
ANN-Based Autonomous
Navigation for a Mobile Robot

Examinations in Effective ANN Layout Design and Training
Julian Beilhack

Institute for Data Processing
Technische Universität München

Master’s Thesis

ANN-Based Autonomous Navigation for a
Mobile Robot

Examinations in Effective ANN Layout Design and Training

Julian Beilhack

March 10, 2017

Julian Beilhack. ANN-Based Autonomous Navigation for a Mobile Robot. Examinations
in Effective ANN Layout Design and Training. Master’s Thesis, Technische Universität
München, Munich, Germany, 2017.

Supervised by Prof. Dr.-Ing. K. Diepold and Prof. Dr. rer. nat. habil. Thomas Bräunl;
submitted on March 10, 2017 to the Department of Electrical Engineering and Information
Technology of the Technische Universität München.

c© 2017 Julian Beilhack

Institute for Data Processing, Technische Universität München, 80290 München, Germany,
http://www.ldv.ei.tum.de.

This work is licenced under the Creative Commons Attribution 3.0 Germany License. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/de/ or send
a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California
94105, USA.

http://www.ldv.ei.tum.de

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references.

... Munich,...................
Julian Beilhack

i

Abstract

In this thesis ANN layout and training methods for ANN based autonomous navigation
is discussed. ANNs are trained to recognise a set of predefined situations. Movement
commands are associated with every situation to achieve autonomous navigation. Ex-
periments were conducted in the EyeSim simulator and with robots of the EyeBot family.
Measurements from a laser distance sensor serve as input to the ANNs. The scenarios
examined are autonomous maze and open-world way-point navigation. The process of
finding a suitable ANN layout and training procedure is discussed for both scenarios. This
includes determining the number of neurons for the input and hidden layer of the ANNs,
a suitable stopping condition for the training and the number of training datasets. Fur-
ther, performance enhancing manipulations on the data fed to the ANNs are discussed.
Based on the developed ANNs, autonomous navigation for both scenarios is implemented
on the EyeBot robots. The experiments show that ANNs with distance measurements as
input can serve as a basis for autonomous navigation in indoor environments. Further it
is shown, that economical choices in ANN neurons and training datasets can be made
without limiting performance. This can be beneficial for systems with limited computational
power and when the availability of training data is limited.

ii

Acknowledgements

I would like to thank Prof. Thomas Bräunl at the University of Western Australia and Prof.
Klaus Diepold at the Technische Universität München for their supervision of this thesis.
Further I would like to thank Marcus Pham, Franco Hidalgo and Kai Lim for their support on
the work with the EyeBot robots. Finally I want to thank my parents for making my studies
possible through their support.

iii

Contents

1. Introduction 1

2. Theoretical Principals 3
2.1. Artificial Neural Networks . 3

2.1.1. Layout . 4
2.1.2. Training . 5
2.1.3. Overfitting . 6
2.1.4. Choices in Layouting and Training 7

2.2. PID Control . 8

3. Hardware and Software 11
3.1. EyeBot Robot . 11
3.2. Hokuyo Laser Sensor . 13
3.3. EyeSim Simulator . 13
3.4. FANN API . 14

4. Update of the EyeSim API 19
4.1. Different LCD Image Sizes . 19
4.2. Different Camera Resolutions . 20
4.3. Laser Sensor Model . 23

5. Methodology 25
5.1. Data Collection . 25
5.2. ANN Analysis Functions . 26

5.2.1. MSE and Accuracy Tracking during Training 28
5.2.2. Accuracy Tracking over Number of Hidden Neurons 29
5.2.3. Accuracy Tracking over Number of Training Datasets 29

6. Maze Navigation 33
6.1. ANN Layout Design and Training . 33

6.1.1. Number of Input Neurons . 34
6.1.2. Number of Hidden Neurons . 34
6.1.3. Training . 36
6.1.4. Number of Training Datasets . 36
6.1.5. Input Data Manipulation . 37

v

Contents

6.2. Application on the EyeBot Robot . 38
6.2.1. Movement Commands . 39
6.2.2. Performance . 41

6.3. Results . 42

7. Way-point Navigation 45
7.1. ANN Layout Design and Training . 45

7.1.1. Number of Hidden and Input Neurons 46
7.1.2. Training . 48
7.1.3. Number of Training Datasets . 49

7.2. Application on the EyeBot Robot . 51
7.2.1. Movement Commands . 51
7.2.2. Performance . 53

7.3. Results . 54

8. Conclusion 55

A. Appendix 61
A.1. Abbreveations . 61
A.2. Installation URG and Fann on Raspberry 61
A.3. Header Files . 62

A.3.1. Simulation . 62
A.3.2. Experiment . 68

A.4. Example Program . 73

vi

List of Figures

2.1. Simple artificial neural network with one input neuron, 3 hidden neurons and
one output neuron. w11 - w23: weights of the inter-neuron connections. . . 3

2.2. Plot of the symmteric sigmoid function. 4
2.3. Plot of the development of the MSE (blue) and the accuracy (red) of an ANN

during training. 7
2.4. Block diagram of a closed PID control loop. 9
2.5. Pseudo Code of a PID controlling algorithm. 9

3.1. Schematic of the high and low level components of an EyeBot robot. The
high level consists of a Raspberry Pi. The low level is represented by a
custom made IO-board with a ATxmega128A1U micro controller. The DC
motors are driven by PWM signals via a H-bridge. PSD, digital camera
and motor encoder data is provided to the high level functions via the micro
controller. The laser distance sensor is directly connected to the Raspberry
Pi via USB. 12

3.2. Depiction of an EyeBot robot and denotation of its components. The robot
is equipped with PSD sensors, a digital camera and a laser distance sensor.
It is driven by two DC motors with encoders and powered by a battery pack
or by directly plugging it into a power outlet. 13

3.3. Area radiated by the Hokuyo laser sensor taken from its documentation in
[10]. 14

3.4. EyeSim GUI with six EyeBot robots simulated as shown in [4]. Individual
window for every robot’s camera output. The map shown is a football pitch
and was created in the EyeSim world format. 15

3.5. FANN datafile format for the example of the and-function. First line: number
of datasets, number of inputs and number of outputs separated by spaces.
Then: lines of inputs separated by spaces followed by lines of outputs sep-
arated by spaces. 15

3.6. FANN program that trains and executes an ANN on the data shown above
and prints the result to the terminal. 17

4.1. Flowchart of the image display process of the EyeSim simulator. The Eye-
Sim GUI and image display are implemented with the FLTK API. 21

4.2. Flowchart of the access to camera imagery process of the EyeSim simulator. 22

vii

List of Figures

5.1. EyeSim Simulator Program for data collection, ANN training and testing.
Cap: Capture current sensor readings, choose desired output. Both are
appended to the generated datafile in FANN-compatible structure. Plot : Plot
current sensor readings as seen in the image. Train: Train a FANN net on
the collected data. Eval : Evaluate the trained net for current sensor readings. 27

5.2. Schematic of ANN-based navigation on an EyeBot robot. The Raspberry
Pi communicates with the Hokuyo laser sensor via USB. The sensor is in-
terfaced in C with the help of the API provided by Hokuyo. The movement
commands associated with the ANN outputs drive the robot’s DC motors via
the EyeBot API’s VW functions. 27

5.3. Source code of the analysis function testNet that computes the accuracy
of a given ANN on a given reference datafile. 28

5.4. Source code of the analysis function trainAnalysis that tracks the devel-
opment of the MSE and the accuracy of a given ANN over the number of
training epochs and saves the results to a given file. 30

5.5. Source code of the analysis function accOverHidden that tracks the devel-
opment of the accuracy of a given ANN over the number of hidden neurons
it consists of and saves the results to a given file. 31

5.6. Source code of the analysis function datasetAnalysis that tracks the de-
velopment of the accuracy of a given ANN over the number training datasets
it is trained on and saves the results to a given file. 32

6.1. Test maze for the robot and situations recognised by the ANN. The situations
in (b) are: (a) straight, (b) left corner, (c) right corner, (d) left or right corner,
(e) left or straight, (f) right or straight. 33

6.2. Plots of the development of the accuracy of the trained ANNs after 100
training epochs over the number of hidden neurons. ANNs with 31, 62, 341
and 682 input neurons were examined. 35

6.3. Plots of the development of mean square error (blue) and accuracy (red) of
the trained ANNs over the number of training epochs. ANNs with 31, 62,
341 and 682 input neurons were examined. 37

6.4. Development of an ANN with 62 input, 30 hidden and 6 output neurons over
the number of datasets per output neuron used as training data. 38

6.5. Flowchart of the navigation process mazeNav of experiment 1 (maze navi-
gation). First communication with the laser sensor, the ANN and the motor
control are initiated. Then, the ANN is evaluated continuously with the cur-
rent laser distance sensor readings as input. Based on its output, one of
six states is chosen. Every state represents a set of paths available to the
robot. Associated with every state is a movement command. After the exe-
cution of the associated movement command of the chosen state, the next
iteration begins and the ANN is evaluated again. 40

viii

List of Figures

6.6. Graphs of the development of the accuracy over 50 training epochs for train-
ing data gathered by the physical sensor (blue) and in the simulation (red).
Reference data for accuracy calculation in this case was gathered with the
physical laser sensor. The ANN trained on simulation data shows very bad
results. The one trained on physical data shows reasonable accuracy values
of about 80%. 42

7.1. Objects used for ANN training in experiment 2. Left: large object. Right:
small object. 45

7.2. Way-point navigation test environment. At point A a small object was de-
tected and dodged, at point B a large object was detected and dodged. . . . 46

7.3. Plots of the development of the accuracy after 100 training epochs over the
number of hidden neurons. 31, 62, 341 and 682 input neurons examined. . 47

7.4. Experiment 2: Plots of the development of mean square error (blue) and
accuracy (red) over the number of training epochs for ANN1. 31, 62, 341
and 682 input neurons examined. 48

7.5. Experiment 2: Plots of the development of mean square error (blue) and
accuracy (red) over the number of training epochs for ANN2. 49

7.6. Experiment 2: Development of an ANN with 62 input, 30 hidden and 4 output
neurons over the number of datasets per output neuron used as training data. 50

7.7. Experiment 2: Development of an ANN with 31 input, 5 hidden and 2 output
neurons over the number of datasets per output neuron used as training data. 50

7.8. Flowchart of the navigation process of experiment 2 (way-point navigation).
First communication with the laser sensor, the ANNs and the motor control
are initiated. Then, navigation to the way-point is started and laser sensor
readings are continuously checked. If an obstacle is detected (readings
< thr) ANN1 is evaluated to determine the kind of obstacle. Based on its
output, one of four states is chosen. If the robot faces a wall or is stuck in a
corner the respective movement commands are executed. If the robot faces
an obstacle, a ANN2 is evaluated to find a way around the object. Then the
object is dodged accordingly. 52

7.9. Comparison of accuracy development during training with different sets of
training data. 53

A.1. Function headers of the functions implemented for the EyeSim simulator (1). 62
A.2. Function headers of the functions implemented for the EyeSim simulator (2). 63
A.3. Function headers of the functions implemented for the EyeSim simulator (3). 64
A.4. Function headers of the functions implemented for the EyeSim simulator (4). 65
A.5. Function headers of the functions implemented for the EyeSim simulator (5). 66
A.6. Function headers of the functions implemented for the EyeSim simulator (6). 67
A.7. Function headers of the functions implemented for the EyeBot robots (1). . . 68
A.8. Function headers of the functions implemented for the EyeBot robots (2). . . 69

ix

List of Figures

A.9. Function headers of the functions implemented for the EyeBot robots (3). . . 70
A.10.Function headers of the functions implemented for the EyeBot robots (4). . . 71
A.11.Function headers of the functions implemented for the EyeBot robots (5). . . 72
A.12.EyeBot program that allows to plot the current laser sensor measurements

in polar coordinates, run the maze navigation described in chapter 6 and
gather laser sensor data for ANN training. 73

x

List of Tables

5.1. List of functions for data gathering and ANN training analysis. 26

6.1. List of functions for data gathering and navigation on physical robot in ex-
periment 1. 41

xi

1. Introduction

Today, Artificial Neural Networks (ANNs) are a widely used machine learning method and
part of many cutting edge technologies. Google’s latest translation tool presented by John-
son et al. in [16] or its AI that beat the Go world champion described by Silver et al. in
[25] are examples of the impressive AI feats achieved with the help of modern ANNs.
Another innovative sector where ANNs are successfully employed is autonomous driving.
Although ANN based autonomous driving has a long history, e.g. the road following algo-
rithm presented by Pomerleau in [22] as early as 1989, only now autonomous vehicles are
actually getting good enough to be ready for wide use on public streets. In 2016 Öfjäll et
al. in [29] presented an algorithm, symbiotic online learning of associations and regression
(SOLAR), which achieves autonomous navigation for cars even on snowy roads1.

While ANNs used for autonomous navigation in public traffic are massive and process
a multitude of inputs, this thesis examines the training, layout and potential use cases of
small scale ANNs. The only input data provided are the measurements of a laser distance
sensor. An obvious advantage of small ANNs as compared to more complex ones is the
reduced computational power necessary to operate and to train them. Camera imagery,
which is often used as input for ANNs in autonomous driving, has drawbacks in comparison
with laser distance measurements. Processing it is computationally much more expansive
and its quality is dependent on the lighting conditions. Therefore examining autonomous
navigation driven by small scale ANNs fed by laser distance sensors is promising for ap-
plications on platforms with limited resources, like small autonomous robots.

Simple autonomous robots are developed for a wide variety of tasks. For example, in
[14] Jaradat et al. present an autonomous mine detection robot. Yong-Kyun et al. describe
a robot that uses ANNs for environment classification in [18]. In combination with classical
reactive control they achieve autonomous behaviour. In [6] Correa et al. describe an
autonomous surveillance robot. Their robot’s indoor navigation is based on an ANN with
input data from a Microsoft Kinect sensor [17]. Their ANN was trained to recognise the
paths available to the robot. Combined with a topological map generated with the OpenCV
library described in [21] they developed a robot that is capable of autonomously navigating
in an indoor environment and surveilling it.

The first experiment conducted for this thesis treats a closely related problem, the au-
tonomous navigation of a maze. Although ANNs are employed to tackle similar problems,
like the ANN based wall-following robot presented by Sahu et al. in [7], the task can be
solved by simpler means, like a feedback control as described by Turennout et al. in [27].

1Snowy roads are problematic due to missing road markers.

1

1. Introduction

However, the problem is well fit to examine the process of determining an ANN layout and
training process suited for a given navigation task and yielded various insights. Those
insights were put to work in the second experiment where an open-world way-point nav-
igation with obstacle avoidance was developed. The aspects discussed are the number
of layers an ANN should have to solve the given task and the number of neurons per
layer. Further, a training process is developed that prevents overfitting. The influence of
the amount of data used for training is analysed. Finally, manipulations on the input data
to improve ANN performance are discussed. The ANNs are trained to interpret their input
distance measurements as one of a predefined set of states. By continuously evaluating
the ANN and transitioning from state to state according to its outputs autonomous naviga-
tion was achieved. Each navigation scheme was first implemented in the EyeSim simulator
described in section 3.3 and then ported onto the robot described in section 3.1. The ANNs
used were implemented with the help of the FANN API described in section 3.4. Before the
work on the autonomous navigation problems was begun, the EyeSim simulator API2 was
updated to match the newly implemented EyeBot API3. This not only served as a good
way to get familiar with the topic, but also allowed to introduce a model of the laser sensor
used for this thesis to the simulator.

Thesis Structure

Chapter 2 gives a brief introduction into the concepts of ANNs and PID control, which were
employed in experiments. In Chapter 3 the hard- and software used for the experiments is
presented. This includes the EyeBot robots, the Hokuyo laser sensor, the EyeSim simula-
tor and the FANN API. Chapter 4 gives an overview of the processes that were updated in
the EyeSim simulator. Further, the model of the Hokuyo laser sensor that was introduced
to the simulator is described. Chapter 5 presents the process employed to gather the train-
ing and reference data for the ANNs. Chapter 6 and 7 described the maze navigation and
open-world way-point navigation experiments. For both experiments, first the layout and
training results are presented and discussed. Then a description of the implementation
of the autonomous navigation on the EyeBot robots is given. In Chapter 8 the results are
discussed and a conclusion is drawn.

2The simulator used for the experiments.
3The API used to control the robots used for the experiments.

2

2. Theoretical Principals

This chapter gives a brief introduction into the theoretical principals employed in this thesis.
The first section treats artificial neural networks (ANNs). Basics of the layout and training
of ANNs are presented. Further, the phenomenon of overfitting is explained. The section
closes with a summary of the choices in ANN layouting and training discussed in the ex-
perimental part of this thesis. The second section introduces PID control, which was used
to steer a robot through a maze in a straight fashion in the maze navigation experiment.

2.1. Artificial Neural Networks

Artificial neural networks (ANNs) are an attempt in machine learning to emulate biological
neural networks like the human brain. An introduction to ANNs can be found in [19] by
M. A. Nielsen and in [12] by Goodfellow et al. Figure 2.1 shows the structure of a simple
ANN. Three vertical layers can be distinguished: the input, the hidden and the output layer.
The most basic ANN would consist of only an input and an output layer. A network like
that is, however, only capable of solving linear problems. To solve non-linear problems, at
least one hidden layer is necessary. Many moderately complex problems, like handwriting
recognition, can be solved by ANNs with one single hidden layer. On the other hand, ANNs
for tasks like language translation, such as the one used by Google translate [16], require
many hidden layers. For the experiments conducted for this thesis ANNs with one hidden
layer were sufficient.

Figure 2.1.: Simple artificial neural network with one input neuron, 3 hidden neurons and one
output neuron. w11 - w23: weights of the inter-neuron connections.

3

2. Theoretical Principals

2.1.1. Layout

Weighted edges connect the neurons. Like the action potential in biological neurons, ar-
tificial neurons have a so called activation function to threshold their activation. Activation
functions can be a simple step function or smoother functions like the sigmoid, that allow
values between "activated" and "not activated". The activation function employed in the
ANNs presented in this paper is the symmetric sigmoid function which is defined by the
following equation [24, p. 1266]:

sig(z) =
2

1 + e−2·s·z − 1 (2.1)

Where s is a scaling factor and z the sum of the weighted inputs to the neuron. A plot of
the sigmoid function for s = 1 can be seen in figure 2.2. Only neurons in the hidden and
the output layer have activation functions.

Figure 2.2.: Plot of the symmteric sigmoid function.

Input neurons represent one input parameter each and don’t have an activation function.
The output of neuron h1 can therefore be expressed as a function of x as follows [19, chap.
1]:

h1,out = sig(w11 · x) (2.2)

The ANN’s overall output is consequently desribed by the following equation [19, chap. 1]:

f (h(x)) = sig

(
3∑

n=1

(sig(w1n · x) · w2n)

)
(2.3)

For the general case of Ninput input neurons and Nhidden hidden neurons, the result of an
output neuron fl can be calculated as [19, chap. 1]:

hk =
Ninput∑
n=1

(xn · winnk) (2.4)

4

2.1. Artificial Neural Networks

fl = sig

(
Nhidden∑

k=1

(sig(hk) · woutkl)

)
(2.5)

Where win are the weights connecting the input to the hidden layer and wout the weights
connecting the hidden to the output layer.

2.1.2. Training

An ANN learns by being trained. This is achieved by adapting the weights of the con-
nection edges in a way, that certain inputs produce associated desired outputs. A widely
used training method is the so called backpropagation algorithm. This iterative algorithm
requires the neuron’s activation function to be differentiable. Further, training data consist-
ing of pairs of input values and the desired output values is needed. First, the weights of
the connection edges are randomized. Each iteration of the algorithm then involves the
following steps as described by Hecht-Nielsen in [9]:

1. Calculation of neuron outputs for the input data with current weights

2. Backpropagation to compute the difference between actual and desired outputs

3. Updating of the weights according to a chosen rule, e.g. ∆wij = −η · ∂E
∂wij

with
learning rate η and error E

Those steps are repeated until the ANN meets specified performance criteria, for example
the mean square error (MSE)1 of the outputs is below a certain threshold. The stan-
dard training algorithm employed by the FANN API2 is a specialised backpropagation, the
iRPROP introduced by Igel et al. in [13], which is based on the RPROP described by
Riedmiller et al. in [23]. The iRPROP is an adaptive gradient descent method. In this case
adaptive means, that the learning rate is adapted automatically during the training process.
The iRPROP consists of three steps [13]:

1. The learning rate is determined as:

η(t)
ij =

α+ · η(t−1)

ij for ∂E
∂wij

(t) · ∂E
∂wij

(t−1)
> 0

α− · η(t−1)
ij for ∂E

∂wij

(t) · ∂E
∂wij

(t−1)
< 0

η(t−1)
ij else

(2.6)

Where (t) denotes the current iteration and (t-1) the iteration before that. Further,
0 < α− < 1 < α+. The learning rate is bounded by [ηmin, ηmax].

1The difference between desired and actual ANN outputs.
2The API used to implement the ANNs for this thesis

5

2. Theoretical Principals

2. The weight updates are calculated as:

∆w (t)
ij =

−sign(∂E

∂wij

(t)
) · η(t)

ij for ∂E
∂wij

(t) · ∂E
∂wij

(t−1)
> 0

−∆w (t−1)
ij for ∂E

∂wij

(t) · ∂E
∂wij

(t−1)
< 0

0 else

(2.7)

3. The weights are updated as: w (t+1)
ij = w (t)

ij + ∆w (t)
ij

The main advantages of iRPROP compared to a simple backpropagation algorithm are
the adaptive choice of the learning rate as well as taking into consideration the weight
updates of former training iterations3. It was employed for every ANN trained for the ex-
periments conducted for this thesis. Training with iRPROP converged after few training
epochs4 and never took longer than a couple of minutes with the ANN layouts used here.

2.1.3. Overfitting

Training algorithms for ANNs generally minimize the mean square error (MSE) of the out-
put. The MSE is, however, not a very good quality feature for the purposes of the experi-
ments conducted for this thesis. The actual goal is to create an ANN that performs well in
general situations, not one that is trained in every peculiarity of the training data. Hence,
Nielsen defines the accuracy of an ANN in [19, chap. 3] as follows:

accuracy =
ncorrect

ntotal
(2.8)

Where ntotal is the total number of reference datasets and ncorrect is the number of ref-
erence datasets for which the ANN yields the desired outputs. The reference data, like
the training data, consists of sets of input and desired output values for the ANN. The only
difference is, that it isn’t used to train the ANN. Thus it can be utilised to measure the per-
formance of the ANN in unknown situations. As described by Nielsen in [19, chapter 3] a
decreasing mean square error doesn’t necessarily correlate with an increasing accuracy.
Often the accuracy plateaus after a certain number of training epochs while the error is still
going down. This can be observed very clearly in figure 2.3 which shows the development
of the accuracy and the MSE of an ANN over the number of training iterations. The data for
this plot was gathered during the training process of an ANN trained on data from the Eye-
Sim simulator. As can be seen, the accuracy reaches its maximum after about 15 training
epochs while the MSE continues to go down. Since from the moment when the accuracy
maximum is reached the ANN only learns the peculiarities of the training dataset without
any improvement in generalization, ideally the training process should be stopped there to
prevent the ANN from overfitting to the training data. In principal the accuracy might only

3Taking into consideration weight updates of former training iterations is called backtracking.
4Usually less than 50.

6

2.1. Artificial Neural Networks

plateau for a certain amount of epochs before starting to improve again. This effect has,
however, never5 occurred in the execution of the experiments conducted for this paper. An-
other way to counteract overfitting according to Nielsen [19, chapter 3] is using larger sets
of training data. However, acquiring additional data can be expensive or sometimes even
impossible. Tracking the accuracy during training and stopping once it stops improving is
therefore a good way to generate a well fit ANN without the need for larger datasets.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

0,05

0,1

0,15

0,2

0,25

0,3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

A
cc

u
ra

cy

M
SE

Epochs

Figure 2.3.: Plot of the development of the MSE (blue) and the accuracy (red) of an ANN during
training.

2.1.4. Choices in Layouting and Training

There is no simple rule of thumb to determine a suitable layout for an artificial neural
network for any given problem. There are however guidelines as to which problems have
to be adressed like presented by T. Rajkumar et al. in [26]. These include:

• Neuron’s activation function

• Number of hidden layers

• Training algorithm

• Number input neurons

• Number of output neurons

• Number of hidden neurons for each hidden layer

• Number of training epochs

5Even for very high amounts of training epochs, i.e. 10000 as compared to the 61 in figure 2.3.

7

2. Theoretical Principals

Different activation functions provided by the FANN API were tested. Those were the (non-
symmetric) sigmoid, the step-wise sigmoid and the symmetric sigmoid. While no great
differences could be detected, the symmetric sigmoid proved to be slightly better and was
hence employed for all navigation experiments. Among the FANN training algorithms the
iRPROP performed best in terms of numbers of training epochs until convergence and was
therefore used for the experiments. As mentioned earlier, one hidden layer is necessary
and sufficient for the problems presented here. The process involved to determine suit-
able configurations for the remaining parameters is described in Chapter 6 and 7 for each
experiment.

2.2. PID Control

One of the most widely used control methods is the PID control. This section gives a brief
introduction into its basics. Further information on this topic can be found in [28] by A.
Visioli. PID stands for the three different terms of the PID control:

1. Proportional

2. Integral

3. Differential

PID controls are often implemented as closed feedback loop controllers as shown in figure
2.4. As can be seen in the figure, the controller input e(t) is the difference between the
desired value r(t) and the actual value y(t) of the system variable to be controlled. The
input to the plant, the control variable, u(t) is the output of the controller and is calculated
to minimize e(t). The controller equations follow as [28, chap. 1]:

e(t) = r (t)− y (t) (2.9)

u(t) = Kp · e(t) + Ki

∫ t

0
e(x)dx + Kd

de(t)
dt

(2.10)

With the proportional scaling parameter Kp, the integral scaling parameter Ki and the dif-
ferential scaling parameter Kd . These have to be chosen so that u(t) minimizes e(t).

For the use in a digital control, like in this thesis, theses equations have to be adapted.
The pseudo code for a simple PID control algorithm is given in figure 2.5 [28, chap. 1]. The
integral is translated into the sum of all previous errors, the derivative into the difference
between the previous and the current error. Once u is calculated it is used as input to the
plant. The plant could for example be a DC motor to be velocity controlled. The difference
of the current velocity and the desired velocity would constitute e. The control variable
could then be a PWM signal.

8

2.2. PID Control

Figure 2.4.: Block diagram of a closed PID control loop.

e_old = 0;
i = 0 ;

while (c o n t r o l) {
y = get_y () ;
e = r − y ;
i = i + e ;
d = e − e_old ;
e_old = e ;
u = kp ∗ e + k i ∗ i + kd ∗ d ;
se t_p l an t_ i npu t (u) ;

}

Figure 2.5.: Pseudo Code of a PID controlling algorithm.

The main challenge when implementing such a simple controller is to find suitable val-
ues for the k parameters. There are numerous methods to find such parameters. In
most cases, however, these methods require a good model of the plant to be controlled or
extensive measurements. In practice they are therefore often determined by simple exper-
imental trial and error. This trial and error method was employed to find the parameters
for the control presented in the maze navigation experiment of this thesis. Furthermore,
sometimes the full PID term is not needed to adequately control a system, i.e. a P- or PI-
control is sufficient. This was the case for the maze navigation control where a PI-control
proved to be adequate.

9

3. Hardware and Software

In this chapter the hardware, that is the robots and sensors, and the software, that is
the FANN API and the EyeSim simulator, used in the course of the work on this thesis
are presented. The EyeBot robots, the EyeSim simulator and the Hokuyo laser distance
sensor were provided by the robotics lab of the University of Western Australia. The API
to interface the laser sensor and the ANN library were chosen independently.

3.1. EyeBot Robot

The robots on which the navigation schemes developed in the course of this thesis were
implemented are part of the EyeBot family. They were developed by Prof. Thomas Bräunl
at the University of Western Australia and are presented in [5]. The ones employed here
are driven by two DC motors with connected encoders. They come equipped with a digital
camera and position sensitive devices (PSDs)1. The control of the robots of the EyeBot
family is divided into a high and a low level as shown in figure 3.1. The high level consists
of a Raspberry Pi. Via calls to the EyeBot API installed on the Raspberry Pi the motors can
be controlled, sensor measurements read and images from the camera retrieved. Further
features of the EyeBot API include simple image processing capabilities and functions
to control the LCD display connected to the Raspberry Pi. A ATxmega128A1U micro
controller placed on a custom made IO-board represents the low level of the robot control.
It is connected to the high level via USB. Movement commands received from the high
level, e.g. "go straight for 10 cm", are translated into pulse width modulated (PWM) signals
which drive the DC motors via a H-bridge. For the purpose of this thesis an additional laser
distance sensor (see section 3.2) was fixed to the front of the robot and directly connected
to the Raspberry Pi via USB. Energy is supplied either by directly connecting the robot
to a power outlet or by a battery pack. Image 3.2 shows one of the robots used with a
denotation of its components. The second EyeBot model used during the experiments can
be seen in image 7.2.

The robot can be operated either with the help of the GUI for the Raspberry Pi LCD
display provided by the EyeBot controller or by establishing a remote desktop connection
via Wi-Fi. User programs are implemented in C and compiled with the custom gccarm
script. By including the eyebot.h header file the functions described in [3] can be used to
control the robot. An in-depth online documentation on the EyeBot controller can be found
in [2]. The data sheet of the ATxmega128A1U micro controller can be found in [1].

1PSDs are distance sensors.

11

3. Hardware and Software

Figure 3.1.: Schematic of the high and low level components of an EyeBot robot. The high level
consists of a Raspberry Pi. The low level is represented by a custom made IO-board with a
ATxmega128A1U micro controller. The DC motors are driven by PWM signals via a H-bridge.
PSD, digital camera and motor encoder data is provided to the high level functions via the micro
controller. The laser distance sensor is directly connected to the Raspberry Pi via USB.

12

3.2. Hokuyo Laser Sensor

Figure 3.2.: Depiction of an EyeBot robot and denotation of its components. The robot is equipped
with PSD sensors, a digital camera and a laser distance sensor. It is driven by two DC motors with
encoders and powered by a battery pack or by directly plugging it into a power outlet.

3.2. Hokuyo Laser Sensor

To gather distance measurements of the robot’s surroundings the Hokuyo Scanning Laser
Range Finder URG-04LX-UG01 was employed. It covers an area of 240 degrees at an
angular resolution of a approximately 0.36 degrees. The area radiated by the sensor is
shown in image Figure 3.3 taken from its documentation [11]. This results in 682 mea-
surement points with a maximum reach of 4 meters. The measurement accuracy is given
as +/- 3% for distances between 20 mm to 4000 mm. The sensor can comfortably be
connected to the robot’s Raspberry Pi via USB, which also powers the sensor.

The C API provided by Hokuyo was used to interface the sensor with the EyeBot API.
As of February 2017, big parts of the Hokuyo C API documentation were only available
in Japanese. Since the functions behaviour is not always intuitive, using the sensor was
made a little harder by that fact. Where it was available in English, the documentation was
good and eventually all necessary communication with the sensor could be implemented in
a stable fashion. Installation instructions and the API documentation can be found in [10].
An alternative to the Hokuyo sensor would be for example the Kinect sensor employed by
Correa et al. in [6]. The sensor was modelled in the EyeSim simulator as described in
Chapter 4.

3.3. EyeSim Simulator

The EyeSim simulator described in [4] offers an interface identical to the EyeBot API de-
scribed above and allows to simulate multiple robots in parallel. The PSD sensors and
digital camera used by the EyeBot robots are simulated as well as the motor control. For
the purpose of this thesis the Hokuyo laser sensor described in the previous section was
implemented for the simulator as described in chapter 5. In order to generate experiment

13

3. Hardware and Software

Figure 3.3.: Area radiated by the Hokuyo laser sensor taken from its documentation in [10].

environments, EyeSim offers the world and maze format to build maps. Both employ sim-
ple text files to define the maps and are easy to use. As an example image 3.4 shows a
football field defined in the world format with six EyeBot robots. Each robot’s camera out-
put is displayed in a separate window. The settings button allows to change each robot’s
x- and y-position as well as their rotational angle. Simulation programs are implemented in
C and compiled with the custom gccsim script. If compiled with the gccarm script instead,
they can be employed on the physical robots without any changes necessary. The EyeSim
simulator was used to develop and test the autonomous navigation strategies examined in
this thesis before implementing them on the physical robots.

3.4. FANN API

The choice of the library employed in this paper to implement the neural networks fell on
the Fast Artificial Neural Network Library (FANN) presented by Steffen Nissen in [20]. It
offers various functions allowing the creation and training of neural networks as well as
other useful utilities like the scaling and shuffling of input and training data. Its function-
ality covers the requirements to solve the problems presented in this paper and it is well
documented. No problems concerning FANN’s performance were encountered. The first
reason for choosing FANN was its intuitive interface in C and its resulting compatibility with
the EyeBot API. Compared with other, more complex, libraries like caffe described in [15],

14

3.4. FANN API

Figure 3.4.: EyeSim GUI with six EyeBot robots simulated as shown in [4]. Individual window for
every robot’s camera output. The map shown is a football pitch and was created in the EyeSim
world format.

FANN was deemed to be better suited to address the rather simple pattern recognition
problem presented in this paper without too much complexity overhead. A comparably
complex neural network library that is as easily interfaced with C as FANN wasn’t found
and subsequently FANN was used.

Figure 3.5.: FANN datafile format for the example of the and-function. First line: number of
datasets, number of inputs and number of outputs separated by spaces. Then: lines of inputs
separated by spaces followed by lines of outputs separated by spaces.

15

3. Hardware and Software

Work Flow

In the following the basic work flow to train and run an ANN with the FANN library will
be explained. As a first step, data to train the ANN on is required. To make efficient
training possible and save the data for future use, it is recommended to store the gathered
data in (.data)-files of the FANN format shown in figure 3.5. The first line consists of the
number of datasets, the number of inputs and the number of outputs separated by spaces.
The following lines are a line of inputs separated by spaces followed by a line of outputs
separated by spaces (if there is more than one).

Once a suitable datafile is generated, the function FANN_create_standard is called. Its
parameters are the number of layers, the number of input neurons, the number of neurons
in the hidden layers and the number of output neurons. It returns a struct FANN *ann

representing the created neural network, which is then used in FANN_train_on_file to
train the created network on the previously gathered training data. The remaining param-
eters are the name of the datafile to train on, a maximum number of training epochs, the
number of training epochs after which a report is published to the terminal and a desired
mean square error which when reached stops the training process. Finally the trained
struct FANN *ann can be processed with the function FANN_run, where the input is an
array of input data. Return value will be an array of [num_output] values in the interval
[-1,1] representing the probability of each output. A simple program that trains a FANN
network on the data shown in figure 3.5, executes it and prints the results to the terminal
is shown in figure 3.6.

16

3.4. FANN API

inc lude " fann . h "
inc lude < s t d i o . h>

i n t main () {
i n t epochs_between_reports = 5 ;
fann_type ∗out ;
/∗ MSE stopping value ∗ /
f l o a t des i red_e r ro r = 0 .01 ;
/∗ read data from f i l e " and . data " ∗ /
struct f ann_ t ra in_da ta ∗data = fann_ read_ t ra i n_ f r om_ f i l e (

and . data) ;
/∗ l a ye rs [numberOfLayers] = { inputNeurons ,

hiddenNeuronsLayer1 . . . N, outputNeurons } ∗ /
unsigned i n t l a ye rs [3] = { data−>num_input , 4 , data−>

num_output } ;
/∗ create ANN wi th input , hidden and output l aye r
number o f neurons per l aye r def ined i n laye rs [] ∗ /
struct fann ∗ann = fann_create_standard_array (3 , l aye rs) ;
/∗ set a c t i v a t i o n f u n c t i o n s ∗ /
f ann_se t_ac t i va t i on_ func t i on_h idden (ann ,

FANN_SIGMOID_SYMMETRIC) ;
f ann_se t_ac t i va t i on_ func t i on_ou tpu t (ann ,

FANN_SIGMOID_SYMMETRIC) ;
/∗ t r a i n ANN on data u n t i l MSE <= 0.01 ∗ /
fann_t ra in_on_data (ann , data , 1 , epochs_between_reports ,

des i red_e r ro r) ;

i n t ne t Inpu t [2] = [0 , 0] ;
/∗ evaluate t r a i n e d ANN f o r i npu t [0 , 0] ∗ /
out = fann_run (ann , ne t Inpu t) ;
/∗ p r i n t r e s u l t , expec ta t ion out = 0 ∗ /
p r i n t f ("ANN Output : %l f " , out [0]) ;

/∗ save t r a i n e d ANN to the f i l e " and . net " ∗ /
fann_save (ann , " and . net ") ;
fann_destroy (ann) ;
f ann_des t roy_ t ra in (data) ;

}

Figure 3.6.: FANN program that trains and executes an ANN on the data shown above and prints
the result to the terminal.

17

4. Update of the EyeSim API

As a prelude to the work on the experiments described in the next chapter, the API of the
EyeSim simulator was updated. Since the EyeBot API used for the application programs of
the physical robots was reimplemented from scratch, the EyeSim API had to be adapted
to guarantee that simulator programs can be used on the robots without any changes
necessary. The changes included:

• Function name changes

• Function Parameter changes

• Introduction of new functions

• Introduction of new camera resolutions

• Introduction of new LCD image sizes

Changing function names and adapting parameters was mostly straightforward yet time
consuming. Most functions that had to be newly implemented, like LCDCircle to draw a
circle on the LCD output, did not pose bigger problems either. The introduction of new
LCD image sizes and camera resolutions, however, required a good understanding of the
underlying processes. Since documentation on those processes, and the simulator in
general, was thin, an overview of the changes made and a description of those processes
is given in the first two sections of this chapter. This might help when those processes
have to be further adapted in the future. During the work on the API updates the simulator
was further expanded by a model of the Hokuyo laser distance sensor described in section
3.2. The model is described in the third section of this chapter.

4.1. Different LCD Image Sizes

The EyeSim GUI and image display is implemented with the Fast Light Toolkit (FLTK)
API. A documentation of the FLTK API can be found in [8]. To display an image in Eye-
Sim, first one of the functions LCDImage, LCDImageGray or LCDImageBinary, depending
on the type of image to be displayed, is called. EyeBots simulated in EyeSim are mod-
elled as objects of the struct localRobi. The API LCDImage functions call the respective
LCD_PutColorGraphics, LCD_PutGrayGraphics or LCD_PutColorGraphics function
of the respective localRobi’s member of the class eyeconsole. The LCD_PutGraphics

19

4. Update of the EyeSim API

functions then call the eyeconsole member function LCD_SetColorPixel which set the
graphics buffer of the eyeconsole member of the class DualMode according to the image
to be displayed. Once this is done, the LCD_PutGraphics functions call the redraw func-
tion of the DualMode member. The DualMode function redraw in turn calls the DualMode

function draw which calls the FLTK function fl_draw_image. This finally displays the
image on the respective EyeBot’s LCD. Figure 4.1 shows a flowchart of this process.

To allow for images of different sizes to be displayed, the EyeSim API function
IPSetSize was implemented. It takes an integer associated with a resolution as parame-
ter1. The camera resolution of the EyeBot for which the function is called is then set accord-
ingly. Further, parameters for the image rows and columns were added to the eyeconsole

LCD_PutGraphics functions. The LCDImage functions were then adapted to call the re-
spective LCD_PutGraphics functions with the EyeBot’s x and y camera resolution as im-
age columns and rows parameters. Apart from adaptations in the LCD_PutGraphics func-
tions allowing for images of varying size to be displayed based on the new parameters, the
DualMode defines PixX and PixY, which limit the number of pixels allowed to be displayed
per line and column, had to be increased. The reason why those defines existed in the
first place is, that the LCD display window is of rigid size. Therefore, as a last step, the
the size of the image display window was set to the maximum image size to be displayed.
To achieve this, the constructor of the FLTK console2 responsible for the GUI display was
adapted accordingly.

4.2. Different Camera Resolutions

Camera images can be accessed in the simulator via the EyeSim function CAMGet. CAMGet
calls the render function of the Camera member of the EyeBot for which it was called.
The render function first calls the draw function of the Camera's Main3DView member.
After that, the data variable of Main3DViews's meRawImage member is accessed via the
standard C++ function memcpy. This raw image is then rectified according to the column
and row offset of the image as well as the camera’s x and y resolution. The process is
depicted in the flowchart in figure 4.2.

To allow for varying camera resolutions, the class Camera was expanded by two vari-
ables for its x and y resolution respectively. The resolution can then be set by the
IPSetSize EyeSim API function as described above. The necessary changes were in-
tegrated in the render function, which previously only allowed for rigid resolutions, and
the dependent functions and classes were adapted accordingly. However, when access-
ing the camera after these changes, segmentation faults occur after a short period of time
and the simulator crashes. Even after a extended search the cause for these faults could
not be determined and this issue remains to be addressed.

1QQVGA: 0, QVGA: 1, VGA: 2, CAM1MP: 3, CAMHD: 4, CAM5MP: 5
2The constructor can be found in the file console.cpp.

20

4.2. Different Camera Resolutions

Figure 4.1.: Flowchart of the image display process of the EyeSim simulator. The EyeSim GUI and
image display are implemented with the FLTK API.

21

4. Update of the EyeSim API

Figure 4.2.: Flowchart of the access to camera imagery process of the EyeSim simulator.

22

4.3. Laser Sensor Model

4.3. Laser Sensor Model

To allow the simulation of the ANN-based autonomous navigation applications developed
in the course of this thesis in the EyeSim simulator, the Hokuyo laser distance sensor used
as input for the ANNs had to be modelled in EyeSim. Since the simulations were only
supposed to be proofs of concept the sensor model didn’t have to be very close to the
physical sensor in terms of noise and accuracy. Accordingly, the sensor was modelled
as 682 PSD sensors concentrated on one single pixel. The PSD sensor model already
included in the EyeSim simulator was used. The PSD sensors cover an area of 240 with
a step width of about 0.36 degrees as shown in figure Figure 3.3. The EyeSim API was
expanded by the functions LaserGet and LaserPlot which allow to retrieve the sensor
readings and plot the sensor readings in polar coordinates respectively. The output of the
plot function can be seen in the rightmost part of figure 5.1. The resulting model together
with the implemented API functions allowed for a comfortable simulation of the experiments
conducted for this thesis.

23

5. Methodology

The Experiments described in this thesis are implementations of ANN-based autonomous
navigation in different scenarios. The ANNs employed are implemented with the help
of the FANN (see section 3.4). Measurements gathered by the laser distance sensor
(see section 3.2) serve as input for the ANNs. As a first step in every experiment, the
navigation scenario was implemented in the EyeSim simulator (see section 3.3). This
involved building maps in the EyeSim maze or world format, as well as implementing the
necessary navigation commands.

Once the principals for solving the different problems had been worked out in the sim-
ulator, the solutions were ported to the physical robot. To make the robot ready for the
experiments, first the FANN and the Hokuyo C API were installed on the robot’s Raspberry
Pi. The basic schematic in image 5.2 shows the signal flow of the navigation process. As
can be seen, the Hokuyo laser sensor was connected to the robot’s Raspberry Pi via USB.
It was fixed to the front of the robot. Communication with the sensor was implemented
with the help of the Hokuyo C API, based on which functions for plotting and reading of the
distance measurements were realised.

The first section of this chapter describes the data gathering process for the training
and reference data needed to train the ANNs. Section two presents the analysis functions
implemented to find suitable ANN layouts.

5.1. Data Collection

Two types of training data had to be gathered: data from the EyeSim simulator and from
the physical sensor. In order to collect the required data in the simulator, first the laser
sensor employed by the physical robot was modelled in the simulator as described in the
previous chapter. Functions to plot and collect the current sensor readings were imple-
mented. As a platform for data collection in the simulator, an EyeSim Simulator program
was implemented. Its GUI is shown in figure 5.1. To collect data, the robot is moved around
with the help of the simulator settings. When the "Cap" button is pressed, the desired ANN
output for the current position can be chosen. The current sensor readings together with
their respective output are then automatically saved to a data file in the FANN format. The
program also offers the possibility to train an ANN on the collected data and evaluate it
for the robot’s current position in order to test it. A similar program was implemented for
the physical robot, only with the actual laser sensor as data source. The robot was moved

25

5. Methodology

Function Name Description
LaserGet Gets current laser sensor values.
LaserPlot Plots current laser sensor values in polar coordi-

nates.
appendData2file Generates data file in FANN format. Decision for

desired output to current sensor readings. Both are
saved to the generated file.

scaleFannFile Scales number of input values in fileName by 1
factor .

Result is saved to newFileName.
testNet Computes accuracy of a fann net.
trainAnalysis Trains ANN and computes its accuracy for every

epoch. Accuracy and MSE values are saved to res-
File.

accOverHiddenWrapper Trains ANNs with different Nhidden. Computes and
saves their accuracy maxima.

Table 5.1.: List of functions for data gathering and ANN training analysis.

manually. Training data consisted of equal amounts of datasets1 of comparable variance
for every ANN output. Reference data was compiled following the same principals, the only
difference being that it could not be the same measurements so as to have independent
data to calculate the ANNs accuracy. In table 4.1 a list of the functions implemented for
data collection and training analysis purposes can be found.

5.2. ANN Analysis Functions

This section presents the functions implemented in the course of this thesis for the anal-
ysis of ANN layout and training. Those functions were employed during the experiments
described in the following sections. Functions to analyse the following aspects were devel-
oped:

• MSE and accuracy development during training

• Accuracy development over number of hidden neurons

• Accuracy development over number of training datasets

The functions are described in this order. Additionally their source code is given so as
to allow the reader to completely understand where the data presented in the following
sections came from.

1A dataset consists of input data and corresponding desired ANN output values.

26

5.2. ANN Analysis Functions

Figure 5.1.: EyeSim Simulator Program for data collection, ANN training and testing. Cap: Capture
current sensor readings, choose desired output. Both are appended to the generated datafile in
FANN-compatible structure. Plot : Plot current sensor readings as seen in the image. Train: Train a
FANN net on the collected data. Eval : Evaluate the trained net for current sensor readings.

Figure 5.2.: Schematic of ANN-based navigation on an EyeBot robot. The Raspberry Pi communi-
cates with the Hokuyo laser sensor via USB. The sensor is interfaced in C with the help of the API
provided by Hokuyo. The movement commands associated with the ANN outputs drive the robot’s
DC motors via the EyeBot API’s VW functions.

27

5. Methodology

f l o a t t es tNe t (char ∗ r e f e r e n c e _ f i l e , struct fann ∗ann ,) {
fann_type ∗ca lc_out ;
i n t l ,m;
f l o a t t o t a l , nEr ror =0;
struct f ann_ t ra in_da ta ∗data = fann_ read_ t ra i n_ f r om_ f i l e (

r e f e r e n c e _ f i l e) ;
/ / s h u f f l e and scale re ference data
f ann_sca le_ inpu t_ t ra in_da ta (data , 0 ,1) ;
f an n_ sh u f f l e _ t r a i n _d a ta (data) ;

for (i n t i =0; i <data−>num_data ; i ++) {
ca lc_out = fann_ tes t (ann , data−>inpu t [i] , data−>output [i]) ;
l = largestMember (ca lc_out) ;

m = largestMember (data−>output [i]) ;
i f (l !=m) {

nError = nError +1;
}

}
t o t a l = data−>num_data ;
fann_des t roy_ t ra in (data) ;
return accuracy = (1−(nEr ror / t o t a l)) ;

}

Figure 5.3.: Source code of the analysis function testNet that computes the accuracy of a given
ANN on a given reference datafile.

5.2.1. MSE and Accuracy Tracking during Training

To track the development of the MSE and the accuracy of an ANN during training, first the
function testNet was implemented. This function gets a FANN network and a reference
datafile as parameters and calculates the ANN’s accuracy on the reference datasets. As
can be seen in the source code of the function given in figure 5.3, the ANN is evaluated
for every input set in the reference file. The result of this evaluation is then compared with
the desired output given for those inputs in the reference datafile. If they don’t match, the
evaluation is counted as an error. The accuracy is then computed according to equation
2.8.

The function trainAnalysis trains a FANN network with a given number of hidden
neurons on a given training datafile until it achieves a given accuracy on a given reference
datafile. The accuracy of the ANN is calculated after each training epoch by calling the
function testNet described above. Together with the MSE, the accuracy for every training

28

5.2. ANN Analysis Functions

epoch is saved to a text file for later analysis. The source code of the function is shown in
figure 5.4.

5.2.2. Accuracy Tracking over Number of Hidden Neurons

To track the development of the accuracy of an ANN over the number of its hidden neurons,
the function accOverHidden was implemented. It computes the accuracy for a number of

NANNs =
nHiddenMax − nHiddenMin

step
(5.1)

ANNs in the interval of [nHiddenMin, nHiddenMax] hidden neurons with a step width
of step. Interval and step width are parameters of the function. To do so, iteratively
ANNs with [nHiddenMin, ..., nHiddenMax] hidden neurons are trained for 100 epochs.
The accuracy is calculated after every training epoch by calling the function testNet de-
scribed in the previous subsection. The accuracy maximum together with the training
epoch it occurred in are saved to a given results file for every number of hidden neurons.
The source code of this function is given in figure 5.5. Since the execution of this func-
tion can take quite long depending on the interval and step width chosen, the function
accOverHiddenWrapper was implemented. It allows to queue calls of accOverHidden
for different layouts, i.e. numbers of input neurons. This allowed to get all desired analysis
done by letting accOverHiddenWrapper run over night.

5.2.3. Accuracy Tracking over Number of Training Datasets

The function datasetAnalysis was implemented to track the development of the accu-
racy of an ANN of a given layout over the number of training datasets it is trained on. It
takes the number of files with different numbers of datasets as parameter. The files have
to be named "ds-[number].data". They should consist of numbers of training datasets for
every ANN output out of an interval that is to be analysed. E.g. if one wants to analyse the
development over [1,...,15] datasets, the files ["ds-1.data",...,"ds-15.data"] should consist
of [1,...,15] training data pairs in the FANN format. 50 ANNs are then trained for every
training file and the mean accuracy for every training file is saved to a results file for later
analysis. Figure 5.6 shows the source code of the function.

29

5. Methodology

void t r a i n A n a l y s i s (char ∗ r e f e r e n c e _ f i l e , char ∗ t r a i n _ f i l e , char ∗
net_name , char ∗ r e s u l t _ f i l e , i n t n_hidden , f l o a t
accuracy_desired) {

f l o a t acc , mse ;
char tmp [2 5] ;
const f l o a t des i red_e r ro r = (const f l o a t) 0.00001;
const unsigned i n t max_epochs = 50;
const unsigned i n t epochs_between_reports = 1 ;

struct f ann_ t ra in_da ta ∗data = fann_ read_ t ra i n_ f r om_ f i l e (
t r a i n _ f i l e) ;

unsigned i n t l a ye rs [3] = { data−>num_input , n_hidden , data−>
num_output } ;

struct fann ∗ann = fann_create_standard_array (3 , l aye rs) ;
FILE ∗ f i l e = fopen (r e s u l t _ f i l e , "w") ;
/ / sca le t r a i n i n g data to values to [0 , 1] and s h u f f l e i t
f ann_sca le_ inpu t_ t ra in_da ta (data , 0 ,1) ;
f an n_ sh u f f l e _ t r a i n _d a t a (data) ;
/ / se t a c t i v a t i o n f u n c t i o n s
f ann_se t_ac t i va t i on_ func t i on_h idden (ann , FANN_SIGMOID_SYMMETRIC

) ;
f ann_se t_ac t i va t i on_ func t i on_ou tpu t (ann , FANN_SIGMOID_SYMMETRIC

) ;

/ / t r a i n ANN
for (i n t i =0; i <max_epochs ; i ++) {

fann_t ra in_on_data (ann , data , 1 , epochs_between_reports ,
des i red_e r ro r) ;

mse = fann_get_MSE (ann) ;
tes tNe t (r e f e r e n c e _ f i l e , ann , &acc) ;
s p r i n t f (tmp , "%l f \ t%l f \ n " , mse , acc) ;
f pu t s (tmp , f i l e) ;
i f (accuracy_desired < acc) {

break ;
}

}
/ / save
fann_save (ann , netName) ;
fann_destroy (ann) ;
fann_save_t ra in (data , " scaled_data . data ") ;
f ann_des t roy_ t ra in (data) ;
f c l o s e (f i l e) ;

}

Figure 5.4.: Source code of the analysis function trainAnalysis that tracks the development of
the MSE and the accuracy of a given ANN over the number of training epochs and saves the results
to a given file.

30

5.2. ANN Analysis Functions

void accOverHidden (char ∗ r e f e r e n c e _ f i l e , char ∗ t r a i n _ f i l e , i n t
nHiddenMin , i n t nHiddenMax , i n t step , FILE ∗ r e s u l t s) {

f l o a t acc ;
const f l o a t des i red_e r ro r = (const f l o a t) 0.00001;
const unsigned i n t max_epochs = 100;
const unsigned i n t epochs_between_reports = 0 ; / / 0 : no repo r t s

p r i n t e d by fann API
struct f ann_ t ra in_da ta ∗data = fann_ read_ t ra i n_ f r om_ f i l e (

t r a i n _ f i l e) ;
∗max = 0;
for (i n t nHidden=nHiddenMin ; nHidden<=nHiddenMax ; nHidden=

nHidden+step) {
unsigned i n t l a ye rs [3] = { data−>num_input , nHidden , data−>

num_output } ; / / l aye rs [numberOfLayers] = { inputNeurons ,
hiddenNeuronsLayer1 . . . N, outputNeurons }

struct fann ∗ann = fann_create_standard_array (3 , l aye rs) ;
/ / sca le t r a i n i n g data to values b t . [0 , 1] and s h u f f l e i t
f ann_sca le_ inpu t_ t ra in_da ta (data , 0 ,1) ;
f an n_ sh u f f l e _ t r a i n _d a t a (data) ;
/ / se t a c t i v a t i o n f u n c t i o n s
f ann_se t_ac t i va t i on_ func t i on_h idden (ann ,

FANN_SIGMOID_SYMMETRIC) ;
f ann_se t_ac t i va t i on_ func t i on_ou tpu t (ann ,

FANN_SIGMOID_SYMMETRIC) ;

/ / t r a i n ANN
for (i n t i =0; i <max_epochs ; i ++) {

fann_t ra in_on_data (ann , data , 1 , epochs_between_reports ,
des i red_e r ro r) ;

t es tNe t (r e f e r e n c e _ f i l e , ann , &acc) ;
i f (acc>∗max) {

max = acc ;
epoch = i ;

}
}

f p r i n t f (r esu l t s , "%l f %l f %d \ n " , max , epoch) ;
fann_destroy (ann) ;

}
f ann_des t roy_ t ra in (data) ;

}

Figure 5.5.: Source code of the analysis function accOverHidden that tracks the development of
the accuracy of a given ANN over the number of hidden neurons it consists of and saves the results
to a given file. 31

5. Methodology

void datase tAna lys is (i n t n , char∗ reference_data , char∗ r e s u l t s) {
FILE ∗ r e s u l t s = fopen (re su l t s , "w") ;
f l o a t accuracy , mean ;
struct fann ∗ann ;
char f i le_name [3 0] ;

for (i n t k =0; k<=n ; k++) {
s p r i n t f (f i le_name , " ds−%d . data " , k) ;
mean = 0;
for (i n t i = 0 ; i <50; i ++) {

t r a i n A n a l y s i s (reference_data , f i le_name , " fann . net " , "
accuracy31 . t x t " , 30) ;

ann = fann_c rea te_ f rom_ f i l e (" fann . net ") ;
t es tNe t (reference_data , ann , &accuracy) ;

mean = mean+accuracy ;
accuracy = 0;
fann_destroy (ann) ;

}

mean = mean/ 5 0 ;
f p r i n t f (r es u l t s , "%l f \ n " , mean) ;

}
f c l o s e (r e s u l t s) ;

}

Figure 5.6.: Source code of the analysis function datasetAnalysis that tracks the development
of the accuracy of a given ANN over the number training datasets it is trained on and saves the
results to a given file.

32

6. Maze Navigation

In the course of the first experiment, autonomous navigation in a maze like the one shown
in image 6.1a was implemented. The outputs of the ANN for this experiment were defined
as the six situations shown in figure 6.1b. The navigation strategy is straightforward: each
situation is interpreted as a state defined by the paths available to the robot and a move-
ment command is associated with every state. The output of the ANN, which is constantly
evaluated, determines the state. The first section of this chapter describes the layout and
the training process determined to be suitable for the ANN. The second section presents
and discusses the implementation of the navigation on the EyeBot robots.

(a) Test maze

(b) Situations of possible movement directions
recognised by the ANN.

Figure 6.1.: Test maze for the robot and situations recognised by the ANN. The situations in (b)
are: (a) straight, (b) left corner, (c) right corner, (d) left or right corner, (e) left or straight, (f) right or
straight.

6.1. ANN Layout Design and Training

In this section the layout and training of the ANN employed for the autonomous maze
navigation scheme is presented. The following choices and issues will be discussed:

• Number of input neurons1

1Four different numbers of input neurons have been examined: 31, 62, 341 and 682. 682 is the total number

33

6. Maze Navigation

• Number of hidden neurons

• Training

• Number of training datasets

• Input data manipulation

All data presented in this subsection was gathered in the EyeSim simulator.

6.1.1. Number of Input Neurons

One of the first choices when designing an ANN layout is the number of input neurons. The
input data for our ANN are the distance measurement points provided by the laser sensor.
Therefore, at first, all 682 measurement points were used. However, as can be seen in
the graphs shown in figure 6.2, a higher number of inputs doesn’t necessarily mean that
a higher accuracy in recognising reference data is achieved. The accuracy in the shown
graphs is even slightly better for 62 input values as compared to 341 or 682. Results do,
however, fluctuate with every training so the differences in accuracy in figure 6.2 for the
different numbers of input neurons are negligible. The data for the graph was produced by
the function trainAnalysis.

The main conclusion that can be drawn from those graphs is, that the accuracy is just
as good for lower numbers of inputs as it is for the full 682. Since training and evaluating
ANNs gets harder and takes longer with growing numbers of neurons, economic choices
should always be preferred. Therefore 62 was chosen as the number of input values.
Having 70, 50 or 62 input neurons would make very little difference. The arbitrary number
of 62 was chosen out of the convenience of it being an integer factor of 682. The reduced
number of data points was achieved by computing the mean value of eleven measurement
points2.

6.1.2. Number of Hidden Neurons

The numbers of hidden layers and of neurons per hidden layer affect the time it takes to
train and run a neural network as well as the complexity of problems it can solve. Generally
it is more difficult to train bigger, and therefore more complex, networks than it is to train
small ones. Choosing those numbers is therefore an important design decision and an
economic choice should be preferred here as well. The choice of the number of hidden
layers is rather trivial in our case. Networks consisting only of an input and an output layer
can only solve linear problems. Thus, since the given navigation problem is clearly non-
linear, at least one hidden layer is necessary. On the other hand, most non-linear problems,

of measurement points provided by the employed laser distance sensor. The integer factors of 682 have
been chosen as suitable additional values.

2Or in the case of 341 input neurons of every second, for 31 input neurons every 22.

34

6.1. ANN Layout Design and Training

including handwriting recognition, can be solved by ANNs with only a single hidden layer.
Since the problem of recognising handwriting is very similar to our situation recognition
problem, a layout with one hidden layer was chosen and proved to be sufficient.

As to the number of hidden neurons in the hidden layer, a series of experiments was
conducted. The accuracy of ANNs with different numbers of input neurons was evaluated
after 100 training epochs for hidden neuron numbers between one and 49. The function
accOverHidden was employed to carry out this analysis. It was found that a rather low
number of hidden neurons is enough to produce ANNs with good accuracy. As can be
seen in figure 6.2, the accuracy of ANNs reaches its maximum rather quickly. For the
number of input neurons decided upon in the previous section, 62, the accuracy maximum
is reached at about nine hidden neurons. To have some reserve, a number of hidden
neurons of 30 was selected. Training the resulting ANN of 62 input and 30 hidden neurons
gave good results and the surplus hidden neurons should leave plenty of room if one would
for example want to add further situations to be recognised by the ANN.

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Hidden Neurons

(a) 31 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Hidden Neurons

(b) 62 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Hidden Neurons

(c) 341 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Hidden Neurons

(d) 682 input neurons

Figure 6.2.: Plots of the development of the accuracy of the trained ANNs after 100 training epochs
over the number of hidden neurons. ANNs with 31, 62, 341 and 682 input neurons were examined.

35

6. Maze Navigation

6.1.3. Training

When training an ANN the goal is to achieve the maximum accuracy possible for the re-
spective layout while preventing the ANN from overfitting. To examine the phenomenon of
overfitting, the development of the mean square error (MSE) and the accuracy of ANNs
with different numbers of input neurons was compared. To do so, accuracy and MSE were
evaluated after each epoch during training with the help of the function trainAnalysis.
The resulting graphs are shown in figure 6.3. During the first few training epochs strong
oscillations can be observed in the plots. This is due to the untrained state of the ANNs
which causes almost random outputs. Subsequently, MSE and accuracy are randomly
oscillating as well. As can be seen in all four cases, accuracy stagnates after a certain
amount of training epochs while the mean square error still decreases. Every epoch after
the accuracy reached its maximum is futile and only leads to an unnecessarily good fit-
ting to the data the ANN is trained on and a loss of its generalisation power. This loss of
generalisation power could be observed when training ANNs with very low MSE stopping
values. The ANN would then perfectly recognise the exact training data but moving the
robot by only a few centimetres would result in different (and wrong) outputs.

Out of the box, the FANN library only provides MSE and maximum training epoch num-
ber as stopping values for training. To effectively prevent the ANNs from overfitting, a
function to track the development of the accuracy of the ANN in training was implemented.
After each training epoch, the training was interrupted to evaluate the ANN for a set of ref-
erence data different from the training data. The amount of correctly recognised reference
data pairs was counted to compute the accuracy. The training was stopped when a given
accuracy was reached. The accuracy stopping value was chosen according to the results
of the previous examinations. Usually a value of 85% was chosen. This proved to be an
effective method in combating overfitting while still getting ANNs with accuracy close to the
possible maximum.

6.1.4. Number of Training Datasets

One of the biggest workloads when implementing simple ANNs like the ones described
here is gathering training data. It is therefore of economic interest to know how many
datasets are necessary to achieve a certain accuracy. To examine this the function
datasetAnalysis described earlier was implemented. To execute this analysis a number
of datasets is of course necessary. Economic benefit can, however, be achieved when for
example adding new output neurons to an existing ANN or implementing a new ANN of
comparable complexity. The results of this analysis can then be used as benchmarks as
to how many datasets are required.

36

6.1. ANN Layout Design and Training

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

0,05

0,1

0,15

0,2

0,25

0,3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

A
cc

u
ra

cy

M
SE

Epochs

(a) 31 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

A
cc

u
ra

cy

M
SE

Epochs

(b) 62 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

A
cc

u
ra

cy

M
SE

Epochs

(c) 341 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

A
cc

u
ra

cy

M
SE

Epochs

(d) 682 input neurons

Figure 6.3.: Plots of the development of mean square error (blue) and accuracy (red) of the trained
ANNs over the number of training epochs. ANNs with 31, 62, 341 and 682 input neurons were
examined.

Figure 6.4 shows the results yielded by datasetAnalysis for the ANN with 62 input neu-
rons, 30 hidden neurons and 6 output neurons that was determined to be suitable for the
maze navigation problem. As can be observed, the accuracy of the ANN rises steeply until
a number of seven datasets is used for its training. The accuracy gain for more training
datasets beyond that is rather small. It can therefore be concluded that a number of about
10 training datasets should be sufficient to train ANNs of similar complexity for a output.

6.1.5. Input Data Manipulation

Scaling the input and training data can improve ANN performance as well as its behaviour
during training. Scaling the input data to values between [0,1] for our case has decreased
the number of training epochs required to reach a desired mean square error and therefore
decreased the training time. The FANN function FANN_scale_input was employed to
scale the inputs. When scaling the input data for training, it has to be scaled to the same
interval when actually running the trained ANN, in order to produce usable results.

Furthermore, all distance values greater than one meter were set to zero. For one,
this makes gathering data much easier, since only the close proximity is evaluated. For

37

6. Maze Navigation

example what comes after a corner is irrelevant. Only snapshots of a left corner are
required, without the necessity of snapshots of all possible situations beyond that corner.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

u
ra

cy

Number of Training Datasets

Figure 6.4.: Development of an ANN with 62 input, 30 hidden and 6 output neurons over the
number of datasets per output neuron used as training data.

On the other hand it also improved the accuracy of the ANN since noise produced by
further away path conditions, irrelevant to the current situation, is reduced. Of course
this only makes sense in scenarios like a maze where further away situations are mostly
unimportant.

6.2. Application on the EyeBot Robot

In this section, the implementation of the maze navigation experiment on the EyeBot robots
is described. Based on the results of the previous subsections, an ANN with 62 input neu-
rons and 30 hidden neurons was chosen for the implementation of the autonomous maze
navigation on the EyeBot robot. The ANN was trained on data gathered by the Hokuyo
laser sensor and which was scaled and shuffled as described above. The navigation pro-
cess was implemented as a state machine, where the states were the paths available to
the robot at a given time. Based on the ANN output for the current sensor readings one
of the six states shown in figure 6.1b was chosen. Each state was associated with a
movement command as follows:

• Straight→ go straight

• Left→ go around left corner

• Right→ go around right corner

• Left or right→ if way point is set, go in that direction; else user decides

38

6.2. Application on the EyeBot Robot

• Left or straight→ if way point is set, go in that direction; else user decides

• Right or straight→ if way point is set, go in that direction; else user decides

After the movement command was executed, the ANN was evaluated again and a new
iteration began. Figure 6.5 shows the flowchart of the navigation process which was im-
plemented in the function mazeNav. A list of the functions implemented for data gathering
and navigation on the physical robot for this experiment can be found in table 4.23.

6.2.1. Movement Commands

Going straight was implemented as the function piStraight by employing a PI controller
to keep the robot in the middle of the maze path. The controller is described by the following
equations:

width = distanceleft + distanceright (6.1)

e = (width/2)− distanceleft (6.2)

∆φ = φ− φdesired (6.3)

u = ∆φ + (p · e + i · sum) (6.4)

sum = sum + e (6.5)

Where distanceleft/right is the distance to the wall 90 degrees to either side gathered by
the laser sensor. φ is the rotational angle of the vehicle relative to its starting position and
was provided by the vehicle’s encoder via the EyeBot function VWGetPosition. φdesired is
the rotational angle the vehicle should have in order to go straight parallel to the pathway
walls. It was assumed that the robot starts parallel to the walls. Since φ = 0 at the start,
φdesired ,1 = 0. Then φdesired was incremented by +/−90deg4 after a left/right corner. Using
the φ measurements for the control helped prevent the robot from oscillating around the
middle of the pathway and therefore made the control smoother. As can be seen from the
equation 6.2, the error is zero when the distance from the left-hand side wall is exactly
half the total width of the pathway. The robot is therefore controlled to stay in the middle.
The current error times the p parameter and the sum of all previous errors times the i
parameter plus the difference between the robot’s φ and φdesired yields the control variable
u. The control parameters p and i were determined experimentally. The control loop was
implemented as a function that first reads the current sensor values and computes u. Then
the EyeBot function VWCurve(int dist, int angle, int speed) is called with u as
the angle and fixed values for speed and linear distance. Further, the integration sum
can be reset by setting the piStraight's reset parameter to one. This functionality is
necessary because after a corner is taken the position of the vehicle relative to the wall

3For training analysis, the functions from table 4.1 were reused.
4The angle provided by VWGetPosition actually runs from [0,180] and then [-179,0]. This had to be taken

into consideration when incrementing φdesired .

39

6. Maze Navigation

changes, which makes the previous integration sum obsolete. With the control parameters
p = 0.25 and i = 0.015 the function reliably kept the robot in the middle.

Figure 6.5.: Flowchart of the navigation process mazeNav of experiment 1 (maze navigation). First
communication with the laser sensor, the ANN and the motor control are initiated. Then, the ANN
is evaluated continuously with the current laser distance sensor readings as input. Based on its
output, one of six states is chosen. Every state represents a set of paths available to the robot. As-
sociated with every state is a movement command. After the execution of the associated movement
command of the chosen state, the next iteration begins and the ANN is evaluated again.

Corners were taken by going first straight, i.e. calling piStraight, until a

∆ = distanceleft/right − distanceold > thr (6.6)

is detected. Where distanceleft/right is the distance from the wall 90 degrees to the left
(or right if going around a right corner) and distanceold the value of the last iteration. The

40

6.2. Application on the EyeBot Robot

Function Name Description
open_urg_sensor Establishes connection with sensor at USB port.
LaserGet Returns current laser sensor values.
LaserPlot Plots current laser sensor values in polar coordi-

nates.
appendData2file Generates data file in FANN format. Decision for

desired output to current sensor readings. Both are
saved to the generated file.

mazeNav Evaluates ANN in a loop and executes movement
commands associated with ANN outputs.

piStraight Controls vehicle distance from left-hand side wall to
keep it close to the middle of maze pathway. reset =
1 resets integration sum.

cornerR/cornerL Navigates robot around right or left maze corner.
runNet Evaluates ANN for current sensor readings and re-

turns index of largest output value.
largestMember Returns index of largest member of a <fann_type>

array.

Table 6.1.: List of functions for data gathering and navigation on physical robot in experiment 1.

threshold value thr was set to 5 cm. Then VWCurve is called with 90 degrees as the angle.
This was implemented in the functions CornerR and CornerL. When one of the crossroads
was detected, first either a decision screen was shown to the user, or if way points were
set, the direction to the next way point was calculated. Based on that either the respective
corner function or piStraight was called.

6.2.2. Performance

Figure 6.6 shows plots of the development of the accuracy of ANNs5 trained on data gath-
ered in the simulator and by the physical laser sensor. The plot data was produced by the
function trainAnalysis. The reference data used for accuracy calculation was gathered
by the physical sensor and consisted of 60 data pairs, ten pairs per output neuron. Both
sets of training data consisted of 90 data pairs, 15 per output neuron. The ANN trained
on data gathered by the sensor shows decent accuracy values of about 80%. The one
trained on simulation data on the other hand does not come close to any reasonable per-
formance. The dominating reason is very likely the elevated noise in the sensor which is
not being simulated. Additionally, the metal bars connecting the wall pieces used for the

5Both ANNs had 62 input neurons and 30 hidden neurons. The training and reference data was processed
as described in the previous chapter.

41

6. Maze Navigation

experimental set-up cause very peculiar sensor readings. Since the simulation of the laser
sensor is based on PSD sensors, it is not too surprising that the resulting values are not
comparable with values actually produced by the sensor.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Training Epochs

Figure 6.6.: Graphs of the development of the accuracy over 50 training epochs for training data
gathered by the physical sensor (blue) and in the simulation (red). Reference data for accuracy
calculation in this case was gathered with the physical laser sensor. The ANN trained on simulation
data shows very bad results. The one trained on physical data shows reasonable accuracy values
of about 80%.

6.3. Results

The most suitable layout found for the described navigation problem, was a network with
62 input neurons. Training was stopped after 30 training epochs. The training and input
data were scaled to values in the interval of [0,1] to ensure effective training. In addition,
distance values over one meter were set to zero to simplify training and reference data
gathering. The resulting ANNs performed well in the EyeSim simulator when trained on
data gathered in the simulator and on the physical robot when trained on data from the
Hokuyo sensor. The 80% accuracy achieved by the latter sometimes resulted in right
corners falsely detected as "right corner or straight", analogously for left corners. While
this is not a safety issue, because the user could simply choose the correct movement
command in this particular situation, it could still be improved upon. For one, a larger set
of training data would certainly result in a higher accuracy. In addition, the results of the
ANN could be filtered by a decision tree. For example when "right corner or straight" was
falsely detected in a right corner, the ANN output value for "right corner" was still quite high,
usually greater than 50%. So by not simply choosing the highest output value but taking
into consideration the other output values as well, performance might be further enhanced.
As to the training of the ANN, it was important not to train the ANN for too many epochs to
prevent overfitting. This could be achieved by stopping when the network accuracy ceases
to improve. In the case of the ANN described above, this would be after about 30 training

42

6.3. Results

epochs. The network resulting from this layout and training strategy performed well on
different test mazes.

In conclusion, the maze navigation problem was adequately solved with the help of an
ANN. By conducting the examinations described in this section a layout was found, that
with

62 + 30 + 6 = 98

neurons had considerably fewer neurons than any layout with the full 682 distance mea-
surement points as input. This results in a simpler6 and quicker training process. Au-
tonomous maze navigation can be solved by simpler means, e.g. a wall-following algo-
rithm. It was, however, an ideal problem to gather experience in the training of laser sen-
sor based ANNs. This experience was put to use in the open-world way-point navigation
described in the following section.

6In terms of required training data.

43

7. Way-point Navigation

The problem to be solved in experiment 2 was the autonomous navigation to a way-point
in an open-world setting. The navigation developed was based on two ANNs. One to
recognise obstacles in the way and one the determine available paths around them. Fig-
ure 7.1 shows the objects the training data was gathered on. In image 7.2 a typical test
environment for the EyeBot way-point navigation can be seen. The first section of this
chapter describes the layout and the training process determined to be suitable for the
ANNs. The second section presents and discusses the implementation of the navigation
on the EyeBot robots.

7.1. ANN Layout Design and Training

In this section the layout and training of the ANNs employed for the autonomous maze
navigation scheme is presented. The following choices and issues will be discussed:

• Number of input1 and hidden neurons

• Training

• Number of training datasets

All data presented in this section was gathered in the EyeSim simulator. The same input
data manipulation procedures as described in the previous chapter were used for this
experiment.

Figure 7.1.: Objects used for ANN training in experiment 2. Left: large object. Right: small object.

1Four different numbers of input neurons have been examined: 31, 62, 341 and 682. 682 is the total number
of measurement points provided by the employed laser distance sensor. The integer factors of 682 have
been chosen as suitable additional values.

45

7. Way-point Navigation

Figure 7.2.: Way-point navigation test environment. At point A a small object was detected and
dodged, at point B a large object was detected and dodged.

7.1.1. Number of Hidden and Input Neurons

Since variance between training results for identical layouts was even higher than in exper-
iment one, the maximum accuracy for every number of hidden neurons was averaged over
50 separate training processes with the help of the function accOverHidden. This means
that

50[[1,50] hidden neurons] · 50[average] · 4[input neuron cases] = 10000 (7.1)

ANNs were trained to calculate the results shown in figure 7.3. For more complex ANNs
this would not be feasible because one training process alone can take several hours or
more. In the case of the ANNs examined here, however, the whole process only took

46

7.1. ANN Layout Design and Training

about two hours and the data was significantly improved by this procedure. The same
overall trend of approaching a maximum value as in figure 6.2 can be observed. Maximum
values here lie between an accuracy of about 70% for 682 input neurons and 80% for 31
input neurons. While the layouts with 31 and 62 input neurons show little improvement in
accuracy for more than 15 neurons in the hidden layer, the layout with 341 input neurons
shows an increase in maximum accuracy of about 5% for 30 as opposed to only 15 hidden
neurons. The ANNs with 682 not only showed the weakest accuracy maxima but also
required the highest amount of hidden neurons to reach them. For 35 hidden neurons an
accuracy maximum of about 72% was achieved.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Hidden Neurons

(a) 31 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Hidden Neurons

(b) 62 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Hidden Neurons

(c) 341 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Hidden Neurons

(d) 682 input neurons

Figure 7.3.: Plots of the development of the accuracy after 100 training epochs over the number of
hidden neurons. 31, 62, 341 and 682 input neurons examined.

As in experiment one, it can therefore be concluded that a lower number of input neurons
does not cause a loss in accuracy. In this case the layouts with 31 and 62 input neurons
even show a significantly better performance as the ones with 341 and 682. Since they
reach their accuracy maxima for lower numbers of hidden neurons as well, the logical
choice for the layout was either one with 31 or 62 input neurons. To have some room for
potential future expansions in complexity, the layout with 62 input neurons and 30 hidden
neurons was determined to be used for the implementation on the EyeBot. As experiment

47

7. Way-point Navigation

one showed, the Hokuyo laser sensor generates considerable noise which this overhead
in neurons should be able to cope with, as it did in experiment one.

Another finding that could be made due to the averaging over 50 ANNs per number
of hidden neuron was, that the ANNs reached their maximum accuracy after about 70
training epochs in average. The number of training epochs it took to reach the maximum
was tracked in experiment one as well. However, the number fluctuated too strongly to be
of any use. This value was used in further training processes as an orientation for when to
stop the training.

Since ANN2 achieved exceptional accuracy with the simplest convenient layout of 31
input neurons and five hidden neurons as described in the next subsection, its layout shall
not be further discussed here.

7.1.2. Training

Image 7.4 shows plots of the development of the MSE and the accuracy over the number
of training epochs produced by the function trainAnalysis for ANN1. Like in experiment
one, layouts with 31, 62, 341 and 682 input neurons were compared. Again, like in figure
6.3, the MSE continued to decrease after the respective accuracy maxima were reached.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0

0,05

0,1

0,15

0,2

0,25

0,3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

A
cc

u
ra

cy

M
SE

Training Epochs

(a) 31 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0

0,05

0,1

0,15

0,2

0,25

0,3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

A
cc

u
ra

cy

M
SE

Training Epochs

(b) 62 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0

0,05

0,1

0,15

0,2

0,25

0,3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

A
cc

u
ra

cy

M
SE

Training Epochs

(c) 341 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0

0,05

0,1

0,15

0,2

0,25

0,3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

A
cc

u
ra

cy

M
SE

Training Epochs

(d) 682 input neurons

Figure 7.4.: Experiment 2: Plots of the development of mean square error (blue) and accuracy
(red) over the number of training epochs for ANN1. 31, 62, 341 and 682 input neurons examined.

48

7.1. ANN Layout Design and Training

Above, the number of 70 training epochs was found to be when ANNs of those layouts in
average reach their maximum accuracy. Given, that the plots in image 7.4 only show the
development of one single ANN per number of input neurons, this seems like a reasonable
result.

The training process developed in experiment one was again used for the ANNs for the
implementation of experiment two on the EyeBots. I.e. training until a given accuracy
is reached or until accuracy ceases to improve. In addition a maximum number of 100
epochs was introduced. If the desired accuracy wasn’t reached after this amount of training
epochs, a new training process was started.

The plot produced by trainAnalysis for ANN2 with 31 input neurons and five hidden
neurons shown in 7.5 is a little curious. That is, it actually achieved an accuracy of 100%
on a reference dataset of 15 data pairs for each output. Since this result seemed suspi-
cious, the analysis was repeated several times. However, the results were always similar.
Testing the ANN for data other than the reference data confirmed its exceptional accuracy.
As the plot shows, this accuracy was reach after only 6 training epochs. ANN2 for the im-
plementation on the EyeBot was therefore trained with an accuracy of 100% as stopping
value.

0

0,2

0,4

0,6

0,8

1

1,2

0

0,05

0,1

0,15

0,2

0,25

0,3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
cc

u
ra

cy

M
SE

Training Epochs

Figure 7.5.: Experiment 2: Plots of the development of mean square error (blue) and accuracy
(red) over the number of training epochs for ANN2.

7.1.3. Number of Training Datasets

In figure 7.6 the plot of the development of the accuracy of ANN1 over the number
of training datasets used can be seen. The layout with 62 input neurons and 30 hid-
den neurons determined in the previous subsections was used as input for the function
datasetAnalysis to gain this data. As can be seen, the accuracy increases rapidly until
ten datasets used for training. From then on it keeps increasing, but at a slow pace. 25 as
compared to ten datasets meant an increase in accuracy of about 3%. While in experiment

49

7. Way-point Navigation

one a number of around 12 datasets would have been deemed sufficient for a plot like this,
demands to ANN1’s accuracy were a little higher, as described in the following subsection.
This is why here a number of 25 datasets was determined to be gathered for the training
on physical sensor data.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
cc

u
ra

cy

Number of Training Datasets

Figure 7.6.: Experiment 2: Development of an ANN with 62 input, 30 hidden and 4 output neurons
over the number of datasets per output neuron used as training data.

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

u
ra

cy

Number of Training Datasets

Figure 7.7.: Experiment 2: Development of an ANN with 31 input, 5 hidden and 2 output neurons
over the number of datasets per output neuron used as training data.

Figure 7.7 shows the results of the analysis for ANN2. The accuracy maximum of 100%
was reached for seven sets of training data. It was concluded that a number of ten training
datasets should make sure, that this accuracy is reached reliably.

50

7.2. Application on the EyeBot Robot

7.2. Application on the EyeBot Robot

The autonomous open-world way-point navigation was implemented on the EyeBot robots
based on two ANNs. The first one was responsible for the recognition of four types of
obstacles: walls, corners, small and large objects. When a small or large object was
recognised to block the way, the second ANN was used to determine which way around
it was available. In the case of a detected corner, the robot was backed up and turned
around by the function corner. When a wall was found to be in the way, the function wall

was called to find a way around it. As long as no obstacle was detected, the robot was
directly navigated towards the way-point. A suitable layout for the first ANN was found to
be 62 input neurons and 30 hidden neurons, based on the results of the previous sections.
ANN2 was implemented as an ANN with 31 input, five hidden and two output neurons.
Both were trained on data gathered by the Hokuyo laser sensor in the way described in
Chapter 5. Figure 7.8 shows the flowchart of the navigation process implemented in the
function wpNav.

7.2.1. Movement Commands

The function navigateWoObstacle was called when no obstacles were detected. It nav-
igates the robot towards the way-point. To do so, it gets the robot’s current rotation angle
and the way-point coordinates as parameters. The rotational angle was accessed via the
EyeBot function VWGetPosition. First, the remaining distance is calculated with the help
of the Pythagoras Theorem:

c =
√

x2 + y2 (7.2)

With x and y being the way-point coordinates. Then the angle α and the angle the robot
had to turn, ∆, are calculated as:

α = arcsin(
b
c

) (7.3)

∆ = α− φ (7.4)

To avoid turning angles greater than 180 degrees, the following adaptation is made:

• if (∆ > 180◦): ∆ = −(360◦ −∆)

• if (∆ < -180◦): ∆ = (360◦ + ∆)

The EyeBot function VWTurn was then called with ∆ as the turning angle. Finally the robot
is set into motion by calling VWSetSpeed.

When an object was detected in the way of the robot, avoidObstacle was called. This
function first evaluates ANN2 to determine an available path around the object blocking
the way. Based on the output of ANN2 VWCurve is called to go around the object either
around the right or around the left.

51

7. Way-point Navigation

Figure 7.8.: Flowchart of the navigation process of experiment 2 (way-point navigation). First
communication with the laser sensor, the ANNs and the motor control are initiated. Then, navigation
to the way-point is started and laser sensor readings are continuously checked. If an obstacle is
detected (readings < thr) ANN1 is evaluated to determine the kind of obstacle. Based on its output,
one of four states is chosen. If the robot faces a wall or is stuck in a corner the respective movement
commands are executed. If the robot faces an obstacle, a ANN2 is evaluated to find a way around
the object. Then the object is dodged accordingly.

If both a path on the right and on the left is available, the more direct one to the way-point
is chosen. The function wall was called when a wall was found to be in the robot’s way.
First, the robot is aligned to the wall in a 90 degree angle, then it searches for a way
around the wall. This is done by first going into one direction along the wall. If an opening
is found, the robot is steered through it with the help of the functions cornerR/L developed
in experiment one. If another wall is met, the robot is turned around by 180 degrees with
the help of VWTurn and an opening is searched for in this direction. If the robot ends up in

52

7.2. Application on the EyeBot Robot

a corner, the function corner is called, which backs him up and turns him around by 180
degrees.

7.2.2. Performance

The first set of ANNs trained for ANN1 (see figure 7.8) on data gathered by the laser
sensor for this experiment reached accuracies of 70% to 80%. 25 datasets per output
were used as determined above. While an accuracy of 80% proved to be sufficient for
the maze navigation scheme developed in experiment 1, way-point navigation did not go
smooth with these ANNs. To analyse the ANNs performance in more detail, the function
trainingAnalysis was expanded to count the number of times each individual data
pair was falsely recognized during accuracy computation2. Like this it was found that the
detection of small objects was very inefficient - for all layouts examined, at least 10 out of
the 15 reference data pairs for small objects were falsely recognised.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Training Epochs

(a) 31 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Training Epochs

(b) 62 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Training Epochs

(c) 341 input neurons

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Training Epochs

(d) 682 input neurons

Figure 7.9.: Comparison of accuracy development during training with different sets of training
data.

To address this issue, the new sets of training data were gathered for the small object.
This lead to improvements in accuracy of 10%-20% as can be observed in 7.9. The reason

2As opposed to only count the overall number of falsely recognised data pairs.

53

7. Way-point Navigation

for the poor results with the first set of training data was very likely sloppy work when
collecting the data. This data was collected last out of the training data for all outputs. This
resulted in a slightly tired data gatherer. While for all other outputs close attention was paid
the get datasets of the object from as many different angles and distances as possible, this
was neglected for the small object. The incredible improvement in accuracy of 10%-20%
gained by gathering new, better data goes to show how important the quality, not only the
quantity, of training data is. However, it is hard to define rules as to what makes good
training data. This is something that could be examined more closely in future work.

No performance issues were met with ANN2 (see figure 7.8). The accuracy of 100%
achieved proved sufficient to reliably determine an available path around the detected ob-
stacles.

7.3. Results

The most suitable ANN layout found for ANN1 (see figure 7.8) was a network with 62 input
neurons and 30 hidden neurons. Training was stopped when a desired accuracy of 90%
was reached. This occured in average after about 70 training epochs. The training data
was scaled and shuffled as described in the description of experiment one. By conducting
the analysis described in the previous section, a layout for ANN1 was found that with

62 + 30 + 4 = 96

neurons in total is considerably slimmer than the straightforward choice of the full 682 in-
puts plus hidden and output neurons. On top of that the determined layout even performed
better than the larger ANNs. The fact, that an ANN with 62 input and 30 hidden neurons
was found to be suitable to solve the maze navigation problem in experiment one is cu-
rious. It was interpreted as a hint, that both problems are of very similar computational
complexity. After the performance enhancement achieved by expanding the set of training
data described in the previous subsection, ANN1 reliably detected the different obstacles.
The total amount of neurons in ANN2 of

31 + 5 + 2 = 38

is also much lower than it would have been with the full set of 682 inputs.
In conclusion, the autonomous navigation implemented around the two ANNs solved the

open-world way-point navigation problem satisfyingly. The analysis of the different layouts
conducted throughout experiment one and two allowed to find economic and effective ANN
layouts to base the autonomous navigation strategies on.

54

8. Conclusion

In the course of this thesis a process for the development of ANN based autonomous
navigation was presented. Special attention was payed to the determination of economical
ANN layouts as well as an efficient training process. To achieve this the following methods
were proposed:

• Comparison of ANNs with different numbers of input neurons in terms of accuracy

• Comparison of ANNs with different numbers of hidden neurons in terms of accuracy

• Tracking accuracy during training as stopping condition

• Comparison of ANNs trained on different numbers of training datasets

The examination of layouts of different sizes in neurons offers the obvious advantage of
finding economic layouts. By implementing the presented analyis functions these methods
can be executed efficiently. The generally small size of ANNs necessary to solve similar
problems, allows for a thorough analysis. This is due to the comparably short period of
time required to train the networks. This allows to train a big number of them and compare
them amongst each other. Since, as stated earlier, no general rule for finding suitable
ANN layouts is available, this seems a reasonable approach to finding such layouts. The
ANNs layouted and trained with the help of these methods were effective in solving the
autonomous maze navigation and open-world way-point navigation problems posed. Eco-
nomical ANN layouts in terms of numbers of neurons were found. This resulted in ANNs
that could be trained quickly and required little computational power. Further, overhead in
the amount of training data was avoided. The ANN layouts were first tested in the EyeSim
simulator before being deployed on the robots. The reason for that is the gathering of data
which was much simpler and much less time consuming in the simulator than with the Eye-
Bot robots. Together with the analysis of the required amount of training data, this saved
much time and allowed for the testing of many different ANN configurations. Because of
the time saved by gathering data in the simulator the total workload was therefore actually
decreased by the double implementation in the simulator and on the physical robots.

Use cases for autonomous navigation strategies based on ANNs of similar complexity as
those examined in the course of this thesis would naturally be such with a limited available
computational power. This would be for example small autonomous robots. A limiting
factor is the environment in which the data provided by a laser sensor as the one used
here provides sufficient data for autonomous navigation. For one, the sensor only provides
data of a plain area about 7 cm above the ground. This means obstacles smaller than 7

55

8. Conclusion

cm cannot be detected. Also if one would want to use the sensor to guide along a wall,
the wall would necessarily have to be at least 7 cm high. Environments suitable for the
deployment of autonomous navigation strategies similar to those described in this thesis
are structured spaces. Such spaces can be found for example in indoor environments.
Apart from surveillance robots, autonomous cleaning and maintenance robots could be
navigated based on ANN/sensor calibrations developed in this thesis. Further, the results
of this thesis are planned to serve as the basis for an ANN based road following alogrithm
for a autonomous race car developed at the University of Western Australia.

Based on the layout and training methods presented in this thesis ANNs for many differ-
ent scenarios can be designed in a methodological and efficient manner. Another aspect
that should be fruitful to examine is the quality and composition of the training data nec-
essary to train ANNs with certain characteristics. Since gathering training data is one of
the biggest workloads when training ANNs for new use cases, knowing exactly how much
and what kind of data one needs to train the desired network can be of great economical
benefit.

56

Bibliography

1. Atmel. Atxmega128a1u data-sheet. http://www.atmel.com/images/

Atmel-8385-8-and-16-bit-AVR-Microcontroller-ATxmega64A1U-ATxmega128A1U_

datasheet.pdf. [Online; accessed 8-February-2017].

2. T. Bräunl. EyeBot API. http://robotics.ee.uwa.edu.au/eyebot7/doxygen/

html/index.html, . [Online; accessed 11-November-2016].

3. T. Bräunl. EyeBot Functions. http://robotics.ee.uwa.edu.au/eyebot7/

Robios7.html, . [Online; accessed 30-January-2017].

4. T. Bräunl. EyeSim Simulator. http://robotics.ee.uwa.edu.au/eyebot/doc/

sim/sim.html, . [Online; accessed 11-November-2016].

5. T. Bräunl. Embedded Robotics. Springer-Verlag Berlin Heidelberg, 2003.

6. D.S.O. Correa, D.F. Sciotti, M.G. Prado, D.O. Sales, D.F. Wolf, and F.S. Osorio. Mobile
robots navigation in indoor environments using kinect sensor. In Critical Embedded
Systems (CBSEC), 2012 Second Brazilian Conference on, pp. 36–41. IEEE, 2012.

7. T. Dash, S.R. Sahu, T. Nayak, and G. Mishra. Neural network approach to control
wall-following robot navigation. In Advanced Communication Control and Computing
Technologies (ICACCCT), 2014 International Conference on, pp. 1072–1076. IEEE,
2014.

8. fltk.org. Fltk documentation. http://www.fltk.org/index.php. [Online; accessed
11-February-2017].

9. R. Hecht-Nielsen et al.. Theory of the backpropagation neural network. In Neural
Networks, 1(Supplement-1), pp. 445–448, 1988.

10. L. Hokuyo Automatic Co. URG C Library document. http://urgwidget.

sourceforge.net/html/. [Online; accessed 14-January-2017].

11. L. Hokuyo Automatic Co. Scanning Laser Range Finder URG-04LX-UG01
Datasheet. https://www.hokuyo-aut.jp/02sensor/07scanner/download/

pdf/URG-04LX_UG01_spec_en.pdf, 2009. [Online; accessed 11-November-2016].

12. A.C. Ian Goodfellow, Yoshua Bengio. Deep Learning. The MIT Press, 2016.

57

http://www.atmel.com/images/Atmel-8385-8-and-16-bit-AVR-Microcontroller-ATxmega64A1U-ATxmega128A1U_datasheet.pdf
http://www.atmel.com/images/Atmel-8385-8-and-16-bit-AVR-Microcontroller-ATxmega64A1U-ATxmega128A1U_datasheet.pdf
http://www.atmel.com/images/Atmel-8385-8-and-16-bit-AVR-Microcontroller-ATxmega64A1U-ATxmega128A1U_datasheet.pdf
http://robotics.ee.uwa.edu.au/eyebot7/doxygen/html/index.html
http://robotics.ee.uwa.edu.au/eyebot7/doxygen/html/index.html
http://robotics.ee.uwa.edu.au/eyebot7/Robios7.html
http://robotics.ee.uwa.edu.au/eyebot7/Robios7.html
http://robotics.ee.uwa.edu.au/eyebot/doc/sim/sim.html
http://robotics.ee.uwa.edu.au/eyebot/doc/sim/sim.html
http://www.fltk.org/index.php
http://urgwidget.sourceforge.net/html/
http://urgwidget.sourceforge.net/html/
https://www.hokuyo-aut.jp/02sensor/07scanner/download/pdf/URG-04LX_UG01_spec_en.pdf
https://www.hokuyo-aut.jp/02sensor/07scanner/download/pdf/URG-04LX_UG01_spec_en.pdf

Bibliography

13. C. Igel and M. Hüsken. Improving the rprop learning algorithm. In Proceedings of
the second international ICSC symposium on neural computation (NC 2000), volume
2000, pp. 115–121. Citeseer, 2000.

14. M.A. Jaradat, M.N. BaniSalim, and F.H. Awad. Autonomous navigation robot for land-
mine detection applications. In 2012 8th International Symposium on Mechatronics
and its Applications, pp. 1–5. April 2012. doi:10.1109/ISMA.2012.6215189.

15. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In arXiv
preprint arXiv:1408.5093, 2014.

16. M. Johnson, M. Schuster, Q.V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. Viégas,
M. Wattenberg, G. Corrado et al.. Google’s multilingual neural machine translation
system: Enabling zero-shot translation. 2016.

17. Microsoft. Kinect sensor specifications. https://msdn.microsoft.com/en-us/

library/jj131033.aspx. [Online; accessed 5-March-2017].

18. Y.K. Na and S.Y. Oh. Hybrid control for autonomous mobile robot navigation using neu-
ral network based behavior modules and environment classification. In Autonomous
Robots, 15(2), pp. 193–206, 2003.

19. M.A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

20. S. Nissen. Fast Artificial Neural Network Library. http://fann.sourceforge.net/
fann.pdf, 2004. [Online; accessed 11-November-2016].

21. OpenCV.org. Opencv documentation. http://opencv.org/. [Online; accessed 8-
February-2017].

22. D.A. Pomerleau. ALVINN, an autonomous land vehicle in a neural network. Technical
Report, Carnegie Mellon University, Computer Science Department, 1989.

23. M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learn-
ing: The rprop algorithm. In Neural Networks, 1993., IEEE International Conference
On, pp. 586–591. IEEE, 1993.

24. P. Sibi, S.A. Jones, and P. Siddarth. Analysis of different activation functions using
back propagation neural networks. In Journal of Theoretical and Applied Information
Technology, 47(3), pp. 1264–1268, 2013.

25. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al.. Mastering the game of
go with deep neural networks and tree search. In Nature, 529(7587), pp. 484–489,
2016.

58

http://dx.doi.org/10.1109/ISMA.2012.6215189
https://msdn.microsoft.com/en-us/library/jj131033.aspx
https://msdn.microsoft.com/en-us/library/jj131033.aspx
http://fann.sourceforge.net/fann.pdf
http://fann.sourceforge.net/fann.pdf
http://opencv.org/

Bibliography

26. R. Thirumalainambi and J. Bardina. Training data requirement for a neural network
to predict aerodynamic coefficients. In AeroSense 2003, pp. 92–103. International
Society for Optics and Photonics, 2003.

27. P. Van Turennout, G. Honderd, and L. Van Schelven. Wall-following control of a mo-
bile robot. In Robotics and Automation, 1992. Proceedings., 1992 IEEE International
Conference on, pp. 280–285. IEEE, 1992.

28. A. Visioli. Practical PID Control. Springer-Verlag London, 2006.

29. K. Öfjäll, M. Felsberg, and A. Robinson. Visual autonomous road following by symbi-
otic online learning. In 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 136–143.
June 2016. doi:10.1109/IVS.2016.7535377.

59

http://dx.doi.org/10.1109/IVS.2016.7535377

A. Appendix

A.1. Abbreveations

ANN Artificial Neural Network
API Application Programming Interface
FANN Fast Artificial Neural Network Library
FLTK Fast Light Toolkit
FSM Finite State Machine
GUI Graphical User Interface
IO Input/Output
MSE Mean Square Error
PSD Position Sensitive Device
USB Universal Serial Bus

A.2. Installation URG and Fann on Raspberry

Fann:

• Download from http://leenissen.dk/FANN/wp/download/

• Unzip and navigate to folder in terminal

• $ cmake .

• $ sudo make install

• adapt gccarm file in /home/pi/eyebot/bin

URG:

• Download from http://urgwidget.sourceforge.net/html/

• Unzip and navigate to folder in terminal

• $ make

• $ sudo make install

• adapt gccarm file in /home/pi/eyebot/bin

61

http://leenissen.dk/FANN/wp/download/
http://urgwidget.sourceforge.net/html/

A. Appendix

A.3. Header Files

A.3.1. Simulation

The header file split into the figures A.1, A.2, A.3, A.4, A.5 and A.6 contain the function
headers of the functions implemented for the EyeSim simulator.

#include " eyebot . h "
#include <math . h>
#include < s t d l i b . h>
#include < s t d i o . h>
#include < s t r i n g . h>
#include " fann . h "

#define REFNET " r e f . net " / / f u n c t i o n i n g net f o r re ference
data c o l l e c t i o n

#define indexR 426 / / index o f l ase r sensor value 90 deg to rob i s
r i g h t

#define indexL 256 / / index o f l ase r sensor value 90 deg to rob i s
l e f t

#define NMAN 6 / / number o f neura l net output manouvers
#define PI 3.14159265359
#define LROBI 180 / / l eng th o f the robot
#define THR 1000
#define VLIN 100

/∗∗
Run fann net w i th cu r ren t sensor readings as inpu t

The re ference data f i l e i s used to scale the inpu t data

@param ann fann net to be run
@param da taF i l e re ference data f i l e
@return
∗ /
void runNet (struct fann ∗ann , char ∗da taF i l e) ;

Figure A.1.: Function headers of the functions implemented for the EyeSim simulator (1).

62

A.3. Header Files

/∗∗
Tra in fann net

Tra ins the net u n t i l des i red e r r o r i s reached

@param da taF i l e fann data f i l e to t r a i n the net on
@param netName f i l e name the r e s u l t i n g net i s to be saved to (.

net)
@param e r r o r des i red mean square e r r o r
@return
∗ /
void t r a i n N e t (char ∗dataF i le , char ∗netName , double e r r o r) ;
/∗∗
Run net f o r t e s t data c o l l e c t i o n

Co l l ec t s sensor data and saves i t to a f i l e

@param ann fann net to be run
@param f i lename f i l e to save c o l l e c t e d data to
@return number o f c o l l e c t e d datasets
∗ /
i n t runRefNet (struct fann ∗ann , char ∗ f i lename) ;
/∗∗
Get index of l a r g e s t member i n a <fann_type > ar ray

@param array ar ray to be searched
@return index of l a r g e s t member
∗ /
i n t largestMember (fann_type∗ a r r r a y) ;
/∗∗
Get index of sma l les t member i n a < i n t > ar ray

@param array ar ray to be searched
@return index of sma l les t member
∗ /
i n t smal lest IntMember (i n t ∗ ar ray) ;
/∗∗
Get index of second l a r g e s t member i n a <fann_type > ar ray

@param array ar ray to be searched
@return index of second l a r g e s t member
∗ /
i n t secondMember (fann_type∗ ar ray) ;
/∗∗
I n i t i a t e fann data f i l e

@param f i lename name of f i l e to be i n i t i a l i s e d
@return
∗ /
void i n i t F i l e (char ∗ f i lename) ;

Figure A.2.: Function headers of the functions implemented for the EyeSim simulator (2).

63

A. Appendix

/∗∗
Add header l i n e w i th number o f datasets to fann data f i l e

Has to be done l a s t and sepera te ly because the number o f datasets
needs

to be known

@param f i lename name of f i l e to be f i n i s h e d
@param n number o f datasets i n the f i l e
@return
∗ /
void f i n i s h F i l e (char ∗ f i lename , i n t n) ;
void wr i teData (FILE ∗ f i l e) ;
/∗∗
Go around corner and save data

Co l l ec t s sensor data , w r i t e s i t to f i l e and updates nData

@param s i t u a t i o n 1 − r i g h t corner , 2 − l e f t corner , 3 −
crossroads T , 4 − crossroads r i g h t , 5 crossroads l e f t

@param d i r 1 − r i g h t , 2 − l e f t
@param f i l e f i l e c o l l e c t e d sensor data i s w r i t t e n to
@param nData number o f datasets
@return
∗ /
void re fCorner (i n t s i t u a t i o n , i n t d i r , FILE ∗ f i l e , i n t ∗nData) ;
/∗∗
nav igate d i r e c t l y to next waypoint

assumes no obstac les i n the way

@param i cu r ren t waypoint
@param waypoints ar ray con ta in ing a l l waypoints
@return 0 i f success fu l
∗ /
i n t navigateWoObstacle (i n t i , i n t waypoints [NWP] [2]) ;
/∗∗
Navigate using combinat ion o f waypoints and ann

@param ann fann net to be employed
@param waypoints ar ray con ta in ing a l l waypoints
@return 1 when a l l wps have been reached ; 0 e lse
∗ /
i n t dr iveProcess (struct fann∗ ann , i n t waypoints [NWP] [2]) ;

Figure A.3.: Function headers of the functions implemented for the EyeSim simulator (3).
64

A.3. Header Files

/∗∗
Navigate around a l e f t corner

@param waypoints ar ray con ta in ing a l l waypoints
@param wp cu r ren t waypoint
@return
∗ /
void goAroundCornerL (i n t waypoints [NWP] [2] , i n t wp) ;
/∗∗
Navigate around a r i g h t corner

@param waypoints ar ray con ta in ing a l l waypoints
@param wp cu r ren t waypoint
@return
∗ /
void goAroundCornerR (i n t waypoints [NWP] [2] , i n t wp) ;
/∗∗
Navigates to the middle o f the road and a l i g n p a r a l l e l to i t

@param
@return
∗ /
void a l i gn InM idd le () ;
/∗∗
Al ign p a r a l l e l to a wa l l to the l e f t

@param
@return
∗ /
void a l i g n L e f t () ;
/∗∗
Al ign p a r a l l e l to a wa l l to the r i g h t

@param
@return
∗ /
void a l i g n R i g h t () ;

Figure A.4.: Function headers of the functions implemented for the EyeSim simulator (4).

65

A. Appendix

/∗∗
scales the number o f i n t p u t s o f a fann f i l e by 1 / f a c t o r

the values i n the r e s u l t i n g f i l e are the mean values

@param fi leName fann f i l e to be scaled
@param newFileName f i l e the r e s u l t s are saved to
@param f a c t o r sca l i ng f a c t o r
@return
∗ /
void sca leFannFi le (char ∗ f i leName , char ∗newFileName , i n t f a c t o r)

;
/∗∗
t r a i n s net and computes i t s accuracy f o r every epoch

@param r e f F i l e fann data f i l e w i th re ference data f o r accuracy
computat ion

@param t r a i n F i l e fann data f i l e to t r a i n the net on
@param netName name of the (. net)− f i l e the r e s u l t i n g net i s

saved to
@param r e s F i l e accuracy and MSE f o r every epoch are saved to

t h i s f i l e (f o r ana l ys i s purposes)
@param nHidden number o f hidden neurons the net i s to have
@return
∗ /
void t r a i n A n a l y s i s (char ∗ r e f F i l e , char ∗ t r a i n F i l e , char ∗netName ,

char ∗ resF i l e , i n t nHidden) ;
/∗∗
Analyses i n f l ue n c e of amount o f t r a i n i n g data

Tra ins 50 ANNs f o r [1 . . . 1 5] datasets per output and saves
accuracy mean f o r every

number o f datasets to a . t x t f i l e

@param
@return
∗ /
void datase tAna lys is () ;

Figure A.5.: Function headers of the functions implemented for the EyeSim simulator (5).

66

A.3. Header Files

/∗∗
computes accuracy o f a fann net

@param t e s t F i l e : fann data f i l e w i th re ference data f o r accuracy
computat ion

@param ann : fann net s t r u c t to be tes ted
@param accuracy : var to r e t u r n the accuracy
@param accuracyThr : var to r e t u r n the accuracy w i th th resho ld ing
@return
∗ /
void t es tNe t (char ∗ t e s t F i l e , struct fann ∗ann , f l o a t ∗accuracy ,

f l o a t ∗accuracyThr) ;
/∗∗
Appends cu r ren t Laser Sensor data & des i red NN output to data

f i l e

fopen (fi lenName , " a ") i s used to open the f i l e

@param f i lename name of f i l e to be f i n i s h e d
@param outputs ar ray w i th names f o r the outputs o f the ANN
@return
∗ /
void appendData2File (char ∗ f i leName , char outputs [NMAN] [3 0]) ;
/∗∗
nav igate d i r e c t l y to next waypoint

assumes no obstac les i n the way

@param waypoint coord ina tes to be navigated to
@param phi cu r ren t r o t a t i o n o f the robot
@return 0 i f success fu l
∗ /
i n t navigateWoObstacle (i n t waypoint [2] , i n t phi) ;
/∗∗
Navigate using ANN

@param ann fann net to be employed
@param waypoints ar ray con ta in ing a l l waypoints
@return 1 when a l l wps have been reached ; 0 e lse
∗ /
i n t driveProcessExp1 (struct fann∗ ann) ;
/∗∗
Navigate using combinat ion o f waypoints and ANN

@param ann fann net to be employed
@param waypoints ar ray con ta in ing a l l waypoints
@return 1 when a l l wps have been reached ; 0 e lse
∗ /
i n t driveProcessExp2 (struct fann∗ ann , i n t waypoints [NWP] [2]) ;

Figure A.6.: Function headers of the functions implemented for the EyeSim simulator (6).

67

A. Appendix

A.3.2. Experiment

The header file split into the figures A.7, A.8, A.9, A.10 and A.11 contain the function
headers of the functions implemented for the EyeBot robots.

#include " urg_sensor . h "
#include " u r g _ u t i l s . h "
#include " fann . h "
#include " eyebot . h "

#define PI 3.14159
#define LROBI 100
#define NLASER 682
#define VLIN 100
#define NMAN 2 / / number o f nn output manouvers
#define NWP 4 / / number o f waypoints
#define DCORNER 20 / / d i s t the r o b i moves i n search o f edge i n

goAroundCornerR / L [mm]
/∗∗ Vehic le Movement Commands ∗∗ /
/∗∗
PI c o n t r o l veh i c l e d is tance from wa l l

Cont ro ls veh i c l e d is tance from l e f t−hand s ide wa l l to keep i t
c lose to the middle o f maze pathway .

@param urg sensor handle
@param timestamp timestamp handle
@param data ar ray o f s ize NLASER to tmpsave sensor readings
@param indexL index of urg d is tance value 90 deg to the l e f t
@param indexR index of urg d is tance value 90 deg to the r i g h t
@param rese t 1 i f c o n t r o l sum should be rese t
@return 0 i f success fu l
∗ /
i n t p i S t r a i g h t (u rg_ t ∗urg , long ∗ time_stamp , long ∗data , i n t

indexL , i n t indexR , i n t phiDes , i n t rese t) ;

Figure A.7.: Function headers of the functions implemented for the EyeBot robots (1).

68

A.3. Header Files

/∗∗
Go around l e f t corner

@param urg sensor handle
@param timestamp timestamp handle
@param data ar ray o f s ize NLASER to tmpsave sensor readings
@param indexL index of urg d is tance value 90 deg to the l e f t
@param indexR index of urg d is tance value 90 deg to the r i g h t
@param phiDes ph i o f the veh i c l e a t s t a r t
@return 0 i f success fu l
∗ /
void cornerL (urg_ t ∗urg , long ∗ time_stamp , long ∗data , i n t indexL

, i n t indexR , i n t phiDes) ;

/∗∗ Sensor Funct ions ∗∗ /
/∗∗
P lo t cu r ren t sensor readings i n po la r coord ina tes

@param urg sensor handle
@param timestamp timestamp handle
@param data ar ray o f s ize NLASER to tmpsave sensor readings
@param data_old ar ray o f s ize NLASER c o n s i s t i n g o f the l a s t p l o t

’ s sensor readings
@return 0 i f success fu l
∗ /
void LaserP lo t (u rg_ t ∗urg , long ∗ time_stamp , long data [] , long

data_old []) ; / / P l o t Sensor measurements data [] on LCD
/∗∗
Get cu r ren t sensor readings

@param urg sensor handle
@param timestamp timestamp handle
@param data ar ray o f s ize NLASER to tmpsave sensor readings
@return number o f readings i f successfu l , −1 i f f a i l e d
∗ /
i n t LaserGet (urg_ t ∗urg , long ∗data , long ∗ t ime_stamp) ;
/∗∗
I n i t i a t e communication wi th the l ase r sensor

@param urg sensor handle
@return 0 i f successfu l , −1 i f f a i l e d
∗ /
i n t open_urg_sensor (urg_ t ∗urg) ;

Figure A.8.: Function headers of the functions implemented for the EyeBot robots (2). 69

A. Appendix

/∗∗ ANN Funct ions ∗∗ /
/∗∗
Navigat ion Routine f o r experiment 1

@param ann fann ANN ob jec t to be used f o r nav iga t i on
@param urg sensor handle
@param timestamp timestamp handle
@param data ar ray o f s ize NLASER to tmpsave sensor readings
@param indexL index of urg d is tance value 90 deg to the l e f t
@param indexR index of urg d is tance value 90 deg to the r i g h t
@param da taF i l e name of re ference data f i l e f o r ANN
@return 0 i f success fu l
∗ /
i n t navRoutineExp1 (struct fann∗ ann , urg_ t ∗urg , long ∗ time_stamp

, long ∗data , i n t indexL , i n t indexR , char ∗da taF i l e) ;
/∗∗
Navigat ion Routine f o r experiment 2

@param ann fann ANN ob jec t to be used f o r nav iga t i on
@param urg sensor handle
@param timestamp timestamp handle
@param data ar ray o f s ize NLASER to tmpsave sensor readings
@param indexL index of urg d is tance value 90 deg to the l e f t
@param indexR index of urg d is tance value 90 deg to the r i g h t
@param da taF i l e name of re ference data f i l e f o r ANN
@return 0 i f success fu l
∗ /
i n t navRoutineExp2 (struct fann∗ ann , urg_ t ∗urg , long ∗ time_stamp

, long ∗data , i n t indexL , i n t indexR , char ∗da taF i l e) ;

Figure A.9.: Function headers of the functions implemented for the EyeBot robots (3).

70

A.3. Header Files

/∗∗
Evaluate ANN

Return ar ray o f p o s s i b i l t y values f o r each outputneuron

@param ann fann ANN ob jec t to be used f o r nav iga t i on
@param da taF i l e name of re ference data f i l e f o r ANN
@param urg sensor handle
@param timestamp timestamp handle
@return Array o f p o s s i b i l t y values f o r each outputneuron
∗ /
fann_type∗ evalNet (struct fann ∗ann , char ∗dataF i le , u rg_ t ∗urg ,

long ∗ t ime_stamp) ;
/∗∗
Evaluate ANN

Return ar ray o f p o s s i b i l t y values f o r each outputneuron

@param ann fann ANN ob jec t to be used f o r nav iga t i on
@param urg sensor handle
@param timestamp timestamp handle
@param data ar ray o f s ize NLASER to tmpsave sensor readings
@param indexL index of urg d is tance value 90 deg to the l e f t
@param indexR index of urg d is tance value 90 deg to the r i g h t
@param da taF i l e name of re ference data f i l e f o r ANN
@return Index of most l i k e l y outputneuron
∗ /
i n t runNet (struct fann ∗ann , char ∗dataF i le , u rg_ t ∗urg , long ∗

time_stamp , long ∗data , i n t indexL , i n t indexR) ;
/∗∗ U t i l i t y Fuct ions ∗∗ /
/∗∗
Append cu r ren t sensor readings to data f i l e

Creates f i l e i f i t does not e x i s t ; ove rwr i t es e x i s t i n g f i l e

@param urg sensor handle
@param timestamp timestamp handle
@param data ar ray o f s ize NLASER to tmpsave sensor readings
@param da taF i l e name of the d a t a f i l e to generate / ove rwr i t e
@return 0 i f success fu l
∗ /
i n t appendData2File (urg_ t ∗urg , long ∗ time_stamp , char ∗da taF i l e)

;

Figure A.10.: Function headers of the functions implemented for the EyeBot robots (4). 71

A. Appendix

i n t i n i t (u rg_ t ∗urg , i n t ∗ indexL , i n t ∗ indexR , i n t green) ; / /
i n i t i a t e sensor and v−omega d r i ve ; r e t u r n −1 i f f a i l e d , 1 i f
success fu l

void te rmina te (urg_ t ∗urg) ;
/∗∗
Get index of l a r g e s t member i n a <fann_type > ar ray

@param array ar ray to be searched
@return index of l a r g e s t member
∗ /
i n t largestMember (fann_type∗ ar ray) ; / / get p o s i t i o n o f l a r g e s t

member i n a <fann_type > ar ray
/∗∗
Get index of second l a r g e s t member i n a <fann_type > ar ray

@param array ar ray to be searched
@return index of second l a r g e s t member
∗ /
i n t secondMember (fann_type∗ ar ray) ;
/∗∗
P r i n t cu r ren t p o s i t i o n (x , y , ph i)
@return
∗ /
void pr in tPos () ;
/∗∗
Navigate d i r e c t l y to next waypoint , assuming no obstac les i n the

way

@param waypoint way−po in t i n ca r tes ian coord ina tes (x , y)
@return 0 i f success fu l
∗ /
i n t navigateWoObstacle (i n t waypoint [2]) ;

Figure A.11.: Function headers of the functions implemented for the EyeBot robots (5).

72

A.4. Example Program

A.4. Example Program

The program in figure A.12 allows to plot the current laser sensor measurements in polar
coordinates, run the maze navigation described in chapter 6 and gather laser sensor data
for ANN training.

#include " eyebot . h "
#include " netLaser . h "
i n t main () {

i n t indexL , indexR ; / / index o f 90 and 270 deg measurement
i n t mean, k =0;
long ∗data = NULL, time_stamp , data_old [NLASER] ;
urg_ t urg ;
struct fann ∗ann = fann_c rea te_ f rom_ f i l e (" phys i ca l . net ") ;
VWSetPosition (0 ,0 ,0) ;
i f (i n i t (&urg , &indexL , &indexR , 0) <0) { return 1 ; }
data = (long ∗) mal loc (urg_max_data_size (& urg) ∗ sizeof (

data [0])) ;
while (1) {

LCDMenu(" P lo t " , " Navigate " , " Capture " , " Speed 0 ") ;
k=KEYGet () ;
switch (k) {

case KEY1: LaserGet (&urg , data ,& time_stamp) ;
LaserP lo t (&urg , data , data_old) ;
break ;

case KEY2: navRoutine (ann ,& urg ,& time_stamp , data ,
indexL , indexR , " r e f . data ") ;

break ;
case KEY3: appendData2File (&urg , &time_stamp , "

sensor . data ") ;
break ;

case KEY4: VWSetSpeed (0 ,0) ;
break ;
} } }

Figure A.12.: EyeBot program that allows to plot the current laser sensor measurements in polar
coordinates, run the maze navigation described in chapter 6 and gather laser sensor data for ANN
training.

73

	Introduction
	Theoretical Principals
	Artificial Neural Networks
	Layout
	Training
	Overfitting
	Choices in Layouting and Training

	PID Control

	Hardware and Software
	EyeBot Robot
	Hokuyo Laser Sensor
	EyeSim Simulator
	FANN API

	Update of the EyeSim API
	Different LCD Image Sizes
	Different Camera Resolutions
	Laser Sensor Model

	Methodology
	Data Collection
	ANN Analysis Functions
	MSE and Accuracy Tracking during Training
	Accuracy Tracking over Number of Hidden Neurons
	Accuracy Tracking over Number of Training Datasets

	Maze Navigation
	ANN Layout Design and Training
	Number of Input Neurons
	Number of Hidden Neurons
	Training
	Number of Training Datasets
	Input Data Manipulation

	Application on the EyeBot Robot
	Movement Commands
	Performance

	Results

	Way-point Navigation
	ANN Layout Design and Training
	Number of Hidden and Input Neurons
	Training
	Number of Training Datasets

	Application on the EyeBot Robot
	Movement Commands
	Performance

	Results

	Conclusion
	Appendix
	Abbreveations
	Installation URG and Fann on Raspberry
	Header Files
	Simulation
	Experiment

	Example Program

