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Abstract 
Digital images are merely matrices, with each element representing a single pixel. There are 

many image processing routines that consist of performing the same operation on each pixel 

of an image, such as brightness adjustments and edge detection. Performing the same 

operation on large sets of data is exactly what parallel processing is great for, allowing huge 

increases in performance. This project examined the use of a Single Instruction Multiple Data 

(SIMD) microprocessor for the parallel processing of images. The SIMD microprocessor as 

the name suggests is designed to perform a single instruction on any amount of data (for each 

pixel in this case) in a single operation cycle.  

The design and preliminary simulation of the SIMD microprocessor was done using Retro, a 

graphical circuit design tool. Retro had to first be further developed and improved to allow 

the simulation of an SIMD microprocessor. The circuit was then developed and simulated, a 

number of image processing routines were simulated to show the performance gains over a 

non-parallelised processor. Retro was also extended to allow the generation of VHDL from 

the graphical circuit. VHDL stands for VHSIC Hardware Description Language and is a 

coding language used for electronics design. The VHDL for a single Processing Element has 

been generated and tested, however the VHDL generation for the entire SIMD system still 

requires further work. Once the VHDL generation is complete the full circuit can be 

synthesised and simulated and finally implemented on a Field-programmable gate array 

(FPGA) in the future. 
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Nomenclature 
SIMD  Single Instruction Multiple Data 

VHDL  VHSIC Hardware Description Language  

FPGA  Field-programmable gate array 

SISD  Single Instruction Single Data 

MISD  Multiple Instructions Single Data 

MIMD  Multiple Instructions Multiple Data 

AWT  Abstract Window Toolkit 

PE  Processing Elements 

CPU  Central Processing Unit 

ALU  Arithmetical Logic Unit 

ACCU  Accumulator 

PC  Program Counter 

LSB  Least Significant Bit 

HEX  Hexadecimal 

BRR  Branch on Ready 

Retro  Register-Transfer Object Hardware Simulation 

 

  



1. Introduction 

1.1 Motivation 
Image processing is a very large field with endless real world applications. Face recognition, 

object tracking and image restoration are all examples of image processing applications. The 

majority of image processing applications are however based on relatively simple operations 

performed on a large amount of data. The amount of data is ever increasing as the resolution 

(size) of images capable of being captured by modern digital cameras is always increasing. 

The hardware required to process images from modern cameras does exist. However there are 

many applications that require the use of a microprocessor to perform image processing. The 

main advantage of microprocessors is the mobility they provide due to their reduced size and 

power consumption compared with standard processing units. There are modern 

microprocessors that can already handle some image processing. However the current 

generation of general purpose microprocessors do not offer the performance required to 

process large images quickly. Therefore there is a need for a dedicated image microprocessor 

capable of processing large images very quickly. Fast processing of larger (higher resolution) 

images allows increased accuracy in applications such as object tracking and facial 

recognition, as well as enabling the use of real-time image processing. 

A dedicated image microprocessor can be much simpler than a general purpose 

microprocessor while having the processing power necessary for fast image processing. 

There are many ways of increasing processing power however the most efficient for image 

processing is the addition of parallel processing. Image processing relies on performing the 

same operation on a large number of data elements, hence it is highly parallelisable. One 

approach to parallelisation is Single Instruction Multiple Data (SIMD) architecture. This 

architecture allows any number of parallel processing elements to be harnessed to vastly 

increase the performance of image processing routines. 

Using a graphical logic simulator to design the SIMD system offers great usability and 

flexibility. The system can be quickly prototyped and modified to perform as needed. The 

additional challenge when simulating an SIMD system is that the simulator software has to be 

able to handle modular design. There are a number of commercial products that are capable 

of these tasks however these are generally expensive and unnecessarily complex for the 

design of relatively simple systems. Retro is a logic simulator developed at the University of 

Western Australia (UWA). It was not originally developed to handle SIMD systems however 



the source code is freely available to allow extensions. Retro is used as a teaching tool at 

UWA so any extensions made would also benefit future student users. This was the main 

reason for choosing to extend Retro as opposed to using existing software packages. 

1.2 Objective 
This project has two main focuses; the design of an SIMD microprocessor for image 

processing and, the improvement and extension of Retro. The SIMD microprocessor was 

designed to meet two primary goals, provide highly parallelised computational power for 

high performance image processing and be as simple as possible to minimise the number of 

gates needed (hence minimising size). The SIMD design was achieved by utilising the 

additions made to Retro. 

 The extensions made to Retro revolved around two major additions. Firstly was the ability to 

modularise designs, this would allow existing circuits to be represented as 'modules' in 

another circuit. Secondly was the ability to generate VHDL from the graphical circuit in 

Retro. The main goal for the VHDL was to have the behavioural simulation of the generated 

VHDL to be as close as possible to matching the logical simulation performed within Retro. 

This would ensure the design in Retro was translated into VHDL correctly. Synthesising the 

generated VHDL would require platform-dependent changes and hence was not a primary 

objective in the VHDL generation. The changes required to synthesis the generated VHDL 

have to be implemented by the user. Along with these changes a number of fixes and 

improvements were required for Retro. 

1.3 Outline 
The project was broken down into the following stages: 

1. Retro - addition of modular design capabilities 

2. SIMD - design & simulation of the SIMD microprocessor in Retro 

3. Retro - addition of VHDL generation capabilities 

4. SIMD - behavioural simulation of VHDL generated for SIMD microprocessor 

Further background and a look into related work already carried out in this area will be 

provided in Chapter 2. The Retro additions, covering stages 1 & 3 above will be examined in 

Chapter 3. Chapters 4 & 5 will look at the design of the SIMD microprocessor and its 

simulation (both in Retro and VHDL) respectively. Finally the results of the SIMD design 

and the Retro additions will be summarised in Chapter 6. 



2. Background & Related Work 

2.1 Digital Images 
Digital images are essentially a simple 2D matrix of constant values. Each element in this 

matrix is simply a numerical constant indicating the intensity, for example 0 - 255 when 

using an 8-bit intensity. Colour images simply have 3 matrices, one for each colour channel, 

for example RGB has a red, green and blue matrix again containing intensities in each matrix 

element. The combination of these three separate matrices allows for a possible 24 million 

different colours to be produced using 8-bit intensities.  

Original Image 

 
8x Magnification 

 

Red                           Green                                  Blue             

                                   

Figure 1 - Digital Image Breakdown 

Figure 1 shows the breakdown of a digital image. The original image can be seen at the top, 

this is then put under 800% magnification which allows each individual pixel to be 

distinguished. This is then split into the three separate RGB channels. Each of the three RGB 

matrices is a matrix with a 0-255 value in each cell as mentioned before, with 0 represented 

by black and 255 represented by white. Having established that digital images are simple 

matrices this now leads into why parallel processing is so powerful for image processing. 



The majority of image processing routines consist of performing a few simple operations on 

each pixel value in the image matrix. The key is that we are performing the same operation 

over and over for each pixel. This is where parallel processing excels. By using multiple 

processing elements to perform the same operation in parallel, the time taken to process a 

large set of data (in this case pixels) can be drastically reduced.  

Figure 2 shows a 11x11 8-bit greyscale image, the power of parallel processing can be shown 

by examining the number of operations required to brighten this image using an SIMD 

microprocessor and a traditional single core processing unit. 

                         

Figure 2 - Brightening Example 

For a traditional processor with a single execution thread, the operations have to be done 

sequentially, for simplicity assume a single operation is carried out for each pixel. This 

equates to 121 operation cycles. Taking an SIMD microprocessor with 11 processing 

elements, the number of operation cycles for the same procedure is only 11. Although this a 

very simplified example the huge reduction in operation cycles required can be seen. Most 

SIMD microprocessors will have many more processing elements than demonstrated in this 

example, thus will have a significant improvement in performance. 

 

 

 

 



2.2 SIMD 
SIMD architecture is one of the four computer architectures under the classification known as 
Flynn's taxonomy [1]. The four architectures are: 

Single Instruction Single Data (SISD) - All instructions are carried out sequentially with a 
single control unit and single processing element. 

Single Instruction Multiple Data (SIMD) - Single control unit provides same instructions to 
any number of processing elements, which then carry out the operations in parallel. 

Multiple Instructions Single Data (MISD) - Multiple instructions carried out on a single data 
element.  

Multiple Instructions Multiple Data (MIMD) - Multiple different instructions carried on 
multiple data elements in parallel. 

 Single Instruction Multiple Instruction 
Single Data SISD MISD 

Multiple Data SIMD MIMD 
Figure 3 - Flynn's taxonomy 

Image processing is about performing the same operation on a large number of data elements, 
as mentioned before. SIMD is therefore the perfect architecture for the task. Figure 4 gives an 
overview of how SIMD works. 
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Figure 4 - SIMD Overview 

There are two main components to the SIMD system; the Control Unit which provides the 

instructions and the Processing Elements that carry out the instructions. The design of both is 

important to maximise performance and there has already been a number of SIMD 

microprocessors designed for image processing which will be examined in section 2.4. 



2.3 Retro 
Retro is an open source graphical logic simulator that was originally developed in 1999 at 

UWA. It is a powerful teaching tool as it is quick and easy to use. Logic gates (and, or etc) 

and more complex devices (multiplexors, registers etc) are placed using a drag-and-drop 

interface, as shown in Figure 5. 

 

Figure 5 - Retro Interface 

Once the designs are laid out in Retro they can be simulated using a simple time-step 

simulation. The propagation of signals can be viewed at any user chosen time and are 

displayed visually within the circuit, with single bit lines using colours to display their 

relative value and a simple display component being used to display the value of buses as 

shown in Figure 6. 

 

Figure 6 - Retro Simulation 

 

 



2.4 Related Work 
The concept of SIMD has been around for a long time and nearly all modern processors have 

some variation of SIMD capability. There has been a lot of research into SIMD over the 

years. SIMD was used in some of the first attempts at building massively parallel 

supercomputers. The ILLIAC IV was the first attempt at creating a supercomputer using 

SIMD technology[2]. The ILLIAC IV was however unfortunately not a great success, with 

cost blowouts, it ended up only having 64 processing elements versus the original 256 it was 

planned to have[3]. It did however show the potential of parallel processing and helped spark 

more research into this field. There were a few more SIMD supercomputers built such as the 

Connection Machine which saw some degree of success [4]. However with the rise of 

inexpensive MIMD processors, supercomputers moved away from SIMD architecture. 

SIMD was still being utilised, however now for more specific applications. Intel began 

including SIMD technology in their Pentium® processors in 1997 when they introduced the 

MMX™ technology [5]. This was an example of an SIMD unit attached to a general purpose 

processor to enable high performance multimedia processing. There has also been a number 

of SIMD microprocessors designed for image processing dating back to 1990 and even 

earlier. In 1990, Athertorn proposed the use of multiple SIMD 'clusters' to form a MIMD 

array for real-time image processing [6]. Since then there have been many more SIMD based 

image processors designed for various purposes. 

One point of differentiation between the proposed designs over the recent years is how the 

processing elements (PEs) were designed. Some designs revolve around having small PEs 

meaning a large number could fit on a single chip, for example Kurafuji et al. proposed the 

MX-2 Core with up to 2048 4-bit PEs per unit [7]. Whereas more general purpose SIMD-

based machines with large PEs have also been shown to provide good performance such as 

the Ambric parallel processing array with 336 32-bit processors examined by Osorio et al in 

2009 [8]. This project looked at designing processing elements with a select number of 

advanced features that have not been implemented in previous work, such as the ability for 

PEs to handle nested conditional statements and conditional loops while striving to keep each 

PE as small as possible. 

 

 



The network layout of the PEs is important to how the system works. There has been some 

research into different layouts. The two dimensional mesh network, also known as a NEWS 

grid, seen in figure 7 is the most common. Other networks such as shuffle-exchange networks 

and binary n-cubes offer performance gains in some applications [9]. The two dimensional 

mesh was the chosen network layout for this project. 

 

Figure 7 - 2D Mesh Network 

The NEWS grid allows each PE to transfer data between its North, East, West and South 

neighbours [10]. This again allows for gains in performance for image processing and will be 

explained in detail in Chapter 4. 

 

 

 

 

 

 

 

 

 

 



3. Retro  

3.1 Retro Overview 
Retro is a Java based open-source graphical logic simulator as mentioned in Chapter 2. It uses 

a drag-and-drop interface to place components, which are contained within a 'Library'. Each 

component contains information on its simulation model, connections and how to display it. 

Once components are placed, they are joined by wires (a single bit) or buses (collection of 

bits). Finally the circuit can be simulated using the simulation controls which consist of Stop, 

Go, Step and Pause functions. Throughout the simulation the signals are shown graphically 

on the circuit.  

Retro was suited well to the creation of a relatively simple system such as the SIMD 

microprocessor. However it did lack features necessary for the design to be completed 

efficiently and effectively. The addition of the ability to modularise designs was required and 

is discussed in Section 3.3. The other major addition was the ability to generate VHDL 

directly from the graphical circuit in Retro, this is discussed in detail in Section 3.4. Firstly 

however it is necessary to look at how the code behind Retro works, this can be split up into 

the Interface, Circuit files, Components & Simulation. 

 

 

 

 

 

 

 

 



3.2 Retro 

3.2.1 Interface 
The Retro interface is implemented using the Java Abstract Window Toolkit (AWT) 

framework [11]. It consists of a Menu bar, a Tool bar, Component Selection bar and the 

Working area. 

 

 

Figure 8 - Retro Interface 

The interface was first designed in 1999 so there are many features expected in modern 

software that are not present, such as keyboard shortcuts and Undo/Redo. The main issue 

with the current interface is that the AWT framework has been deprecated for the new Java 

Swing framework. The Java Swing framework offers simpler and more streamlined dialogs 

and one of the recommendations for future work is the porting of Retro from the AWT 

framework to the Swing framework, which will be discussed more in Chapter 5. There were a 

few small issues with getting the interface to work on Java 7 however apart from that the 

interface was sufficient for this project. 
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3.2.2 Circuit Files 
Retro has its own very simple file format - named the 'toy' format. It stores properties of each 

component that is placed in the circuit. The string below shows the format of the information 

for a single component. 

sim.lib.gates.GateAND|null|4|6|45|66|90|true|0.0|2|false|00| 

The above example is of a AND gate, it begins with the class name (sim.lib.gates.GateAND), 

then the component name which is currently unused (null), then the basic properties that are 

common for the majority of components - size, position, angle and whether it is flipped 

([4,6],[45,66],90,true respectively). Finally are the component specific properties for the 

AND gate these are the propagation delay, number of inputs, whether the output is inverted 

and whether any of the inputs are inverted (0.0,2,false,00 respectively).  

A single .toy file has a single string for each component (including wires and buses) each 

separated by # character. The beginning of the .toy file has properties about the version of 

Retro, grid and simulation properties and the total number of components. This format is 

simple and works well hence no changes were made during the course of this project. 

3.2.3 Components 
All components in Retro have their own Java class in the source code. Some extend a more 

general class, such as the MultiInputGate class which is extended by all the single bit logic 

gates (AND, NAND, OR etc). Each components class has to implement the following 

important methods (and a number of others that won't be discussed here): 

x evaluateOutput 
x paint (variations for angle and flipped) 
x createEnginePeer 

The evaluateOutput and creatEnginePeer methods will be explained further in section 3.2.4. 

The paint method is simply how the component is drawn. All the drawing for the existing 

components was fine, apart from a few small tweaks that were made to the size & labelling of 

a couple of components. 

 

 

 



3.2.4 Simulation 
The simulation of the current circuit is handled by the SimulationEngine class. The 

SimulationEngine keeps track of a number of objects (see Appendix 1.0) throughout the 

simulation. These are: 

� components - EnginePeerList  object, this is a list of all the EnginePeer objects for 

each of the components in the current circuit. 

� nodes - NodeList object, a list of all Node objects in the current circuit. 

� currentTime - double object,  holds the current simulation time. 

� currentAffected - EnginePeerList object, this is a list of all the EnginePeer objects that 

have changed during the current time step. 

� mostRecent - NodeList object, contains list of all Node objects that have changed in 

the current time step. 

� displaymods - EnginePeerList object, list of all Modules in the circuit - used for 

updating the displays of Modules, will be discussed further in Section 3.3. 

There are main classes of objects used in the simulation then - Nodes and EnginePeers. 

Section 3.2.2 discussed that each component implements the createEnginePeer method. At 

the beginning of the simulation this method is called for each component in the current 

circuit. The returned EnginePeer objects are added to an EnginePeerList and then passed to 

the SimulationEngine. 

The EnginePeer class contains references to NodeList objects inputPins & outputPins, 

representing the input and output connections of the component, a reference to its 

corresponding EngineModule parent class which is the component class (e.g. GateAND) and 

a double value named the wakeUpTime. This refers to the time which this EnginePeer will 

signal a change in its outputs - this is only used in components that has outputs that change 

without input changes, namely the Clock component. 

The Node class contains references to the Wires and Junctions that are connected at this node, 

an EnginePeerList of the components connected at this node, as well as Signal objects for the 

past and future signals at this node. Finally each Node also has a unique integer ID, this is 

used in the VHDL generation and will be discussed in Section 3.4.  

 



There a three modes of simulation, Step, SlowPlay and Play. Step goes to the next time when 

there is a change in at least one signal in the system. SlowPlay advances by the time specified 

in the simulation properties. Play is a continuous simulation and will go on until the user 

stops the simulation. 

When a signal changes, each EnginePeer connected to the relevant Node has its 

simulateComponent method called, this in turns passes the current time and inputs to the 

evaluateOutput method for the corresponding component. The evaluateOutput sets the new 

values (if they are changed) of the Nodes that are attached to the output of that component. 

To simulate Modules that contain another circuit it was then required to have the 

EnginePeers and Nodes loaded for each Modules internal circuit and connected correctly the 

existing circuit. This will be discussed in the next section. 

3.3 Modular Design 

3.3.1 Module Concept & Components 
To design an SIMD system we need to be able to simulate multiple PEs executing 

simultaneously. This would require having many copies of the PE circuit, making the entire 

circuit very hard to read and cumbersome to work with within Retro.  To tackle this, the 

ability to modularise circuits within Retro was added.  

The concept to modularise designs in Retro was to take an existing circuit and represent it as 

a 'black box' inside another circuit. The 'black box' is a representation of the circuit where the 

inputs are fed into the black box, these then stimulate a function (in this case the internal 

circuit) which generates an output that is then received from the black box [12]. 

     

 

Figure 9 - Black Box 

To do this within Retro required a number of additions. Firstly a Pin component would need 

to be added which would enable communication between the circuit inside the black box and 

the external environment. Secondly a Module component was required to represent the black 

box and have the relevant input/output buses correlating to the Pin components of the internal 

black box circuit. Finally the way Retro simulates components was altered to allow for the 

Input Output Black Box 



modules to load their respective internal circuits and make the connections corresponding to 

the Pins. 

 

Figure 10 - Pin Component 

The Pin component was fairly simple to design. It has a single input and is displayed as 

shown in Figure 10. The label above the Pin is displayed on the Module as in Figure 11. 

There can be any number of pins in a circuit.  

 

Figure 11 - Module Component 

The Module component is more complex. Each time a Module is selected from the menu, it 

opens a load dialog. From this dialog, the user chooses the file that the Module is 

representing. Retro then looks at the file, checks if it is valid and then loads the relative Pin 

components. The Pin components are loaded and then the corresponding connections are 

displayed around the Module as shown in Figure 11. Each Pin has a number, which can be 

edited in the internal circuits design. This number corresponds to its position on the Module 

representation. Starting at the left pin (WEST in Figure 11) is Pin 1, Pins 2, 3 etc. are 

displayed in a clockwise pattern. If the internal circuit has more than 4 pins all the remaining 

pins are lumped together in the diagonal bus seen at the bottom left of Figure 11. 

Additionally there is a special single bit line which can be accessed by using a Pin number of 

99. This is displayed as a single bit line extending diagonally from the top right corner as 

shown in Figure 11. 

The Module has a shortened version of the filename of the circuit it represents, PE00 in 

Figure 11. This label is replaced when the circuit is simulated. The user can choose for the 

label to show the current value of any Register within the internal circuit. Additionally there 

is the option to have this value represented as an 8-bit greyscale colour (00 - FF) which 



colours the whole face of the Module when it is being simulated. The module drawing code 

can be found in Appendix 1.1. 

 

Figure 12 - Module Colour Simulation 

3.3.2 Module Simulation 
Section 3.2.4 discussed that the simulation consists of EnginePeers and Nodes which are 

loaded from the current circuit. To simulate modules, the internal circuit for each module has 

to be loaded and the EnginePeers and Nodes from that circuit created and added to the parent 

circuits SimulationEngine. There are a number of ways to do this, however the chosen 

method tried to use the already developed code for loading circuits & generating the 

EnginePeers & Nodes as much as possible.  

The first stage was to load in the internal circuit for each module. The approach to this was 

relatively simple, whenever the simulation begins it goes through each component and 

generates the EnginePeer. When a Module component is found firstly the current circuit is 

saved to a temporary file. The generateEnginePeer method is then called for the Module 

component and this starts the loading of the internal circuit. The EnginePeerList and 

NodeList for the internal circuit is then loaded using the standard load methods. Then the task 

of connecting the Pin components in the internal circuit to the correct Nodes in the parent 

circuit begins. Each EnginePeer in the internal circuit is looped through and checked to see if 

it has a Pin component connected to its input or output. If a Pin component is found, the 

connection is replaced with a connection to the relevant port on the Module component in the 

parent circuit. The EnginePeers for the Register components in the internal circuit are also 

stored, to enable the reading of their value for the Module component displays during 

simulation. After all the connections are setup correctly, the EnginePeers and Nodes from the 

internal circuit are added to the SimulationEngine. The parent circuit which was saved 

temporarily is then re-loaded and displayed. The full module loading & setup code can be 

found in Appendix 1.2. 



3.3.3 VHDL Generation 
VHSIC Hardware Description Language (VHDL) is a language used to describe electronic 

hardware designs. It has a fairly basic structure, beginning with library and use statements for 

importing libraries, then there are components which each have an entity which defines the 

ports of the component and the architecture which defines the components behaviour.  

To enable automatic generation of VHDL, the use of port mapping within VHDL was 

utilised. This allows a single component to be defined and then an instance of it be created 

and signals mapped to its input/output ports. Figure 13 shows the definition of a simple 

single-bit 2-input AND gate as generated from Retro. 

                                               

Figure 13 - VHDL for AND gate 

The approach to generating VHDL was straight forward. Each component was given an extra 

method writeVHDLEntity. This method writes the VHDL entity & architecture for the 

component. This method also checks if the entity for this component has already been 

written, due to the use of port mapping only one VHDL entity for a specific component needs 

to be written as multiple instances with different connections can be created. Excerpts of the 

main VHDL generation code can be found in Appendix 2.0. 

There are a number of variables within the VHDL for each component that had to be 

programmed in. These included the number of inputs and whether any input/output is 

inverted. Depending on these and other properties the VHDL would be different so the logic 

had to be coded into Retro to allow all permutations of components and their respective 

properties generate the correct VHDL. Figure 13 shows one of the simplest examples of gates 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
 
entity AND_ent_2 is 
port( x0: in std_logic; 
x1: in std_logic; 
F: out std_logic); 
end AND_ent_2; 
 
architecture behav of AND_ent_2 is 
begin 
F<=x0 and x1; 
end behav; 



in Retro, other components such as the Multiplexer, RAM had much more complex VHDL 

and hence a considerable portion of the project was dedicated to VHDL generation.  

The port mapping of signals to each entity was complicated by the use of buses, bus-splitters 

inside Retro. Instead of trying to use std_logic_vectors (vectors of single bit std_logic signals 

in VHDL) to mirror the representation of buses and deal with splitting etc. each single bit line 

was pulled from Retro and used in the VHDL. This was done by giving each Node a unique 

ID. A Node can, for this purpose just be seen as a single bit signal. By simply using the 

unique ID to create a corresponding std_logic signal in the VHDL this can then be directly 

used in the port mapping and will exactly match the connections in Retro. Figure 14 shows 

the port mapping of a simple AND gate. 

            

Figure 14 - VHDL Port Mapping 

The VHDL is written to two files - main.vhd contains the Main entity and the port mapping 

of all the components, gates.vhd contains the generated entities for all the components in the 

Retro circuit. The file output is handled by VHDLExporter which calls the writeVHDLEntity 

for each component and generates the port mapping VHDL. The VHDL export is accessed 

from the VHDL menu in the Menu bar as seen in Figure 8. Appendix 3.0 shows the VHDL 

generated for a complete SIMD Processing Element. 

 

 

 

 

 

 

architecture struct of main is 
 signal temp1: std_logic; 
 signal temp2: std_logic; 
 signal temp3: std_logic; 
begin 
 comp_1 : entity work.AND_ent_2 port map (temp1,temp2,temp3); 
end struct; 



4. SIMD Image Microprocessor Design 

4.1 SIMD Design Overview 
SIMD systems have two main components as introduced in Section 2.2. These are the 

Control Unit, also known as the Sequencer CPU and the Processing Elements (PEs). The 

Sequencer CPU controls the flow of the SIMD system, including the passing of instructions 

to the PE network and storing and stepping through the main program. The PEs is where the 

bulk of the computations are carried out. The system can be seen as a standard CPU with the 

Control Unit being the Sequencer CPU and the Arithmetical Logic Unit (ALU) being the PE 

network. However this isn't completely accurate as the sequencer CPU has basic ALU 

functions and the PEs have some control functions. The connections between Sequencer CPU 

and the PE network are laid out in Figure 15.  

 

Figure 15 - SIMD Structure 

There is a single instruction bus connecting the Sequencer CPU to all the PEs. Each PE 

receives the same instruction from the Sequencer CPU each operation cycle. The PEs in 

Figure 15 are connected in a 2D grid network, each PE has access to its immediate 

neighbours. The reason behind this arrangement will be further explained in Section 4.2.  

There are three main factors to consider when designing a SIMD system [13]: 

� Processing Element Design (Simplicity vs. Cost) 

� PE network topology 

� Instruction flow 



With any electronic system there is the trade off between simplicity and cost. This is very 

important in the design of the PEs in an SIMD system. The more complex the PEs are, the 

more operations they can perform, however complexity adds cost in SIMD bearing in mind 

the major cost is the size of each PE. The larger each PE is, the fewer PEs can fit on a single 

chip. There is then the trade-off between having less PEs capable of more advanced 

operations or more PEs with less capability allowing increased parallelisation of operations. 

This project focussed on adding a number of advanced features to the PE design (explained in 

detail in section 4.3), without adding any unnecessary gates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.2 Sequencer CPU 
The design of the Sequencer CPU was based of one of the CPU design examples provided for 

Retro [14]. It is a relatively simple standard CPU design, with a few notable tweaks. It 

contains the following major features: 

� ALU 
� Control Unit 

� Status Register 

Figure 16 shows the Sequencer CPU design as it appears in Retro.  

 

 



 

 

Figure 16 - Sequencer CPU Design 

 



4.2.1 Sequencer CPU - ALU 

 

Figure 17 - Sequencer CPU - ALU 

The ALU for the Sequencer CPU contains the following basic functions: 

� OR 
� AND 

� NOT 
� ADD 

The ALU is limited to these basic arithmetic & logical operations as all the operations to be 

carried out on the input data will be performed by the PEs. Additional to these basic 

functions, the ALU also has the standard operations for loading values (constants or from 

RAM) into the accumulator (ACCU) and writing values from the accumulator to the RAM.    



4.2.2 Sequencer CPU - Control Unit 

 

Figure 18 - Sequencer CPU - Control Unit 

The Control Unit is the focus of the Sequencer CPU. It contains standard control unit 

features, handling the loading of operations and operands from the program RAM. The 

control unit also has the capability to branch on various conditions.  

The branch operations are: 

� Branch Ahead  
� Branch on Ready 
� Branch on Carry  

� Branch on Zero 
� Branch on Negative 

 

 

 



The Branch Ahead operation is an unconditional branch which moves the Program Counter 

(PC) (the pointer to the current instruction) ahead a number of operations specified in the 

branch instructions operand. Branch on Carry, Zero & Negative are conditional branches to a 

specific PC position using the corresponding flags in the Status Register. The Branch on 

Ready is used to branch when all the PEs indicate they are 'Ready', this will be explained 

further in Section 4.3. 

The Control Unit also handles the communication between the Sequencer CPU and the PEs. 

Figure 16 shows the highlighted interconnection buses, these being the two data buses 

connected to the bottom-right and top-left PE in the PE grid (marked green on Figure 16) and 

the instruction bus that connects to all the PEs (marked red on Figure 16). The data bus is a 

simple 8-bit bus in this design. The instruction bus is an 18-bit bus, is it made up of the 7-bit 

operation code, 8-bit operand and the clock signals for the PEs, as shown in Figure 19 below. 
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Figure 19 - Sequencer CPU - Instruction Bus Bits 

4.2.3 Instructions & Sequencer Op Codes 
The PE Op code is the last 7 bits of the full 8-bit instructions that the Sequencer CPU 

receives from the program in memory. The 8-bit instruction is split up further as shown in 

Figure 20 below. 

 

 

0 1 2 3 4 5 6 7 
 

 

Figure 20 - Sequencer CPU - Instruction Breakdown 

Bit 0 Sequencer/PE - this bit indicates whether the instruction is for the Sequencer CPU or 

 for the PE, as per the following: 

 0 - Sequencer 

 1 - PE 

PE Instruction 

Operand 

Clock
 

Sequencer / PE PE Op Code 

Sequencer Op Code Input Type 



Bit 1-2 Input Type - these two bits are used to set the input type for the instruction. The 

 following input types are possible: 

 00 - Constant (Compatible with Sequencer & PE Instructions) 

 01 - Memory (Compatible with Sequencer & PE Instructions) 

 10 - Neighbour (Compatible with PE only) 

 11 - Neighbour + Sequencer (Compatible with PE only) 

 Constant simply implies the operands value should be used directly, Memory uses the 

 operand as the memory address to get the corresponding value from the RAM. The 

 Neighbour input type is only available for PE instructions and uses the PEs 

 Neighbour's current accumulator value as the input for the instruction. The operand 

 for Neighbour input type instruction is used to indicate which neighbour is to be 

 accessed. This is corresponding operands are as below: 

 00 - Right 

 01 - Left 

 02 - Down 

 03 - Up 

Bit 3-7 PE Op Code - bit 3 to 7 are the Op code, for PE the Op code is 5 bits (using all 3-7 

 bits) however for the Sequencer, the Op code is only 4 bits (using bits 4-7). The 

 possible Op codes for the PEs will be detailed in Section 4.3. The possible Op codes 

 for the sequencer are shown in Figure 21. All of the Sequencer Op codes are 

 compatible with constant or memory input types. 

 

 

 

 

 

 

 

 



OPCODE INSTRUCTION INPUT  DESCRIPTION OPERATION 
0 NOP - No Operation - 
1 STORE imm Store ACCU at input 

address 
RAM(imm) <- ACCU 

2 LOAD imm Load constant from 
memory address into 
ACCU 

ACCU <- RAM(imm) 

3 ADD imm or addr ADD to ACCU 
(without Carry in) 

ACCU <- ACCU + <data> 

4 NOT - Invert ACCU ACCU <- ACCUതതതതതതത 
5 AND imm or addr AND with ACCU ACCU <- $&&8�Â��GDWD! 
6 OR imm or addr OR with ACCU ACCU <- ACCU + <data> 
7 BRA imm Branch Ahead pc <- pc + K 
8 NOP - No Operation - 
9 NOP - No Operation - 
A NOP - No Operation - 
B BRR imm Branch on Ready 

 
IF (rdy==1) 
    pc <- K 

C BRC imm Branch on Carry IF (C==1) 
    pc <- K 

D BR? imm Currently unused flag - 
E BRZ imm Branch on zero IF (Z==1) 

    pc <- K 
F BRN imm Branch on negative IF (N==1) 

    pc <- K 
 

Figure 21 - Sequencer CPU - Op Codes 

4.2.4 Status Register 
 

 

Figure 22 - Sequencer CPU - Status Register 

The status register for the Sequencer CPU stores the following flags: 

� Zero (Z) 
� Negative (N) 
� Carry (C) 

Each of these flags has a corresponding branch statement. 



4.2.5 Clock 
The Sequencer CPU also contains the clock and pulse generator for the system. This is fed to 

components in the Sequencer CPU itself and also fed through the instruction bus to the PEs. 

This ensures all PEs receive the same synchronous clock. 

 

Figure 23 - Sequencer CPU - Clock 

 

4.2.6 Memory  
The Sequencer CPU has a single memory chip which stores the main program, and can be 

written to during operation. The RAM chip is shown below in Figure 24, however is not 

included in the Sequencer CPU overview in Figure 16 as it is modularised to allow quick 

swapping of programs during simulation runs in Retro. 

 

Figure 24 - Sequencer CPU - Memory 

 

 

 

 

 

 



4.2.7 Program Flow 
The main program is stored in a single memory chip. Each execution cycle consists of the 

following: 

� Read Op code from memory at address (PC) 

� Write Op code to Code Register 

� Increment PC by 1 

� Read Operand from memory at address (PC) 

� Write Operand to Address Register  

� Perform Operation 

� Increment PC by 1 

This is all completed in a single clock cycle. The Op code and its corresponding Operand are 

hence stored one after the other, that is memory address 00 is an Op code and 01 is the 

corresponding Operand. 02 & 03 are Op code and Operand respectively and so on. There is 

enough address space for large programs as an 8-bit address is used. Due to the large address 

space there is no set address range for the main program (although it has to start at 00). 

Therefore the writer of the program is responsible for not overwriting memory containing the 

main program etc. 

 

 

 

 

 

 

 

 

 

 



4.3 Processing Element Design 
The design of the Processing Elements was based on providing all the basic arithmetical and 

logical operations required as well as building in some more advanced functionality. The 

advanced functions that were developed were the capability for PEs to handle nested 

conditional statements as well as conditional looping.  

The ability to perform nested conditional statements can be useful in a number of image 

processing routines. One such example is colour object tracking. The true condition of a 

nested IF statement can also be thought of a single IF with an AND between the conditions. 

For colour tracking we may for example want to find pixels that have a blue intensity more 

than 50 and are also greater than twice the green intensity in an RGB image. This can be 

accomplished via the following program: 

 if (blue) > 50 { 
  if (blue) > (2 * green) { 
   ACTION 
  } 
 } 

To perform this without nested statements would require the following operations: 

� Compute IF statement (blue > 50) result 
� STORE operation to write the result to memory 
� Compute second IF statement (blue > 2 * green) result 
� AND the stored result with the current result 
� SET the logic register with the ANDed result 
� Perform Action 

To perform this on the PEs designed in this project require far fewer operations as many of 

the above operations are built directly into the circuit. This means there are far fewer 

operation cycles required to perform the two IF statements. The statements required on the 

designed PE are: 

� Compute IF statement (blue > 50) result 
� SHIFT Activity register left 
� Compute second IF statement (blue > 2 * green) result 
� Perform Action 

This is a relatively simple and specific example. The nested conditional statements however 

have a large range of possible uses, allowing more complex logic to be carried out on the 

PEs. 



The PE design also allows the use of conditional loops. This can be used in many image 

processing routines to simplify programs. The ability to perform While loops enables the PEs 

to easily perform image processing functions such as searching for an object and thinning. 

Thinning is a morphological operation used to remove additional pixels in a binary image to 

'thin' groups of white (or black) pixels, while not removing any pixels that would split a 

group of pixels [15]. Thinning is performed in an iterative fashion, the two 'structuring 

elements' shown in Figure 25 are applied at every pixel. 

0 0 0     0 0 

 1     1 1 0 

1 1 1     1  
 

  Figure 25 - Structuring elements for Thinning 

 If the pixel and its surrounding pixels exactly match the 'structuring element' it is set to 0 

(black), otherwise it is not changed. The two 'structuring elements' and all 90ƕ rotations of 

each are applied at each pixel for each iteration. The application of the above structuring 

elements can be used for 'skeletonisation' as shown in Figure 26.  

 

Figure 26 - Skeletonisation using Thinning Example [15] 

The following is an overview of how this procedure could be implemented using the SIMD 

system: 

� STORE current pixel value (from Accumulator) in PE Memory 
� Apply each of the structuring elements (and their rotations) at each pixel (done in 

parallel for each pixel) and result stored in Accumulator 

� IF (accumulator value) != (pixel value from PE Memory): BRANCH back to step 2 

 



 

 

This is equivalent to the following Do-While loop: 

   Do { 
    //apply structuring elements 
   } While(new value != old value) 
 

There are many more applications of conditional looping. It is also useful for simply making 

programs much shorter. The conditional loop and nesting are both made possible by the 

inclusion of an Activity register within the PE design. This register will be examined in detail 

in Section 4.3. 

The Processing Element design contains the following major features: 

� ALU 

� Status Register 

� Activity Register 

� Memory 

� Interconnections 

Figure 27 shows the complete PE design in Retro. 

 

 

 



 
Figure 27 - Processing Element Design 



4.3.1 PE Design - ALU 

 

Figure 28 - PE Design - ALU 

The ALU for the PEs contain more functions than the Sequencer CPU as they are responsible 

for the major computations. The functions included are: 

� EQUAL 
� LESS THAN 
� OR 
� NOT 
� AND 
� ADD 

The ALU also contains standard operations for loading values into the Accumulator, and 

storing current Accumulator values in Memory. The ld (Load/Set) signal for the Accumulator 

in the as shown in Figure 28 is driven by the AND of a clock signal and one other signal. 

This other signal is the 'Enable' bit, it is the set to '1' only when all the bits in the Activity 

register are '1'. This will be further explained in Section 4.3.3. 

 

 

 

 



4.3.2 PE Design - Status Register 
 

 

 

Figure 29 - PE Design - Status Register 

The PEs have a Status Register with the same flags as the Sequencer CPU, that is Zero, 

Negative and Carry. These flags can be accessed from the Activity register to perform 

conditional statements based on the status of the flags. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.3.3 PE Design - Activity Register 
 

 

 

Figure 30 - PE Design - Activity Register 

The Activity register was the main variation from existing PE designs. The Activity register 

is connected to a multiplexer which loads the result from the selected conditional statement - 

this can be from logical compares from the ALU (EQUAL, LESS THAN) or flags from the 

Status register. The multiplexer also has the inverted value of the current least significant bit 

(LSB) in the Activity register as an input. Note that only the LSB of the Activity register is 

written during a load from the multiplexer. The other bits are unchanged during a load. The 

Activity register has two other operations available apart from the load. These are SHIFT 

LEFT and SHIFT RIGHT, these operations simply shift all the bits in the register one place 

in the corresponding direction. The Input bit for both the left and right shift is a '1' which is 

the default value for all the bits in the Activity register. 

The PE is considered 'Active' when all the bits within the Activity register are '1'. This 

'Active' state enables writing to the Accumulator. If a PE is 'Inactive', all operations will not 

write to the Accumulator. This is the basis for how conditional statements are handled. 

 

 

 



The operations used to perform conditional statements are best explained through an 

example. The example below is a simple two-level nested IF statement, it is performing a 

version of data binning - which is essentially the grouping of a range of data to a singular 

value [16]. 

  IF (ACCU < 7F) { 
   IF (ACCU < 40) { 
    ACCU = 00 
   } ELSE 
    ACCU = 55 
   } 
  } ELSE { 
   IF (ACUU < C0) { 
    ACCU = AA 
   } ELSE 
    ACCU = FF 
  } 

The above code can be executed on the 3x3 PE grid in Figure 31 by using the following 
operations. 

F0 88 65

45 38 2F

20 15 05
 

Figure 31 - PE If Example 

 

 

 

 

 

 



LESSTHAN C0 - The first operation setups up the outside IF condition, this sets the PEs 
with Accumulators values greater than C0 to 'Inactive'. That is, the LSB of the Activity 
register is set to 0 if ACCU > C0 otherwise it is set to 1. Figure 32 shows which PEs are now 
inactive. 

F0 88 65

45 38 2F

20 15 05
 

Figure 32 - PE If - LESSTHAN C0 

The Activity register for the inactive PEs is shown below. 

1 1 1 1 1 1 1 0 
 

ACTIV_SHIFTLEFT - The second operation shifts the Activity register for all PEs one 
place to the left. The new shifted in value is a '1'. This shift represents the move into another 
level of conditional statement. The Activity register for the PEs marked inactive in the first 
operation now become: 

1 1 1 1 1 1 0 1 
 
The state of all PEs is still the same as in Figure 32. 

LESSTHAN 40 - Now the first nested IF is carried out, an 'Inactive' PE corresponds to a PE 
whose Activity register is not equal to FF (all 8 bits equal to 1). The result of these operations 
marks the PEs shown in Figure 33 inactive.  

F0 88 65

45 38 2F

20 15 05
 

Figure 33 - PE If - LESSTHAN 40 

 



LOAD 00 (CONSTANT) - The first LOAD operation is now performed, only the 'Active' 
PEs as shown in Figure 33 will write the value to their Accumulator. The result is shown in 
Figure 34. 

F0 88 65

45 00 00

00 00 00
 

Figure 34 - PE If - LOAD 00 

ACTIV_INVERT - The INVERT operation inverts the LSB of the Activity register. This is 
moving to the ELSE in an IF statement. The result of this invert causes the Activity register 
of the active PEs to now be: 

1 1 1 1 1 1 1 0 
 
The PEs that were marked 'Inactive' in nested loop are now 'Active' (Activity register value 
equal to FF). The PEs that were marked 'Inactive' in the parent IF statement are still inactive 
as there Activity registers are now as below: 

1 1 1 1 1 1 0 1 
 
The '0' bit that resulted from that first LESSTHAN statement is still present and hence the PE 
is still marked inactive. The active PEs are now shown in Figure 35. 

F0 88 65

45 00 00

00 00 00
 

Figure 35 - PE If - ACTIV_INVERT 

 

LOAD 55 (CONSTANT) - Another LOAD operation is again performed on the active PEs.  

 

 



ACTIV_SHIFTRIGHT - The Activity register is now shifted right, returning to the upper 
level of conditional statement.  

ACTIV_INVERT - The Activity register is then inverted, entering the ELSE of the original 
IF statement. The active PEs are now shown in Figure 36. 

F0 88 55

55 00 00

00 00 00
 

Figure 36 - PE If - ACTIV_INVERT 

The nested IF..ELSE inside the parent ELSE statement is then performed, using the same 
operations as used for the first nested IF..ELSE. 

The remaining operations are: 
 ACTIV_SHIFTLEFT 
 LESSTHAN C0  
 LOAD AA 
 ACTIV_INVERT 
 LOAD FF 
 
The final PE grid is shown in Figure 37. 

FF AA 55

55 00 00

00 00 00
 

Figure 37 - PE If - Final Result 

The Activity register thus provides some very powerful capabilities for performing a large 
number of various conditional operations. 



4.3.4 PE Design - Memory 

 

Figure 38 - PE Design - Memory 

Each PE has its own Memory chip for writing and reading temporary data. 

4.3.5 PE Design - Interconnections 

 

Figure 39 - PE Design - Interconnections 

The design of the interconnections between each PE was important. The main design 

requirement was to have two-way communication on each interconnection. This could either 

be achieved using two buses for each connection, one for each direction of data flow or using 

tri-state gates to control the flow of data. The use of tri-state gates was the chosen approach 

as this allows the use of a single bus for each connection. Figure 39 shows the final design 

using the tri-state gates. When the tri-state gates are off (disconnected) the connection is 

acting as an input, all 4 neighbour connections go into a single multiplexer that is controlled 

from the Input Type argument in the current instruction as explained in Section 4.3.2. When 

the tri-state gates are on (connected), the current Accumulator value is fed through the 

relevant connection. All the shift operations (LEFT,RIGHT,DOWN & UP) enable input from 

the opposite direction to the shift and enable output for the direction of the shift, i.e. LEFT 

shift enables the right (East) input connection and the left (West) output connection. 



4.3.6 PE Design - PE Instruction Set 
The following table contains all the PE Op Codes currently available, as discussed in Section 
4.2.3 the PE Op Code is combined with the Input Type & Sequencer/PE bit codes to form a 
full instruction. 

OPCODE INSTRUCTION INPUT DESCRIPTION OPERATION 
0  NOP - - - 
1 LOAD imm, addr 

or PE 
Load constant 
from memory 
address into 
ACCU 

ACCU <- 
RAM(imm) 

2 ADD imm, addr 
or PE 

ADD to ACCU 
(without Carry in) 

ACCU <- ACCU + 
<data> 

3 AND imm, addr 
or PE 

Invert ACCU ACCU <- ACCUതതതതതതത 

4 NOT - AND with ACCU ACCU <- $&&8�Â�
<data> 

5 OR imm, addr 
or PE 

OR with ACCU ACCU <- ACCU + 
<data> 

6 ADDC imm, addr 
or PE 

ADD to ACCU 
(with Carry) 

ACCU <- ACCU + 
<data> + 1 

8 STORE imm Store ACCU at 
input address 

RAM(imm) <- 
ACCU 

11 LESSTHAN imm, addr 
or PE 

Compare <data> 
to ACCU, result 
stored in Activity 
register 

ACTIV(0) <- ACCU 
< <data> 

12 EQUAL imm, addr 
or PE 

Compare <data> 
to ACCU, result 
stored in Activity 
register 

ACTIV(0) <- ACCU 
== <data> 

13 ACTIV_INVERT - Invert the LSB of 
the Activity 
register  

ACTIV(0) <- 
ACTIV(0)തതതതതതതതതതതത 

14 ACTIV_CARRY - If Carry set LSB 
of Activity 
register to 1 

ACTIV(0) <- C 

16 ACTIV_ZERO - If Zero set LSB of 
Activity register 
to 1 

ACTIV(0) <- Z 

17 ACTIV_NEGATIV
E 

- If Negative set 
LSB of Activity 
register to 1 

ACTIV(0) <- N 

18 STATUS_SHIFTL
EFT (STATUS) 

- Bit-shift Activity 
register one place 
to the left, 
bringing in a 1 
from the left 

ACTIV(i) <- 
ACTIV(i-1)  

19 SHIFT RIGHT 
(STATUS) 

- Bit-shift Activity 
register one place 
to the right, 
bringing in a 1 
from the right 

ACTIV(i) <- 
ACTIV(i+1) 



5. SIMD Image Processing 
This chapter will examine the application of the complete SIMD system design to a number 

of various different routines useful in Image Processing. The Retro simulation results will be 

provided, along with the expected results. The performance increase over a sequential (SISD) 

system will also be examined for each routine. 

 

A 5x5 PE grid will be used for all the following examples. For simplicity, the examples will 

not cover the loading of data into each PE. All values shown on the PEs are in HEX. Note 

that the value "--" is shown on a number of PEs, this is what Retro defines as an 'undefined' 

value that comes from taking data from a wire which isn't driven by any source, in reality 

these wires would simply be connected to ground and the value would be a '0'. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.1 Summation 
Summation is important in a wide range of image processing routines, such as mean and sum 

of absolute differences calculations[17]. Summation is a great example of the benefit of a 

parallel system over a sequential system. Summing all 25 values in the following example on 

a sequential system would take 25 separate ADD operations, that is MxN operations for a 

MxN sized image. Compare this to the M+N-2 operations required using the designed SIMD 

microprocessor, the difference is staggering for large amounts of data. 

 

Figure 40 - Summation - Input 

The above is the example input, with each PE having a value of 01. The values are summed 

by first summing up each row and then summing the last column, which now contains the 

row sums. The final output is held in the top-left PE, which can then be shifted into the 

Sequencer CPU. The following is the complete instruction set required to complete the 

summation: 

 



 

Instructions 

STORE F0 
LOAD PE 01 (SHIFT LEFT) 
ADD F0 
LOAD PE 01 (SHIFT LEFT) 
ADD F0 
LOAD PE 01 (SHIFT LEFT) 
ADD F0 
LOAD PE 01 (SHIFT LEFT) 
ADD F0 

 
STORE F0 
LOAD PE 03 (SHIFT UP) 
ADD F0 
LOAD PE 03 (SHIFT UP) 
ADD F0 
LOAD PE 03 (SHIFT UP) 
ADD F0 
LOAD PE 03 (SHIFT UP) 
ADD F0 

 

The output value is shown below and is as expected 25 (dec) = 19 (hex). 

 

Figure 41 - Summation - Output 



5.2 Thresholding 
Thresholding is a simple example of using the PEs ability to compute IF statements. 

Thresholding is used to convert greyscale images into binary images, based on a specific 

threshold value. For this example, a threshold value of 80(hex) was used, this means all 

values below 80 will be set to 00 and all above or equal to 80 will be set to FF. 

 

Figure 42 - Thresholding - Input 

Performing Thresholding on the designed PEs is very simple due to the inbuilt conditional 

logic handling each PE has. The instructions are simply: 

Instructions 

LESSTHAN 80 
LOAD 00 
STATUS_INVERT 
LOAD FF 

 
 



The output can be seen in below, as expected values less than 80 became 00 and values above 

or equal to 80 became FF. 

 

Figure 43 - Thresholding - Output 

 

 

 

 

 

 

 

 

 



5.3 Nested-If 
The ability to perform nested conditional statements was discussed in Chapter 4. Here a 

simulation example of a simple nested IF statement will be provided.  

The example implements the following procedure (values in hex): 

IF (ACC < 07) { 
 IF (ACC < 05) 
  ACC = 01 
 ELSE 
  ACC = 05 
} ELSE 
 ACC = 03  

The example input is shown below. 

 

Figure 44 - Nested-If - Input 

 

 



The instructions are shown below, as explained in Chapter 4 the Activity register is used to 

store conditional results and shifted to jump into/out of nested statements. 

Instructions 

LESSTHAN 07 
ACTIV_SHIFTLEFT 
LESSTHAN 05  
LOAD 01 (CONST) 
ACTIV_INVERT 
LOAD 02 (CONST) 
ACTIV_SHIFTRIGHT 
ACTIV_INVERT 
LOAD 03 (CONST) 

 
The output of the procedure is shown below. 
 

 
 

Figure 45 - Nested-If - Output 

  



5.4 While Loop 
Conditional looping was again discussed in Chapter 4, here a simple While loop was 

implemented and simulated on the designed system. The procedure that was implemented 

and the required instructions are below: 

WHILE ( ACCU < 0F) { 
 ACCU = ACUU + 1 
} 

Instructions 

 [00] LESSTHAN 0F 
 [01] ADD 01 
 [02] BRR 00 

Note that for Branch statements (BRR) it branches to the specified address, the address has 

been shown to the left of each instruction. The Branch in this example simply goes back to 

the LESSTHAN statement (address 00). The input for this example is shown below. 

 

Figure 46 - While - Input 



The output is shown below, as expected all the PEs values are now 0F except for the last row 

whose values were already above 0F at the beginning. 

 

Figure 47 - While - Output 

  



5.5 Increase Image Brightness 
Increasing the brightness of an image is a very common image processing task. This is 

usually done by a simple addition, there is however the issue of overflow if a value goes 

above the maximum value. In digital logic, overflow has to be detected and acted upon as it 

will usually not cause any errors so it can easily go undetected. This is done by having the 

Overflow flag in the Status Register of each PE as discussed in Chapter 4.  

In this example, the current Accumulator value will be doubled and if Overflow occurs the 

Accumulator will be set to FF. Take note that all values are in HEX again. The instructions 

required are: 

Instructions 

 STORE F0 
 ADD F0 (ADDR) 
 STATUS_CARRY 
 LOAD FF (CONST)  

The input for example shown below: 

 

Figure 48 - Image Brightness - Input 



To double the ACCU value the current value is first stored and then added to the current 

value. The Overflow flag is then checked, disabling any PEs which had no overflow from the 

previous addition and enabling any that did. The LOAD FF is then carried out on all active 

PEs (those which had Overflow). The result and image representation are shown below: 

 

Figure 49 - Image Brightness - Output 

                       

Input Image                                                        Output Image 



5.6 Sobel Edge Detection 
The previous examples show the basic functionality of the SIMD system and some basic 

image processing applications. This example looks at a complex image processing routine - 

Sobel Edge Detection. Sobel edge detection is used to find edges in an image by using the 

Sobel operator [18]. The Sobel operator is the following matrices: 

-1 0 1    1 2 1 

-2 0 2    0 0 0 

-1 0 1    -1 -2 -1 
Gx                                                    Gy 

The first matrix is for detecting vertical edges and the second is for detecting horizontal 

edges. The combination of the results of applying these matrices then gives the final Sobel 

values using the following equation. 

|ܩ| = ටܩ௫ଶ +  ௬ଶܩ

The above equation is hard to compute in discrete logic so the following approximation is 
used: 

|ܩ| = ௫ܩ| | + ௬ܩ| | 

The matrices are applied by positioning the middle element (highlighted in red above) at the 

current pixel and then multiplying the surrounding pixels by the values in the matrices and 

finally summing all those values together to give the Sobel value at that pixel.  

The parallelisation of the SIMD system and the PE grid shine in this example. 25 Sobel 

operations can be carried out in parallel in a 5x5 PE grid, which greatly increases 

performance. This is made possible by having the PEs connected in a NEWS grid as 

discussed in Chapter 4. The grid matches the matrices so we can simply shift and store each 

neighbouring value and then add the required multiples of each neighbour. This means for 

any number of PE elements the number of instructions required to apply the Sobel operators 

is exactly the same. The required instructions are shown on the next page. 

The majority of the instructions have already been explained. Of note is the use of the 

STATUS_NEGATIVE operation to check if the Negative flag is set, if it is the magnitude of 

each PE with a negative value is computed by inverting the current bits and then 

incrementing the result by one.



Instructions 

STORE ff 
SHIFT UP 
STORE c1 
SHIFT LEFT 
STORE c2 
LOAD ff 
SHIFT UP 
SHIFT RIGHT 
STORE c0 
LOAD ff 
SHIFT DOWN 
STORE a1 
SHIFT LEFT 
STORE a2 
LOAD ff 
SHIFT DOWN 
SHIFT RIGHT 
STORE a0 
LOAD ff 
SHIFT LEFT 
STORE b2 
LOAD ff 
SHIFT RIGHT 
STORE b0 
 
LOAD 00 (CNST) 
ADD c0 
ADD c1 
ADD c1 
ADD c2 
STORE 10 
LOAD 00 (CNST) 
ADD a0 
ADD a1 
ADD a1 
ADD a2 
INVERT 
ADD_WITHCARRY ADDR 10 
STATUS_NEGATIVE 

INVERT 
ADD 01 (CNST) 
ACTIV_SHIFTRIGHT 
STORE F0 
 
 
LOAD 00 (CNST) 
ADD a0 
ADD b0 
ADD b0 
ADD c0 
STORE 20 
LOAD 00 (CNST) 
ADD a2 
ADD b2 
ADD b2 
ADD c2 
INVERT 
ADD_WITHCARRY ADDR 10 
STATUS_NEGATIVE 
INVERT 
ADD 01 (CNST) 
ACTIV_SHIFTRIGHT 
STORE f1 
 
ADD f0 (ADDR) 

  



The input for the Sobel operation is shown below. 

 

Figure 50 - Sobel - Input 

These input values represent the following image. 

 
Input Image 

 

 

 



 

The output after the Sobel operation is shown below. 

 

Figure 51 - Sobel - Output 

The Sobel operator works better on larger images where the boundaries have much less effect 
on the output image. The outer edge of pixels after the application of the Sobel operator is 
usually discarded as the boundary produces values that are not useful. The image 
representation of the above output values is shown below. 

 
Output Image 

  



6. VHDL Simulation 
Once the Retro simulations were completed and the design finalised the VHDL generation 

began. This included the time consuming job of implementing all the Retro components in 

VHDL and allowing the Java code that generated the VHDL to handle each component and 

its respective properties as explained in Section 3.3.3. Due to this, the full SIMD system was 

unable to have its VHDL simulated. However the VHDL generated for each PE has been 

checked and simulated successfully.  

6.1 PE Simulation 
To simulate the VHDL, the free version of Vivado Design Suite by Xilinx was used [19]. 

Vivado Design Suite is a very powerful tool for digital system design, for this project it was 

used only for the behavioural simulation of the VHDL generated from Retro. 

It is difficult to fully show the functionality of the VHDL as the simulation is now a lower 

level, looking at each signal rather than the high level graphical overview Retro produced. 

However the following examples show the major features of the PEs were simulating 

successfully using the generated VHDL. The full VHDL generated for the PE can be seen in 

Appendix 3.0. 

 

 

 

 

 

 

 

 

 

 



6.1.1 Addition 
The following example shows a simple incremental addition. The operand is set to 01 

(CONSTANT) and the PE Op Code for addition (02) is given. The simulation results are 

shown below. 

 

Figure 52 - VHDL Simulation - Addition 

The above waveforms show the addition of 01 to the Accumulator value each time the clock 

(signal 'clk') pulses. The clock begins at 100ns and from there ACCU value can be seen to 

increase by 1 each clock cycle. The input operand and Op Code can also be seen on the above 

waveform view. 

 

 

 

 

 



6.1.2 Activity Register 
This example shows the functionality of the VHDL of the Activity register, that is simply a 

single 8-bit shift register. The loading and shifting of values into the register are simulated, 

showing the capabilities required to handle nested conditional statements as examined in 

Section 4.3.3. 

 

Figure 53 - VHDL Simulation - Activity Register 

The simulation above first shows the loading of a 0 bit into the LSB of the Activity register 

(the 0 would come from a logical operation within the ALU or Status Flag). Next, the shifting 

left (entering nested conditional statements) and the shifting right (exiting nested statements) 

of the bits within the Activity register can be observed. 

6.1.3 Load from Memory 
The following example shows the loading of a value from the RAM chip into the 

Accumulator. There are a number of steps to this, firstly the PE Op Code is set to 01 (LOAD) 

and the Input Type is set to 01 (MEMORY). The Input Operand is then used for the memory 

address, as can be seen in Figure 54 the data output from the RAM chip changes when the 

address input is changed (Input Operand & RAM Output on simulation results). 

Finally the Accumulator performs the LOAD when the clock pulse occurs, bringing in the 

value into the Accumulator register as shown in Figure 55. 



 

Figure 54 - VHDL Simulation - Load (RAM) 

 

Figure 55 - VHDL Simulation - Load (ACCU) 

  



7. Conclusion 
This project had two focuses; the SIMD system design and further developing Retro for 

modular design, and VHDL generation. The design was ultimately successful with the 

potential performance and functionality of the final system exhibited from Retro simulations. 

The simulations proved that there is still a place for SIMD architecture devices in specialised 

parallel processing applications, specifically multimedia processing.  

The Retro extensions and debugging was a major part of this project. The main extensions 

were adding the ability to modularise designs (allowing the simulation of the SIMD system) 

and the addition of automatic VHDL generation. Throughout the development of Retro, 

numerous bug fixes and small user interface changes were made. The VHDL generation was 

a substantial project in of itself, having to account for a wide variety of components and their 

respective properties within Retro. Due to this, the VHDL generation was focussed on getting 

the VHDL behavioural simulation to mirror the functionality of the circuit as it was in Retro. 

Apart from a few minor logic components, the VHDL generation development is now 

complete.  

The SIMD system was designed from the ground up, with the Sequencer CPU and PEs both 

being designed with image processing in mind. The system was created in Retro and 

simulations of various image processing were implemented on the system to assess its 

performance and functionality. The simulations showed that the design has vast performance 

increases over a sequential processing unit and PE design enabled a different approach to 

handling conditional procedures in an SIMD system. 

The SIMD design included a number of features not seen usually seen in SIMD image 

processing devices. The main additional feature was the ability for each PE to handle nested 

conditional statements and loops. The basis of both these functions was the addition of an 

Activity register in the PE design. The ability to handle conditional looping and nested 

conditional statements allows better performance and simpler programming of a number of 

image processing routines. 

 

 

 



7.1 Future Work 
Due to the time taken to implement VHDL generation within Retro, the VHDL of the 

complete SIMD system was unable to be tested. The final step in this project is simulating the 

VHDL and then putting it onto an FPGA for physical testing.  

There is still also some work to be done on the VHDL generation in Retro as some 

components that were not used in the SIMD design were omitted from the VHDL generation 

due to the time required to implement each component. The VHDL generation code was done 

through a single method for each component so adding the extra generation code is not overly 

complex, simply more time consuming than this project allowed. Additional features that 

could further improve the VHDL generation, is firstly using a naming convention for the 

wires (currently each wire is simply called 'temp(id)' where id is the wire's unique ID). The 

register and RAM components could also use the label set in Retro as the component name in 

the VHDL to further improve usability of the VHDL, this could also be done for the other 

components although the majority of components do not have labels that could be used so 

another naming convention would have to be employed. 

Retro itself is still based on the old Java AWT framework which has been deprecated in 

newer versions of Java. There are therefore a number of issues with Retro still using the 

AWT framework. In this project, a number of workarounds were implemented to allow the 

use of Retro with Java 7. However redesigning Retro using the Java Swing framework would 

be very beneficial to the continued use of Retro for teaching at UWA. 
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Appendices  

Appendix 1.0 - SimulationEngine Class Excerpt  
public class SimulationEngine { 
 
 private EnginePeerList components;  // list of all components 
 private NodeList nodes;    // list of data at each node 
 private double currentTime; 
 private EnginePeerList currentAffected; 
 private NodeList mostRecent; 
 private EnginePeerList displaymods; 
 
 public SimulationEngine(EnginePeerList gates, NodeList connection) { 
  this.components = gates; 
  this.displaymods = new EnginePeerList(); 
  for (int k = 0; k < gates.getSize(); k++) { 
   if(gates.getItemAt(k).getParent() instanceof 
sim.lib.others.Module) 
   
 this.displaymods.insertDistinctItem(gates.getItemAt(k)); 
  } 
  this.nodes = connection; 
  this.currentTime = 0; 
 
  this.currentAffected = new EnginePeerList(); 
  this.mostRecent = new NodeList(); 
 } 

} 

Appendix 1.1 - Module Drawing 
public void paint(Graphics g) { 
 
  // draw if visible 
  if (this.isVisible()) { 
   int gridGap = CentralPanel.ACTIVE_GRID.getCurrentGridGap(); 
   int increment = gridGap / 4; 
 
   int offset = 2 * gridGap; 
   g.setColor(Color.WHITE); 
   g.fillRect(2 * gridGap + increment / 2, 2 * gridGap + 
increment / 2, offset - increment, offset - increment); 
   g.setColor(this.brush); 
 
   g.drawRect(2 * gridGap, 2 * gridGap, offset, offset); 
   g.drawRect(2 * gridGap + increment / 2, 2 * gridGap + 
increment / 2, offset - increment, offset - increment); 
 
   int start = 3 * gridGap; 
   int end = 5 * gridGap; 
   offset = 2 * gridGap; 
   g.setFont(new Font(Wrapper.FONT_NAME, Font.BOLD, gridGap * 2 / 
3)); 
   Font f = new Font(Wrapper.FONT_NAME, Font.PLAIN, 3 * 
increment); 
   String name; 
   if (modLabel == null) { 
    String parts[] = this.modpath.split("\\\\"); 



    name = parts[parts.length - 1]; 
    name = name.substring(0, name.length() - 4); 
    this.modLabel = name; 
   } else { 
    name = modLabel; 
   } 
   int col = 0; 
   if (this.regOut != null) { 
    if (this.regOut instanceof sim.lib.memory.Register) { 
     name = 
((sim.lib.memory.Register)this.regOut).getValue(); 
     col = Integer.decode("0x" + name); 
    }else if (this.regOut instanceof 
sim.lib.memory.ShiftRegister) { 
     name = 
((sim.lib.memory.ShiftRegister)this.regOut).getValue(); 
     col = Integer.decode("0x" + name); 
    } 
    if (this.colour) { 
     g.setColor(new Color(col,col,col)); 
     g.fillRect(2 * gridGap + increment / 2, 2 * 
gridGap + increment / 2, offset-increment, offset-increment); 
     name = ""; 
     g.setColor(Color.BLACK); 
    }else{ 
     g.setFont(new Font(Wrapper.FONT_NAME, Font.BOLD, 
gridGap)); 
    } 
   } 
   g.drawString(name, 2 * gridGap + increment + 1, gridGap * 2 + 
5 * increment); 
 
   offset = offset + gridGap; 
 
   //**********Draw ports based on number of pins in input 
file********** 
   g.setFont(new Font(Wrapper.FONT_NAME, Font.PLAIN, gridGap * 2 
/ 3)); 
   if(this.pin99){ 
    g.drawLine(4 *gridGap, 2 * gridGap, 5 * gridGap, 1 * 
gridGap); //portF (DIAGONAL) 
   } 
   if (this.numPin > 0) { 
    g.drawString(this.labels[0].substring(0, Math.min(5, 
this.labels[0].length())), gridGap / 8, gridGap * 5 / 2 + increment); //GET PIN 
NAMES FROM INPUT FILE 
    g.fillRect(0, 3 * gridGap - 1, 2 * gridGap, 3); //portA 
(LEFT) 
   } 
   if (this.numPin > 1) { 
    AffineTransform tmp = f.getTransform(); 
    AffineTransform at = new AffineTransform(); 
    at.rotate(-90 * java.lang.Math.PI / 180); 
    Font tf = f.deriveFont(at); 
    g.setFont(tf.deriveFont((float) (gridGap * 2 / 3))); 
    g.drawString(this.labels[1].substring(0, Math.min(5, 
this.labels[1].length())), gridGap * 11 / 4, gridGap * 2 - gridGap / 8); 
 



    g.fillRect(3 * gridGap - 1, 0, 3, 2 * gridGap); //portB 
(TOP) 
   } 
   if (this.numPin > 2) { 
    g.setFont(new Font(Wrapper.FONT_NAME, Font.PLAIN, 
gridGap * 2 / 3)); 
    g.drawString(this.labels[2].substring(0, Math.min(5, 
this.labels[2].length())), gridGap * 4 + gridGap / 8, gridGap * 5 / 2 + 
increment); 
    g.fillRect(4 * gridGap, 3 * gridGap - 1, 2 * gridGap, 
3); //portC (RIGHT) 
   } 
   if (this.numPin > 3) { 
    AffineTransform tmp = f.getTransform(); 
    AffineTransform at = new AffineTransform(); 
    at.rotate(-90 * java.lang.Math.PI / 180); 
    Font tf = f.deriveFont(at); 
    g.setFont(tf.deriveFont((float) (gridGap * 2 / 3))); 
    g.drawString(this.labels[3].substring(0, Math.min(5, 
this.labels[3].length())), gridGap * 7 / 2 + gridGap / 8, gridGap * 6 - gridGap / 
8); 
 
    g.fillRect(3 * gridGap - 1, 4 * gridGap, 3, 2 * 
gridGap); //portD (BOTTOM) 
   } 
 
   if (this.numPin > 4) { 
    g.drawLine(gridGap, 5 * gridGap, 2 * gridGap, 4 * 
gridGap); //portE (DIAGONAL) 
    g.drawLine(gridGap, 5 * gridGap - 1, 2 * gridGap, 4 * 
gridGap - 1); //portE (DIAGONAL) 
    g.drawLine(gridGap, 5 * gridGap + 1, 2 * gridGap, 4 * 
gridGap + 1); //portE (DIAGONAL) 
   } 
 
  } 
 } 

Appendix 1.2 - Module Setup & Loading 
Setup 

 public void setPath(String file) { 
  this.modpath = file; 
 
  //LOAD numPin = number of pin components from file 
  //get names for pins into string array 
  this.numPin = 0; 
  Grid g = new Grid(); 
  String[] basics, specifics; 
  String className, componentName, readIn; 
  BufferedReader inStream; 
  Wrapper created; 
  int z = 0; 
 
  try { 
   inStream = new BufferedReader(new FileReader(file)); 
   readIn = 
SaveLoadShortcut.GUI_FILE_LINK.extractParameter(inStream); 



   SaveLoadShortcut.GUI_FILE_LINK.readBlank(inStream); 
  
 SaveLoadShortcut.GUI_FILE_LINK.extractParameters(g.getNumberOfParameters(), 
inStream); 
   SaveLoadShortcut.GUI_FILE_LINK.readBlank(inStream); 
   int size = 
Integer.valueOf(SaveLoadShortcut.GUI_FILE_LINK.extractParameter(inStream)).intValu
e(); 
   for (int index = 0; index < size; index++) { 
    SaveLoadShortcut.GUI_FILE_LINK.readBlank(inStream); 
    className = 
SaveLoadShortcut.GUI_FILE_LINK.extractParameter(inStream); 
    componentName = 
SaveLoadShortcut.GUI_FILE_LINK.extractParameter(inStream); 
    created = 
SaveLoadShortcut.GUI_FILE_LINK.getWrapper(className); 
 
    basics = 
SaveLoadShortcut.GUI_FILE_LINK.extractParameters(created.getNumberOfBasicParameter
s(), inStream); 
    specifics = 
SaveLoadShortcut.GUI_FILE_LINK.extractParameters(created.getNumberOfSpecificParame
ters(), inStream); 
    if (className.equals("sim.lib.outputs.Pin")) { 
     if(Integer.valueOf(specifics[1]) == 99) 
      this.pin99 = true; 
     else 
      this.numPin++; 
     this.busSizes[Integer.valueOf(specifics[1]) - 1] 
= Integer.valueOf(specifics[0]); //get bus size for each pin 
     this.labels[Integer.valueOf(specifics[1]) - 1] = 
specifics[2]; //get label string for each pin 
 
    } else if (className.equals("sim.lib.memory.Register") 
|| className.equals("sim.lib.memory.ShiftRegister")) { 
     this.regList[z] = specifics[2]; 
     z++; 
    } 
   } 
   lastPath = file; 
 
  } catch (Exception e) { 
   if (!loadError) { 
    JOptionPane.showMessageDialog(null, "Error loading 
module file, please correct file paths in Control Center", "ERROR", 
JOptionPane.ERROR_MESSAGE); 
    loadError = true; 
   } 
  } 
 
 
 } 

 

 

 



Loading 

private Object[] loadModule(String fname) { 
  String inFile = fname; 
  Reader inStream; 
 
  MainWindow.CENTRAL_PANEL.createGrid(""); 
  CentralPanel.ACTIVE_GRID = new Grid(); 
 
  try { 
   MainWindow.CENTRAL_PANEL.createGrid("MODULE"); 
   MainWindow.CENTRAL_PANEL.setVisible(false); 
   inStream = new BufferedReader(new FileReader(inFile)); 
   SaveLoadShortcut.GUI_FILE_LINK.loadMod(inStream, 
CentralPanel.ACTIVE_GRID); 
  
   inStream.close(); 
  } catch (FileNotFoundException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } catch (SimException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } catch (IOException e) { 
   e.printStackTrace(); 
  } 
  //Get EnginePeers from file 
  //insert into input EnginePeerList 
  //connect relevant nodes 
 
  Grid g = CentralPanel.ACTIVE_GRID; 
 
  //*******LOAD COMPONENTS FROM FILE****** 
  int loop; 
 
  int wires = g.getNumberOfWires(); 
  int junctions = g.getNumberOfJunctions(); 
  int splitters = g.getNumberOfSplitters(); 
  int components = g.getNumberOfComponents(); 
  int total; 
 
  NodeList tempnl = new NodeList(); 
  EnginePeerList tempepl = new EnginePeerList(); 
 
  for (loop = 0; loop < junctions; loop++) { 
   ((NodeModule) g.getComponent(loop)).createNode(tempnl); 
  } 
 
  total = junctions + wires + splitters; 
  for (loop = junctions + wires; loop < total; loop++) { 
   ((SplitterModule) g.getComponent(loop)).mergeNodes(tempnl); 
  } 
 
  total = total + components; 
  for (loop = junctions + wires + splitters; loop < total; loop++) { 
   ((EngineModule) 
g.getComponent(loop)).createEnginePeer(tempepl); 
  } 
 



  Object[] out = new Object[2]; 
 
  out[0] = tempepl; 
  out[1] = tempnl; 
 
  return out; 
 } 
 
 public void createEnginePeer(EnginePeerList epl, NodeList nl) { 
  //ENGINE PEER FOR MODULE 
  this.busSize = 8; 
 
  Object[] tmp = loadModule(this.modpath); //load EPL and NL from file 
  EnginePeerList tempepl = (EnginePeerList) tmp[0]; 
  NodeList tempnl = (NodeList) tmp[1]; 
  int[] pinpos = new int[this.busSizes.length]; //array to hold 
current bit position of each pin 
 
  for (Object o : tempepl) { 
   EnginePeer ept = (EnginePeer) o; 
   if (!ept.getParent().getClass().toString().equals("class 
sim.lib.outputs.Pin")) { 
    for (int k = 0; k < ept.getInputPins().getSize(); k++) 
{ 
     for (int i = 0; i < 
ept.getInputPins().getItemAt(k).getConnection().getSize(); i++) { 
      EnginePeer eptt = 
ept.getInputPins().getItemAt(k).getConnection().getItemAt(i); 
      if 
(eptt.getParent().getClass().toString().equals("class sim.lib.outputs.Pin")) { 
//component connected to a pin 
       int n = ((sim.lib.outputs.Pin) 
eptt.getParent()).getNumber(); 
       if(pinpos[n-1] >= 
eptt.getInputPins().size()){ 
        pinpos[n-1] = 0; 
       } 
       if 
(!ept.getInputPins().getItemAt(k).equals(eptt.getInputPins().getItemAt(pinpos[n - 
1]))) { //find correct bit position of pin 
        pinpos[n - 1] = 0; 
        while 
(!ept.getInputPins().getItemAt(k).equals(eptt.getInputPins().getItemAt(pinpos[n - 
1]))) { 
         pinpos[n - 1]++; 
        } 
       } 
 
       switch (n) //connect pins from 
loaded file to ports on module component 
       { 
        case 1: 
         ept.setInputPin(k, 
this.portA.getNodes().getItemAt(pinpos[n - 1])); 
         pinpos[n - 1]++; 
         break; 
        case 2: 
         ept.setInputPin(k, 
this.portB.getNodes().getItemAt(pinpos[n - 1])); 



         pinpos[n - 1]++; 
         break; 
        case 3: 
         ept.setInputPin(k, 
this.portC.getNodes().getItemAt(pinpos[n - 1])); 
         pinpos[n - 1]++; 
         break; 
        case 4: 
         ept.setInputPin(k, 
this.portD.getNodes().getItemAt(pinpos[n - 1])); 
         pinpos[n - 1]++; 
         break; 
        case 99: 
         ept.setInputPin(k, 
this.portF.getNodes().getItemAt(pinpos[n - 1])); 
         pinpos[n - 1]++; 
         break; 
        default: 
 
         int base = 0; 
         //n = n - 1; 
         for (int j = 4; j <= (n 
- 2); j++) { //get correct starting bit position for portE 
          base = base + 
this.busSizes[j]; 
         } 
         int a = base + pinpos[n 
- 1]; 
         System.out.println(k + 
"," + a); 
         ept.setInputPin(k, 
this.portE.getNodes().getItemAt(base + pinpos[n - 1])); 
         pinpos[n - 1]++; 
       } 
 
       break; 
      } 
     } 
    } 
    Arrays.fill(pinpos, 0); //reset array to hold current 
bit position of each pin 
    if (ept.getOutputPins() != null) { 
     for (int k = 0; k < 
ept.getOutputPins().getSize(); k++) { 
      for (int i = 0; i < 
ept.getOutputPins().getItemAt(k).getConnection().getSize(); i++) { 
       EnginePeer eptt = 
ept.getOutputPins().getItemAt(k).getConnection().getItemAt(i); 
       if 
(eptt.getParent().getClass().toString().equals("class sim.lib.outputs.Pin")) { 
        int n = 
((sim.lib.outputs.Pin) eptt.getParent()).getNumber(); 
        if(pinpos[n-1] >= 
eptt.getInputPins().getSize()){ 
         pinpos[n-1] = 0; 
        } 
        if 
(!ept.getOutputPins().getItemAt(k).equals(eptt.getInputPins().getItemAt(pinpos[n - 
1]))) { //find correct bit position of pin 



         pinpos[n - 1] = 0; 
         while 
(!ept.getOutputPins().getItemAt(k).equals(eptt.getInputPins().getItemAt(pinpos[n - 
1]))) { 
          pinpos[n - 1]++; 
         } 
        } 
        switch (n) { 
         case 1: 
         
 ept.setOutputPin(k, this.portA.getNodes().getItemAt(pinpos[n - 1])); 
          pinpos[n - 1]++; 
          break; 
         case 2: 
         
 ept.setOutputPin(k, this.portB.getNodes().getItemAt(pinpos[n - 1])); 
          pinpos[n - 1]++; 
          break; 
         case 3: 
         
 ept.setOutputPin(k, this.portC.getNodes().getItemAt(pinpos[n - 1])); 
          pinpos[n - 1]++; 
          break; 
         case 4: 
         
 ept.setOutputPin(k, this.portD.getNodes().getItemAt(pinpos[n - 1])); 
          pinpos[n - 1]++; 
          break; 
         case 99: 
         
 ept.setOutputPin(k, this.portF.getNodes().getItemAt(pinpos[n - 1])); 
          pinpos[n - 1]++; 
          break;  
         default: 
          int base = 0; 
          for (int j = 4; 
j <= (n - 2); j++) { //get correct starting bit position for portE 
           base = 
base + this.busSizes[j]; 
          } 
         
 ept.setOutputPin(k, this.portE.getNodes().getItemAt(base + pinpos[n - 1])); 
          pinpos[n - 1]++; 
        } 
 
        break; 
       } 
      } 
     } 
    } 
 
    epl.insertItem(ept); 
 
    if (ept.getParent() instanceof sim.lib.memory.Register) 
{ 
     if (((sim.lib.memory.Register) 
ept.getParent()).getRegName().equals(this.regName)) { 
       



      this.regOut = ((sim.lib.memory.Register) 
ept.getParent()); 
      
     } 
    } 
    if (ept.getParent() instanceof 
sim.lib.memory.ShiftRegister) { 
     if (((sim.lib.memory.ShiftRegister) 
ept.getParent()).getRegName().equals(this.regName)) { 
       
      this.regOut = 
((sim.lib.memory.ShiftRegister) ept.getParent()); 
       
     } 
    } 
   } 
 
  } 
 
  EnginePeer ep = new EnginePeer(0, 0, this); 
  epl.insertItem(ep); 
 
  for (Object n : tempnl) { 
   for (Object w : ((Node) n).getWires()) { 
    ((Wire) w).setVisible(false); 
   } 
   EnginePeerList epltemp = ((Node) n).getConnection(); 
   for (Object c : epltemp) { 
    ((EnginePeer) 
c).getParent().getParentWrapper().setVisible(false); 
   } 
   nl.insertItem((Node) n); 
  } 
 
 
 } 

 

 

 

 

 

 

 

 

 

 



Appendix 2.0 - VHDL for PE 
Main.vhd 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity main is 

end main; 

 

architecture struct of main is 

signal temp223: std_logic; 

signal temp49: std_logic; 

signal temp222: std_logic; 

signal temp219: std_logic; 

signal temp27: std_logic; 

signal temp47: std_logic; 

signal temp48: std_logic; 

signal temp24: std_logic; 

signal temp165: std_logic; 

signal temp124: std_logic; 

. 

. 

. 

. 

. 

. 

signal temp210: std_logic; 

signal temp211: std_logic; 

signal temp212: std_logic; 

signal temp213: std_logic; 

signal temp214: std_logic; 

signal temp28: std_logic; 

signal temp26: std_logic; 

signal temp215: std_logic; 

signal temp192: std_logic; 

signal temp20: std_logic; 

signal temp21: std_logic; 

signal temp22: std_logic; 

signal temp218: std_logic; 

signal temp25: std_logic; 

 

begin 

 comp_0 : entity work.AND_ent_2 port map (temp223,temp49,temp222); 

 comp_1 : entity work.AND_ent_2 port map (temp219,temp223,temp27); 

 comp_2 : entity work.DEMUX_SEL1_DATA4 port map 

(temp230,temp226,temp227,temp228,temp229,temp66,temp67,temp68,temp69,temp49,temp50

,temp51,temp52); 

 comp_3 : entity work.AND_ent_2 port map (temp81,temp54,temp11); 

 comp_4 : entity work.AND_ent_2 port map (temp179,temp54,temp177); 

 comp_5 : entity work.AND_ent_2 port map (temp174,temp54,temp175); 

 comp_6 : entity work.AND_ent_2 port map (temp178,temp54,temp176); 



 comp_7 : entity work.REGISTER_8 port map 

(temp72,temp73,temp74,temp75,temp76,temp77,temp78,temp79,temp217,temp41,temp42,tem

p43,temp44,temp45,temp46,temp47,temp48); 

 comp_8 : entity work.NOT_ent port map (temp24,temp165); 

 comp_9 : entity work.TRISTATE_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp165,temp166,temp167,t

emp168,temp169,temp170,temp171,temp172,temp173); 

 comp_10 : entity work.RAM_ADDR256_DATA8 port map 

(temp92,temp92,temp24,temp56,temp57,temp58,temp59,temp60,temp61,temp62,temp63,temp

166,temp167,temp168,temp169,temp170,temp171,temp172,temp173); 

 comp_11 : entity work.MUX_SEL3_DATA8 port map 

(temp66,temp67,temp68,temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp

84,temp85,temp86,temp87,temp88,temp89,temp90,temp91,temp93,temp94,temp95,temp96,te

mp97,temp98,temp99,temp100,temp101,temp102,temp103,temp104,temp105,temp106,temp107

,temp108,temp109,temp110,temp111,temp112,temp113,temp114,temp115,temp116,temp117,t

emp118,temp119,temp120,temp121,temp122,temp123,temp124,temp93,temp94,temp95,temp96

,temp97,temp98,temp99,temp100,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9,temp

183,temp184,temp185,temp186,temp187,temp188,temp189,temp75); 

 comp_12 : entity work.REGISTER_8 port map 

(temp183,temp184,temp185,temp186,temp187,temp188,temp189,temp75,temp10,temp12,temp

13,temp14,temp15,temp16,temp17,temp18,temp19); 

 comp_13 : entity work.EQUALTObus_ent_5_8 port map 

(temp226,temp227,temp228,temp229,temp230,temp216); 

 comp_14 : entity work.CONSTANT_0 port map (temp92); 

 comp_15 : entity work.ANDbus_ent_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp84,temp85,temp86,temp

87,temp88,temp89,temp90,temp91,temp101,temp102,temp103,temp104,temp105,temp106,tem

p107,temp108); 

 comp_16 : entity work.COMPLEMENTbus_ent_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp109,temp110,temp111,t

emp112,temp113,temp114,temp115,temp116); 

 comp_17 : entity work.LESSbus_ent_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp84,temp85,temp86,temp

87,temp88,temp89,temp90,temp91,temp191); 

 comp_18 : entity work.EQUALbus_ent_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp84,temp85,temp86,temp

87,temp88,temp89,temp90,temp91,temp65); 

 comp_19 : entity work.AND_ent_2 port map (temp71,temp217,temp10); 

 comp_20 : entity work.ORbus_ent_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp84,temp85,temp86,temp

87,temp88,temp89,temp90,temp91,temp117,temp118,temp119,temp120,temp121,temp122,tem

p123,temp124); 

 comp_21 : entity work.TRISTATE_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp11,temp133,temp134,te

mp135,temp136,temp137,temp138,temp139,temp140); 

 comp_22 : entity work.TRISTATE_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp175,temp141,temp142,t

emp143,temp144,temp145,temp146,temp147,temp148); 

 comp_23 : entity work.TRISTATE_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp176,temp149,temp150,t

emp151,temp152,temp153,temp154,temp155,temp156); 



 comp_24 : entity work.TRISTATE_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp177,temp157,temp158,t

emp159,temp160,temp161,temp162,temp163,temp164); 

 comp_25 : entity work.MUX_SEL2_DATA8 port map 

(temp56,temp57,temp141,temp142,temp143,temp144,temp145,temp146,temp147,temp148,tem

p133,temp134,temp135,temp136,temp137,temp138,temp139,temp140,temp157,temp158,temp1

59,temp160,temp161,temp162,temp163,temp164,temp149,temp150,temp151,temp152,temp153

,temp154,temp155,temp156,temp125,temp126,temp127,temp128,temp129,temp130,temp131,t

emp132); 

 comp_26 : entity work.MUX_SEL2_DATA8 port map 

(temp53,temp54,temp56,temp57,temp58,temp59,temp60,temp61,temp62,temp63,temp166,tem

p167,temp168,temp169,temp170,temp171,temp172,temp173,temp125,temp126,temp127,temp1

28,temp129,temp130,temp131,temp132,temp125,temp126,temp127,temp128,temp129,temp130

,temp131,temp132,temp84,temp85,temp86,temp87,temp88,temp89,temp90,temp91); 

 comp_27 : entity work.DECODER_2 port map 

(temp56,temp57,temp81,temp174,temp178,temp179); 

 comp_28 : entity work.SHIFTREGISTER_8 port map 

(temp207,temp208,temp209,temp210,temp211,temp212,temp213,temp214,temp217,temp28,te

mp26,temp215,temp26,temp192,temp208,temp209,temp210,temp211,temp212,temp213,temp21

4,temp20,temp21); 

 comp_29 : entity work.MUX_SEL3_DATA1 port map 

(temp49,temp50,temp51,temp192,temp191,temp65,temp22,temp41,temp42,temp43,temp44,te

mp207); 

 comp_30 : entity work.NOT_ent port map (temp192,temp22); 

 comp_31 : entity work.AND_ent_2 port map (temp216,temp71,temp218); 

 comp_32 : entity work.NAND_ent_2 port map (temp218,temp25,temp24); 

 comp_33 : entity work.ADDbus_ent_8 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp84,temp85,temp86,temp

87,temp88,temp89,temp90,temp91,temp68,temp93,temp94,temp95,temp96,temp97,temp98,te

mp99,temp100,temp72); 

 comp_34 : entity work.CONSTANT_1 port map (temp26); 

 comp_35 : entity work.AND_ent_2 port map (temp52,temp27,temp215); 

 comp_36 : entity work.EQUALTObus_ent_8_255 port map 

(temp192,temp208,temp209,temp210,temp211,temp212,temp213,temp214,temp71); 

 comp_37 : entity work.NOT_ent port map (temp49,temp219); 

 comp_38 : entity work.AND_ent_2 port map (temp52,temp222,temp28); 

 comp_39 : entity work.EQUALTObus_ent_8_0 port map 

(temp12,temp13,temp14,temp15,temp16,temp17,temp18,temp19,temp74); 

end struct; 

 
 
 
 
 
 
 
 
 
 
 



Gates.vhd 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity AND_ent_2 is 

port( x0: in std_logic; 

x1: in std_logic; 

F: out std_logic); 

end AND_ent_2; 

 

architecture behav of AND_ent_2 is 

begin 

F<=x0 and x1; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use ieee.numeric_std.all; 

 

entity DEMUX_SEL1_DATA4 is 

port( 

s0,x0,x1,x2,x3 : in std_logic; 

f00,f01,f02,f03,f10,f11,f12,f13 : out std_logic); 

end DEMUX_SEL1_DATA4; 

 

architecture behav of DEMUX_SEL1_DATA4 is 

signal sel : std_logic_vector(0 downto 0); 

begin 

sel(0) <= s0; 

f00 <= x0 when to_integer(unsigned(sel))=0 else '0'; 

f10 <= x0 when to_integer(unsigned(sel))=1 else '0'; 

f01 <= x1 when to_integer(unsigned(sel))=0 else '0'; 

f11 <= x1 when to_integer(unsigned(sel))=1 else '0'; 

f02 <= x2 when to_integer(unsigned(sel))=0 else '0'; 

f12 <= x2 when to_integer(unsigned(sel))=1 else '0'; 

f03 <= x3 when to_integer(unsigned(sel))=0 else '0'; 

f13 <= x3 when to_integer(unsigned(sel))=1 else '0'; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity REGISTER_8 is 

port(  

x0,x1,x2,x3,x4,x5,x6,x7 : in std_logic; 

clk : in std_logic; 

f0,f1,f2,f3,f4,f5,f6,f7 : out std_logic); 

end REGISTER_8; 

 

architecture behav of REGISTER_8 is 



begin 

process (clk) is 

begin 

if(rising_edge(clk)) then 

f0 <= x0; 

f1 <= x1; 

f2 <= x2; 

f3 <= x3; 

f4 <= x4; 

f5 <= x5; 

f6 <= x6; 

f7 <= x7; 

end if; 

end process; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity NOT_ent is 

port( x: in std_logic; 

F: out std_logic); 

end NOT_ent; 

 

architecture behav of NOT_ent is 

begin 

F<=not x; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity TRISTATE_8 is 

port( 

x0,x1,x2,x3,x4,x5,x6,x7,sel: in std_logic; 

f0,f1,f2,f3,f4,f5,f6,f7 : out std_logic); 

end TRISTATE_8; 

 

architecture behav of TRISTATE_8 is 

begin 

f0 <= x0 when sel='1' else 'Z'; 

f1 <= x1 when sel='1' else 'Z'; 

f2 <= x2 when sel='1' else 'Z'; 

f3 <= x3 when sel='1' else 'Z'; 

f4 <= x4 when sel='1' else 'Z'; 

f5 <= x5 when sel='1' else 'Z'; 

f6 <= x6 when sel='1' else 'Z'; 

f7 <= x7 when sel='1' else 'Z'; 

end behav; 

 

library IEEE; 



use IEEE.STD_LOGIC_1164.ALL; 

use ieee.numeric_std.all; 

 

entity RAM_ADDR256_DATA8 is 

port( notce,notoe,notwe : in std_logic; 

a0,a1,a2,a3,a4,a5,a6,a7 : in std_logic; 

d0,d1,d2,d3,d4,d5,d6,d7 : inout std_logic); 

end RAM_ADDR256_DATA8; 

 

architecture behav of RAM_ADDR256_DATA8 is 

signal address: std_logic_vector(7 downto 0); 

signal data: std_logic_vector(7 downto 0); 

type ram_t is array (0 to 255) of std_logic_vector(7 downto 0); 

signal ram : ram_t := (others => (others => '0')); 

begin 

address(0) <= a0; 

address(1) <= a1; 

address(2) <= a2; 

address(3) <= a3; 

address(4) <= a4; 

address(5) <= a5; 

address(6) <= a6; 

address(7) <= a7; 

d0 <= data(0) when notwe='1' else 'Z'; 

d1 <= data(1) when notwe='1' else 'Z'; 

d2 <= data(2) when notwe='1' else 'Z'; 

d3 <= data(3) when notwe='1' else 'Z'; 

d4 <= data(4) when notwe='1' else 'Z'; 

d5 <= data(5) when notwe='1' else 'Z'; 

d6 <= data(6) when notwe='1' else 'Z'; 

d7 <= data(7) when notwe='1' else 'Z'; 

process (address,notwe) is 

variable temp : std_logic_vector(7 downto 0); 

begin 

if(notce='0') then 

if(notwe='0') then 

temp(0) := d0; 

temp(1) := d1; 

temp(2) := d2; 

temp(3) := d3; 

temp(4) := d4; 

temp(5) := d5; 

temp(6) := d6; 

temp(7) := d7; 

ram(to_integer(unsigned(address))) <= temp; 

else 

if(notoe='0') then 

data <= ram(to_integer(unsigned(address))); 

end if; 

end if; 

end if; 



end process; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use ieee.numeric_std.all; 

 

entity MUX_SEL3_DATA8 is 

port( 

s0,s1,s2,x00,x01,x02,x03,x04,x05,x06,x07,x10,x11,x12,x13,x14,x15,x16,x17,x20,x21,x

22,x23,x24,x25,x26,x27,x30,x31,x32,x33,x34,x35,x36,x37,x40,x41,x42,x43,x44,x45,x46

,x47,x50,x51,x52,x53,x54,x55,x56,x57,x60,x61,x62,x63,x64,x65,x66,x67,x70,x71,x72,x

73,x74,x75,x76,x77 : in std_logic; 

f0,f1,f2,f3,f4,f5,f6,f7 : out std_logic); 

end MUX_SEL3_DATA8; 

 

architecture behav of MUX_SEL3_DATA8 is 

signal sel : std_logic_vector(2 downto 0); 

begin 

sel(0) <= s0; 

sel(1) <= s1; 

sel(2) <= s2; 

f0 <= x00 when to_integer(unsigned(sel))=0 else  

x10 when to_integer(unsigned(sel))=1 else  

x20 when to_integer(unsigned(sel))=2 else  

x30 when to_integer(unsigned(sel))=3 else  

x40 when to_integer(unsigned(sel))=4 else  

x50 when to_integer(unsigned(sel))=5 else  

x60 when to_integer(unsigned(sel))=6 else  

x70 when to_integer(unsigned(sel))=7; 

f1 <= x01 when to_integer(unsigned(sel))=0 else  

x11 when to_integer(unsigned(sel))=1 else  

x21 when to_integer(unsigned(sel))=2 else  

x31 when to_integer(unsigned(sel))=3 else  

x41 when to_integer(unsigned(sel))=4 else  

x51 when to_integer(unsigned(sel))=5 else  

x61 when to_integer(unsigned(sel))=6 else  

x71 when to_integer(unsigned(sel))=7; 

f2 <= x02 when to_integer(unsigned(sel))=0 else  

x12 when to_integer(unsigned(sel))=1 else  

x22 when to_integer(unsigned(sel))=2 else  

x32 when to_integer(unsigned(sel))=3 else  

x42 when to_integer(unsigned(sel))=4 else  

x52 when to_integer(unsigned(sel))=5 else  

x62 when to_integer(unsigned(sel))=6 else  

x72 when to_integer(unsigned(sel))=7; 

f3 <= x03 when to_integer(unsigned(sel))=0 else  

x13 when to_integer(unsigned(sel))=1 else  

x23 when to_integer(unsigned(sel))=2 else  

x33 when to_integer(unsigned(sel))=3 else  

x43 when to_integer(unsigned(sel))=4 else  



x53 when to_integer(unsigned(sel))=5 else  

x63 when to_integer(unsigned(sel))=6 else  

x73 when to_integer(unsigned(sel))=7; 

f4 <= x04 when to_integer(unsigned(sel))=0 else  

x14 when to_integer(unsigned(sel))=1 else  

x24 when to_integer(unsigned(sel))=2 else  

x34 when to_integer(unsigned(sel))=3 else  

x44 when to_integer(unsigned(sel))=4 else  

x54 when to_integer(unsigned(sel))=5 else  

x64 when to_integer(unsigned(sel))=6 else  

x74 when to_integer(unsigned(sel))=7; 

f5 <= x05 when to_integer(unsigned(sel))=0 else  

x15 when to_integer(unsigned(sel))=1 else  

x25 when to_integer(unsigned(sel))=2 else  

x35 when to_integer(unsigned(sel))=3 else  

x45 when to_integer(unsigned(sel))=4 else  

x55 when to_integer(unsigned(sel))=5 else  

x65 when to_integer(unsigned(sel))=6 else  

x75 when to_integer(unsigned(sel))=7; 

f6 <= x06 when to_integer(unsigned(sel))=0 else  

x16 when to_integer(unsigned(sel))=1 else  

x26 when to_integer(unsigned(sel))=2 else  

x36 when to_integer(unsigned(sel))=3 else  

x46 when to_integer(unsigned(sel))=4 else  

x56 when to_integer(unsigned(sel))=5 else  

x66 when to_integer(unsigned(sel))=6 else  

x76 when to_integer(unsigned(sel))=7; 

f7 <= x07 when to_integer(unsigned(sel))=0 else  

x17 when to_integer(unsigned(sel))=1 else  

x27 when to_integer(unsigned(sel))=2 else  

x37 when to_integer(unsigned(sel))=3 else  

x47 when to_integer(unsigned(sel))=4 else  

x57 when to_integer(unsigned(sel))=5 else  

x67 when to_integer(unsigned(sel))=6 else  

x77 when to_integer(unsigned(sel))=7; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity EQUALTObus_ent_5_8 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 

x3: in std_logic; 

x4: in std_logic; 

F: out std_logic 

); 

end EQUALTObus_ent_5_8; 

 



architecture behav of EQUALTObus_ent_5_8 is 

signal x: std_logic_vector(4 downto 0); 

begin 

x(0) <= x0; 

x(1) <= x1; 

x(2) <= x2; 

x(3) <= x3; 

x(4) <= x4; 

f <= '1' when to_integer(unsigned(x)) = 8 else '0'; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity CONSTANT_0 is 

port( F: out std_logic); 

end CONSTANT_0; 

 

architecture behav of CONSTANT_0 is 

begin 

F<='0'; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity ANDbus_ent_8 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 

x3: in std_logic; 

x4: in std_logic; 

x5: in std_logic; 

x6: in std_logic; 

x7: in std_logic; 

y0: in std_logic; 

y1: in std_logic; 

y2: in std_logic; 

y3: in std_logic; 

y4: in std_logic; 

y5: in std_logic; 

y6: in std_logic; 

y7: in std_logic; 

F0: out std_logic; 

F1: out std_logic; 

F2: out std_logic; 

F3: out std_logic; 

F4: out std_logic; 

F5: out std_logic; 

F6: out std_logic; 



F7: out std_logic); 

end ANDbus_ent_8; 

 

architecture behav of ANDbus_ent_8 is 

signal x: std_logic_vector(7 downto 0); 

signal y: std_logic_vector(7 downto 0); 

signal f: std_logic_vector(7 downto 0); 

begin 

x(0) <= '0' when x0 = 'U' else x0; 

y(0) <= '0' when y0 = 'U' else y0; 

x(1) <= '0' when x1 = 'U' else x1; 

y(1) <= '0' when y1 = 'U' else y1; 

x(2) <= '0' when x2 = 'U' else x2; 

y(2) <= '0' when y2 = 'U' else y2; 

x(3) <= '0' when x3 = 'U' else x3; 

y(3) <= '0' when y3 = 'U' else y3; 

x(4) <= '0' when x4 = 'U' else x4; 

y(4) <= '0' when y4 = 'U' else y4; 

x(5) <= '0' when x5 = 'U' else x5; 

y(5) <= '0' when y5 = 'U' else y5; 

x(6) <= '0' when x6 = 'U' else x6; 

y(6) <= '0' when y6 = 'U' else y6; 

x(7) <= '0' when x7 = 'U' else x7; 

y(7) <= '0' when y7 = 'U' else y7; 

f <= x and y; 

f0 <= f(0); 

f1 <= f(1); 

f2 <= f(2); 

f3 <= f(3); 

f4 <= f(4); 

f5 <= f(5); 

f6 <= f(6); 

f7 <= f(7); 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity COMPLEMENTbus_ent_8 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 

x3: in std_logic; 

x4: in std_logic; 

x5: in std_logic; 

x6: in std_logic; 

x7: in std_logic; 

F0: out std_logic; 

F1: out std_logic; 

F2: out std_logic; 



F3: out std_logic; 

F4: out std_logic; 

F5: out std_logic; 

F6: out std_logic; 

F7: out std_logic 

); 

end COMPLEMENTbus_ent_8; 

 

architecture behav of COMPLEMENTbus_ent_8 is 

signal x: std_logic_vector(7 downto 0); 

signal f: std_logic_vector(7 downto 0); 

begin 

x(0) <= x0; 

x(1) <= x1; 

x(2) <= x2; 

x(3) <= x3; 

x(4) <= x4; 

x(5) <= x5; 

x(6) <= x6; 

x(7) <= x7; 

f <= not x; 

f0 <= f(0); 

f1 <= f(1); 

f2 <= f(2); 

f3 <= f(3); 

f4 <= f(4); 

f5 <= f(5); 

f6 <= f(6); 

f7 <= f(7); 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity LESSbus_ent_8 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 

x3: in std_logic; 

x4: in std_logic; 

x5: in std_logic; 

x6: in std_logic; 

x7: in std_logic; 

y0: in std_logic; 

y1: in std_logic; 

y2: in std_logic; 

y3: in std_logic; 

y4: in std_logic; 

y5: in std_logic; 

y6: in std_logic; 



y7: in std_logic; 

F: out std_logic 

); 

end LESSbus_ent_8; 

 

architecture behav of LESSbus_ent_8 is 

signal x: std_logic_vector(7 downto 0); 

signal y: std_logic_vector(7 downto 0); 

begin 

x(0) <= x0; 

y(0) <= y0; 

x(1) <= x1; 

y(1) <= y1; 

x(2) <= x2; 

y(2) <= y2; 

x(3) <= x3; 

y(3) <= y3; 

x(4) <= x4; 

y(4) <= y4; 

x(5) <= x5; 

y(5) <= y5; 

x(6) <= x6; 

y(6) <= y6; 

x(7) <= x7; 

y(7) <= y7; 

f <= '1' when x < y else '0'; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity EQUALbus_ent_8 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 

x3: in std_logic; 

x4: in std_logic; 

x5: in std_logic; 

x6: in std_logic; 

x7: in std_logic; 

y0: in std_logic; 

y1: in std_logic; 

y2: in std_logic; 

y3: in std_logic; 

y4: in std_logic; 

y5: in std_logic; 

y6: in std_logic; 

y7: in std_logic; 

F: out std_logic 

); 



end EQUALbus_ent_8; 

 

architecture behav of EQUALbus_ent_8 is 

signal x: std_logic_vector(7 downto 0); 

signal y: std_logic_vector(7 downto 0); 

begin 

x(0) <= x0; 

y(0) <= y0; 

x(1) <= x1; 

y(1) <= y1; 

x(2) <= x2; 

y(2) <= y2; 

x(3) <= x3; 

y(3) <= y3; 

x(4) <= x4; 

y(4) <= y4; 

x(5) <= x5; 

y(5) <= y5; 

x(6) <= x6; 

y(6) <= y6; 

x(7) <= x7; 

y(7) <= y7; 

f <= '1' when x = y else '0'; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity ORbus_ent_8 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 

x3: in std_logic; 

x4: in std_logic; 

x5: in std_logic; 

x6: in std_logic; 

x7: in std_logic; 

y0: in std_logic; 

y1: in std_logic; 

y2: in std_logic; 

y3: in std_logic; 

y4: in std_logic; 

y5: in std_logic; 

y6: in std_logic; 

y7: in std_logic; 

F0: out std_logic; 

F1: out std_logic; 

F2: out std_logic; 

F3: out std_logic; 

F4: out std_logic; 



F5: out std_logic; 

F6: out std_logic; 

F7: out std_logic); 

end ORbus_ent_8; 

 

architecture behav of ORbus_ent_8 is 

signal x: std_logic_vector(7 downto 0); 

signal y: std_logic_vector(7 downto 0); 

signal f: std_logic_vector(7 downto 0); 

begin 

x(0) <= '0' when x0 = 'U' else x0; 

y(0) <= '0' when y0 = 'U' else y0; 

x(1) <= '0' when x1 = 'U' else x1; 

y(1) <= '0' when y1 = 'U' else y1; 

x(2) <= '0' when x2 = 'U' else x2; 

y(2) <= '0' when y2 = 'U' else y2; 

x(3) <= '0' when x3 = 'U' else x3; 

y(3) <= '0' when y3 = 'U' else y3; 

x(4) <= '0' when x4 = 'U' else x4; 

y(4) <= '0' when y4 = 'U' else y4; 

x(5) <= '0' when x5 = 'U' else x5; 

y(5) <= '0' when y5 = 'U' else y5; 

x(6) <= '0' when x6 = 'U' else x6; 

y(6) <= '0' when y6 = 'U' else y6; 

x(7) <= '0' when x7 = 'U' else x7; 

y(7) <= '0' when y7 = 'U' else y7; 

f <= x or y; 

f0 <= f(0); 

f1 <= f(1); 

f2 <= f(2); 

f3 <= f(3); 

f4 <= f(4); 

f5 <= f(5); 

f6 <= f(6); 

f7 <= f(7); 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use ieee.numeric_std.all; 

 

entity MUX_SEL2_DATA8 is 

port( 

s0,s1,x00,x01,x02,x03,x04,x05,x06,x07,x10,x11,x12,x13,x14,x15,x16,x17,x20,x21,x22,

x23,x24,x25,x26,x27,x30,x31,x32,x33,x34,x35,x36,x37 : in std_logic; 

f0,f1,f2,f3,f4,f5,f6,f7 : out std_logic); 

end MUX_SEL2_DATA8; 

 

architecture behav of MUX_SEL2_DATA8 is 

signal sel : std_logic_vector(1 downto 0); 

begin 



sel(0) <= s0; 

sel(1) <= s1; 

f0 <= x00 when to_integer(unsigned(sel))=0 else  

x10 when to_integer(unsigned(sel))=1 else  

x20 when to_integer(unsigned(sel))=2 else  

x30 when to_integer(unsigned(sel))=3; 

f1 <= x01 when to_integer(unsigned(sel))=0 else  

x11 when to_integer(unsigned(sel))=1 else  

x21 when to_integer(unsigned(sel))=2 else  

x31 when to_integer(unsigned(sel))=3; 

f2 <= x02 when to_integer(unsigned(sel))=0 else  

x12 when to_integer(unsigned(sel))=1 else  

x22 when to_integer(unsigned(sel))=2 else  

x32 when to_integer(unsigned(sel))=3; 

f3 <= x03 when to_integer(unsigned(sel))=0 else  

x13 when to_integer(unsigned(sel))=1 else  

x23 when to_integer(unsigned(sel))=2 else  

x33 when to_integer(unsigned(sel))=3; 

f4 <= x04 when to_integer(unsigned(sel))=0 else  

x14 when to_integer(unsigned(sel))=1 else  

x24 when to_integer(unsigned(sel))=2 else  

x34 when to_integer(unsigned(sel))=3; 

f5 <= x05 when to_integer(unsigned(sel))=0 else  

x15 when to_integer(unsigned(sel))=1 else  

x25 when to_integer(unsigned(sel))=2 else  

x35 when to_integer(unsigned(sel))=3; 

f6 <= x06 when to_integer(unsigned(sel))=0 else  

x16 when to_integer(unsigned(sel))=1 else  

x26 when to_integer(unsigned(sel))=2 else  

x36 when to_integer(unsigned(sel))=3; 

f7 <= x07 when to_integer(unsigned(sel))=0 else  

x17 when to_integer(unsigned(sel))=1 else  

x27 when to_integer(unsigned(sel))=2 else  

x37 when to_integer(unsigned(sel))=3; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use ieee.numeric_std.all; 

 

entity DECODER_2 is 

port( 

x0,x1 : in std_logic; 

f0,f1,f2,f3 : out std_logic); 

end DECODER_2; 

 

architecture behav of DECODER_2 is 

signal inbus : std_logic_vector(1 downto 0); 

begin 

inbus(0) <= x0; 

inbus(1) <= x1; 



f0 <= '1' when to_integer(unsigned(inbus))=0 else '0'; 

f1 <= '1' when to_integer(unsigned(inbus))=1 else '0'; 

f2 <= '1' when to_integer(unsigned(inbus))=2 else '0'; 

f3 <= '1' when to_integer(unsigned(inbus))=3 else '0'; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use ieee.numeric_std.all; 

 

entity SHIFTREGISTER_8 is 

port( 

x0,x1,x2,x3,x4,x5,x6,x7 ,clk, ren, inr, len, inl : in std_logic; 

f0,f1,f2,f3,f4,f5,f6,f7 : inout std_logic; 

outr, outl : out std_logic); 

end SHIFTREGISTER_8; 

 

architecture behav of SHIFTREGISTER_8 is 

begin 

process (clk,ren,len) is 

begin 

if(rising_edge(clk)) then 

f0 <= x0; 

f1 <= x1; 

f2 <= x2; 

f3 <= x3; 

f4 <= x4; 

f5 <= x5; 

f6 <= x6; 

f7 <= x7; 

elsif(rising_edge(ren)) then 

outr <= f0; 

f0 <= f1; 

f1 <= f2; 

f2 <= f3; 

f3 <= f4; 

f4 <= f5; 

f5 <= f6; 

f6 <= f7; 

f7 <= inr; 

elsif(rising_edge(len)) then 

outl <= f7; 

f1 <= f0; 

f2 <= f1; 

f3 <= f2; 

f4 <= f3; 

f5 <= f4; 

f6 <= f5; 

f7 <= f6; 

f0 <= inl; 

end if; 



end process; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use ieee.numeric_std.all; 

 

entity MUX_SEL3_DATA1 is 

port( 

s0,s1,s2,x00,x10,x20,x30,x40,x50,x60,x70 : in std_logic; 

f0 : out std_logic); 

end MUX_SEL3_DATA1; 

 

architecture behav of MUX_SEL3_DATA1 is 

signal sel : std_logic_vector(2 downto 0); 

begin 

sel(0) <= s0; 

sel(1) <= s1; 

sel(2) <= s2; 

f0 <= x00 when to_integer(unsigned(sel))=0 else  

x10 when to_integer(unsigned(sel))=1 else  

x20 when to_integer(unsigned(sel))=2 else  

x30 when to_integer(unsigned(sel))=3 else  

x40 when to_integer(unsigned(sel))=4 else  

x50 when to_integer(unsigned(sel))=5 else  

x60 when to_integer(unsigned(sel))=6 else  

x70 when to_integer(unsigned(sel))=7; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity NAND_ent_2 is 

port( x0: in std_logic; 

x1: in std_logic; 

F: out std_logic); 

end NAND_ent_2; 

 

architecture behav of NAND_ent_2 is 

begin 

F<=x0 nand x1; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity ADDbus_ent_8 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 



x3: in std_logic; 

x4: in std_logic; 

x5: in std_logic; 

x6: in std_logic; 

x7: in std_logic; 

y0: in std_logic; 

y1: in std_logic; 

y2: in std_logic; 

y3: in std_logic; 

y4: in std_logic; 

y5: in std_logic; 

y6: in std_logic; 

y7: in std_logic; 

cin: in std_logic; 

F0: out std_logic; 

F1: out std_logic; 

F2: out std_logic; 

F3: out std_logic; 

F4: out std_logic; 

F5: out std_logic; 

F6: out std_logic; 

F7: out std_logic; 

cout: out std_logic 

); 

end ADDbus_ent_8; 

 

architecture behav of ADDbus_ent_8 is 

signal x: std_logic_vector(7 downto 0); 

signal y: std_logic_vector(7 downto 0); 

signal cin_vect: std_logic_vector(0 downto 0); 

signal f: std_logic_vector(8 downto 0); 

begin 

x(0) <= '0' when x0 = 'U' else x0; 

y(0) <= '0' when y0 = 'U' else y0; 

x(1) <= '0' when x1 = 'U' else x1; 

y(1) <= '0' when y1 = 'U' else y1; 

x(2) <= '0' when x2 = 'U' else x2; 

y(2) <= '0' when y2 = 'U' else y2; 

x(3) <= '0' when x3 = 'U' else x3; 

y(3) <= '0' when y3 = 'U' else y3; 

x(4) <= '0' when x4 = 'U' else x4; 

y(4) <= '0' when y4 = 'U' else y4; 

x(5) <= '0' when x5 = 'U' else x5; 

y(5) <= '0' when y5 = 'U' else y5; 

x(6) <= '0' when x6 = 'U' else x6; 

y(6) <= '0' when y6 = 'U' else y6; 

x(7) <= '0' when x7 = 'U' else x7; 

y(7) <= '0' when y7 = 'U' else y7; 

cin_vect(0) <= cin; 

f <= std_logic_vector(to_unsigned(to_integer(unsigned(x) + unsigned(y) + 

unsigned(cin_vect)),f'length)); 



f0 <= f(0); 

f1 <= f(1); 

f2 <= f(2); 

f3 <= f(3); 

f4 <= f(4); 

f5 <= f(5); 

f6 <= f(6); 

f7 <= f(7); 

cout <= f(8); 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity CONSTANT_1 is 

port( F: out std_logic); 

end CONSTANT_1; 

 

architecture behav of CONSTANT_1 is 

begin 

F<='1'; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity EQUALTObus_ent_8_255 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 

x3: in std_logic; 

x4: in std_logic; 

x5: in std_logic; 

x6: in std_logic; 

x7: in std_logic; 

F: out std_logic 

); 

end EQUALTObus_ent_8_255; 

 

architecture behav of EQUALTObus_ent_8_255 is 

signal x: std_logic_vector(7 downto 0); 

begin 

x(0) <= x0; 

x(1) <= x1; 

x(2) <= x2; 

x(3) <= x3; 

x(4) <= x4; 

x(5) <= x5; 

x(6) <= x6; 

x(7) <= x7; 



f <= '1' when to_integer(unsigned(x)) = 255 else '0'; 

end behav; 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.numeric_std.all; 

 

entity EQUALTObus_ent_8_0 is 

port( x0: in std_logic; 

x1: in std_logic; 

x2: in std_logic; 

x3: in std_logic; 

x4: in std_logic; 

x5: in std_logic; 

x6: in std_logic; 

x7: in std_logic; 

F: out std_logic 

); 

end EQUALTObus_ent_8_0; 

 

architecture behav of EQUALTObus_ent_8_0 is 

signal x: std_logic_vector(7 downto 0); 

begin 

x(0) <= x0; 

x(1) <= x1; 

x(2) <= x2; 

x(3) <= x3; 

x(4) <= x4; 

x(5) <= x5; 

x(6) <= x6; 

x(7) <= x7; 

f <= '1' when to_integer(unsigned(x)) = 0 else '0'; 

end behav; 
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