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Abstract

This work presents an implementation of an iterative sampling-based local path planner
in the object-oriented programming language C++ with the modern ISO standard of
2014 (C++14). It aims to solve the planning problem for an application in autonomous
racing. The targeted hardware is an electronic racecar built at the University of Western
Australia which is intended to participate in a race similar to the Formula Student
Driverless. Since the planner must run efficiently on embedded hardware, this work
favors a sampling-based near-optimal solution over a computationally more intensive
optimal solution. Further, this thesis introduces resource economic approach to collision
checking. The implementation of the algorithms is required to be perormant and easily
integrable in the robotic framework of the racecar. Therefore, C++14 is used to implement
the algorithms, since it provides high-performance and modern language features that
integrate well with existing software. Simulation verifies the correct workings and
performance of the implementation. The results of the simulation prove that the chosen
algorithms find a near-optimal solution to the path planning problem for a scenario
like the Formula Student Driverless, while allowing update rates as high as 20 Hz. This
work provides the base for a practical application of the provided planner in a robotics
framework and integration testing in a real-world scenario.
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1. Introduction

This chapter outlines the motivation for this work and discusses the scientific context.
It provides a specific and measurable description of the goal that this work achieves
and formally describes the problem at hand. The chapter discusses the methods used
to attack the problem and concludes with a structural overview of the contents of this
work.

1.1. Motivation

In 2015 the Formula-E electric motor racing series announced that it is adding a robotic
event as an opening act. Autonomous cars will race before the human competition
begins [Lau15]. This ROBORACE1 aims to be the first autonomous racing series
in the world. The vast scientific interest in autonomous driving over the past 30
years [Pom89; DMC90] mainly focused on applications in an urban environment. The
hopes associated with the topic often focus on the potential of autonomous vehicles to
make traffic safer, while being more comfortable for the driver and passengers [Fis+16].
ROBORACE shows that there is also a possible entertainment aspect to autonomous
driving. The nature of motorsport inspires technological advances to set teams ahead
of their competition. It allows testing of new technologies in a safe environment
while pushing the boundaries of the possible. Findings produced from sports often
make their way back into the casual driving domain. Technological standards in
motorsport define the future of transportation. For example, the rear spoiler was
introduced in 1960 in the racing domain and can be found on many consumer cars
today. The DARPA grand challenge 2006 has shown the accelerative impact of a
competitive event on science [Thr+06; Chr+08] and inspired other events of its kind. The
Formula Student Germany (FSG) and Formula Society of Automotive Engineers (SAE)
are international design competitions for students, where the teams develop a business
plan and prototype for a Formula-style race car. FSG and Formula-SAE provide the
opportunity for students to apply their knowledge in a real-world scenario and for
companies to find a new generation of motivated and skilled automotive designers
and engineers. In August 2017, for the first time, the FSG held a new competition
class: Formula Student Driverless (FSD) [Lau17a]. This future-oriented event confronts
students with the challenge to develop a race car that can run without a driver in
autonomous mode, or with a driver in manual mode. Akademischer Motorsportverein
Zürich (Academic Motorsport Society Zurich) (AMZ), the winning team of this event,

1https://roborace.com/
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1. Introduction

proved that such a task is feasible for teams of students [Lau17b]. The car developed by
this team was the only car to finish the race.

The FSD inspired members of the Renewable Energy Vehicle (REV) Project at UWA
to convert a racecar that was built for the Formula-SAE competition to perform a task
similar to that required by the rules of the FSD: The car should autonomously maneuver
a track delimited by traffic cones while avoiding collisions with static obstacles. This
work modifies the rules of the FSD to an extent and assumes that the racetrack may be
driven once manually, before performing the autonomous lap (see section 1.3).

The vehicle that served as research platform was converted by former members
of the REV-Project, first to drive-by-wire navigation [Dra13] and later extended to
incorporate static obstacle avoidance [Fre14; Chu15]. While those works provide a base
for development, the implemented software lacked documentation and flexibility. Nor
was it possible to perform software in the loop (SIL) or hardware in the loop (HIL) testing
and simulation. The software is implemented in a very procedural fashion and lacks an
extendible, object-orientated and modular architecture. The approach to software design
is a monolithic one, where one class monopolizes the processing, and other classes
primarily encapsulate data. Monolithic design is a known software-development anti-
pattern that results in a limited ability to modify parts of the system without affecting
the functionality of other encapsulated objects [SFP17]. Modifications on other, logically
unrelated modules are likely to have an impact on the central processing monolith of the
software. The outcome of this architecture and the lack of documentation or examples
is that one needs to undertake modifications on the existing software with excessive
caution, but is likely to nevertheless cause hard to trace errors in the system. The
implementation of the path planning was one of the modules that suffered severely from
this. It was not possible to deduce from the existing software architecture which parts of
the program are related to path planning, and which perform separated tasks. A cause
of this problem was that former work used MATLAB2 to prototype the implementation
of the path planner. The MATLAB-Coder was used to generate C/C++-sources from
the prototype. While this made it possible to integrate the prototype with the existing
software, it added the complexity of another programming language. The existing
software provides a solid base, but requires much attention and rework of crucial parts
to provide an extensible research platform for students that wish to focus on autonomous
vehicles.

1.2. Problem Description

The problem at hand is defined by the rules of the FSD from 2017: A vehicle must find
its way through a racetrack autonomously. Traffic cones delineate the road. Blue cones
delimit the left side, yellow ones the right side (see fig. 1.1). The maximum distance
between two cones in driving direction will be 5 m, the minimal width of the road is
3.5 m.

2https://mathworks.com/products/matlab.html
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1.2. Problem Description

Figure 1.1.: An example scenario for a track drive from the FSD-rules. This illustration
shows a representative piece of track that an autonomous vehicle has to
follow during the FSD competition. Small traffic cones delimit lane markings:
yellow ones for the right side, blue ones on the left side. The cones a
maximum of 5 m apart in the driving direction and the track is a minimum
of 3.5 m wide at any point. Larger orange cones mark the start- and stop-
zones of the racetrack. Participants of FSD have to accomplish ten laps
around such a track. (Figure taken from [For17, p. 10])

3



1. Introduction

The Performance, Environment, Actuators, Sensors (PEAS) Description [RN09, Section
2.3.1] provides a way to analyze this problem concerning its environment and the agent.
First, one considers the performance measure of the task. The vehicle should make its
way around without colliding with obstacles. Collisions with delimiters will result in
negative points. Therefore the safety of the path is a measurement of the performance
of the agent. The next objective of the vehicle is to make its way around the track
and continue to do so for ten laps, without leaving the road. Last, with safety and
continuity in mind, the laptime has to be considered. To allow high velocity the car
agent needs to drive a smooth line around the track. Therefore, smoothness is the last
performance measure of the problem. The environment in which the car will perform
its task is layout by the FSD-rules: It is partially observable, since the sensory perception
of the surrounding world may be imperfect. There are no other participants on the
racetrack; Therefore the environment is a single agent scenario. It is stochastic and
sequential because the environment may change during operation (a cone may move
or get removed) and actions of the agent are dependent on each other. Finally, the
environment is continuous since the possible states of the environment are infinite. The
racecar can influence its configuration using actuators on steering, throttle, and breaks.
The sensory body contains light detection and ranging (Lidar), a monocular camera,
an inertial measurement unit (IMU) and wheel-speed odometer. Lidar and camera
can be used to observe the geometrical shape and relative position of obstacles in the
workspace. IMU, global positioning system (GPS) and odometer provide information
about the absolute position and orientation of the vehicle and obstacles in the workspace.
Table 1.1 summarizes the PEAS description of the vehicle and its environment.

Performance Environment Actuators Sensors

safety partially observable steering Lidar
smoothness single agent throttle camera
continuity stochastic breaks GPS

sequential odometer
continuous IMU

Table 1.1.: PEAS-Description (Performance, Environment, Actuators, Sensors) of the
FSD[RN09, p. 2.3.1].

An agent that aims to achieve this task needs to perform several steps as a hierarchy
of its decision-making process. First, finding a global route through the track. A precon-
dition for this step is the accumulation of map data. A global map may be provided by
manual measuring or simultaneous localisation and mapping (SLAM)[Thr02, Chaper
10] during an exploration drive around the racetrack. However, SLAM in this scenario

4



1.2. Problem Description

Figure 1.2.: Photo of the electric race car built by the REV-Project. The chassis of the
car is in line with the rules of the Formula-SAE [SAE17]. Former members
of the team converted the motors from combustion units to electrical pow-
ered, implemented drive-by-wire functionality, and way-point navigation
[Dra13]. An Ibeo Lux automotive Lidar, IMU, GPS, monocular camera and
wheelspeed odometry serve as the sensory body of the vehicle. Electronic
actuators control steering, breaks, and acceleration.
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1. Introduction

is out of the scope of this work and maybe the subject of future publications. The next
layer in the decision-making hierarchy produces behavior, based on the perception of
the environment. At the behavioral layer, the car decides if it should drive because it is
performing a lap or if it should stop because it achieved its objective. The behavioral
layer for the task at hand is trivial, and not subject of this work. The third stage of
the hierarchy plans the local motion for the behavior from the top layer. A feedback
controller executes the output of this layer, by estimating the vehicle state and correct
throttle, steering and breaking to follow the path from the motion planner. This work
primarily focuses on motion planning.

The problem of motion (or path-) planning in robotics can be expressed as finding a
feasible path τ(α) : [0, L] → C in the configuration space from an initial configuration
xinit to a goal section of the configuration space Cgoal. Feasibility in this context means
that the robot can dynamically perform the motions to follow the path. It does not focus
on the quality of the solution but expresses that a path satisfies some given problem
constraint. An infeasible path for a car-like robot, for example, would be to move
sideways without any forward motion. Robots that are constrained in this way are
referred to as non-holonomic. Optimality in motion planning refers to the problem of
finding a path that optimizes some quality criterion with a subject to given constraints.
Therefore optimality includes feasibility, but not vice versa.

The problem of optimal path planning can be formally stated: Let C be the configura-
tion space of the vehicle and let Σ(C) be the set of all continuous functions [0, L]→ C
in the configuration space of the vehicle (or robot). The initial configuration of the
robot is xinit ∈ C. The path is required to end in a goal region Cgoal ⊂ C. The set of all
allowed configuration of the vehicle is called the free configuration space Cfree. Free
configurations are those that do not result in collisions with obstacles and meet the
holonomic constraints on the path. Differential constraints on the path are expressed
by the predicate D(x, x′, x′′, . . . ). Further, let J(τ) : Σ(C)→ R be the cost (or objective)
function. An optimal path minimizes the cost. Now, the problem of optimal path
planning can be stated as follows:

Problem definition (Optimal path planning):
Given a 5-tuple (Cfree, xinit, Cgoal, D, J) find τ∗ =

arg min
τ∈Σ(C)

J(τ) (1.1)

subj. to τ(0) = xinit and τ(L) ∈ Cgoal (1.2)

τ(α) ∈ Cfree ∀α ∈ [0, L] (1.3)

D(τ(α), τ′(α), τ′′(α), . . . ) ∀α ∈ [0, L] (1.4)

This problem is known to be PSPACE-hard, which means that it is at least as hard
as solving any NP-complete problem and thus, assuming P 6= NP, there is no efficient
(polynomial-time) algorithm that can solve all instances of the problem[Pad+16]. A

6



1.3. Goal

near-optimal solution to the problem reduces the computational load drastically.

1.3. Goal

The goal of this work is to implement a local path planner that finds a near-optimal
solution for the path planning problem under the rules of the FSD [FS 17]. A map can
be measured beforehand, manually or through SLAM during an exploration lap.

The target hardware that should perform this task is an electric race car built by
members of the REV-Project (see section 1.2). The implementation will be designed with
extensions and integration into a generic software framework in mind, but decoupled
from the surrounding software architecture. The aim is to provide a well designed
software module which can be easily integrated in a framework and fulfills the standards
of modern software development. Documentation and example code will be provided
along with the implementation. This allows students that wish focus their effort on
motion planning for autonomous racing, to use this work as a basis or starting point for
their research. SIL-Simulation will serve as a form of measurement for the performance
of the provided implementation.

1.4. Methodology

Several methods can be used to attack the path planning problem. [Pad+16, Table 1] pro-
vides a rich overview and analysis of popular motion planning methods. Unfortunately,
an exact algorithm with practical computational complexity is unavailable. Therefore,
one has to resort back to numerical methods. Those methods are not exact but attest to
find a satisfactory solution, or a sequence of feasible ones that converge to the optimal
path. One can broadly divide those numerical methods into three categories:

Variational methods view path planning as a non-linear continuous optimization
problem. A function parametrized by a finite-dimensional vector represents the path,
and the solution is found by non-linear optimization. If an analytical solution of the
problem can be obtained, it is optimal. However, more often only a numerical solution
for the problem is available. Those methods are attractive because of they converge fast,
but tend to get stuck in local minima for poor initial guesses. Pontryagin’s maximum
(or minimum) principle (PMP) is an example of a variational method.

Graph-search methods discretize the configuration space of the vehicle in the form of
a graph. A finite set of vertices represent a collection of vehicle configurations, the edges
represent the transitions between the configurations. Discrete search (e.g., with Dijkstra’s
algorithm) can find the desired path for a minimum cost. Graph-search methods require
a construction of obstacles in the configuration space, which is a costly operation and not
always possible. Probabilistic Roadmaps (PRMs) are a classic example of graph-search
methods.

7



1. Introduction

Incremental-search methods probe the configuration space with discrete samples and
incrementally build a reachability graph. The graph maintains a discrete set of configu-
rations and possible transitions between them. When the graph is big enough to contain
at least one node in the goal-region, the desired path is obtained by backtracking. In
contrast to incremental search methods, sampling-based methods incrementally increase
the size of the graph until finding a satisfactory solution. Sampling-based incremental
search methods allow online planning, while the vehicle executes parts of the solution
that the method obtained during previous iterations. It is therefore very well suited for
partially observable environments and time-critical applications, like racing. Rapidly
Expanding Random Trees (RRTs) are an example of an incremental-search method.

While it is possible to exploit the advantages of those methods by combining them,
this work will use a sampling-based incremental search approach [Lav06, Chapter 5].
Sampling-based planning algorithms avoid the explicit construction of Cobs. Instead, a
search probes the configuration space with a sampling-scheme. The probing is enabled
by a collision-detection module that the motion planner can treat as a black-box between
W and C. Figure 1.3 illustrates this philosophy. RRTs are a well known sampling-based
incremental-search method. However, RRTs are computationally expensive by their
nature. Therefore they are neglected in favor of a more efficient geometrical solution.
The assumption that the global route is provided as a set of discrete waypoints allows
using an approach similar to [CLS12].

Figure 1.3.: Sampling-based planning uses collision detection as a black box that separates
motion planning from the geometric and kinematic models. C-sampling and
discrete searching are performed. (Figure taken from [Lav06, p. 185])

With the method chosen, one has to decide what kind of tools to use to implement it.
Section 1.3 declares that one of the goals of the implementation is the easy integration
in a robotic software framework that drives the REV-racecar. The existing software
framework is implemented using the programming languages Python, C, C++, Perl,
and Bash. The scripting languages Perl and Bash are inappropriate for numerical
programming, and therefore they are unsuited to implement the motion planning
routines. The implementation should meet modern standards of software development.
It should be extensible, well designed and performant. While C, C++, and Python are
languages that are widely used in robotics, they serve different purposes. C serves
a high-performance domain but lacks object-orientation. The software design in C
tends to be clunky, unclear and often hard to support or to extend. Python is very
convenient for mathematical programming but is an interpreted language. The price for

8



1.5. Structure

the convenience that Python offers therefore is performance. The C++ ISO standards
of 2014 offer a language that is very high performing (in some cases even more than
C) but supports many of the language extensions that make Python so convenient to
use. Further, the language is object-oriented and allows sophisticated software design
which supports flexibility and readability. This work uses C++ for non-linear numerical
object-oriented programming and iterative discrete sampling-based motion planning to
solve the path planning problem described in 1.2.

1.5. Structure

The remaining part of this thesis is structured as follows: Chapter 2 explains the
fundamental algorithmic and mathematical basis of the presented path-planner. It
introduces and explains a novel and resource-economic approach to collision checking.
Chapter 3 discusses the implementation. It explains the design rationale, introduces
software libraries and tools that were used to implement the planner. Further, it discusses
specific algorithmic characteristics and code-fragments that illustrate the use of unique
language features and software libraries. Chapter 4 presents the result that where
achieved with the provided implementation. It introduces the simulation which was
used to produce the results, discusses the influence of the objective function and design
parameters on the solution and benchmarks the runtime performance of the program.
Further, the achieved results are discussed and compared to other results from the
literature. Chapter 5 concludes this thesis. It discusses possible future work, and finally
summarizes the thesis.

9





2. Basics

This chapter explains the fundamental basics of the provided local path-planner. The
underlying mathematical principles are introduced and discussed. Section 2.1 gives a
brief overview of the used algorithm. The following sections 2.2 to 2.7 are dedicated to
the intermediate steps of the planning process. After all principles have been explained
in detail, section 2.9 formally defines the algorithm.

2.1. Overview

The presented algorithm takes an iterative sampling-based approach to the problem of
motion planning [Lav06, Chaper 5.]. It is based on the works of [Fre14; CLS12; Li+16].
The idea presented in those works is extended by a novel approach to efficient collision
checking in theW-space.

As described in Section 1.3 the objective of the presented path planner is to find a
feasible and near-optimal path τ from a starting configuration xinit to the goal-region
Cgoal. The notion of feasibility in this context means that the path τ has to lie entirely in
Cfree, so it must not collide with any obstacles inW and satisfy differential constraints D
of a non-holonomic robot. Optimality expresses that the path provides the best solution
concerning an objective function J : Σ(C)→ R.

The intermediate steps that are taken by the motion planner to achieve this goal are
as follows:

1. Construction of a spline-curve to connect given waypoints pi and find a continuous
path from xinit to Cgoal.

2. Construction of a curvilinear coordinate system for which the spline curve serves
as a baseframe.

3. Localisation of the vehicles position xinit in the curvilinear coordinate system.

4. Generation of N path-samples as cubic-polynomials in the curvilinear coordinate
system.

5. Transformation of the paths from step 3 to the local Cartesian coordinate system
by forward-integration of a kinematic model.

6. Checking the paths for feasibility and discarding paths that collide with obstacles
or violate non-holonomic constraints.

11



2. Basics

7. From the remaining paths returning the one that minimizes the objective function J.
If no feasible path could be found return the path that travels the longest distance
without collision.

8. Repeat steps 3-7 while the vehicle moves until the goal-region is reached.

From those intermediate steps one can derive the requirements of the algorithm:

1. The map of the track has to be provided beforehand, as a set of 2D-waypoints in
local Cartesian coordinates.

2. The environment in which the vehicle is operated must be presentable as a planar
projection to local Cartesian coordinates.

3. The geometrical shape and position of obstacles must be measurable by higher
layers of the decision making hierarchy of the vehicle. Therefore a module to sense
obstacles and project them in local carthesian coordinates must be present.

4. The position and orientation of the vehicle must be measurable. This is also a
requirement for the feedback controller of the vehicle. Therefore one can assume
that this is present in a real world scenario.

2.2. Arc-Length Parametrization of Cubic B-splines

The global map is provided as a set of n discrete waypoints pi ∈ R2 with i = 0, 1, . . . , n.
One needs to find a continuous connection between those waypoints. A naïve solution
to this problem would be to find a linear interpolation in between the points pi and
pi+1. While this solution encodes usable directional information and is continuous,
the resulting curve is not continuously differentiable. As shown in [Dra13, section 5.2]
the abrupt change in tangent angle of the curve results in jerk and unnatural steering
maneuvers in a vehicle that attempts to complete such a path. It can be assumed that a
smooth curve yields more natural driving and steering behavior. The first and second
derivatives of a smooth curve in this sense are continuous. Per definition the required
smooth curve, therefore, needs to be at least of class C2. A parametric cubic spline
provides a natural basis to model a drivable path, i.e., a road surface of a racetrack. To
model the racetrack this work uses a piece-wise cubic B-spline, where the waypoints
serve as control points (also called knots) for the spline. Equation (2.1) gives the used
spline as a linear system, where Gi,3 is the basis function of the cubic B-spline.

Q(u) =
n

∑
i=0

piGi,3(u) =
1
6
[
u3 u2 u 1

] 
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0




pi
pi+1

pi+2

pi+3

 , u ∈ [0, 1] (2.1)

Equation (2.1) shows several properties of the resulting spline-curve. Given that the
spline is cubic and therefore a section is defined by four control points, it becomes evident
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2.2. Arc-Length Parametrization of Cubic B-splines

that at least four waypoints are required for this approach. Further, because function
Gi,3 is scalar, the dimension of the resulting curve is determined by the dimension of
the knots. The resulting curve in the given planar workspace will be two dimensional
(W ⊂ R2 and therefore Pi ∈ R2). This 2D-cubic-B spline can be written as a function
Q(t) : [0, n]→ R2. Q can be viewed as a vector of two one-dimensional spline functions
parametrized by t.

Q(t) =
[

x(t)
y(t)

]
, t ∈ [0, n] (2.2)

The functions x(t), y(t) in eq. (2.2) are piece-wise defined cubic-polynomials. For the
interval i ≤ t ≤ i + 1 they are defined as:

Q(t) =
[

x(t)
y(t)

]
=

[
ax,i(t− i)3 + bx,i(t− i)2 + cx,i(t− i)2 + dy,i
ay,i(t− i)3 + by,i(t− i)2 + cy,i(t− i)2 + dy,i

]
, t ∈ [i, i + 1] (2.3)

Equation (2.1) calculates the coefficients of those polynomials.
So far the continuous domain of control point indices is used to parametrize the

spline-curve. This allows a convenient and compact definition of the spline, but has
no actual geometrical meaning and therefore no equivalent that can be measured or
observed by a mechatronic system. Therefore using Q in the context of a motion control
is a non-trivial and unnecessary complex task. It is common practice in this context
to use spline-curves that are parametrized by the arc-length s ∈ [0, L] where L is the
total arc-length of the curve. [WKA03] gives a simple two-stage process to achieve the
arc-length parametrization of a spline-curve from any differentiable parametrization:

• Compute the arc-length s as a function of the parameter t: A(t) = s. Then s is a
strictly increasing function of t, and there is a one-to-one correspondence between
s and t.

• Find the inverse function A−1(s) = t. This is a well defined and monotonically
increasing function. Substitution of t = A−1(s) in Q(t) yields a curve parametrized
by arc-length s.

The mapping A(t) : [0, n]→ [0, L] can easily be defined by geometric integration.

s = A(t) =
∫ t

t0

√
(x′(t))2 + (y′(t))2 dt (2.4)

Where x′(t) and y′(t) are the first derivatives of x(t), y(t) w.r.t. t. However, in gen-
eral, the integral eq. (2.4) cannot be computed analytically. Therefore the arc-length
parametrization cannot be expressed as a combination of elementary functions, but
needs to be solved numerically. Since eq. (2.4) cannot be computed analytically, the
same has to be right for the inverse function in eq. (2.5).

t = A−1(s) (2.5)
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2. Basics

Possible numerical solutions for this problem will be discussed in section 3.4. As stated
before, substituting the inverse mapping in eq. (2.5) into eq. (2.2) yields the desired
arc-length parametrized spline-curve P(s) : [0, L]→ R2 in eq. (2.6).

P(s) = Q(A−1(s)) =
[

x(A−1(s))
y(A−1(s))

]
, s ∈ [0, L] (2.6)

Therefore the arc-length parametrization can be viewed as a non-linear transformation
of the parameter domain. It should be evident that this transformation does not affect
the coefficients of the polynomial-sections of the spline. Because of this it is possible to
express the sections of the spline as cubic polynomials of the parameter s in the interval
si ≤ s ≤ si+1 using the same coefficients.

P(s) =
[

x(A−1(s))
y(A−1(s))

]
=

[
ax,i(s− si)

3 + bx,i(s− si)
2 + cx,i(s− si) + dx,i

ay,i(s− si)
3 + by,i(s− si)

2 + cy,i(s− si) + dy,i

]
, s ∈ [si, si+1]

(2.7)
where si is the arc-length at the control point pi.

Besides the continuity of a path, the drivability is highly dependent on the curvature.
If the curvature exceeds the physical limitations of the robot, it is not possible anymore
to follow this path. The curvature κb can be calculated given the first and second
derivatives of x, y. Since x and y can be described as functions of either t or s, the
derivatives can be calculated w.r.t. both parameters. Knowing x′ and y′ one can calculate
the tangent angle of the spline-curve.

dx
dt

=
dx
ds

= x′ = cos θb
dy
dt

=
dy
ds

= y′ = sin θb (2.8)

d2x
dt2 =

d2x
ds2 = x′′

d2y
dt2 =

d2y
ds2 = y′′ (2.9)

κb =
x′by′′b − x′′b y′b
(x′2b − y′2b )

3
2

θb = tan−1
(

y′

x′

)
(2.10)

An example for the continuous connection of waypoints with an arc-length parametrized
cubic B-spline is shown in fig. 2.1.

2.3. Curvilinear Coordinates

The spline curve that was defined in section 2.2 serves as the baseframe for a two-
dimensional curvilinear coordinate-system. The base of this coordinate-system contains
directional information and is directed to the goal-region. Coordinates with larger
positive values are therefore closer to the goal-region. It is important to note that the
arc-length parametrized spline curve that provides the baseframe is only defined for
values that are within the range [0, L], where L is the total arc-length of the curve
and lies within the goal-region Cgoal . Further, the curvature of the road is modeled
within this coordinate-system. The spline-curve can be viewed as the centerline of the
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2.3. Curvilinear Coordinates
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(a) Spline-curve for an example scenario
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(b) Curvature of spline

Figure 2.1.: This figure illustrates how a cubic B-spline-curve can be used to model a
continuous path through some waypoints. Figure 2.1a illustrates a chosen
example scenario with 11 waypoints that might represent a section within
a racetrack. The used spline-curve is an arc-length parametrized as it is
described in section 2.2. Figure 2.1b shows the curvature of the spline as a
function of the arc-length.
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road or (if the waypoints represent an optimized line) as the optimal path through a
racetrack. The orthogonal offset q from the centerline is plotted by the second axis of
the curvilinear coordinate-system. This axis is not curved, but linear and orthogonal
to the baseframe. This curvilinear coordinate-system has a one-to-one relation to a
local Cartesian coordinate-system and coordinates can be transformed between the
coordinate-systems with a nonlinear transformation.

x =

(
1
κb
− q
)

sin(sκb) (2.11)

y =
1
κb
−
(

1
κb
− q
)

cos(sκb) (2.12)

This relation conveniently describes paths as continuous functions of class C2 with
desired properties in the curvilinear coordinate-system. Those paths will naturally
follow the shape of the road in Cartesian space. Figure 2.2 illustrates the axis of the
curvilinear coordinate-system and the relation between a path in curvilinear coordinates
and Cartesian space.

2.4. Coordinate Transformation

The position of the vehicle is obtained in planar Cartesian space. The path candidates
will be generated in the curvilinear coordinate system (see section 2.5). Therefore it is
necessary to obtain the position of the vehicle in curvilinear coordinates. One needs to
find a transformation ρ : R2 → R2 from Cartesian space to the curvilinear coordinate
system. This is equal to finding the closest point to the vehicle on the spline curve by
minimizing the squared Euclidean distance between the position of the vehicle and the
baseframe.

arg min
s∈[0,L]

d(P(s), x)2 = arg min
s∈[0,L]

|x− P(s)|2 = smin (2.13)

A numerical minimization of eq. (2.13) allows to find the argument smin that minimizes
the lateral distance from the baseframe. Section 3.5 points out various suitable numerical
minimization methods and discusses the method used in this work in depth. The
minimal distance between a curve in Euclidean space and a point is a line. This
line is orthogonal to the curve. Therefore the offset q from the base frame can be
computed by d(smin) = qmin. The position in curvilinear coordinates is therefore given
by
[
smin qmin

]T
. The geometrical relations of this process are illustrated in fig. 2.3.

ρ(x) =

[
arg mins∈[0,L] d2(P(s), x)

mins∈[0,L] d(P(s), x)

]
=

[
smin

qmin

]
(2.14)
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2.4. Coordinate Transformation

Figure 2.2.: This figure illustrates the layout of the curvilinear coordinate-system used
for path generation. The s-axis is curved and models the centerline of the
racetrack, where s describes the length along the track. κb(s) denotes the
curvature of the baseframe at arc-length s. An arc-length parametrized spline
(see Section 2.2) serves as the baseframe for this axis. The orthogonal lateral
offset q from the centerline is plotted along the second axis of this coordinate-
system. An example path in curvilinear coordinates is plotted to illustrate
the relation between curvilinear and Cartesian coordinates. κ(s) denotes the
curvature of the example path at arc-length s. (Figure from [CLS12])
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Figure 2.3.: This figure illustrates the geometric relations during localization of the
vehicle in the curvilinear coordinate system. p0 denotes the vehicle position
in Cartesian space, pb is the corresponding condition on the baseframe.
The vector that connects this two points is orthogonal to the baseframe.
The shortest distance between the points is given by q0. The position in
curvilinear coordinates is consequently given by the arc-length smin at pb
and the shortest distance between the vehicle and the baseframe q0. (Figure
from [CLS12]).
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2.5. Maneuver Definition

2.5. Maneuver Definition

The cubic B-spline curve which was defined in section 2.2 provides a path from xinit to
Cgoal. The question arises why one does not choose the spline as a local path for the
vehicle. Unfortunately, it is not guaranteed that this path would be feasible nor optimal
in the sense that was defined by section 1.2. The spline may be infeasible if it lies not
entirely in Cfree. The optimality of the path depends on the designed objective function
J : Σ(C) → R (see section 2.8). The spline would therefore only be guaranteed to be
the optimal path if it was the only feasible path. To find a feasible and optimal path
the planner consequently evaluates many candidate paths (also called maneuvers) in
the observable workspace. Before such an optimal path, out of a set of maneuvers, can
be chosen, one needs to define the maneuvers concerning their feasibility. Section 2.2
argued that smoothness is desired quality for a feasible path. Cubic-polynomials are of
class C2 and fulfill this requirement, which is why there are utilized in this work. A path
candidate is defined by a smooth lateral offset function in the curvilinear coordinate
system. Equation (2.15) defines such a smooth horizontal offset as cubic polynomial
functions of the arc-length s. Equations (2.16) and (2.17) provide the first and second
derivatives of eq. (2.15).

q(s) =

{
a(s− si)

3 + b(s− si)
2 + c(s− si) + d if si ≤ s < s f

q f , if s f ≤ s ≤ L
(2.15)

dq
ds

(s) =

{
3a(s− si)

2 + 2b(s− si) + c if si ≤ s < s f

0, if s f ≤ s ≤ L
(2.16)

d2q
ds2 (s) =

{
6a(s− si) + 2b if si ≤ s < s f

0, if s f ≤ s ≤ L
(2.17)

Figure 2.4 illustrates the geometrical relations of a maneuver. The initial arc-length si
corresponds to smin that was obtained in eq. (2.13) during the localization step. The
initial lateral offset of the maneuver qi corresponds to qmin. The angular difference ∆θ

is defined by the difference between the tangent angle of the baseframe at si and the
current vehicle heading. The shape of the maneuver can be influenced by the final
arc-length of the maneuver s f and the final lateral offset q f . The length of the maneuver
∆s = s f − si is the distance over which the lateral offset monotonically increases or
decreases. Maneuvers are defined for values greater than s f , but with a constant value
q f . With this information, one can define the following boundary conditions eqs. (2.18)
to (2.21) which enforce the desired properties of the maneuver.

q(si) = qi (2.18)

q(s f ) = q f (2.19)
dq
ds

(si) = tan ∆θ (2.20)

dq
ds

(si) = 0 (2.21)
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Given those boundary conditions, the coefficients of the maneuver can be determined by
solving the corresponding linear system. In section 3.6 this linear system is constructed
and solved. The curvature of the maneuver in Cartesian coordinates can be calculated
with eq. (2.22). For a derivation of eq. (2.22) the interested reader is referred to [Bar+02;
Wer+10].

κ =
S
Q

(
κb +

(1− qκb)(d2q/ds) + κb(dq/ds)2

Q2

)
(2.22)

The values S and Q in eq. (2.22) are given in eq. (2.23).

S = sgn(1− qκb), Q =

√(
dq
ds

)2

+ (1− qκb)2 (2.23)

The length of the maneuver ∆s f can be determined for the velocity of the vehicle. This
enables a dynamic driving style, by taking into account the centripetal forces that may
appear during driving. A higher velocity, therefore, requires the lateral change of the
maneuver to be distributed over a longer distance. This requirement can be modeled by
eq. (2.24).

∆s f = kvs + ∆smin (2.24)

Where kv denotes a constant velocity gain factor and ∆smin denotes the minimal length
of a maneuver. These parameters influence the length of a maneuver and can be chosen
by design, or in future by a machine learning technique.

2.6. Kinematic Single Track Model

To be able to describe the motion of the vehicle in the workspace, a suitable kinematic
model of vehicle motion is required. The kinematic single-track model [Pad+16; MS93;
Cou92; Lav06] is a commonly used model of vehicle motion. It is the most basic model
of practical use. The car is modeled as two wheels connected by a rigid link that moves
in a plane. It is assumed that the wheels do not slip at their contact points with the
ground. The rotation of the wheels is assumed to be free about their axis of rotation. To
model steering, the front wheel has an additional degree of freedom, where it is allowed
to rotate about an axis normal to the plane.

While this basic model is simple enough to be conveniently expressed as a three-
dimensional non-linear system of ordinary differential equations (ODEs) of first order, it
is yet sophisticated enough to model the limited maneuverability of a vehicle. Those lim-
itations are referred to as non-holonomic constraints and can be expressed as differential
constraints of the motion of the car.

ẋ = f (x, u) =

v cos(θ)
v sin(θ)
v
l tan(δ)

 , x =

x
y
θ

 , u =

[
v
δ

]
(2.25)
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2.6. Kinematic Single Track Model

Figure 2.4.: This figure illustrates the geometrical relations of a maneuver in the curvi-
linear coordinate system (see section 2.3). The initial arc-length is denoted
with si, the initial lateral offset with qi. The final arc-length and lateral offset
are denoted with s f and q f . The maneuver length ∆s f is the distance over
which the lateral offset monotonically increases or decreases. The differ-
ence between the steering angle of the vehicle and the tangent angle of the
baseframe is given by θ. (Figure from [CLS12])
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Figure 2.5.: Kinematics of the single-track model. pr and pl are the ground contact points
of the rear and front wheel respectively. θ denotes the vehicle heading. The
time derivatives of pr, and p f are restricted by the non-holonomic constraints
to the direction indicated by the blue arrows. The steering angle of the front
wheel is denoted by δ. (Figure taken from [Pad+16])

The single track model serves as a basis to express the vehicle movement within the
planning algorithm used in this work. However, the model needs to be adapted to
represent motion in available terms. The first modification to this model is to express
the change in heading, not regarding the steering angle δ, but with the curvature κ of
the path that the vehicle travels. By substituting l tan(δ) = κ in eq. (2.25), one can derive
the left-hand side of eq. (2.26). It is not required to express the vehicle motion regarding
velocity in this context, since the planner does not consider it at this stage. Therefore we
substitute v = SQ ds

ds . This yields a system of ODEs that is not expressed with respect
to time t, but with respect to the traveled arc-length s. We arrive at the system at the
right-hand side of eq. (2.26).

ẋ =

v cos(θ)
v sin(θ)
v
l tan(δ)

 l tan δ=κ−−−−→ ẋ =

v cos(θ)
v sin(θ)

vκ

 v=SQ ds
dt−−−−→ d

ds
x = f (x, s) =

Q cos θ

Q sin θ

Qκ

 (2.26)

This representation allows solving the system of ODEs by integration over the traveled
distance along the baseframe s. Finally, this allows us to define τ(s) : [0, L]→ C.

τ(s) =
∫ s

si

f (x, s) ds (2.27)

Section 3.6 discusses numerical solutions for this system.

22
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2.7. Collision Detection

A feasible path must not collide with obstacles in the workspace. Therefore, for a feasible
path, the relation in eq. (2.28) must hold.

τ(α) ∈ Cfree, ∀α ∈ [0, 1] (2.28)

We can define a logical predicate that checks whether this relation holds for a continu-
ous section of the configuration space.

Φ : Σ(C)→ {0, 1} (2.29)

Collision detection might appear as an effortless operation, but in fact, it is a non-
trivial task both in time and memory complexity. According to [Lav06, Sections 5.3] in
most motion planning applications, the majority of time is spent on collision checking.
As a result, an efficient collision detection algorithm is crucial for online operation of a
motion planner.

The essential operation of Φ checks wheter the robot A(x) : C → W is in collision with
an obstacle in the workspace. If the complexity of this operation can be reduced, it has a
significant impact on the runtime of a motion-planning program. A commonly used
approach to this problem is to approximate the shape of A andWobs using geometrical
primitives as bounding boxes (see fig. 2.6). Usually, bounding boxes that provide a more
tight approximation of the robot are more expensive to test for overlapping regions.
Within this work, an oriented bounding box (OBB) is used to approximate the shape of
the robot.

The complexity of Φ can be further reduced by only performing the collision check
on a subset ofWobs. A naïve approach might be to check only the section ofWobs that
was observed during the current sensing interval. While this approach might result
in considerable reduction in complexity, its solution is unreliable. Obstacles that were
sensed during former intervals might have gone out of the field of view, but still lie in
the reachable configuration space of the robot. In general, unprocessed environment
sensing provides an imperfect and noisy representation of the world. An obstacle that
was reliably sensed before might have been missed in the current interval. Therefore
all obstacles that have been sensed during operation have to be taken into account.
This work proposes a novel solution to the problem of reducing the complexity of the
collision checking task, while still retaining a collision check of the entire knownWobs.
An R-Tree [Gut84] is utilized as a spatial indexing structure for observed obstacles. A
spatial index efficiently stores the spatial information of obstacles. Within the context of
collision checking the spatial index can be used to retrieve obstacles with an axis aligned
bounding box (AABB) that intersects with the AABB of the vehicle. The R-Tree can be
queried with linear complexity O(n). If the query returns a set of obstacles that fulfill
this criterion, the collision check is performed on the OBB of the obstacles is performed.
This two-stage process reduces the complexity of the collision checking operation, while
still providing an accurate and geometrically reasonable result. The author is not aware
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of other work that uses a spatial index in the context of collision checking and believes
that this is a novel approach. Algorithm 1 samples the given path τ(α) with granularity
∆s. The granularity is chosen empirically and is a design parameter of the algorithm.
For all x = τ({s0, s1, . . . , sn}) the R-Tree is queried for obstacles that intersect with the
AABB of the robot A(x). If this query returns a non-empty set, a collision check is
performed on the convex-hulls of the robot and obstacles. The algorithm exits with
a positive result on the first collision which the second level of the checking detects.
If no collision is detected for all s ∈ {s0, s1, . . . , sn}, then the algorithm returns with a
negative result. One may criticise that discrete sampling is not a logically complete
solution. [Lav06, Section 5.3.4] suggests an alternative solution to discrete sampling that
is logically complete, but requires additional information. Such a solution might be
implemented in future work.

input : τ : [0, L]→ C,A : C → W , R-Tree
output : 0 if τ([0, L]) ⊂ Cfree , 1 otherwise

1 for i← 0 to L by ∆s do
2 x← τ(i);
3 O ← R-Tree.query(AABB(A(x)) ∩Wobs );
4 for o ∈ O do
5 if A(x) ∩ o 6= ∅ then
6 return 1;
7 end
8 end
9 end

10 return 0;

Algorithm 1: Collision checking function Φ(τ) : Σ(C) → {0, 1}. This algorithm
performs a collision check for a continuous path τ : [0, L]→ C at discrete equidis-
tant sampling points s0, s1, . . . , sn. The sampling interval ∆s is empirically chosen.
A(x) is the subset of workspace that is occupied by the robot at configuration x.

2.8. Maneuver Selection

To find a feasible and near-optimal path the planning algorithm evaluates a setM of N
possible candidate paths with distinctive lateral offsets q f . The lateral offsets are in a
manner to cover a broad section of the reachable configuration space. This is archived
by distributing them equally over the width of the road. Information about the road
width needs to be provided to the path planner, either by sensor information or as a
design parameter. Since the optimal path is found by taking the path from the set that
minimizes the cost function, it is required only to contain feasible paths. The set of
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Figure 2.6.: Different kinds of bounding boxes for an L-shaped robot. (a) sphere, (b)
AABB, (c) OBB and convex hull. Each provides a more tight approximation
than the previous one but is more expensive to test for overlapping pairs.
Within this work AABBs and OBBs are used. (Figure taken from [Lav06,
p. 211])

possible maneuvers is defined as

M⊆ Σ(Cfree) (2.30)

To enforce this relation the planner needs to only add paths to the set of candidates
that lie within Cfree. Paths that violate the non-holonomic constraints of vehicle motion
or collide with an obstacle are infeasible and need to be discarded. Weather a path lies
within Cfree can be derived from its geometric characteristics. If the curvature of a path
exceeds the maximum curvature κmax it contains configurations that can not be reached
by the vehicle. If the lateral offset of a path q is larger than the radius of curvature 1/κb,
the curvature and the direction of the path will be opposite in sign to the baseframe.
The resulting movement cannot be performed by a non-holonomic vehicle, and the
corresponding path is to be discarded. A path that contain a lateral offset q that is equal
to the radius of curvature 1/κb passes through the center of curvature of the baseframe.
For a path to be feasible, the lateral offset needs to be less than the radius of curvature
of the baseframe in the definition domain. The feasibility function ζ : Σ(C)→ {0, 1} will
return a positive result if relation 2.31 holds over the entire definition domain of a path.

ζ(τ) =

{
1, if |κ(s)| ≤ κmax ∧ q(s) < 1

κb(s)
, ∀s ∈ [si, s f ]

0, otherwise
(2.31)

To ensure that a path τ lies entirely in Cfree a collision check needs to be performed.
The collision checking function Φ : Σ(C) → {0, 1} is discussed in detail in section 2.7.
This allows to define a set of path candidates P .

P = {τ ∈ Σ(C)| ¬Φ(τ) ∧ ζ(τ)} (2.32)

The set P defines the set of feasible paths from which the planner will take the near-
optimal one. In section 1.2 it was argued that the optimal solution of the given problem
is the argument that minimizes the cost function J : Σ(C)→ R. The cost function is used
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to model desired characteristics of the optimal solution. Such desired characteristics can
be used to choose paths that are less likely to collide with obstacles in the workspace. In
the context of the scenario defined by the FSG rules, a safe path is less likely to receive a
penalty for the collision with a road delimiter. High velocities appear during a track
drive. The centripetal acceleration of a vehicle is directly related to the velocity and the
curvature of the driven paths. Smoother paths, therefore, allow higher velocities, which
are a crucial component in a competitive race. The smoothness is another characteristic
that can be modeled by the objective function. Lastly, the consistency of a path has
to be considered. The consistency encodes the change in the current planning step in
comparison to the path chosen in the previous planning step. Inconsistent path choices
could lead to abrupt changes in heading, which require excessive energy and control
effort. The result may be a degradation of the driving stability that might ultimately
result in a collision. The objective function used in this work consequently takes safety,
smoothness, and consistency of a path into account. For every desired characteristic
a corresponding cost function is designed. Equation (2.33) shows that the objective
function is a weighted linear combination of the safety cost Cs, smoothness cost Cκ and
consistency cost Cc.

J(τ) = wsCs(τ) + wkCk(τ) + wcCc(τ) (2.33)

In prevention of collisions, the planner performs a collision check. The collision
checking function Φ : Σ(C) → {0, 1} returns a binary result and consequently does
not allow an assumption on the likelihood of collision. Commonly the sensing of the
vehicle state or the environment is imperfect and contains some random noise. As a
consequence adjacent paths to collision paths are more likely to lead to collisions, even
if the collision check returned a negative result. The distance from a collision path
provides valuable information about the safety of the path. The safety cost function
quantitatively evaluates the risk for each path by blurring the binary data for a collision.
The risk of collision of a path is defined by a discrete Gaussian convolution.

Cs(τ) = ∑
τi∈M

Φ(τi)g(qτi , f ; q f , σs), g(x; µ, σ) =
1√
2πσ

exp
(
− (x− µ)2

σ2

)
(2.34)

where Φ : Σ(C) → {0, 1} is the collision checking function and qτi , f denotes the final
offset of the path τi. The safe distance to a collision path can be influenced by the
standard deviation σs. A greater standard deviation σs will result in a broader Gaussian;
consequently collision paths further away will have a higher impact on the risk. With
a lower standard deviation the planner is more likely to choose paths that go through
narrow gates. This principle is illustrated in fig. 2.7.

If one assumes a constant speed of a vehicle along a path, the instantaneous centripetal
acceleration of the vehicle is proportional to the curvature of the path. Consequently,
the integration of the squared curvature is equivalent to the integration of the squared
acceleration. The integration of the curvature of the path κ in eq. (2.35) is performed
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(a) Discrete convolution of three Gaussians with distinct σs.
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Figure 2.7.: This figure illustrates the definition of the safety cost function Cs as a
Gaussian convolution and shows the effect of the standard deviation σs.
Figure 2.7a shows a discrete convolution of three Gaussian with distinctive
standard deviations. This example shows how the path cost for the path with
the final lateral offset q f = 3 would be performed. Figure 2.7b illustrates
how the risk is blurred on adjacent paths. The path at index 3 is the furthest
away from collisions. As expected the Gaussian convolution returns the
lowest risk for this path. The influence of the standard deviation on the
collision risk can be observed in this figure. A greater σs results in a broader
Gaussian and therefore collisions further away will have a higher influence
on the risk.
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concerning the arc-length of the path sp. This can be calculated by using the projection
Q on the differential dsp and integration over the arc-length of the baseframe s.

Cκ(τ) =
∫

κ2(s) dsp =
∫

κ2(s)Q ds (2.35)

A higher weight on the curvature cost will lead to a planner that prefers paths that
contain minimal curvature and allow high-speed dynamic driving.

The consistency cost considers the change of a path in comparison to a path from
a former planning interval. The change is represented as the interval of the distance
between the two paths for the overlapping section of them. This can be conveniently
defined in the curvilinear coordinate system, since the distance for an equal value of the
arc-length s is merely the absolute difference in lateral offset.

Cc(τ) =
1

s f ,last − si

∫ s f ,last

si

|qlast(s)− q(s)| ds (2.36)

Equation (2.36) denotes the consistency cost as the described integral, where s f ,last
denotes the final arc-length of the path that was returned from the former planning step
τ− and qlast consequently denotes the offset from the path for τ−. The left symbols refer
to the path τ and the known geometrical relations of a maneuver (see section 2.5).

2.9. Algorithm Description

Now, that fundamental principles and notation have been introduced; the algorithm can
be formally described in pseudo code (see algorithm 2). The motion planner is updated
when new sensor information is available, until xinit ∈ Cinit, and the planning problem,
therefore, is solved.
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input :Wobs, xinit, Cgoal, D, J
output : τ = arg minτ∈Σ(C) J(τ) such that

τ(0) = xinit ∧ τ(L) ∈ Cgoal
τ(α) ∈ Cfree ∧ D(τ(α), τ′(α), τ′′(α), . . . ) ∀α ∈ [0, L]

1 [si, qi]← ρ(xinit);
2 M← ∅, P ← ∅, ∆q = qmax/2N;
3 for qi, f ← −qmax to qmax by ∆q do
4 τ ← make_path(si, qi, θ, q f );
5 M←M+ {τ};
6 if ¬Φ(τ) ∧ ζ(τ) then
7 P ← P + {τ};
8 end
9 end

10 if P 6= ∅ then
11 τnear−optimal ← arg minτ∈P J(τ);
12 return τnear−optimal;
13 else
14 τsuboptimal → arg minτ∈M d(τ);
15 return τsuboptimal;
16 end

Algorithm 2: Pseudo code for the motion planning algorithm.

29





3. Implementation

This chapter discusses details on the implementation of the algorithm described in chap-
ter 2. The described local-planning algorithm was implemented using the object-oriented
programming language C++ with the ISO standard of 2014 [ISO14]. While this chapter
provides an in-depth discussion of the design rationale of the software in section 3.1,
it does not serve as documentation for the provided implementation and source. In-
structions how to access the documentation and source codes is provided in appendix C.
The implementation uses several third-party software libraries which are discussed in
section 3.2. An in-depth discussion of the entire source code is not intended in this
chapter. However, selected listings of interest that illustrate the functionality of the
planner, the use of the software libraries or curious language features will be discussed.

3.1. Design Rationale

The provided software is designed with simplicity, usability, and extendability in mind.
The software design aims to be simple enough to be easily understood by users. There-
fore the design has to make a trade-off between flexibility and simplicity. Since the
usecase of the software is quite specific (see section 1.3), one can sacrifice flexibility
regarding a generic design that might be used in other domains. Further, the software
provides interfaces for future extensions, in the from of object-oriented abstraction mech-
anisms. The module is provided as a standalone software module, that only depends on
software libraries that it directly uses to implement its functionality (see section 3.2). An
application that uses the provided module needs to include the sources, create a planner
object, provide a map to it and update its state every time new sensor information is
available. Since the goal domain for the implemented planner is autonomous racing, low
latencies are crucial. The software should run with 20 Hz with near-optimal performance
on the default set of design parameters. The user of the software can influence the
performance of the planner, by choosing a different set of design parameters. This
can be quickly done with command line flags (see section 3.10). Regarding reliability
the software should only fail, if not a single feasible maneuver can be generated. If
this happens, the software should fail controlled and provide as much insight into its
internal state as necessary. The cause for this behavior is in general related to a set of
invalid design parameters or an environment that is too crowded with obstacles.

On creation of the planning object, the planner generates a baseframe for the curvi-
linear coordinate system from the provided map. The baseframe is implemented as a
one-to-one aggregation to the planner. Further, an instance of an R-tree is created to
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store obstacles.
The planner defines a function update which is intended to be iteratively called.

During an update-iteration, the planner creates a list of N instances of maneuvers
with the given design parameters and adds newly observed obstacles to the R-tree.
Maneuvers can access the R-tree over an observer pointer, so all maneuvers share the
same instance of the spatial index. Those maneuvers are checked for collisions, and
their objective functions are evaluated. During the collision checking step, the discrete
representation of the maneuvers is generated. The results are stored in an associative
ordered container. The keys of the container for the feasible and collision-free paths
is their cost, that was returned from the objective function. For paths which contain
collisions, their keys are the length along the baseframe until the collision occurs. The
containers store their contents in ascending order by their keys. If the container for the
feasible maneuvers is empty, the maneuver at the end of the container with the collision
paths is returned ( since it is the one with the longest distance until a collision occurs ).
Otherwise, the function returns the element at the beginning of the candidates-container
(which is the element that minimizes the objective function). The discretization of
those instances of the class Maneuver can be accessed by a member function called
Maneuver::path. While only the discretization of the maneuver might be needed to run
a controller which drives the vehicle to the desired pose, the full instance is provided,
since more sophisticated controllers may require additional information.

Figure 3.1 illustrates the design rationale in a simplified Unified Modeling Language
(UML).

3.2. Software Libraries

The language functionalities of C++ are powerful enough to achive virtually every pro-
gramming task. However, often it is unnecessary to implement common functionalities.
In most cases, it is more efficient just to use a software library to solve a task. Therefore,
most serious software projects include third-party code. The C++ community supports
a vast and ever-growing ecosystem of open source libraries, that one can freely use.
Some are very well known and are likely to be found in almost every C++-Project. The
remaining part of this section will introduce the third-party libraries, which presented
implementation uses.

The standard template library (STL) 1 is defined by the ISO C++ standard and
shipped with every C++-implementation. It contains four components called algo-
rithms, containers, functors, and iterators. Algorithms provide solutions to common
problems like sorting and searching. Containers provide implementations for common
data structures like lists, maps, vectors, double-ended-queues, tuples and pairs. Functors
provide an interface for functional programming. The implementation contains lambdas

1http://www.cplusplus.com/reference/stl
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planner

Planner
rtree : shared pointer
mMax : double
qMax : double

update(xInit : state, obstacles : vector of polygon) : void

Baseframe
x : cubic b-spline
y : cubic b-spline

length() : double
localize(positin : state) : point
P(s : double) : point
PPrime(s : double) : point
PPprime(s : double) : point
Q(t : double) : point
QPrime(t : double) : point
QPprime(t : double) : point
A(t : double) : point
AInv(s : double) : point
theta(s : double) : double
curvature(s : double) : double

Maneuver
a : double
b : double
c : double
d : double
q(s : double) : double
q_prime(s : double) : double
q_pprime(s : double) : double
curvature(s : double) : double
theta(s : double) : double
collision() : double
J() : double

candidates
1..*

baseframe
1

Figure 3.1.: Design rationale as simplified UML. The names of the functions and class
members refer to mathematical symbols used in this work. Functions
that are named prime or pprime return the first or second derivative of the
base function. The core of the software consists of three classes: Planner,
Baseframe, and Maneuver. To use the provided software the user creates
an instance of a Planner. On creation, the Planner creates an instance of
Baseframe which can be accessed by every instance of Maneuver. Planner
defines a function update which is intended to be iteratively called to update
the path plan. For more detail, on the available functions the interested
reader is referred to the documentation (see appendix C.4).
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and functor objects. Iterators provide, as the name suggests, functionality to iterate
over a range of elements. Those components can be used with every build-type, and
user-defined types that define some elemental operations such as compare and copy.
Through the use of template-programming, the STL achives compile-time polymorphism
which in general is more performant than run-time polymorphism. Since the STL is
contained in the Standard, it is very well known within the C++-community. Maintainers
do not have to learn alternative designs but can focus on the implementation. However,
STL is not only a comfort-zone for C++-programmers. Compilers use the STL for
optimization [God17]. This means that using the STL results in a program that performs
better and is smaller than an equivalent self-made solution would be. Bjarne Stroustrup,
one of the authors of the C++-Standard and the inventor of the language, strongly
recommends in the book the C++ Programming Language 4Th Edition the use of the STL
wherever feasible “[...] for portability and long-term maintainability”. Consequently, the
use of the STL results in good maintainability, performance, and design. Omitting the
STL in a modern C++-Project is the textbook definition of “reinventing the wheel”.

Boost 2 is a collection of widely useful libraries that complement the STL. Boost
libraries are platform independent and support most operating systems. Since Boost
libraries are based on the C++-Standard, they are implemented using state-of-the-
art C++. “The Boost C++ Libraries enable you to boost your productivity as a C++
developer” [Sch17] and are known to be “[...] one of the most highly regarded and
expertly designed C++ library projects in the world” [SA04]. Language extensions that
have been introduced in Boost (i.e., smart-pointers, initializer lists or variants) have
been picked up by the developers of the C++-Standard. Boost libraries are mostly
lightweight header-only libraries. This keeps integration effort and increment of compile
times to a minimum. Consequently it is widely used and can be found in many
projects. In this work the following Boost libraries are used: As the name indicates,
boost::math includes contributions to the domain of mathematics. Some of which
are cubic B-splines, statistical distributions, mathematical constants, special functions
and numerical integration, root finding and minimization algorithms. The numerical
integration of boost::math is unsuited to solve initial value problems (IVPs) of ODEs
(i.e., kinematic models for vehicle motion, see section 3.6). This gap is filled by the
library boost::numerical::odeint, which contains adaptive and non-adaptive numerical
integration steppers like the explicit Euler or Runge-Kutta method. boost::geometry
provides concepts, primitives and algorithms to solve geometrical problems. The library
is still under active development but contains promising features that this work utilizes
for collision detection. The library uses template programming and a trait system
to achive a high level of flexibility. Useful types that this library provides are points,
polygons, boxes, lines and spatial indexes (i.e., R-Trees). The design of the library enables
the use of those types with all standard types and a variety of coordinate systems.

2http://www.boost.org/

34



3.3. Tools

Eigen3 3 is a high level header-only template library for numerical linear algebra.
[GJa10] states that Eigen is versatile, fast, reliable and elegant. Eigen provides implemen-
tation of basic linear algebra subroutines (BLASs) level 1, 2 and 3 for dense and sparse
matrices. Numerical linear algebra is known for being computational intensive [HS09].
Naïve implementations of BLAS can take up a significant part of the runtime of a
program. Several libraries are available that solve this problem by offering an efficient
implementation of BLAS, some of which are boost::uBLAS, cuBLAS, Armadillo, and
Eigen. While boost::uBLAS might be the obvious choice, since boost is already avail-
able in the implementation, it is outdated. The authors ot the library deprecated the
project and recommended to use one of the other available options [Wal+11]. cuBLAS
offers high performance by utilizing massively parallelized computation on graphics
processing units (GPUs), but is clunky to use and needs an extra compiler. Armadillo
and Eigen are very similar, in both performance and usability. The decision for Eigen
was made based on experience and personal taste.

gflags 4 implements command line flag processing with build in support for standard
types. Command line flags enable the user to specify options or parameters of the
program as successive lines of text to the program. Gflags offers an easy to use and
lightweight implementation. This work utilizes gflags to implement design parameters
and verbosity levels of logging for the planner.

glog 5 implements an expansive logging module. Logging is a way to communicate
internal states of a program to the user. It can serve as an analytical tool or a simple
human machine interface (HMI). Glog implements contextual logging, logging with
different levels of verbosity, debug logging, conditional logging, and macros for run-time
assertions.

3.3. Tools

Tools for modern software development do not add directly to the functionality or
quality of software. However, by automating various everyday tasks like building or
sanitizing source code, they increased productivity during developmen. Further they
add to the good maintainability of the product. This section is dedicated to the tools
that have been used to implement the provided path planner.

git 6 is the de facto standard tool for distributed source-code versioning and man-
agement. “Version control is a system that records changes to a file or set of files over
time so that [one] can recall specific versions later”[CS14]. Distributed version control

3http://eigen.tuxfamily.org
4https://github.com/gflags/gflags
5https://github.com/google/glog
6https://git-scm.com
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systems can be used with a cloud provider service (like GitHub7 or Gitlab8) for data
backup and code distribution. Git is known to be lightweight and fast which makes it a
natural choice.

waf 9 is a Python-based meta-build system. Building a software project is a non-
trivial task, that contains several steps. The program sources have to be compiled
into binary code, the binary code then needs to be linked and packaged into a usable
form. During software development, those steps are performed regularly to build the
program-executable (i.e., for testing). While these steps can be performed manually,
it is more practical to automate them with a build-tool. Most modern build-utilities
can automate a variety of development tasks like building, testing, deployment and
generating documentation. A variety of tools is available for C++-build automation:
GNUMake, CMake, Gradle, Bazel, Bake are just a few. Waf is picked from the available
choices because of several reasons: As a meta-build system, it is capable of building many
different projects and languages. While the presented package is purely implemented in
C++14, it is a sub-module of a bigger software project that contains several languages.
Waf enables the REV-team to use one tool to build the entire polyglot project. Further
waf is implemented as a single Python script that can be stored with the program
sources. The setup progress for waf, therefore, is minimal, since every system that has
a Python executable installed can run waf. The same reasoning holds for the issue of
portability. Last factor in the decision is the learning effort: waf uses Python files to
specify the rules how to build a project. Since Python is one of the official languages that
are used within the REV-Project, the users can be expected to know the syntax already.
Appendix C gives instructions how to use waf to build the sources.

cpplint 10 is a static code checker for C++. It checks C++ sources for violations of
the Google C++ guidelines. The tool itself is implemented in Python, which results in
high portability and usability. While code-style and sanitation do not directly contribute
to functionality and quality of the implementation, they enforce common standards
and add to the readability of the code. Source codes that follow known rules of style
are easier to understand by maintainers. The provided sources follow the Google
C++-style-guide.

clang++ 11 is a compiler front-end for C-style languages. Compared to other C++-
compilers it is faster and uses less memory12. Clang is compliant with the C++-14
standard.

7https://github.com
8https://gitlab.com
9https://waf.io/

10https://github.com/cpplint/cpplint
11https://clang.llvm.org/
12https://clang.llvm.org/comparison.html
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clang-format 13 is an automation tool for code formatting. As with code-style, for-
matting adds to the readability of the sources. Automation of formatting enforces the
standards. Maintainers of the source codes do not need to test their implementations for
violations of formatting-style, but can use the tool.

doxygen 14 is the de-facto standard tool for generating documentation from annotated
C++ sources. Documentation is a crucial contribution to the usability of a program.
Maintainers can consult the documentation for details on implementation and function-
ality. The profit from a tool that generates documentation from annotated sources is
that the documentation is embedded in the sources. The documentation, therefore, is
available as comments in the source code, as a handbook or online-resource. Appendix C
gives instructions on how to access the documentation of the provided implementation.

3.4. Baseframe

The baseframe for the curvilinear coordinate system is an arc-length 2D cubic B-spline
(see section 2.2). The implementation, therefore, has to solve two main problems: com-
puting 2D cubic B-spline that connects a given set of points and find the transformation
function of eq. (2.5) to represent the spline as a function of its arc-length. The remaining
tasks for the baseframe (like computing it is total length L or the tangent angle θ) are
trivial computations and do not need to be explained in detail.

Boost provides a numerically stable class for accurate and fast cubic b-spline in-
terpolation of a function that is known at equally spaced points. Implementing the
2D cubic b-spline of eq. (2.2) is simply a matter of combining two instances of this
class, one for the x-dimension and one for the y-dimension of the way-points. The
baseframe is implemented as a class Baseframe that holds two private members of
type boost::math::cubic_b_spline. Listing 3.1 shows the construction of the base
frame from two std::vector that store the x and y coordinates of the way-points. The
class uses constructor chaining to implement a set of constructors that initialize the
underlying members from a variety of STL and boost::geometry types. The constructor
in listing 3.1 is used as an endpoint for the chain of constructors.

#include <boost/math/interpolators/cubic_b_spline.hpp>
#include <vector>

using boost::math::cubic_b_spline;

void Baseframe::Baseframe(const std::vector<double> vx,
const std::vector<double> vy){

13https://clang.llvm.org/docs/ClangFormat.html
14http://www.stack.nl/d̃imitri/doxygen/
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_x = cubic_b_spline<double>(v_x.begin(), v_x.end(), 0, 1.0);
_y = cubic_b_spline<double>(v_y.begin(), v_y.end(), 0, 1.0);

}

Listing 3.1: The constructor of the Baseframe. The implementation uses two insances
of boost::math::cubic_b_spline<double> to represent a 2D cubic B-spline.
The instances are created from a range of values (as a begin-end iterator
pair), a initial value and a step size. _x and _y are members of the class
Baseframe and can be used within the scope of an instance of the class.

After the members _x and _y are initialized, eq. (2.2) can be implemented (see
listing 3.2). This simple getter function queries the members _x and _y for their value at
the given parameter packages them as a boost::geometry::point and returns a copy
of the object.

#include <boost/geometry/geometry.hpp>
#include <boost/geometry/geometries/point_xy.hpp>

namespace bg = boost::geometry;
typedef bg::model::d2::point_xy<double> point;

point Baseframe::Q(const double t) const {
return point(_x(t), _y(t));

}

Listing 3.2: The 2D cubic B-spline Q is implemented as a simple getter which packages
the values of the members _x and _y at the parameter t in an instace of
boost::geometry::model::d2::point_xy<double>.

With the generic 2D-spline implemented, one needs to program the transformation
for the arc-length parametrization. The transformation functions eq. (2.4) and eq. (2.5)
have to be computed numerically. First, we focus on implementing eq. (2.4), which
consist of defining the function

√
x′2 + y′2 and numerically solving the integral. Thanks

to boost::math::cubic_b_spline definition of the function is straightforward. The
class offers the function boost::math::cubic_b_spline::prime, which returns the first
derivate of the spline at a given point. The argument of the integration is defined
with the use of C++14 lambdas (anonymous functor objects). From the number of
available numerical integration methods, Adaptive Gaussian Quadrature (AGQ) is the
most commonly used to solve this specific problem [GP90; Fre14; CLS12]. Adaptive
methods are critical components for the speed and correctness (e.g., the error should
be within acceptable range) of the computation. This work uses Adaptive Trapezoidal
Quadrature (ATQ) [TW14] to solve the integral numerically. The method has comparable
performance to AGQ and is provided by boost::math::quadrature::trapezoidial.
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Listing 3.3 shows the implementation of the transformation function A using ATQ and
C++14 anonymous lambda functors.

#include <boost/math/quadrature/trapezoidal.hpp>

using boost::math::quadrature::trapezoidal;

double Baseframe::A(const double t) const {
// ... sanity checking and value lookup in lookup tables
auto f = [this](double t) {
return sqrt(pow(_x.prime(t), 2) + pow(_y.prime(t), 2));

};
result = trapezoidal(f, 0.0, t);
// ... save results to lookup tables
return result;

}

Listing 3.3: The implementation of Baseframe::A uses a numerical integration method
implemented in boost::math::quadrature::trapezoidal. The function to
integrate is implemented as an anonymous C++14-style lambda which is
passed to the integrator. To reduce the computational complexity of the
function the result of the integration is stored in a lookup table and retrieved
when the function is called for the same parameter value. In favor of
simplicity and shortness of the listing the implementation of the lookup
table is omitted. For a discrete implementation of the full function the
interested reader is referred to the documentation (see C).

Computing the inverse function of A also calls for a numerical solution. Finding the
inverse A−1(s) of A(t) for s is equal to finding the root of f (t) = A(t)− s.

Again, Boost implements a variety numerical root finding methods (with or with-
out deviates) that can be utilized to solve this problem. The Bisection-method15 is
picked from the available options because it is commonly used in the literature to
solve this problem. Bisection is known to be reliable and numerically stable, without
getting stuck in local minima [WKA03]. However, experiments during implementation
showed that other available methods (i.e., TOMS-74816 and Bracket and Solve17) perform
comparably to the bisection-method in runtime and performance. Listing 3.4 shows
the implementation of the inverse transformation function using C++14 lambdas and
boost::math::root::bisection.

15http://www.boost.org/doc/libs/1_65_1/libs/math/doc/html/math_toolkit/roots/roots_noderiv/bisect.html
16http://www.boost.org/doc/libs/1_65_1/libs/math/doc/html/math_toolkit/roots/roots_noderiv/TOMS748.html
17http://www.boost.org/doc/libs/1_65_1/libs/math/doc/html/math_toolkit/roots/roots_noderiv/bracket_solve.html
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#include <boost/math/tools/roots.hpp>

using boost::math::roots::bisect;

double Baseframe::inv_A(const double s) const {
// ... sainity checking and table lookup ...

std::uintmax_t iterations = 1000;
auto low = std::lower_bound(_segment_lut.begin(), _segment_lut.end(), s);
const double segment = low - _segment_lut.begin();
auto f = [this, s](double t) { return A(t) - s; };
double result = bisect(f, segment - 1, segment,

eps_tolerance<float>(), iterations).first;

// ... add result to lookup table

return result;
}

Listing 3.4: The implementation of the inverse transformation A−1 uses
boost::math::roots::bisect and C++ lambdas to find the root of
A(t) − s. The computational complexity of the bisection-method is
dependent on the boundaries of the search. A lookup table _section_lut,
which stores the values of the function A at the knots of the cubic B-spline is
used to determine the boundaries of the search. To reduce the computational
complexity of the function a sRT-LUT is used to retrieve already calculated
values. The discrete implementation of the sRT-LUT is omitted in favor of
simplicity and size of this listing. The interested reader is refered to the
documentation (see appendix C).

Now, with Baseframe::inv_A implemented, the heavy lifting is done. Implement-
ing the arc-length parametrized cubic spline is not more complicated than putting
Baseframe::Q and Baseframe::inv_A together. This solution appears natural, since it is
equivalent to substituting eq. (2.5) in eq. (2.2) to yield eq. (2.6).

point Baseframe::P(const double s) const { return Q(inv_A(s)); }

Listing 3.5: The arc-length parametrization of the cubic b-spline is implemented by
combining Baseframe::Q and Baseframe::inv_A in a simple getter function.

However, this described implementation contains a significant pitfall - assuming
that the provided numerical integration has a computational complexity of O(n2),
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the computational complexity of the transformation function also has O(n2). Since
this function is repeatedly called from the root-finding algorithm to find A−1, a call
to Baseframe::P as a computational complexity of at least O(n3). This is a severe
performance bottle-neck and would result in unacceptable computation times. This
work uses a programming technique to solve this problem: sRT-LUTs. With the use of
sRT-LUTs it was possible to reduce the computational complexity of Baseframe::Q to at
least O(n3 log(n)).

3.5. Coordinate Transformation

Section 2.4 described the transformation between the local Cartesian and the Curvilinear
coordinate system. This transformation is found by numerical minimization of the
squared distance between the point in Cartesian Coordinates and the base fame. One
can find the minimum of a continuous non-linear function by finding the root of its first
derivative with respect to the parameter that one wishes to minimize. Equation (3.1)
gives the first derivative of the squared distance between the point x and the arc-length
parametrized spline curve P(s) with respect to s.

d
ds

d(s)2 = 2(x− xb(s))x′b(s) + 2(y− yb(s))y′b(s) (3.1)

Once again the root finding algorithms of boost::math::roots come to use. [WKA02]
suggests using the iterative Newton-Raphson method, since it rapidly converges to a
solution. Newton-Raphson finds the root of a continuous differentiable function f (x)
by iteratively executing eq. (3.2). The idea is to linearize the function at an origin (i.e.,
finding the tangent) and taking the root of this tangent as an improved approximation
of the root of f (x). Given an initial guess x0, this step is iteratively repeated until a
tolerance is reached.

xN+1 = xN −
f (x)
f ′(x)

(3.2)

As one can see from eq. (3.2) and is known from calculus, the tangent of f (x) is defined
as the first derivative with respect to x, f ′(x). Therefore to use the Newton-Raphson-
Method to minimize the squared distance eq. (2.13) the first and second derivatives of
d2(s). Equation (3.3) gives the second derivative of the function.

d2

ds2 d(s)2 = 2((x− xb(s))x′′b (s) + x′2b (s) + (y− yb(s))y′′b (s) + y′2b (s)) (3.3)

However, the performance of the method is dependent on the quality of the initial
guess. For a poor initial guess, the method can get stuck in local minima or diverge.
[Jin+08] suggests a numerically stable method for finding the closest point on a spline
curve. However, the implementation of this is out of the scope of this work. In this work
the initial guess for the transformation is the extrapolated position of the vehicle on
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the spline curve, given the current velocity v and passed time interval ∆t and the last
known position on the spline curve in meters slast.

sinit = slast + v∆t (3.4)

The implementation (see listing 3.6) uses boost::math::roots::newton_raphson_iterate
to find the transformation between Cartesian and curvilinear coordinates. This function
takes the following arguments: A callable functor object that, given a parameter x
returns the values of f (x) and f ′(x), the lower and upper bound of the domain in which
the algorithm should search for the solution, the initial guess x0 for the function, the
desired error tolerance, and the maximum allowed iterations.

std::pair<double, double> Baseframe::localize(const point position) const {
auto D_prime = [ this, x_0 = position.x(), y_0 = position.y() ](double s)
{
// ... getting x, y, x_prime, y_prime, x_pprime, y_pprime ...
double dist_prime = 2 * (x - x_0) * x_prime + 2 * (y - y_0) * y_prime;
double dist_pprime = 2 * ((x - x_0) * x_pprime + pow(x_prime, 2) +

(y - y_0) * y_pprime + pow(y_prime, 2));
return std::pair<double, double>(dist_prime, dist_pprime);

};
// ... stetting the barriers and initial guess
auto result = newton_raphson_iterate(

D_prime, lower_barrier, initial_guess, upper_barrier,
std::numeric_limits<double>::digits / 2, iterations);

return std::make_pair(result, bg::distance(P(result), position));
}

Listing 3.6: The transformation between cartesian and curvilinear coordinates uses
boost::math::roots::bisect::newton_raphson_iterate and anonymous
lambdas to minimize the distance function.

3.6. Path Generation

A Maneuver is represented as a cubic polynomial in the curvilinear coordinate system
(see section 3.6). The shape of the polynomial is determined by its coefficients. The
coefficients are found by solving the linear system that results from the boundary
conditions eqs. (2.18) to (2.21) in eq. (3.5).

0 0 0 1
∆s3

f ∆s2
f ∆s f 1

0 0 1 0
3∆s2

f 2∆s2
f 1 0




qi
q f

tan(θ)
0

 =


a
b
c
d

 (3.5)
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This system is easily solved by inverting the Matrix A.

Ab = c→ b = cA−1 (3.6)

One can directly see in eq. (3.5) that the coefficient a is always going to be 0 and
the coefficient c is always going to be tan(θ). This finding may be used to simplify
the system. However, in the implementation presented by this work, the full system
is solved, and the values of a and c are asserted to be 0 and tan(θ) as a sanity check.
The implementation in listing 3.7 declares the linear system using Eigen::Matrix4d
and Eigen::Vector4d and solves the system using Eigen::Matrix4d::inverse(). The
coefficients _a, _b, _c, _d are private members of the class Maneuver and are set
during construction of an instance of the class.

#include <eigen3/Eigen/Dense>
Maneuver::Maneuver(double velocity, double q_i, double q_f)
const double delta_s_f = v_gain * velocity + min_length;
Eigen::Matrix4d A;
Eigen::Vector4d b, c;
A << 0, 0, 0, 1, // first row

pow(delta_s_f, 3), pow(delta_s_f, 2), delta_s_f, 1, // second row
0, 0, 1, 0, // third row
3 * pow(delta_s_f, 2), 2 * delta_s_f, 1, 0; // fourth row

c << q_i, q_f, tan(_theta), 0.0;
b = A.inverse() * c;
_a = b(0), _b = b(1), _c = b(2), _d = b(3);

Listing 3.7: The coefficients of the cubic polynomial of a maneuver are calculated in its
constructor. Eigen::Dense is used to solve the linear system, and the results
are stored in member variables _a,_b,_c and _d.

With the coefficients found the polynomial, its derivate, and curvature can be com-
puted (see eqs. (2.15) to (2.17)). The implementation of those equations is trivial
and won’t be discussed here. For an in-depth discussion of the implementation of
Maneuver::q, Maneuver::q_prime, Maneuver::q_pprime and Maneuver::curvature the
interested reader is referred to the documentation (see appendix C.4).

The discretized path in the configuration space is found by numerically solving the
ODEs of the kinematic model of vehicle motion in eq. (2.26). The introduced ATQ from
boost::math::quadrature::trapezoidal is unsuited for this problem, since it does not
allow stepwise solving the integral while storing the intermediate results. However
boost::numeric::odeint18 provides some sophisticated numerical solvers for ODEs.
One can choose between adaptive and constant integration methods and a variety of
numerical steppers. While boost::numeric::odeint implements some higher order

18http://www.boost.org/doc/libs/1_65_1/libs/numeric/odeint/doc/html/index.html
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integrators (like the Runge-Kutta method), this work found that the classical first-order
Euler integration provides excellent performance with a tolerable error. The system
of ODE is implemented as a C++14 lambda and passed to the numerical integrator
along with the stepper method, initial value and integration boundaries. The values are
stored in private member Maneuver::_path which is an instance of std::vector<state>.
Listing 3.8 shows the implementation of the forward integration of the kinematic model.

#include <boost/math/numeric/odeint.hpp>
std::vector<pose> Maneuver::path() {

std::vector<double> x_0 = {_position.x(), _position.y(), _heading};
auto system = [this](const std::vector<double> &x,

std::vector<double> &dxds, const double s) {
double K_b{_baseframe->curvature(s)}, K{curvature(s)};
double Q_s{Q(s)}, theta{x[2]};

dxds[0] = Q_s * cos(theta);
dxds[1] = Q_s * sin(theta);
dxds[2] = Q_s * K;

};
boost::numeric::odeint::euler<state_type> stepper;
boost::numeric::odeint::integrate_const(

stepper, system, x_0, s_i(), s_f(), FLAGS_path_granularity,
push_back_state_and_arc_length(_path));

return _path;
}

Listing 3.8: boost::numeric::odeint is used to forward integrate the vehicle model,
which is defined as an anonymous lambda. The inital state of the model is
given as an std::vector<double>. Along with the integration boundaries
and the integration stepper, it is passed to the integration method. An
observer pushes the steps of the integration in a member Maneuver::_path,
which is returned by the function.

3.7. Collision Checking

The discrete path in the Cartesian Coordinate system has to be checked for its feasi-
bility. The violation of holonomic-constraints of vehicle motion is a trivial task and
can be checked by iterating over the generated path performing the necessary cal-
culations. However, checking feasibility regarding collisions in the workspace is a
complex task and calls for a sophisticated solution. The collision checking algorithm
proposed by this work uses a spatial index to efficiently find obstacles that are at risk
of colliding with the vehicle. To do so, one must describe the geometrical shape of
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the vehicle and obstacles and their position in the Cartesian coordinate system. The
library boost::geometry provides a number of types to represent geometrical primitives
and complex shapes, i.e., boost::geometry::box or boost::geometry::polygon. Also,
algorithms that solve geometrical problems are provided, i.e. translations, rotators, dis-
tance calculations and intersections of shapes. Further, the library implements a spatial
index boost::geometry::index::rtree. The spatial index is managed and owned by
the planner (see section 3.9) which updates its contents given new sensor information.
Each instance of a maneuver can query the R-Tree using an observer that is implemented
using std::shared_ptr. Listing 3.9 provides the implementation of algorithm 1.

#include<boost/geometry/geometry.hpp>
#include<boost/geometry/index/rtree.hpp>
namespace bg = boost::geometry, bgi = boost::geometry::index;
double Maneuver::collision() {
_collision_length = 0.0; _collision_checked = true; Car car;

for (const auto &p : path()) {
std::vector<value> risks;
_rtree->query(bgi::intersects(car.aabb(p)), std::back_inserter(risks));
for (const auto &risk : collision_risk) {
polygon obstacle{*risk.second};
if (bg::intersects(car.obb(p), obstacle)) {
_collision_length = p.s;
return _collision_length;

}
}

}
return _collision_length;

}

Listing 3.9: The collision checking function uses boost::geometry::index::rtree to
find geometries that intersect with the bounding box of the car. The geometry
of the car is implemented in the class planner::Car, which defines getters
for the AABB and OBB at a vehicle pose.

3.8. Objective Function

The objective function is a weighted sum of three cost functions (see eq. (2.33)). The
implementation of the objective function itself is trivial and does not require explanation
(see listing 3.10),
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double Maneuver::J(const Maneuver &previous,
const std::shared_ptr<std::vector<Maneuver>> maneuvers,
double w_s, double w_k, double w_c) const {

return w_s * C_s(maneuvers) + w_k * C_k() + w_c * C_c(previous);
}

Listing 3.10: The objective function is implemented as a weighted sum of the cost
functions. The weights ws,wκ,wc can be set using command line flags (see
section 3.10).

The contrary is the case for the cost functions, which require costly numerical com-
putation. The implementation of the smoothness and consistency cost functions is
relatively straightforward, however. Using ATQ (see section 3.4) the integral eq. (2.35)
can be numerically solved. Listing 3.11 shows the source code of the implementation of
the smoothness cost functional. The implementation of the consistency cost is shown in
Listing 3.12.

double Maneuver::C_k() const {
auto l = [this](const double s) { return pow(curvature(s), 2) * Q(s); };
return trapezoidal(l, s_i(), s_f());

}

Listing 3.11: boost::math::quadrature::trapezoidal is used to numerically integrate
the curvature over the length of a maneuver to calculate the smoothness
cost.

double Maneuver::C_c(const Maneuver &previous) const {
double s_1 = s_i(), s_2 = s_f();
auto l = [this, &previous](double s) {
point a(s, q(s));
point b(s, previous.q(s));
return bg::distance(a, b);

};
double result = 1 / (s_2 - s_1) * trapezoidal(l, s_1, s_2);
return result;

}

Listing 3.12: The consistency cost functional is implemented using lambdas and
boost::math::quadrature::trapezoidal to integrate the difference in off-
set for the overlapping section of the maneuvers.
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The safety cost functional requires the implementation of a normal probabilistic den-
sity function (PDF) to solve the discrete Gaussian convolution in eq. (2.34). An implemen-
tation of a PDF for a Gaussian normal distribution is provided by boost::math::normal.
The discrete convolution can be performed using the implemented collision checking
function (see section 3.7) and the PDF from boost. Listing 3.13 shows the implementa-
tion.

#include<boost/math/distribution/normal.hpp>.
using boost::math::normal;
double Maneuver::C_s(std::shared_ptr<std::vector<Maneuver>> maneuvers,

double sigma) const {
double result = 0.0;
normal g(q_f(), sigma);

for (auto &m : *maneuvers) {
result += static_cast<bool>(m.collision()) * pdf(g, m.q_f());

}

return result;
}

Listing 3.13: The discrete Gaussian convolution which calculates the safety cost func-
tional is implemented using boost::math::normal. The standard deviation
of the normal distribution can be set through a design parameter (see
section 3.10).

3.9. Plan Update

With the implementation of the baseframe, transformation functions, maneuvers, col-
lision detection and objective function in place, one can implement algorithm 2. The
implementation in listing 3.14 utilizes the STL container std::map. Map is an ordered
associative container, which means that the order in which the values are internally
stored depends on the values of the key of the key-value pair. This property can be
utilized to find the path from the set of feasible maneuvers that minimizes the objective
function. Since the container is ordered (from lowest to highest value), the path with the
minimal cost is the one at the front of the container. Equivalently, if no feasible path is
available (all paths are collision paths), the path that maximizes the length in the free
configuration space can be found at the back of the data-structure. Listing 3.14 shows
the source code of the implementation.

const Maneuver &Planner::update(point position, double heading,
double velocity, std::vector<polygon> obstacles) {
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_maneuvers.clear(); add_to_spatial_index(obstacles);
std::pair<double, double> p =

_baseframe->localize(position, velocity, heading, dt, _last_known_s);
_last_known_s = p.first; const double q_i = p.second;

for (double q_f = -_q_max; q_f <= _q_max; q_f += (2 * _q_max / _m_max)) {
Maneuver m = Maneuver(position, heading, velocity, q_i, q_f,
_last_known_s, _baseframe, _rtree);
if (m.driveable()) _maneuvers.push_back(m);

}

std::map<double, Maneuver> candidates, collisions_paths;

for (auto &m : _maneuvers) {
if (m.collision()) {
collisions_paths.insert(std::make_pair(m.collision(), m));

} else {
double cost =

m.J(_maneuvers,
std::make_shared<std::vector<Maneuver>>(_maneuvers));

candidates.insert(std::make_pair(cost, m));
}

}

_maneuver = candidates.empty() ? collisions_paths.rbegin()->second
: candidates.begin()->second;

return _maneuver;
}

Listing 3.14: The function Planner::update uses the implemented functions of
Baseframe and Maneuver. Obstacles, which are passed to the function
are added to the R-tree. The vehicle is localized in the curvilinear coordi-
nate system, and the candidate set of maneuvers is initialized. Maneuvers
that violate non-holonomic constraints get discarded. From the set of
maneuvers the one that minimizes the objective function is picked.

3.10. Design Parameters

Some parameters of the program can be used to influence quantitative or qualitative
aspects like runtime or optimality of the solution of the planner. In this work, command
line flags are used to set such design parameters of the program. Command line
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flags allow pass options to the program on calling it, without the need of recompiling
the software or editing configuration files. The software library gflags is used to
implement the options. The user of the software can edit the value of an option by
adding the parameter name and desired value to the program call as consultive text, i.e.:
--name_of_flag=new_value. Section 3.10 gives an overview of the design parameters of
the program and the options used to set them from the command line.

symbol default type equation / listing flag

qmax 4.0 double listing 3.14 --max_manouver_offset
∆s 1.0 double listing 3.8 --granularity
N 30 int listing 3.14 --number_manouvers
∆smin 20 double eq. (2.24),listing 3.7 --min_manouver_length
kv 1.0 double eq. (2.24),listing 3.7 --manouver_speed_gain
κmax 0.5 double eq. (2.31) --max_curvature
σs 1.0 double eq. (2.34),listing 3.13 --collision_standart_deviation
ws 1.0 double eq. (2.33),listing 3.10 --weight_safety
wκ 1.0 double eq. (2.33),listing 3.10 --weight_smoothness
wc 1.0 double eq. (2.33),listing 3.10 --weight_consistency

Table 3.1.: List of design parameters. The design parameters of the program are imple-
mented using the software library gflags. The user can set parameter values
on program call, by passing the corresponding option and desired value as
successive text.

49





4. Results

This chapter discusses the achieved results of this work. It introduces the methods that
were used to measure the results and illustrates the effects of the cost functions and
design parameters on the solution. Further, it provides performance benchmarks for
the implemented algorithm and discusses scenarios that lead to a failure of the planner.
Finally, the results are discussed and compared to different solutions from the literature.

4.1. Simulation

The software for the path planning algorithm was developed parallel to extensions
on the general software framework and improvements to the hardware of the racecar.
Despite all efforts, it was not possible to move the car to a functional state and perform a
full integration test of the proposed software on the target hardware. Therefore another
measure had to be found to ensure the correct working of the implementation. In
this work, a simple SIL-simulation is used to test the behavior of the path planner for
a scenario as described in section 1.2. In addition to the software-libraries described
in section 3.2 the simulation uses the typesetting software LATEX to render images
and plots for every step of the simulation. The simulation itself is a simple C++
program which constructs a planner for a given set of way-points. The program will
place polygons that represent line delimiter cones at equidistant points along the base-
frame. The placement of the road-delimiters is then blurred using a normal-distributed
random variable with a user-defined standard deviation. This represents the human-
error during cone placement, since in a realistic scenario one can not expect perfect
conditions [Lau17a]. Figure 4.1 illustrates the effect of the standard deviation σ on the
cone placement.

The simulation then iteratively performs planning steps. The vehicle moves along the
path and a normal-distributed random noise with a user-defined standard deviation
is added to the configuration of the vehicle to represent imperfections in the controller
and sensing. The simulation ends successfully when the vehicle reaches the end of the
baseframe. Figure 4.2 illustrates the result of a simulation for an example scenario with
an objective function J that equally weights the cost functions.

An animation of the full simulation can be viewed online (https://goo.gl/f6VoNN).
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Figure 4.1.: Effects of the standard deviation on cone placement. Road delimiter cones
are marked as black polygons, the way-points and generated baseframe of
the planner are drawn in blue. The road delimiter cones are placed with ad-
ditional normal distributed noise to model human introduced imperfections
to the simulated race track.
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(b) Simulated maneuver selection with ws = wκ = wc

Figure 4.2.: Simulated results for a planner with equally weighted cost functions ws =

wκ = wc. The road-delimiter cones are drawn as black polygons, the
baseframe of the planner is drawn in blue. In figure fig. 4.2a the near-
optimal path is drawn with green ink. An animation of the simulation can
be viewed online (https://goo.gl/f6VoNN).
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4.2. Effects of Cost Functions

The shape of the near-optimal path is dependent on the choice of the cost function
described in section 2.8. In a real-world racing scenario, the path may be optimized
by carefully tuning the weights of the objective function to maximize performance.
However, first one needs to understand the addition to the path and workings of the
cost functions. SIL-simulation is used to simulate paths through an example track
with distinct objective functions that rely entirely on a specific cost. The results of this
simulation are shown in figs. 4.3 to 4.5. Animations of the simulations can be viewed
online:

• For an objective function that only considers safety (https://goo.gl/pNUqP8)

• For an objective function that only considers smoothness (https://goo.gl/cUzKmv)

• For an objective function that only considers consistency (https://goo.gl/2WH8gM)

One can see in fig. 4.3a and fig. 4.3b that an objective function that only considers the
safety cost Cs attempts to maximize the distance to obstacles. For a near-perfect racetrack
with road delimiters that are relatively close to each other (in driving direction), such a
planer will favor a path that is close to the middle of the road. However, an objective
function that only considers safety may cause the planning to fail for imperfect scenarios
(see section 4.5). Figure 4.4a and fig. 4.4b show the effects of an objective function that
only considers the smoothness of a path. As one may expect, the resulting path is close
to a racing-line through the track. While this allows higher velocities during a track
drive, again there is a possibility that such an objective function may leave the racetrack.
In contrast to an objective that only considers safety, this does not necessarily lead to
total failure of the planner. An objective function that only favors consistency is shown
in Figure 4.4a and fig. 4.4b. In this case, the planner favors paths that are closer to those
produced during previous planning iterations. The effect of this is that the final path
is closer to the baseframe and tends not to leave the racetrack. Deviations from the
base-frame occur in areas of high curvature or to avoid obstacles.

The consistency cost serves as an equalizer to the safety and smoothness. Therefore
the cost functions have to be considered in unison. For optimal performance, the weights
of the objective function have to be chosen carefully and with the scenario at hand in
mind.
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(b) Maneuver selection for ws = 1, wκ = 0, wc = 0

Figure 4.3.: Effects of the weight of the safety cost function ws. An objective function
that only considers safety will try to maximize the distance to obstacles. An
animation of the simulation can be viewed online (https://goo.gl/pNUqP8).
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(b) Maneuver selection for ws = 0, wκ = 1, wc = 0

Figure 4.4.: Effects of the weight of the smoothness cost function wκ. If the objective
function only considers smoothness, the resulting path will stay closer
to a racing line. An animation of the simulation can be viewed online
(https://goo.gl/cUzKmv).
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(a) Near-Optimal path for ws = 0, wκ = 0, wc = 1
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(b) Maneuver selection for ws = 0, wκ = 0, wc = 1

Figure 4.5.: Effects of the weight of the consistency cost function wc. An objec-
tive that only considers the consistency cost tends to stay closer to
the baseframe. An animation of the simulation can be viewed online
(https://goo.gl/2WH8gM).

57

https://goo.gl/2WH8gM


4. Results

4.3. Effects of Design Parameters

Alongside the weights of the cost functions, one can use a set of design parameters
(section 3.10) to adjust the behavior of the planner for the scenario at hand and tune the
performance of the planner (see section 4.4).

This section discusses the influence of the design parameters of the behavior of the
planner.

If the width of the road or racetrack is known beforehand, the maximum offset from
the baseframe qmax can be used to achieve a uniform coverage of the relevant section of
the configuration space while sampling. Figure 4.9 illustrates the effect of qmax on the
coverage of the configuration space.

The granularity of the path generation ∆s is closely related to the velocity of the
vehicle and frequency of planning iterations. For example, let a vehicle travels with
1 m s−1 along a track and updates its planner with 10 Hz. In this case, a path that
provides an exact solution would have a minimum resolution of 0.1 m, since that is the
distance that the vehicle travels during a planning intervall. The granularity is used
to adjust the resolution of the discrete path. A resolution that is too low might lead
to a biased or false result of collision checking, since the path is only checked at the
discrete points defined by the granularity. A low-resolution path that happens to be
collision-free and feasible at its discrete points may lead to a collision in-between those
discrete poses. It is essential to choose a granularity that is lower than the minimum
length (or width) of the bounding box of the vehicle. A low-resolution also introduces
a bigger error in the forward integration of the vehicle model. While this error could
be solved by using a higher-order numerical integration methods, this would result in
lower-runtime performance. While a high resolution is desired, the granularity has a
severe impact on the runtime of a planning iteration (section 4.4) and therefore has to be
picked wisely. Figure 4.10 illustrates the effect of the granularity on the resolution of the
generated path.

The number of samples N again influences the coverage of the configuration space
and is linked to the offset from the baseframe. A wider section (i.e., a larger qmax) in
general also requires more samples to achieve the same level of coverage. Figure 4.11
shows the effect of the number of samples on the coverage of the configuration space.

The distance that the planner plans ahead is influenced using the minimum maneuver
length ∆smin and maneuver speed gain kv. Both parameters are closely related and work
in union to determine the length of the generated path in a planning iteration. How the
parameters collaborate to determine the look-ahead distance of the planner is illustrated
in figs. 4.12 and 4.13.

The standard deviation of the safety cost function σs is used to influence the acceptable
width of gates for the vehicle to pass through. It can be used to minimize the risk of the
vehicle to leave the track. Larger standard deviation will favor wider gates over smaller
ones. However, this only works if the distance between the road delimiters in traveling
distance is smaller than the width of the road. Otherwise a big σs will have the opposite
effect and lead to the vehicle leaving the track.
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The maximum curvature κmax is used to set the maximum turning radius for the
used vehicle. For example, the maximum turning radius of the racecar build by the
REV-Team is 2 m, therefore the maximum possible curvature of this vehicle is 0.5 m−1.

4.4. Benchmarking

The presented implementation is developed to be applied for a highly dynamic scenario
and on embedded hardware. Runtime performance, therefore, is a crucial feature
concerning the usability. During an autonomous race, one may expect velocities up
to 20 m s−1. An iterative planner that runs with a frequency of ≥20 Hz still allows
updating the planning with a granularity of 1 m. Frequent updates with respect to
distance traveled minimize the risk of collisions and increase the resolution of the
planned path.

The environment and design parameters influence the runtime-performance of the
planning algorithm. The parameters can be tuned to equalize the impact of the envi-
ronment and achieve the desired update-frequency for the scenario at hand. However,
one needs insight on the impact of environment and choice of parameters on the
runtime-benchmark of a planning-iteration.

In this work, the statistical mean of the runtime of 100 planning iterations is used to
produce a benchmark for a given scenario. To produce an unbiased and representative
result all design-parameter-benchmarks where produced given the same scenario: A
1 km long straight track with delimiters on both sides. All design parameters, except
the one considered in the benchmark, set to their default values. Benchmarks were
produced for variations of all design parameters (see section 3.10), but it was found that
only the granularity of the path ∆s, the number of maneuvers sampled N, the minimum
length of a maneuver ∆smin and the maneuver speed gain kv have a direct impact on the
benchmark.

As was stated before in section 2.7, collision checking takes up a significant part of
the runtime of a program. Therefore, one may expect that the number of obstacles in
the workspace has a considerable impact on the runtime of a planing-iteration. This
is due to the increased complexity of collision checking. To produce a representative
benchmark of the impact of the environment on the runtime, the following scenario was
utilized: Again a 1 km long track and a planner with a default set of parameters are
used. Now, some obstacles are sampled from an uniform distribution along the track,
with an offset of ±3 m to ± 5 m. Again the statistical mean of 100 planning iterations is
used to produce the benchmark.

The benchmarks were produced using a 2.6 GHz Intel Core i5 Processor. Other
processes on the hardware were suppressed during the recording of the benchmark so
that the recording used 99 % of the available resources. The calculated benchmarks are
shown in fig. 4.14.
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Figure 4.6.: Effects of qmax. The maximal offset from the baseframe is used to achieve
good sampling coverage of the relevant section of C. The offset influences
the section of the road in which paths are sampled. Figure 4.9a illustrates
sampling for a maximal offset of 3 m, Figure 4.9b for a maximal offset of
7 m.
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Figure 4.7.: Effects of ∆s. The granularity has direct impact on the resolution of the
generated path. A high resolution (i.e., ∆s = 2 m, fig. 4.10a) produces ge-
ometrically reasonable paths with correct collision checking results, while
resolution that is too low (i.e., ∆s = 6 m, fig. 4.10b) may produce incor-
rect results during collision checking and introduce greater errors during
generation of the discrete path.
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Figure 4.8.: Effect of N. The number of samples is linked to the resolution of the
sampling coverage of the relevant section of C and the likelihood of finding
a feasible path.
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Figure 4.9.: Effects of qmax. The maximal offset from the baseframe is used to achieve
good sampling coverage of the relevant section of C. The offset influences
the section of the road in which paths are sampled. Figure 4.9a illustrates
sampling for a maximal offset of 3 m, Figure 4.9b for a maximal offset of
7 m.
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Figure 4.10.: Effects of ∆s. The granularity has direct impact on the resolution of the
generated path. A high resolution (i.e., ∆s = 2 m, fig. 4.10a) produces geo-
metrically reasonable paths with correct collision checking results, while
resolution that is too low (i.e., ∆s = 6 m, fig. 4.10b) may produce incor-
rect results during collision checking and introduce greater errors during
generation of the discrete path.
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Figure 4.11.: Effect of N. The number of samples is linked to the resolution of the
sampling coverage of the relevant section of C and the likelihood of finding
a feasible path.
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Figure 4.12.: Effects of ∆smin. The minimum maneuver length ∆smin and speed gain kv

work in unison to determine the overall length of a maneuver. The impact
of ∆smin on the length of a maneuver is fixed.
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Figure 4.13.: Effects of the speed gain kv. kv determines the additional length of a ma-
neuver about the current velocity v of the vehicle. This takes the dynamic of
the vehicle into account, since lower velocities allow to drive less smoother
path than one can drive with higher velocities.
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4.5. Failures

During testing several scenarios occurred in which the proposed planner did diverge or
was not able to produce a path to the goal section at all. In some scenarios, the planner
produced a false positive result. The simulation provided served as a tool to analyze
and identify those scenarios and the cause for the failure of the planning algorithm.

Divergence may occur for a poorly chosen objective function, i.e., one that only
considers safety. After a tight curve, the planner may choose a path that passes through
a gate at the side of the road and leaves the track. This is reasonable for the given
objective function, since this path may maximize the distance to obstacles. Once the
vehicle is outside of the track, the planner diverges and eventually fails.

An objective function that only considers safety will diverge, since the path that
maximizes the distance to obstacles is the one on the far outer side. After a few
iterations, the planner will produce no more feasible paths, since the final offset q f of all
paths is bigger or equal to the radius of curvature, and the paths that lead back to the
track exceed the maximum turning radius of the vehicle. The planner cannot recover
from this error and fails with an exception. A false positive result may be produced, if
the planner leaves the track and reaches the end of the baseframe before total failure
occurs. It this case the planner will return a result, but the end of the path will be out of
the boundaries of the track which is undesired behavior. Figure 4.15 illustrates such a
scenario for a poorly chosen objective function and racetrack that allows the car to leave
the track.

This behavior can be avoided by designing an objective function that considers the
consistency of the path. The consistency in path choice disfavors paths that rapidly
change direction and therefore minimizes the risk of leaving the track.

4.6. Discussion

The presented results indicate that the implemented planner could perform reliably in a
racing-scenario like the FSD. However, all presented results were achieved in simulation
and a controlled environment, without considerations of errors introduced by imperfect
sensors or control algorithms. Therefore the results have to be interpreted with a caution
until a full integration test of the planner on the target hardware can be achieved by
future work. In past work [Fre14; CLS12] it was possible to perform integration tests and
successfully experimented with an application of a comparable planner in an urban-race
scenario. An application on the hardware of the REV-race is expected to be successful.

This work assumes that the rules of the FSG can be adapted or extended so that a
map of the racetrack is provided to the planner. In a real racing-scenario the rules are
fixed, and therefore it is unlikely that a map is known beforehand. Such a map may be
recorded during an exploration drive in which SLAM is performed. This exploration
phase is not implemented and is not subject of this work. Therefore no reliable statement
can be made, if the planner would work in a real-world FSD-race.

68



4.6. Discussion

0 5 10 15 20
0

100

200

300

kv

t
[m

s ]

(a) Benchmark for impact of kv

0 1 2 3 4 5
0

100

200

300

∆s [m]

t
[m

s ]

(b) Benchmark for impact of ∆s

0 50 100 150 200
0

100

200

300

∆smin [m]

t
[m

s ]

(c) Benchmark for impact of ∆smin

0 20 40 60 80 100
0

100

200

300

N

t
[m

s ]

(d) Benchmark for impact of N

0 1,000 2,000 3,000 4,000 5,000
0

100

200

300

#Wobs

t
[m

s ]

(e) Benchmark for impact of #Wobs

Figure 4.14.: Benchmarks for variations of design parameters. The benchmarks were
calculated as the statistical mean of 100 planning iterations. Each bench-
mark was calculated under similar conditions, with only the parameter of
interest alternated. The calculations where performed on a 2.6 GHz Intel
Core i5 Processor.
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Figure 4.15.: For a poorly chosen objective function a planning failure or false positives
might occur. This illustration shows an example of a planer with ws =

1, wc = 0, wκ = 0. Since this planner will try to maximize the distance to
obstacles, it will always choose the far outer path after leaving the track.
If the planer reaches the end of the track before leaving the radius of
curvature, the planner marks the solution as valid and produces a false
positive result.
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4.6. Discussion

A recently published article [Lau17b] reports of an approach to the problem of find-
ing a planning algorithm suitable for the FSD. This article suggests that an approach
different to the one used in this work might be more suitable for the task at hand: A
randomized and sampling based planner in combination with a machine learning tech-
nique to pick the best path. While this article contains no detailed technical background,
the subject of the article is the algorithm used by the team that won the first FSD. This
suggests that their solution might be reliable.

In the past years, RRTs have been highly successful for path planning in an un-
known environment [Kuw+09; Kuw+08; Thr+06]. RRTs can perform randomized
sampling-based planning in an uncertain environment without the need for a global
map. Compared to the planner used in this work, RRTs are computational more inten-
sive and may not be operated at such high frequencies as the proposed planner. This
may require relatively slow velocities in a race-like scenario. Modern machine-learning
techniques in combination with specialized hardware may provide a high-performance
solution in unknown environments. While such planners have been tested in urban
environments, no application in race-like scenarios is known. A comparison between
the planer used in this work and end-to-end machine learning based controllers as used
in [Boj+17; Boj+16] is therefore only partially possible until future work examines the
use of machine-learning based planners in race environments.

While the provided implementation has been developed with the FSG and au-
tonomous racing in mind, the used planning algorithm may also be suitable for other
domains. In the past, comparable planners have been applied in urban and highway
driving [Li+16; Wer+10]
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5. Conclusion

This chapter concludes this thesis. Possible future work is discussed and the central
parts and accomplishments of this work are summarized and recapitulated.

5.1. Future Work

This work was undertaken with the aim to provide a solid research platform for future
students. Therefore, the algorithm and implementation used in this work leave room for
improvements: The provided planner does not consider velocity profiles for the planned
path. An additional velocity profile for the generated path would allow planning a
dynamic racing-trajectory. The kinematic model described in section 2.6 can be extended
and improved to allow a more dynamic driving style, i.e., by taking wheel slip [VT05]
and chassis inertia into account [RNH12]. The Newton-Raphson minimization method
described in section 3.5 is highly dependent on the initial guess and search-boundaries
to be successful. The algorithm tends to diverge or get stuck in local minima for poor
initial guesses. This problem could be solved by replacing Newton-Raphson with a
numerically stable and fast converging algorithm [Jin+08].

Additional optimization steps during the generation of the baseframe may add
additional racing performance: Conjugate gradient optimization could be used to
smooth the curvature of the baseframe, while still allowing collision-free driving [Li+16].
Machine learning techniques may be used to tune the design parameters of the planner
to allow optimal performance.

This work raised reasonable doubt that the provided algorithm would perform in an
autonomous race without a map provided beforehand. Future work may extend the
planner with an additional exploration-phase. In this phase, another sampling based
algorithm, like RRTs would find a path through the racetrack. During the (expectedly
slow) first exploration drive SLAM would be performed. After the drive, the provided
planner is used for high-velocity driving.

The implementation of the provided planner was tested in simulation. While the
results of the simulation appear promising, a full integration test has to be performed
to obtain information of its performance on the target hardware and in a real-world
scenario. This requires to implement a reliable and extensible software framework for
the vehicle with modules for environment sensing, dead reckoning and feedback control.
Former work from members of the REV-Team implemented a software which provides
such functionality [Dra13], however it was found that integration in this software
framework is a non trivial task, due to the lack of documentation, extensible interfaces
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5. Conclusion

and unified communication protocols between modules. It is therefore recommended to
rework parts of the software of the REV-vehicle to enable the integration of the provided
planner. Porting to an unified framework like Robot Operating System (ROS)[Qui+09]
could be a valuable approach to this problem. ROS provides rationales for software
design, manages communication between the modules and provides implementations for
common algorithms and data types used in robotics. The author strongly recommends
to consider the use of ROS for the software of the REV-vehicle, since it not only enables
an easy integration of the provided path planner, but solutions to problems in software
design and communication.

5.2. Summary

This work aimed to solve the path planning problem in the context of autonomous
racing. The Formula Student Driverless served as an example scenario for a possible
rule set of a race. An iterative sampling-based path planning algorithm was used to
attack the problem. An implementation of the proposed algorithm in the object-oriented
programming language with the ISO standard of 2014 was introduced and discussed.
The implemented algorithm was tested and benchmarked in the simulation.

It was found that the implementation finds a near-optimal solution to the path-
planning problem for the simulated scenario. Performance measures suggest that the
planner can be operated with 20 Hz. This enables high-dynamic driving with up-to
20 m s−1. This work uses a novel collision-checking algorithm that drastically reduces
the impact of collision checking on the run-time. It was shown that the implemented
algorithm allows efficient collision checking in workspaces that are densely populated
with obstacles while retaining close to real-time performance.

This work provides a fully-documented open-source implementation of the discussed
planning algorithm (see appendix C) that provides a base for further research on the
topic. A full integration test on a race-car that conforms with the rules of the Formula-
SAE in a scenario similar to the one described in the rules of the FSD is likely to happen
in the near future.
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A. Acronyms

AABB axis aligned bounding box

AGQ Adaptive Gaussian Quadrature

AMZ Akademischer Motorsportverein Zürich (Academic Motorsport Society Zurich)

ATQ Adaptive Trapezoidal Quadrature

BLAS basic linear algebra subroutine

FSD Formula Student Driverless

FSG Formula Student Germany

GPS global positioning system

GPU graphics processing unit

HMI human machine interface

HIL hardware in the loop

IMU inertial measurement unit

IVP initial value problem

Lidar light detection and ranging

OBB oriented bounding box

ODE ordinary differential equation

PDF probabilistic density function

PEAS Performance, Environment, Actuators, Sensors

PRM Probabilistic Roadmap

PMP Pontryagin’s maximum (or minimum) principle

ROS Robot Operating System

RRT Rapidly Expanding Random Tree
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A. Acronyms

REV Renewable Energy Vehicle

SAE Society of Automotive Engineers

SI International System of Units

SIL software in the loop

SLAM simultaneous localisation and mapping

STL standard template library

sRT-LUT static Runtime Lookup Table

UWA University of Western Australia

UML Unified Modeling Language
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B. Nomenclature and Notation

This section introduces the mathematical notation and nomenclature that are used within
this work. Key concepts of robotics and motion planning are very briefly introduced.

Vectors Vectors are denoted as bold lowercase letters of the Latin or Greek alphabet,
i.e. a, b, c or α, β, γ. Letters from the Latin or Greek alphabet or numerical values can
also serve as indices for vector elements.

a =

a1
...

an


Unless explicitly noted otherwise, all vectors in this work are column vectors. Row
vectors are denoted as transpose vectors i.e. aT, bT, cT or αT, βT, γT.

aT =
[
a1 · · · an

]
Matrices Vectors are denoted as uppercase letters of the Latin or Greek alphabet, i.e.
A, B, C or Γ, ∆, Σ. Letters from the Latin or Greek alphabet or numerical values can also
serve as indices for matrix elements.

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann


Transposed matrices are denoted similar to vectors, i.e. AT, BT, CT or ΓT, ∆T, ΣT.

AT =

a11 · · · an1
...

. . .
...

a1n · · · ann


The inverse of a Matrix is denoted as A−1, B−1, C−1 or Γ−1, ∆−1, Σ−1

AA−1 = I

where I is the identity matrix.
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B. Nomenclature and Notation

Functions A function is denoted by any letter of the Greek or Latin alphabet. If not
otherwise stated the following notation is used: Lowercase letters indicate functions
that map onto a domain of scalars. Uppercase letters indicate functions that map onto
a domain of sets. Bold lowercase letters indicate functions that map on a domain of
vectors. Bold uppercase letters indicate functions that map on a domain of matrices. A
function f is declared by stating its domain X and co-domain Y using the expression:

f (x) : X → Y

Sets Sets are denoted as uppercase, calligraphic letters i.e. A,B, C.

Units All units in this work are given according the International System of Units (SI).
For example, this means that the time t is given in seconds [s] and distances are given in
meters [m].

Robotics In this work the following notation is used for key-concepts of robotics. For
a in-depth description of those concepts the interested reader is referred to [Lav06]
and [Ham57].

W Work SpaceW ⊂ R2 andW =WobsWfree.

Wobs Obstacle in workspace, set of points that can not intersect with the boundaries of
the vehicle.

Wfree Free-Work Space. Wfree = W \ ⋃iWobsi for i = 1, . . . , N where Wobs,i is the
i-th obstacle in the workspace and N is the absolute numer of obstacles in the
workspace.

x Configuration of the vehicle.

A(x) set of points inW occupied by the vehicle at configuration x ∈ Rn. A(x) ⊂ W .

C Configuration Space. Set of all possible configurations of the robot C ⊂ Rn and
C = CobsCfree.

Cobs Obstacle in configuration space Cobs,i = {x|A(x)
⋂

iWobs,i 6= ∅}.

Cfree Free-Configuration Space C \ ∪iCobs,i where COi is the i-th obstacle in the configu-
ration space.

Source Code This work contains source code listing and online source code. In-
line source code or names of programs or software libraries are given in this fond.
The presented source code listings in this work are often simplified or adapted to
illustrate specific implementation features. Such adjustments are indicated by source
code comments (i.e. //... here is something missing), which describe what kind of
adjustments have been undertaken.
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C. Source Code

This section describes how to access the source-codes and documentation of the imple-
mentation, compile and run the example programs. The instructions are provided for
Debian based operation system with APT installed. Instructions which are intended to
be executed in a terminal start with a $, i.e:

$ echo I am an instruction which the user should run in a terminal

C.1. Accessing the Sources

The sources can be accessed using the source code management system git or from
the medium attached to this document. To access the sources using the source code
management system, first one needs to install git on their system, ether by downloading
and running the installer from https://git-scm.com/ or by executing

$ sudo apt-get install git

Then, to download the sources, in a terminal run:

$ git clone https://github.com/RomanCPodolski/samling_based_planning.git

Accessing the sources through git is recommended.

C.2. Installing Dependencies

The provided software depends on a handful of third-party software libraries which
need to be installed in order to build the sources.

Boost Instructions how to install boost are provided online1. Please note that at least
version 1.65.0 is needed. While boost can also be installed via APT, this is discouraged
since the packages are generally outdated and will not contain the required version.

Gflags Download the sources using

$ git clone https://github.com/gflags/gflags.git

Build and install the software using the steps described in the INSTALL file. Full install
instructions for gflags are provided in its documentation2.

1http://www.boost.org/doc/libs/1_65_1/more/getting_started/unix-variants.html
2https://gflags.github.io/gflags/download
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C. Source Code

Glog The installation process is similar to the steps described in appendix C.2. Down-
load the sources using

$ git clone https://github.com/google/glog.git

Then follow the install instructions in the INSTALL file.

Python Almost any modern operating system has an executable version of python
installed. To check if python is already installed run

$ python -v

If this command does not return a version number, download an installer from
https://www.python.org/downloads/ for your operating system and follow the in-
structions.

C.3. Compiling the Sources

The project uses waf3 to build the sources. This is a python based tool and doesn’t need
additional installation steps.

First make sure you have all additional software installed (see appendix C.2). Then, in
a terminal, change the directory to the project root.

$ cd sampling_based_planning

The project root should (next to the sources) contain a file called waf. This is the
executable of the build system.

To build the project run

$ alias waf=python $PWD/waf
$ waf configure build

This will check if all necessary software is installed and build the project. The
executables can be found in a folder called build/src.

C.4. Accessing the Documentation

The documentation can be accessed online4 or locally. To access the documentation
locally follow the steps described in appendix C.3 and additionally run:

$ waf build -d

This will build the documentation in the folder build/doc as html and latex files.

3https://waf.io
4 https://romancpodolski.github.io/samling_based_planning/
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