L3 Oceania intranet and are not provided since it’s not likely
another UWA student will be working on the project. I also wrote unit testing scripts using the
Microsoft Visual Studio Unit Test framework to ensure that future changes and improvements do
not affect the previous functionality of the application. These unit tests are stored alongside the

soufce code repository.

10.1 User Interface
Table 3 lists the user interface available over SMS for controlling the Wave Glider. The simple
protocol consists of a command and a number of parameters. Typically, listing a command
without parameters instead queries the state of the paramete, rather than setting it. The

CUUUWi gateway supports many more commands than listed which have been implemented by
other teams and projects and so aren’t relevant to my thesis.

16

Command Arguments Description
#FHEAD [0-359] Wave Glider continues in the bearing given.
#LIGHT [ON|OFF] Get or Set state of visible marker light.
#IR [ON|OFF] Get or Set state of Infra-red marker light.
#HOLD none Remains at given location; ceases other navi-

gation
#WAYPOINT [INDEX] [LAT] [LON] Set latitude and longitude in decimal degrees

at the specified index
#HOLDWP [INDEX] Go to and stay at the way point at the speci-

fied index (1-254).
#FSEQ [TARGET] [BEGIN] [END] Wave Glider visit target then loops defined

by the sequence of way points between ’begin’
and ’end’.

#RUDDER [-30 to 30] Get or set the rudder angle
#FCOURSE [LOOP|HOLD] [index] ... Follow course defined by given way points and

then stop or loop again

Table 3: Supported Wave Glider Commands

11 Test Deployment
Testing of the Wave glider was performed on the 31st of August 2018. A number of tests were
scheduled including my integration tests when the wave glider was launched from Whale Song.
While I was unable to attend, the tests were carried out regardless according to a test procedure

document that I wrote previously.
The following notes were taken from the test deployment. As indicated in table 4, there were a
couple of initial problems. When I returned, however I was able to fix the problems indicated in

the notes. The issues were minor and resulted from incorrect command flags being set.

Time Command Result Success
11:18 #FHEAD 230 Replied and confirmed success using

WGMS
Y

11:49 #HOLD Replied and confirmed success using
WGMS

Y

12:09 #WAYPOINT 1 -32.0380 115.3325 Replied, assume success (no visible ac-
tion)

Y

12:09 #HOLDWP 1 Replied, glider did not seem to move,
perhaps misinterpreted as #HOLD

N

12:10 #WAYPOINT 2 -32.0345 115.3326 Replied, assume success (no visible ac-
tion)

Y

12:11 #WAYPOINT 3 -32.0345 115.3326 Replied, assume success (no visible ac-
tion)

Y

12:12 #WAYPOINT 4 -32.0345 115.3326 Replied, assume success (no visible ac-
tion)

Y

12:28 #FSEQ 1 1 4 Replied but with "#FSEQ 1 1" miss-
ing " 4" at the end. Could not confirm
due to slow WGMS update rate. Logs
indicate the incorrect command was ac-
cepted

N

13:03 #FCOURSE HOLD 3 4 1 Replied. Could not confirm due to slow
WGMS update rate. Logs indicate the
command was accepted

Y

Table 4: Results from Wave Glider Field Trial

17

12 Conclusion and Future Improvements
The SMS command functionality achieves the stated requirements and at the time of writing is

being used on a deployed Wave Glider being tested by L3 and the Royal Australian Navy.
Originally there were ambitions for greater (non-critical) functionality however the slow

master/slave architecture of the system means that it would be difficult if not impossible to
achieve without replacing the command and control box entirely. One of the later desired goals of
the Wave Glider project is to be able to characterize sea state using the on board INU. Some
work has already been done on creating simulated data and processing it using MATLAB and
WAFO, but a lack of real data has stalled development for the moment. It is likely that this

feature will be brought with future developments of the project.

18

Part III

Apache Server Creation
13 Apache Web Server Common Gateway Interface(CGI)

tutorial
The Common Gateway Interface (CGI) is a standard protocol web servers can use to run a

normal command line script or program and return the result to the client. This allows you to
create and run a server script on a normal web server without having to manage the details of
networking, connections, encryption and other common problems. Secondarily it allows you to
make use of an existing web server, staying within the security limitations that may be imposed
on you by a hosting provider. Hosting providers will typically not allow you to open arbitrary
ports for security reasons and may only allow access to the web server they have provided for

you. This tutorial will be familiar to anyone who has done server scripting in PHP, however the
advantage of CGI scripts is you can do server programming in a language you are already

familiar in.

13.1 Pre-requisites
I will not be covering the details of all these items. Many tutorials exist for these subjects on the
Internet if you feel you need them. This tutorial focuses on how to integrate these items into a

simple web application server.

1. Linux command line knowledge (bash): It is assumed for this tutorial that you have a basic
understanding of using the Linux command line, opening files, navigating directories what
a ’home’ folder is etc. Regardless of what operating system you choose to use, many if not
most hosting providers run Linux. You will need to be able to edit files on the host server
in order to configure it correctly. If you need some help here, there are many tutorials and
’cheat sheets’ available online on how to use the Linux command line.

2. Basic scripting knowledge: CGI allows for any command line program to run, even binaries
compiled from C/C++. However I strongly recommend that you use a scripting language that
has inbuilt support for the CGI. Popular examples for this are PHP, Python, Perl and Ruby.
I will be giving any examples in Python 2, however I will make note of what configuration
differences you will need to provide to use the other languages. A Python specific tutorial can
be found at https://docs.python.org/2.7/tutorial/. Other scripting language tutorial
can be found if you search for them.

3. HTML: I will assume you know how to write HTML documents, forms and including external
media files and script files. Server side scripts output the HTML which is ultimately served
to the client. If you are new to this tutorials can be found at https://www.w3schools.com/
html/.

4. JavaScript: If you want client side scripts to be run you will still need to write these in JS.
A tutorial on JS can be found at https://www.w3schools.com/js/.

5. SQL or similar database language: You may want to store, retrieve and search for items
from a database. Particularly if some clients store data and other clients retrieve them. The
database engine you wish to use will depend on what is installed on your web server and
what libraries are available for your chosen scripting language. In this tutorial I will be using
SQLite3. Again, an SQL tutorial can be found at www.w3schools.com/sql.

13.2 Secure Shell
Secure Shell (SSH) allows you to securely log on to a remote computer or server and run

commands on it as if you were physically typing commands on it’s own keyboard. Many web
hosts provide their own unique interfaces for uploading files and managing the web server,

meaning you can avoid using SSH if you want. However these interfaces are all unique and can’t

19

https://docs.python.org/2.7/tutorial/
https://www.w3schools.com/html/
https://www.w3schools.com/html/
https://www.w3schools.com/js/
www.w3schools.com/sql

be covered in one document. You may find it useful to look at your web hosts tutorials on how to
use their particular interface.

13.2.1 Linux and OSX

Most Linux distributions come prepackaged with SSH. If it is not installed by default it can be
freely installed using your package manager. OSX should also have SSH available by default. log
on to you host server using the user name and password provided to you by the hosting provider
using the command ssh username@hostserver.com. If this is the first time you have connected,
SSH will indicate that it has never seen the server’s public key before. Type ’yes’ to continue and
it will then ask for a password. Once the session is established you can interact remotely with the

server.

13.2.2 Windows

Widows does not have SSH installed and installing it is not easy or necessary. The windows
application PuTTY is compatible with SSH so you can use that instead. Once you log on
however you will still be in a Linux environment so Linux knowledge is still necessary.

Putty can be downloaded from https://www.putty.org/. Once installed, run it and type your
user name and host address in the field shown in Figure 11. Ensure that you click the SSH

button to indicate you want to start an SSH session.

Figure 11: PuTTY User Interface

PuTTY will also show a dialog prompt indicating it has never seen the server key before. Click
’yes’ to continue and then type the password.

13.3 Apache and NGiNX
Most hosting providers will have either Apache Web Server or NGiNX. They are compatible and

you shouldn’t notice the difference nor will it change this tutorial.

20

https://www.putty.org/

13.3.1 Web Root

Typically within the home folder will be your web root. This folder is typically called ’www’ or
’webroot’. Everything within the folder can be accessed by anyone through the web server unless
the file is hidden, inaccessible by Apache or some security configuration is performed (I will cover

this later). As such do not put sensitive files here unless you really mean to put them here.
Important files can be safely stored out side of the webroot and Apache will refuse to serve them.
Folders are also accessible here, for example the file placed www/myproject/file.txt will be

accessible from the Internet as http://hostserver.com/myproject/file.txt. A special case is
any file called Index.html. Apache will serve Index.html if you don’t specify a file, so

www/myproject/index.html will be served when you go to http://hostserver.com/myproject.

13.3.2 cgi-bin

www/cgi-bin is the traditional place CGI scripts are placed. Scripts can be called from anywhere
if configured to do so but for now place all your scripts here. Traditionally CGI scripts have the
.cgi file extension regardless of what language is actually used but any extension or no extension

is acceptable (Linux doesn’t treat extensions specially).

13.4 Uploading Files
There are many ways to upload files on all systems. I will only provide one simple example way

for each operating system.

13.4.1 Linux & OSX

Both these systems should also have a program called Secure Copy (SCP). This will allow you to
securely upload files to the web server including your scripts. Simply calling scp

/localdirectory/myfile.txt username@host:/remotedirectory/myfile.txt will transfer
the file. It should prompt you for a password to complete the command. Reading the SCP

manual will describe how to upload multiple files and directories or you can upload a single .zip
file containing multiple files. Some linux environments also allow you to seamlessly connect to the
remote server using SFTP from with the file explorer but this process varies for different systems.

13.4.2 Windows

WinSCP https://winscp.net/eng/download.php provides a graphical interface for the SFTP
protocol allowing you to upload to the webserver using SFTP. The start up prompt will again ask
for the host details and a username and password. Then you can transfer local files from the left

window pane to remote folders shown in the right window pane.

13.4.3 Permissions

Folders and files that you create and upload on the server will only be accessible by you. However
Apache runs as a separate user and you need to give it access to files you wish for it to serve or
run. Scripts should typically be user mode 755. This allows Apache to read and execute your

scripts, but not edit them. Changing the permissions on your script once you have uploaded it is
done by typing chmod 755 myscript.cgi from within a SSH session.

13.5 Writing a Script
13.5.1 Shebang

#! called a ’shebang’ or ’hash-bang’ is a special symbol placed as the very first characters in a file
that tells the server what interpreter to use to run the script. Immediately after the shebang type
the path to the interpreter you wish to use. Hosts may place their interpreters where ever they

wish and you may be able to install some yourself. The easiest way to find the path to an
interpreter is to use the which command. For example to find the location of the python

interpreter on the system type which python. similarly which perl and which ruby will give
you the locations of those interpreters. Binary files will not need this added to them, nor will

PHP scripts.

21

https://winscp.net/eng/download.php

13.5.2 CGI packages

Common scripting languages will typically have some packages to assist with making CGI scripts.
These will allow you to easily access GET and POST variables and other things. In Python

simply starting with import cgi will get you this functionality. More information about using
python as a CGI script can be found at https://docs.python.org/2/library/cgi.html.

13.5.3 HTTP header

Your web browser expects some metadata describing what kind of content is being returned by
the server. The HTTP header can contain a lot of information but at the bare minimum you will
need to print the line "Content-type: text/html" followed by two new line characters. Without

this header line, the client web browser will not render the HTML document correctly.

13.5.4 Displaying HTML

Apache will send all standard output from your script back to the client requesting it. Therefore
you can create complex web pages by simply printing HTML in the same way that you would

normally print to the command line. Code which does not produce an output will not be
displayed. In Python, multi-line quotes using 3 " (double quote) characters can be used to easily
print a large block of HTML for structuring your page. Use a single block quote to encapsulate a

logical block of HTML, for example the header of your page.

13.5.5 Example Python CGI script

The following minimal python script will display a basic web page with a title and then display
all arguments passed to it, demonstrating use of the cgi.FieldStorage object which contains all
arguments passed to your script. cgi.FieldStorage will contain arguments passed both from
GET requests and POST requests. Using python block quotes it’s easy to print static HTML

elements in a way similar to PHP. You can also use string methods to include dynamic data into
your web page. In this case the key/value pairs of any arguments are printed in the HTML

document.

#!/usr/bin/python
import cgi

print "Content-type: text/html"
print

print """
<meta charset="UTF-8">
<html>
<head>
<title>My project title</title>
</head>
"""

print """
<body>
<h3>Title</h3>
"""

print "<p>Args</p>"
arguments = cgi.FieldStorage()
for key in arguments.keys():

print key + ":" + arguments[key].value + "
"

print """
</body>
</html>
"""

22

https://docs.python.org/2/library/cgi.html

13.6 Accessing a Database
You will be able to access any database that you are able to access through your scripting

language. In this example we will be accessing a SQLite3 database using the python module of
the same name.

13.6.1 Creating the database

Place the database somewhere convenient on the server. It should be stored somewhere like /db
and you should disallow anyone from accessing this directory. Otherwise this leaves the potential
for a malicious person to simply download the database and inspect it’s contents. There is almost

no situation where someone should be able to do this. Particularly if the database contains
sensitive data. Simply create a .htaccess file containing only the line deny from all in the /db

folder to prevent anyone from directly accessing the contents of the folder.
I recommend creating an SQL script to create and initialize tables in your database for

maintenance purposes. You may want to reset and create an identical database in the future.

13.7 Client Side Scripting
Server scripts are executed on the server and have so far been the focus of this tutorial. However,
you may additionally wish to serve code which is executed in the client user’s browser. Client

side scripting is almost universally done in JavaScript.
Your client-side scripts can be included in the web page in the same way as any other HTML

document. For example an external script can be included like this:

print """
<script type="text/javascript" src="/js/script.js"></script>
"""

You can also use the server side script to generate inline script which will also be executed by the
client. This is particularly useful for transferring variables from your server script and allowing

them to be accessed by the client scripts. For example:

myInt = 100
print ’<script type="text/javascript">’
print ’var myJSVariable = ’ + myInt + ’;’
print ’</script>’

When this is executed by the client web browser the value of 100 will be available in JavaScript
as myJSVariable.

For ease of maintenance I recommend that the majority of your client scripts be created in a
separate file as in the first example. Only use the server side script to place values into variables
before including the main JavaScript file. This will make finding bugs easier and avoid confusion

about which statements get executed when.

13.8 Sending Data to the Server
The advantage of leveraging a normal HTTP server stack is that you can interact with the server
using normal HTTP requests. There are two main requests: GET and POST requests. A GET
request is issued by a client (including web browsers) in order to obtain a file. In addition to

specifying the file the client wishes to obtain, it also specify GET variables that influence what is
returned. GET requests resemble

http://hostserver.com/pathto/file?getVariable1=value&getVariable2=value2. In this
example two variables ’getVariable1’ and ’getVariable2’ are sent.

13.8.1 Webforms

HTML can be used to markup forms like text-boxes, radio buttons, drop-down menus etc that
you are probably already familiar with. These form fields can be configured to send data to the
server as either GET or POST requests. The form attributes ’action’ and ’method’ define the
script to submit to and whether to use GET or POST respectively. The ’name’ attribute define

23

the key that a variable will be sent with and the ’value’ attribute contains the actual user input.
Predefining the ’value’ attribute allows you to set defaults that the user can override.

<form action="/action_page.cgi" method="get">
First name:

<input type="text" name="firstname" value="Mickey">

Last name:

<input type="text" name="lastname" value="Mouse">

<input type="submit" value="Submit">
</form>

13.8.2 Sending POST/GET requests from an external script

Most scripting languages have libraries for sending POST and GET requests to a server. This
will probably be the preferred solution where you need a program to autonomously interact with
the server without having to go through a web browser. Python has the requests library for

interacting with HTTP servers and is a very easy and straight forward library to use.

import requests

Create a dictionary of key/value pairs you wish to send
payload = {’key1’: ’value1’, ’key2’: ’value2’}

Send a get request to the server
response = requests.get("https://someserver.com/pathto/script", data=payload)
print(response.text)

send the same in POST
response = requests.post("https://someserver.com/pathto/script", data=payload)

Do basic authentication
credentials = requests.auth.HTTPBasicAuth(’username’, ’password’)
response = requests.post("https://someserver.com/pathto/secureDir/script", data=payload,

auth=credentials)

The requests library contains support for many more HTTP methods, authentication methods
and support for multi-part encoding for large files.

13.8.3 Java Script Object Notation (JSON)

If you want to send data more complex than built-in types like strings, floats and int consider
using JSON. JSON is a standard method for defining complex data structures as strings. This

allows you to send these objects, such as a class containing multiple fields of strings, ints, list etc
easily as strings and then recreate those data structures on the server without having to define

and parse multiple variables.

import json
Send the payload as JSON
payload = {’some’: ’data’}
response = requests.post("https://someserver.com/pathto/secureDir/script", json=payload)

On the other side, decoding the sent JSON values can be done in a similar way

import json
stringFromClient = ’["foo", {"bar":["baz", null, 1.0, 2]}]’
list = json.loads(stringFromClient)
list now contains a list object which can be indexed like any other list object

24

13.9 Security
13.9.1 Be aware of Threats

Your server will be accessible by the public including malicious users therefore you will need to
take care beyond what you might usually take in order to avoid common security vulnerabilities.
While important these security concerns are too vast, sometimes complicated and not always
relevant to every use case, therefore I will not be going into detail about them in this tutorial.
However, the Open Web Application Security Project (OWASP) is a very useful resource that
explains in detail about how various attacks are performed and how they can be defended

against. I highly recommend you look up each of these topics on https://www.owasp.org/.

1. SQL Injections: Most SQL libraries will have some function to sanitise inputs in order to
avoid common SQL injections. Learn what those functions are and how to use them. Basic
string functions part of the built-in Python library are vulnerable to injections for example.

2. Cross site Scripting (XSS) Attacks: If your application stores data that is entered by one user
and then displays it some where on a page, XSS are possible. XSS vulnerabilities allow an
attacker to execute malicious actions on a victim’s machine, often without any victim input.

Be aware of what items should and shouldn’t be public. If you deny access to resource folders
such as /images, /js or /css clients won’t be able to download those resource files and your

application won’t work as intended.

13.9.2 Basic Authentication

Often you may want to create a script or folder which isn’t publicly accessible. This can be done
using the .htaccess file and the .htpasswd file. Let’s say you want to password protect the

mydomain.com/secure directory. In the the /secure directory you should place a .htacess file
containing the following. Note ’#’ indicate comments in configuration files and don’t affect the

configuration of the server.

Optional, text which is displayed in the prompt
AuthName "Secure Area"
Path to the .htpasswd file
AuthUserFile /home/username/www/secure/.htpasswd
AuthType Basic
Require valid-user

These configuration options indicate that the containing folder requires authentication and
indicates how authentication is performed. Additionally a .htpasswd file will be required which

contains the credentials (usernames and password hashes) used for authentication. It is
important that passwords are stored as hashes so even if the .htpasswd file is stolen the password
behind the hash is difficult to recover. You can generate password hashes in the correct format

multiple ways. The easiest method is using the openssl command line utility that is installed on
most linux distributions, meaning your web host likely already has it installed. Use the command
openssl passwd -apr1 YourSecretPassword -o .htpasswd to generate a mostly complete
.htpasswd file. Finally you need to prepend a user name to the hash. Open the .htpasswd for

editing using nano .htpasswd or another editor and add a username and colon to the beginning
of the password. Your final .htpasswd file should resemble something like this.

hash for ’password’ very insecure. _Do not copy this example_
username:$apr1$tvIrD/Hp$EsNN5cLtvwLugB/7k0bKh1

You can have multiple users and passwords, just add each new entry on a new line of the
.htpasswd file. Whereever you store your .htpasswd file make sure you make a .htaccess file

with deny from all in that folder so that the password file isn’t stolen separately.

13.9.3 HTTPS

Secure HTTP (HTTPS) provides encryption and authentication between the web browser and
the web server. Without HTTPS any traffic which is sent between the server and client can be

25

https://www.owasp.org/

read including Basic Authentication exchanges. There are multiple ways of enabling HTTPS but
all require a valid certificate. Certificates can cost money to obtain them from a Certifying
Authority (CA), however the service Let’s Encrypt is a CA that provided free certificates.

Placing a certificate on a web server requires administrative access and therefore will usually
require going through the web hosting provider. For example instructions for using a free Let’s

Encrypt certificate for the BlueHost hosting provider can be found at
https://my.bluehost.com/hosting/ssl_certs. The last option is to use a self-signed

certificate. This is free and gives you a lot of control on the configuration, but requires explicit
administrative privileges this is only really an option if you are hosting yourself or your hosting

provider allows you to do it.

26

https://my.bluehost.com/hosting/ssl_certs

References
[1] J. Hodge, “Project report: Autonomous solar powered boat,” Master’s thesis, University of

Western Australia, 2017.

[2] J. Borella, “Solar powered autonomous boat (spab) thesis proposal,” Master’s thesis, University
of Western Australia, 2017.

[3] D. Crockford, “The application/json Media Type for JavaScript Object Notation (JSON),”
Internet Requests for Comments, RFC Editor, RFC 4627, July 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4627.txt

[4] R. Fielding, “Architectural styles and the design of network-based software architectures,” Ph.D.
dissertation, University of California, Irvine, 2000.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,
and D. Winer, “Simple Object Access Protocol (SOAP) 1.1,” Technical Note, W3C, W3C
Note, May 2000. [Online]. Available: https://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[6] G. E. Krasner and S. T. Pope, “A cookbook for using the model view controller user interface
paradigm in smalltalk-80,” Journal of Object Oriented Programming, vol. 1, no. 3, pp. 26–49,
1988.

[7] M. LLC. (2018) Mavlink developer guide. [Online]. Available: https://mavlink.io/en/

[8] J. Romkey, “A NONSTANDARD FOR TRANSMISSION OF IP DATAGRAMS OVER
SERIAL LINES: SLIP,” Internet Requests for Comments, RFC Editor, RFC 1055, June 1988.
[Online]. Available: https://tools.ietf.org/rfc/rfc1055.txt

[9] R. Hine, S. Willcox, G. Hine, and T. Richardson, “The wave glider: A wave-powered au-
tonomous marine vehicle,” in OCEANS 2009, Oct 2009, pp. 1–6.

27

http://www.ietf.org/rfc/rfc4627.txt
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://mavlink.io/en/
https://tools.ietf.org/rfc/rfc1055.txt

	I Solar Powered Autonomous Boat
	Introduction
	Completed Work and Background
	Problem Statement
	Literature Review and Similar Projects
	REST
	SOAP
	Model-View-Controller

	Hardware Upgrades
	3G Modem
	Raspberry Pi

	Remote Server Creation
	JSON Message Format
	Index.cgi
	Command.cgi and requestCommands.cgi
	data.cgi
	db/spabLocation.db

	Local Server Creation
	Firmware Repository
	Telemetry Manager
	Mavlink Manager
	Operating System configuration

	Results
	Conclusions and Future Improvements
	Suggested Hardware Improvements
	Suggested Server Improvements
	Suggested Client Improvements

	Source and Resources

	II L3 Oceania Wave Glider
	Background
	L3 Oceania Payload Board
	Problem Statement

	Payload Upgrades
	Wave Glider Model
	Sensor Manager
	Wave Glider Manager
	SMS command parser
	Liquid Robotics Protocols

	Documentation
	User Interface

	Test Deployment
	Conclusion and Future Improvements

	III Apache Server Creation
	Apache Web Server Common Gateway Interface(CGI) tutorial
	Pre-requisites
	Secure Shell
	Linux and OSX
	Windows

	Apache and NGiNX
	Web Root
	cgi-bin

	Uploading Files
	Linux & OSX
	Windows
	Permissions

	Writing a Script
	Shebang
	CGI packages
	HTTP header
	Displaying HTML
	Example Python CGI script

	Accessing a Database
	Creating the database

	Client Side Scripting
	Sending Data to the Server
	Webforms
	Sending POST/GET requests from an external script
	Java Script Object Notation (JSON)

	Security
	Be aware of Threats
	Basic Authentication
	HTTPS

