
Development of a Parallel Image Processing
Architecture in VHDL

Stephen Rose
Supervisor: Prof Thomas Bräunl

1st June 2012



Abstract

Image processing tasks such as filtering, stereo correspondence and feature detec-
tion are inherently highly parallelisable. The use of FPGAs (Field Programmable
Gate Arrays), which can be operated in highly parallel configurations, can thus
be a useful approach in imaging applications. Many image processing tasks fall
under the category of SIMD (Single Instruction Multiple Data) operations, which
are a weakness of conventional CPUs, leading to the application of technologies
such as FPGAs, Graphics Processing Units (GPUs), and Digital Signal Processors
(DSPs) [1, 2]. The programmable blocks of an FPGA, and their interconnections,
can be configured to optimise the device’s performance at specific tasks. This
means that commodity FPGAs can approach the speed of ASICs (Application
Specific Integrated Circuits) in these applications, while retaining far greater flex-
ibility. For embedded systems in particular, this performance can enable rapid vis-
ion processing that would be impossible on standard embedded microprocessors
[3, 4].

This project has focussed on the development of a synthesisable VHDL design
suitable for use as a general purpose image co-processor. In this approach, the
FPGA’s Logic Blocks (CLBs) are allocated to discrete Processing Elements (PEs)
that are connected in a grid configuration. Each PE corresponds to a single pixel
of the target image, simplifying the adaptation of common image processing al-
gorithms. The results of this implementation suggest that while theoretically, such
a design has significant advantages, current FPGA hardware is insufficient for the
real-world application of this general-purpose system at high resolutions.
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1 Background

The aim of this project is to design and implement a highly-parallel image pro-
cessing architecture in VHDL, suitable for implementation on a Xilinx Field-
Programmable Gate Array (FPGA). The eventual implementation is for real-time
image processing to take place on the FPGA device, then for processed inform-
ation to be communicated to a central processor for display and actioning. This
project covers the initial VHDL implementation of a general purpose image co-
processor. The architecture itself, as well as the implemented instruction set is dis-
cussed, and simulated examples are used to demonstrate the capabilities of such
a system at accomplishing common image processing tasks. The results of the
design synthesis are then explored, along with the ramifications of these results.

1.1 Image Processing

Vision processing is an application than can benefit significantly from parallelisa-
tion, with similar or identical steps having to be performed on each pixel or block
of pixels that make up each image. This is especially true for what is known as
low-level image processing operations [5, 6]. For these low-level operations that
do only operate on neighbouring pixels, the use of a mesh connected processing
array can achieve a very high level of performance[7]. There are also dedicated
SIMD processors which offer significant image-processing parallelism, at high
speeds, but with significantly less flexibility than an FPGA-based approach [8].

1.2 FPGAs

Field Programmable Gate Arrays are hardware units that can be reconfigured to
perform a variety of digital logic functions. While Field Programmable Gate Ar-
rays (FPGAs) may not achieve the performance of dedicated hardware, this tech-
nology avoid the onerous costs of fabrication for small-run integrated circuits [9].
FPGAs also have other benefits, offering a significant degree of flexibility through
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the design process, such as a choice of Hardware Description Languages (HDLs),
and a tight design loop, as repeated design iterations do not require physical fab-
rication or reconfiguration[10]. There is also the potential for field reprogram-
ming, so that updated designs can be easily integrated into pre-existing systems,
or dynamic reconfiguration, to adapt the FPGA to particular tasks [11, 12]. More
specialised image processing implementation can take advantage of these DSP
slices, which are automatically used when appropriate. There is widespread in-
dustry integration of FPGAs and cameras to create “Smart Camera” systems that
can allow pre-defined image processing and filtering tasks to take place in real
time [13, 14].

1.2.1 Logic Area

As discussed above, FPGAs are available with different numbers and configura-
tions of CLBs. The FPGA also requires the use of these blocks to enable addi-
tional routing between units, as well as connections to other blocks such as RAM
and IO [11]. The availability of logic blocks forms a key part of the design chal-
lenges faced when developing designs for FPGA synthesis. As the node-size of
FPGA logic blocks is reduced, the affordability and logic density of FPGAs im-
proves, and complex designs become more feasible to implement [15]. there have
also been advances in FPGA packaging, which allow multiple dies to be treated
as a single large FPGA device [16]. This sort of approach reduces costs, by main-
taining small die sizes, while still increasing FPGA logic capacity[16].

Spartan-6 XC6SLX45 The XC6SLX45 is a mid-range entry in the Xilinx Spartan-
6 range, sharing similar features to the other devices in the family. These include
a large number of logic units, as well as specialised units such as Digital Signal
Processor (DSP) cores, serial communications units, and memory controllers. The
XC6SLX45 offers a total of 6822 logic slices, distributed throughout the device
[17]. Pairs of these slices create a Configurable Logic Block (CLB), of varying
degrees of complexity (for example, with or without shift registers, wide multi-
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plexers or a carry path) [15]. Of most importance for this project is the four LUTs
(Lookup Tables) contained within each slice; these LUTs are the primary method
through which FPGAs implement digital logic.

1.2.2 Operating Clock Speed

FPGAs operate at lower clock speeds than conventional CPUs. For a synchron-
ously clocked design, the rate at which the FPGA can operate is limited by the
number of nested logic stages that must be implemented per clock cycle. This is
to ensure that the last logic stage has settled before the output changes again [11].
Through the synthesis of FPGA designs, the critical path (the longest nested chain
of logic) can be measured and constrained, to ensure that the design can operate
at an acceptable rate. Timing analysis of a synthesised FPGA design includes the
delay due to logic units, as well as the delays introduced by the routing of signals
throughout the FPGA. The worst case total delay for a single-clocked signal is the
limiting factor on the design’s operational speed.

1.3 HDLs

Hardware Description Languages (HDLs) offer one way for the required beha-
viour and structure of an FPGA to be entered. Synthesis is the process of con-
verting behavioural and structural HDL descriptions into a description of physical
configuration [18]. In the case of FPGA development, the synthesised code can be
transmitted as a bitstream that is sent to the FPGA, reconfiguring the logic blocks
(CLBs), connections between them, and other components such as I/O blocks
[15]. During the synthesis stage, the utilisation of various FPGA elements is also
calculated, including the routing between units. The structure and behaviour of
designs will generally be altered to better “fit” the target device. This optimisation
may require changes to be made to the structure of algorithms, or the layout of the
FPGA, with small changes having the potential to improve performance by orders
of magnitude [19].
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1.3.1 VHDL

VHDL was originally developed to describe the behaviour of standard Integrated
Circuits (ICs), and was later extended by the IEEE to enable a subset of this lan-
guage to be used in the synthesis of FPGA designs [18]. VHDL is a high-level,
strongly typed language, with its general syntax inherited from ADA. In addition
to its use in describing synthesisable behaviours and architectures, VHDL can also
be used to generate tests. VHDL code used for testing can generally not be imple-
mented onto hardware (synthesised), but can be extremely useful for investigating
the behaviour of systems under development. The VHDL test code that was used
to simulate various behaviours of the system is included in the relevant sections.

1.4 Higher Level Approaches

There has been significant development in the area of higher-level languages that
can be synthesised for FPGA usage. Generally such languages simplify the design
process, and can then be converted into a low-level description for final optimisa-
tion and synthesis. Two such languages, both variants of C, are SA-C (Single As-
signment C) and Handel-C [20, 21]. The intention of such languages is to provide
an “algorithm-level” interface for implementing image processing tasks [7]. Tools
such as Matlab also provide paths for FPGA synthesis, simplifying many image
processing implementations.
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2 The Architecture

A suitable architecture for extremely parallel image processing will be recognis-
ant of the structure of image data, as well as the properties of common image pro-
cessing tasks. The chosen architecture can best be described as processing array
(PA) made up of a large number of simple processing elements (PEs). Each unit
corresponds to a single pixel of the image frame (or subset of the frame). Each PE
is connected to its immediate neighbours via one of four ports, these connections
enable the values of the neighbouring pixels to be directly used in operations being
applied to the central pixel. This sort of structure is effective for SIMD processes,
as the same operation can be performed on all units simultaneously. The concept
of every PE corresponding directly to an image pixel simplifies the understanding
of the system, and allows the straightforward implementation of many common
image processing tasks. The development of this kind of massively parallel image
processing architectures are an area of significant current research, with a wide
variation in design choices such as PE capabilities, interconnectivity and overall
system scale [22, 23]. Such digital systems must balance limited logical and phys-
ical resources to achieve the most useful combination of the utility of individual
PEs, and the number of PEs that can be affordably included within the system.
There is also some application of mixed digital and analog approaches, aimed at
reducing the resource consumption of each PE, as well as overall power consump-
tion [24].

2.1 Processing Elements

Each processing element is capable of performing basic arithmetic functions, and
has a small amount of local storage. The initial implementation has two 8-bit
registers, labelled A and B. Register A acts as an accumulator, storing the res-
ult of arithmetic operations. The current value stored in A is accessible to the
neighbouring processing units following each clock cycle. The B register sup-
plied additional operands, and can also be loaded with the values of an adjacent
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PE’s register A, so that these values can be used in future calculations. There is
also a stack that is available for local storage, shared between A and B. The syn-
thesis of one PE is shown in Figure 1, this schematic shows the large number of
logic elements that are required for every PE in the system.

2.1.1 Inputs and Outputs

Multiple Directional Inputs (up to 4x8 bits): All processing elements have at
least two directional inputs that allow simple access to the A value of cardinally
adjacent processing elements. For the common case of a non-edge processing
unit, there are four of these inputs, one from each of the PE above, below, to the
left and to the right.

Single Chained Input (8 bits): To allow a general image loading instruction,
this port was created. This port is connected to the “next” PE, which is generally
the unit directly to the right, except in the case of the PEs along the right edge of
the array, in which case it is connected to the leftmost PE on the line below. The
use of this port to populate the processing array is shown in section 3.1.

Single Directional Output (8 bits): As the processing element will be output-
ting an identical signal (the current value of A) to each of the neighbouring units,
a single output suffices in the general case. This output signal is connected to the
directional inputs of adjacent units.

Operation Input (5 bits): Each PE is wired to receive the same instruction.
However, it is likely that the result of certain processing units will be eventually
discarded. Under a serially computing image processing scenario, these pixels
would not be operated on, however, due to the highly parallel nature of this ar-
chitecture, there is no performance penalty for processing excess pixels, as long
as there are sufficient processing units available. The number and complexity of
the operations implemented directly affect the logic resources that each PE will
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Figure 1: Expanded RTL Schematic of a Processing Element
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consume once synthesised, creating a key design trade-off that is explored in later
sections. The implemented operations are shown in Table 1 on page 10.

2.1.2 Internal Signals

Accumulator A (8 bits): The accumulator stores the result of arithmetical and
logical operations.

Register B (8 bits): Register B is used to provide an additional operand for
arithmetic and logical operations. This is also where values from neighbouring
processing elements are initially loaded.

Stack (16x8bits): The stack gives FILO storage that can be expanded to occupy
the total distributed RAM allocated to each CLB. The precise allocation of this
storage differs for each FPGA model, with the XC6SLX45 having 16x8-bit, dual-
port distributed RAM blocks. It is also possible to force this storage to the FPGA’s
shared block RAM, or even to external DDR, if additional storage is required. It
is possible to push values to the shared stack from A or B, and pop values from
the stack to A or B.

Enable Bit: For a significant number of image processing tasks, every pro-
cessing element is concurrently performing an identical operation. For the cases
where this is not appropriate, an enable bit is included. In the current implement-
ation, this signal is internal to the PE itself, and is set according to the value of
accumulator A, via the Zero Flag. There is a single instruction to re-enable all
PEs, ensuring a known configuration, once other tasks have been previously per-
formed.

Zero Flag The zero flag is set when the value of accumulator A is zero. It is
then possible to use this flag to selectively disable PEs.
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2.1.3 Choice of Instruction Set

Due to the nature of FPGAs, there is a fundamental design compromise required
between the complexity of each processing element, and the number of elements
that are used in a given grid (which determines the resolution). The complexity
(FPGA area) of each element corresponds to the number and complexity of op-
erations it is required to perform [25]. FPGAs of a given series will come in a
range of models, with a differing number and distribution of logic blocks. The in-
struction that requires the greatest number of cascaded logic changes is the factor
determining the speed at which the system as a whole can operate. For example,
an instruction to find the median of the current PE’s value, and that of the the
PEs directly adjacent to it would require a greater number of logic stages than
any other instruction described. While such an instruction would be a significant
advantage when median filtering (section 3.3.2) is required, its inclusion would be
of significant detriment to the system’s general purpose performance. For certain
scenarios this trade-off is acceptable, particularly if the final application of the
system is known in detail. It is also possible to avoid this trade-off, with some
systems taking advantage of the reconfigurable nature of FPGAs by dynamically
reconfiguring the deployed system to accomplish a specific task [11, 12, 26]. For
the purposes of this image processing system, the performance of general instruc-
tions has been prioritised over performance at specific tasks.

2.2 The Processing Array

Many common image processing tasks are particularly localised, operating on ad-
jacent groups of pixels, while generally having minimal input from pixels that are
further away. Under this massively parallel architecture, a Processing Array is
created, consisting of a large number of linked Processing Elements (PEs). Each
PE is connected to its immediate cardinal neighbours (that is, to the PEs above,
below, and to the left and right). These connections enable the simple implement-
ation of many common image processing processes. There are also additional

9



Table 1: Processing Element Instruction List
OpCode Instruction Description Dataflow

0 NOP No operation -
1 CopyBA Copy from B to A a( b
2 CopyAB Copy from A to B b( a
3 OrBA Bitwise OR a( a or b
4 AndBA Bitwise AND a( a and b
5 XorBA Bitwise XOR a( a � b
6 SumBA Add B to A a( a+b
7 SubBA Subtract B from A a( a � b
8 AbsA Absolute Value of A a( |a|
9 ClrA Clear A a( 0
10 ClrB Clear B b( 0
11 LdUp Load from PE above into B b( above.a
12 LdDown Load from PE below into B b( below.a
13 LdLeft Load from PE to the left into B b( left.a
14 LdRight Load from PE to the right into B b( right.a
15 Load Load from Previous PE into B b( prev.a
16 Swap Swap values of A and B b, a
17 DblA Double the value of A a( a ⇥ 2
18 HalveA Halve the value of A a( a ÷ 2
19 MaxAB Return maximum of A and B a( max (a, b)
20 MinAB Return minimum of A and B a( min (a, b)
21 PushA Push value of A to stack Stack( a
22 PopA Pop value of A from stack a( Stack
23 PushB Push value of B to stack Stack( b
24 PopA Pop value of B from stack b( Stack
25 IncA Increment A a( a+1
26 DecA Decrement A a( a�1
27 DisableZ Disable PEs with a=0 -
28 EnableAll Enable all PEs (default) -

10



connections throughout the grid to enable the loading of image information, the
distribution of the clock and instructions, as well as the output of results. Due to
the finite dimensions of the modelled grid, there are nine different configurations
of processing element (Figure 2). For each unique edge or corner of the grid struc-
ture, a slightly different configuration of processing element is generated. N is the
dimension of the processing array, i.e. an N-size array contains N2 processing
elements. This prevents a processing element from attempting to read inputs from
elements that do not exist. For example the “RT” (Right-Top) processing element
does not have an in_right or in_above port instantiated, as there are not appropri-
ate neighbouring ports to connect to. A three PE by three PE array has be used to
simply demonstrate the operation and validity of this architecture for basic oper-
ations, while larger systems have been synthesised as required. In addition to the
required changes to the directional input port configuration for each of these nine
cases, the Left Top (LT) element, and the Right Bottom (RB) element are used to
output and input image data for the entire grid, and are connected directly to the
outer structure of the processing array.

Figure 2: The Nine PE Configurations (with example coordinates)

LT (0, 0) CT (X, 0) RT (N-1, 0)
LC (0, X) CC (X, X) RC (N-1, X)
LB (0, N-1) CB (X, N-1) RB (N-1, N-1)

2.2.1 VHDL Generation of the Array

The required processing elements are generated through a pair of nested generate
statements. As the synthesiser iterates through the nested loops, PEs of the re-
quired configuration are generated and linked via an array of output signals. Every
processing element will be of one of the configurations shown in Figure 2, with
the exact configuration determined by the values of the generate loop variables, as
shown in Algorithm 1.
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Algorithm 1 Generation of Processing Elements

G1 : f o r i in N�1 downto 0 g e n e r a t e��In X d i r e c t i o n
G2 : f o r j in N�1 downto 0 g e n e r a t e��In Y d i r e c t i o n

��T h i s example shows one o f t h e n i n e c o n f i g u r a t i o n s .

LT : i f ( ( i =0) and ( j = 0 ) ) g e n e r a t e
��Genera te L e f t Top u n i t .
apu0 : pu port map (
o p e r a t i o n => g I n s t r u c t i o n , ��Same f o r a l l PEs
c l k => c lk ,
dummy=>gDummy(N⇤ j + i ) ,
o u t p u t => dou t ( i , j ) ��Read by a d j a c e n t u n i t s .

in_down=> dou t ( i , j + 1 ) , ��Only two d i r e c t i o n a l c o n n e c t i o n s .
i n _ r i g h t => dou t ( i +1 , j ) ,

i n _ l o a d => dou t ( i +1 , j ) , ��For l o a d i n g da ta
o u t _ l o a d =>gOut , ��Unique t o LT
) ;

end g e n e r a t e LT ;

��S i m i l a r f o r o t h e r e i g h t c a s e s

end g e n e r a t e G2 ;
end g e n e r a t e G1 ;
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The result of this synthesis can be seen in Figure 3. The processing array level
ports of gLoad, gOut, gInstruction and clk can be seen along the outer region of
the schematic, connecting to the internal ports, as described in the relevant port
map (Algorithm 1) . In this case the processing array has been implemented as
a square grid of n processing elements in each direction. This means that the
total array contains n2 elements. While this initial implementation is a square,
this is not a particular requirement, and only minimal changes need to be made
to the generate loops (the addition of a new variable for the range checking in the
y-direction).
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Figure 3: Unexpanded Schematic of a 2x2 Processing Array
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3 Exploration of Image Processing Tasks

The implementation of a number of general image processing tasks demonstrates
the use of the massively parallel processing array architecture. These are intended
to demonstrate a broad range of general imaging requirements. In some cases,
the inclusion of more specialised instructions has the potential to substantially
simplify or accelerate the performance of specific tasks. In these scenarios, the
potential changes are explored. However, the priority remains on general purpose
performance. The simulation of these tasks was performed by Xilinx ISim (ISE
Simulator).

3.1 Loading the Processing Array

The current configuration of the general purpose image processing architecture is
based upon receiving a single serial stream of pixel information, which is then
distributed through the processing array. The input value stream is connected to
the final processing element, at the bottom right of the processing array. Each
successive value is loaded into register B via the in_load port, then copied to
register A. This value will then be read by the next processing element, on the
following cycle.

Algorithm 2 Loading the Processing Array

��Loading t h e Array
f o r i in 0 to N⇤N�1 loop

gLoad <= I n p u t S i g n a l ( i ) ;
g I n s t r u c t i o n <= Load ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <= CopyBA ;

wait f o r c l k _ p e r i o d ;
end loop ;

When this procedure is applied using test values from 1 through 9, the opera-
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tion of the array is clear. The first input value must travel through the entire array
before reaching the top-left position. The simulation output (Figure 7) shows a
behavioural simulation of this same example. Once the value of the top-left pro-
cessing element has been set, the entire processing array has been propagated with
values. At this point, the required image processing can be performed.

Figure 4: After First Step

- - -
- - -
- -  1

Figure 5: After Fifth Step

- - -
-  1 2
3 4 5

Figure 6: The Final Result

1 2 3
4 5 6
7 8 9

This loading procedure requires two clock cycles per individual processing
element, due to the completely serial nature of this method of image loading, the
time taken linearly increases with the number of pixels. To give approximate
performance requirements, Table 2 shows the portion of total clock cycles that
are required for the loading operation. The transfer of the processed image data
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Table 2: Array Loading Performance Calculations
X Y Pixels/Frame FPS Pixels/second Pixel Loading Frequency

128 128 16 384 30 491 520 ~1 MHz
256 256 65 536 30 1 966 080 ~4 MHz
512 512 262 144 30 7 864 320 ~16 MHz

from the grid is automatically performed as the data for the next frame is being
loaded. The dependence of performance on processing array size differs from the
performance of the array on the parallelisable tasks which will be explored later.

3.2 Reduction Operations

A key aspect of this array-based architecture is the potential for quickly reducing
information in the array structure into vector or scalar data [27]. Common re-
duction operations include finding the maximum or minimum values within the
image, as well as arithmetic operations such as summation and multiplication of
active processing elements. The processing array can be structured in such a way
as to minimise the operations required for the reduction. The example below
shows the use of row and column reduction, but the theoretical performance of
the system with the addition structures such as a binary tree would be signific-
antly greater, at the cost of additional FPGA area [28].

3.2.1 Finding the Array Maximum

The example explored here is the reduction image data to find the pixel of greatest
intensity (the maximum).
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Algorithm 3 Reduction to find Maximum

��To f i n d t h e maximum v a l u e f o r each Column
f o r i in 0 to (N�1) loop

g I n s t r u c t i o n <= LdDown
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= MaxAB;
wait f o r c l k _ p e r i o d ;

end loop ;

��To f i n d maximum f o r each Row
f o r i in 0 to (N�1) loop

g I n s t r u c t i o n <= LdRight
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= MaxAB;
wait f o r c l k _ p e r i o d ;

end loop ;

There are two stages involved in performing a complete minimum or max-
imum reduction. In the first stage the maximum value in each column is found,
and this becomes the value for every PE in each column (Figure 9). This is per-
formed by each PE loading the value of the PE below it, then on the next clock
cycle, keeping the higher of its own value, or the value from below. This pro-
cedure is then repeated N-1 times, sufficient for correct operation in the worst
case, when the maximum value is in the bottom row. The maximum value in each
row can be found similarly, again with the operation performed N-1 times. If the
column reduction operation has already been performed, every PE now contains
the maximum value that was found in the array (Figure 10), which can then easily
be read from the output port on the first element (LT).
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Figure 8: Initial Values for Reduction (Finding the Maximum)

0 1 2
3 4 5
6 7 8

Figure 9: All Column Maximums Found

6 7 8
6" 7" 8"
6" 7" 8"

Figure 10: Then Row Maximums Found

8  8  8
8  8  8
8  8  8

The separation of row and column reduction thus enables the completion of
these operations in O(n) time.

3.3 Simple Image Filtering

3.3.1 Mean Filtering

When performing image processing tasks such as edge detection or disparity map-
ping, pre-filtering is used to increase accuracy. Due to the nature of this image
processing architecture, it is simple to perform a four-way “fast” mean filter, re-
placing each pixel with the mean of its cardinal neighbours (Figure 11). The
operation of such a filter on a small array is shown in Figure 13. Note that the
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values of the edge elements are not useful, as their means include values that are
beyond the edge of the processing array. This loss of edge pixels is common in
image processing algorithms.

Figure 11: Mask for Four-way Mean Operation

1/4
1/4 1/4

1/4

Figure 12: Initial Array Values

5 5 4 6
6 6 4 5
7 30 6 4
5 7 3 6

Figure 13: Following Four-way Mean Operation

- - - -
- 11 5 -
- 7 10 -
- - - -

It can be seen that the outlier of “30” has been removed. However, while the
outlier itself has been filtered away, it has still had a substantial impact on two of
the remaining image pixels, illustrating a key downside of mean-based filtering,
and other linear filtering schemes. The choice of which mean window to use is a
compromise between retaining image sharpness, and the noise reduction require-
ments, with too large a window creating a “blur” effect. For the processing array
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implementation, the mean filtering is performed by loading the four neighbouring
pixels into the stack, then popping them back in turn. To avoid overflowing during
the interim state, each operand is divided by four before it is summed. The central
pixel now contains the four-way mean of the adjacent pixels.

3.3.2 Median Filtering

The non-linear technique of median filtering is commonly used as a pre-filtering
stage, as it does not suffer from the aforementioned disadvantages of mean-based
approaches[10]. The structure of FPGAs lends itself to the application of “fast-
median” algorithms, which generally give reasonable approximations of the true
median, while being much simpler to implement. The standard 3x3 fast median
is executed by first finding the median of each column, and then finding the me-
dian of these results. This approach is used in specialised median filtering stages
[29], but proved to be too computationally expensive for this massively parallel
implementation. For this reason, the median filtering operations shown in al-
gorithm 5 have not been implemented on the PEs. This is because the synthesis of
median-specific instructions to allow either vertical and horizontal medians to be
calculated in a single instruction requires the use additional logic levels. This is
significantly greater than the logic required for any other single instruction, setting
a maximum clock speed that can be reached by the system. This means that the
addition of these instructions significantly degrades performance for other image
processing tasks.
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Algorithm 4 Fast Median Filtering with a 3x3 window (using specialised instruc-
tions)

��F i n d i n g V e r t i c a l Medians

g I n s t r u c t i o n <=MedianUD ; ��Load V e r t i c a l Median i n t o B
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <=CopyBA ; ��Copy B i n t o A
wait f o r c l k _ p e r i o d ;

��F i n d i n g H o r i z o n t a l Medians
g I n s t r u c t i o n <=MedianLR ; ��Load H o r i z o n t a l Median i n t o B

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <=CopyBA ; ��Copy B i n t o A

wait f o r c l k _ p e r i o d ;
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Algorithm 5 Specialised Instructions for 3x3 Fast Median Filtering

when MedianUD => ��V e r t i c a l Median
i f ( ( i n_up >= a and a >= in_down ) or

( in_down >= a and a >= in_up ) )
then b<=a ;

e l s i f ( ( a >= in_up and i n_up >= in_down ) or
( in_down >= in_up and i n_up >= a ) )
then b<= in_up ;

e l s i f ( ( a >= in_down and in_down >= in_up ) or
( in_up >= in_down and in_down >= in_up ) )
then b<=in_down ;

end i f ;

when MedianLR => ��H o r i z o n t a l Median
i f ( ( i n _ l e f t >= a and a >= i n _ r i g h t ) or

( i n _ r i g h t >= a and a >= i n _ l e f t ) )
then b<=a ;

e l s i f ( ( a >= i n _ l e f t and i n _ l e f t >= i n _ r i g h t ) or
( i n _ r i g h t >= i n _ l e f t and i n _ l e f t >= a ) )
then b<= i n _ l e f t ;

e l s i f ( ( a >= i n _ r i g h t and i n _ r i g h t >= i n _ l e f t ) or
( i n _ l e f t >= i n _ r i g h t and i n _ r i g h t >= i n _ l e f t ) )
then b<= i n _ r i g h t ;
end i f ;

Figure 14: Initial Values for use with Fast Median Filtering

0 1 2
3 200 5
6 7 8
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Figure 15: All Column Medians Found

# # #
3 7 5
" " "

Figure 16: Then Row Medians Found

- - -
! 5  
- - -

3.3.3 Sobel Operator

The Sobel operator is used as an edge detection algorithm, finding gradients in
the x and y directions. Using the separability of the Sobel operator (Figure 18),
this operation can be easily performed in a highly parallel way. The separated
matrices are known as the smoothing and difference operators [30]. Sobel-based
edge detection is an area that FPGAs can perform very well in, due to the large
number of simple operations that are required [31].

Figure 17: Mask for Sobel Operator (x-direction)

-1 1
-2 2
-1 1

This separability allows the component gradients to be determined by separate
row and column operations, a good match for the massively parallel processing
array. The application of the Sobel operator in the x-direction will be used to
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Figure 18: Separability of Sobel Operator (x-direction) [27]
0

@
�1 0 1
�2 0 2
�1 0 1
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Figure 19: Initial Array Values for Sobel

0 1 2 3
8 10 12 7
8 9 10 11
12 13 14 15

demonstrate this process. After a set of image data has been loaded into the array
(Figure 19), every processing element loads the value of the PE directly above it,
and pushes this value to the stack, it then loads the value of the element below it
into register B. Both of these values are loaded before any arithmetic operations
take place, so that other PEs are able to read the initial values correctly. Once
both values are loaded, the initial pixel value in A is doubled, and the pixels from
the two vertically adjacent elements subtracted. The result of these operations is
shown in Figure 20. The row operations must then be performed. Again the
stack is used to ensure that the value of A remains untouched until all loading is
complete. For this portion of the algorithm, the outcome is that the final value
is the previous value of the left PE, minus the previous value of the right PE

Figure 20: Following Column Operations

- - - -
8 10 12 0
-4 -5 -6 0
- - - -
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Figure 21: Sobel Process Complete in the x-direction

- - - -
- 4 -10 -
- -2 5 -
- - - -

(Figure 21). The instructions required to perform these operations is shown in
algorithm 6.
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Algorithm 6 Sobel Operator in the x-direction

��S o b e l Opera tor i n X d i r e c t i o n

�� F i r s t Par t o f S o b e l i n x ( Columns )
g I n s t r u c t i o n <= LdUp ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <= PushB ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <= LdDown ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <=DblA ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <=AddBA ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <=PopB ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <=AddBA ;

wait f o r c l k _ p e r i o d ;
��Every PE = above + 2⇤ i t s e l f + below

�� Second Par t o f S o b e l i n X ( Rows )
g I n s t r u c t i o n <= LdLef t ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <= PushB ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <= LdRight ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <=CopyBA ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <=PopB ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <=SubBA ;

wait f o r c l k _ p e r i o d ;
��Every PE = l e f t � r i g h t
��S o b e l i n X d i r e c t i o n c o m p l e t e d .
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Figure 22: Separability of Sobel Operator (y-direction)
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A similar process is used to approximate image gradients in the y-direction
Figure 22 . Once the gradient magnitudes are found, the edge intensity can be
calculated using a polar conversion. Alternatively, an approximation of the overall
edge intensity can be found by summing the absolute values of the gradients of
the x and y direction.

3.4 Stereo Vision

The hardware required to capture stereo images can be implemented inexpens-
ively. However, the computational performance required to process these images
in a reasonable time remains prohibitive for many applications, particularly for
embedded devices. For this reason the potential for FPGAs to accelerate this pro-
cessing has been an area of keen development [32, 33, 9, 34]. The algorithms
discussed below are area-based techniques for correlating two stereo images. In
stereo correspondence calculations, the algorithm compares a window (for ex-
ample a 5x5 square) in one image, with every possible window in the other im-
age. The relative pixel offset between a window area and its best match (greatest
correlation) gives a value of stereo disparity. This is repeated for every window of
the initial image, with a greater disparity indicating that the object is closer to the
cameras. On a serial processor, smaller window sizes dramatically increase the
total number of operations required, and hence time taken [32]. In conventional
stereo imaging, each image is the current output frame of calibrated left and right
cameras. For the purposes of stereo vision, calibrated cameras are those aligned
along a single horizontal plane. This calibration means that stereo correspondence
comparisons only need to be made in the x axis, significantly reducing the com-
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putational intensity of the processes. The Sum of Absolute Differences (SAD)
algorithm is a simple method for determining a correlation between two images.
Under the SAD method, smaller window sizes generally give a greater level of
accuracy. The performance of stereo vision systems can often be improved by
finding edges (via the Sobel operator or similar), and then running a correspond-
ence algorithm such as SAD on the processed edges [35].

3.4.1 Sum of Absolute Differences

The instructions required to calculate the SAD are shown in 7. The pixel values of
the left and right stereo image are subtracted (Figure 23), and the absolute value
of these differences is taken (Figure 24). This absolute value is then summed
along each three pixel column (Figure 25) and row (Figure 26). When these oper-
ations are completed, each PE contains the 3x3 SAD value for that disparity. The
disparity is then increased (shift one of the images across by one pixel), and the
operations repeated.

Figure 23: Example Left and Right Image Differences

1 4 6
-1 8 9
2 -3 -2

Figure 24: Absolute Value of Left and Right Image Differences

1 4 6
1 8 9
2 3 2
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Algorithm 7 Summing Absolute Differences

�� 3 x3 SAD I m p l e m e n t a t i o n
�� A has l e f t image , B has r i g h t image
g I n s t r u c t i o n <= SubBA ;

wait f o r c l k _ p e r i o d ;
g I n s t r u c t i o n <= AbsA ;

wait f o r c l k _ p e r i o d ;
��Now have AD f o r each p i x e l p a i r .

g I n s t r u c t i o n <= LdUp ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= PushB ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= LdDown ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= AddBA ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <=PopB ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= AddBA ;
wait f o r c l k _ p e r i o d ;

��Now Column SAD done .

g I n s t r u c t i o n <= LdLef t ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= PushB ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= LdRight ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= AddBA ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <=PopB ;
wait f o r c l k _ p e r i o d ;

g I n s t r u c t i o n <= AddBA ;
wait f o r c l k _ p e r i o d ;

��Sum o f AD done .
��Each PU now has 3 x3 SAD f o r t h i s d i s p a r i t y .
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Figure 25: Column SAD

# # #
4 15 17
" " "

Figure 26: Sum of Absolute Differences for a Single Disparity Level

- - -
! 36  
- - -

The inclusion of additional higher-level logic will be required to maintain the
value of the lowest SAD, and the disparity for which this occurred. The disparity
that gave the lowest SAD will become that pixel’s value in the final disparity map.
The generated disparity map then gives an indication of the relative distance of
each image pixel from the cameras. The potential for more specialised FPGA
co-processors to dramatically enhance SAD systems is already known [36, 20].

3.5 Demonstration of Conditional Activation

The current implementation of this general purpose image co-processor supports
only one method of conditional activation. This is provided by the DisableZ op-
eration, which disables all PEs that have a zero value in register A. When a PE
is disabled, it does not execute any further operations until after the issue of an
EnableAll command. These operations demonstrate basic conditional execution
within the array.
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Figure 27: Initial Values for Conditional Execution

0 1 2
3 4 5
6 7 8

Figure 28: After DisableZ is issued

Off 1 2
3 4 5
6 7 8

Figure 29: All Active PEs Incremented by One

Off 2 3
4 5 6
7 8 9

Figure 30: Final Values

0 2 3
4 5 6
7 8 9
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4 Results

The synthesis results in Table 3 show that the FPGA resources required to im-
plement the PA structure grows significantly as the required array size increases.
The quadratic increase seen in Figure 31 is to be expected, as the number of PUs
required rises with the square of array dimension.

Table 3: Synthesis Results
N PEs Slice LUTs Max Clock LUT Utilisation of XC6SLX45
3 9 1150 136 MHz 4%
6 36 5102 115 MHz 18%
9 81 11 516 52 MHz 42%

12 144 20 494 65 MHz 75%

While there are FPGAs with significantly larger numbers of logic slices than
the XC6SLX45, results show that due to the quadratic scaling of LUT utilisa-
tion, that any full-resolution implementation of this complete set of general pur-
pose instructions will become difficult to synthesise on commodity hardware. The
highest-end model of Xilinx’s new Virtex-7 range (the XC7V2000T) offers 1 955k
logic cells, of similar structure to the 43k logic cells found on the XC6SLX45
(both have four LUTS, and eight flip-flops per block). Assuming the scaling of
LUT utilisation continues quadratically as expected, this would give a potential
n of around 95, for a total of 9 025 processing elements [37]. Thus while the
synthesis of such a massively parallel design on affordable hardware in the near
future may require a tighter focus on which tasks will be performed (reducing the
logic resources required for each PE), future hardware will be significantly more
capable of implementing such a design, while retaining general utility.

A reduction in maximum clock speed can also be seen as the internal rout-
ing of the FPGA becomes more complex, and there is a greater level of resource
contention. The slower than expected operating frequency of the n=9 processing
array (Table 3) was reproducible, and appeared to be caused by an optimisation
that favoured heavily sharing of arithmetic resources between a large number of
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Figure 31: LUT Utilisation following Synthesis
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Figure 32: Maximum Clock Speed
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processing elements. It is possible to adjust synthesiser performance to prioritise
for logic area or clock speed, through configuring its approach to logic block shar-
ing, however, this did not have a significant impact on the synthesis results. The
relatively low clock speeds that can be seen for the larger PAs would significantly
increase the time required to load in image frames, but in many cases would not
substantially slow the image processing itself.
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5 Conclusion

This implemented system shows that a system consisting of a parallel processing
array, made up of a large number of interconnected PUs can achieve high levels of
theoretical image processing performance, performing many processing in a small
number of clock cycles. This sort of architecture would be especially effective
when operating on larger image sizes, as many common image processing tasks
can be performed at a reduced order compared to serial processing.

With the current instruction set, commercially available FPGA hardware does
not offer sufficient logic area to implement this generalised a parallel architecture
on a realistic scale, as even relatively small processing arrays will consume the
entirety of available logic resources of current FPGA hardware. Unfortunately,
with current technology, there are still significant compromises that must be made
to the generalised capabilities of individual processing elements, to ensure it is
possible to implement this kind of massively parallel architecture at useful image
sizes. The chosen instruction set was relatively complex compared to other re-
search approaches [24, 23], and it is possible that further simplification of the PEs
abilities in favour of a greater level centralised logic would allow for improved
scaling.
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6 Future Work

This project has demonstrated the possibility of developing a general purpose im-
age processing architecture through the application of a massively-parallel grid
architecture. In this case the architecture’s utility was benchmarked through the
use of the Xilinx iSim simulator. It is expected that future work would include the
synthesis of this design onto physical FPGA hardware, allowing the connection
of cameras and output screens. Unfortunately, current FPGA hardware does not
allow for the synthesis of full-frame size processing arrays.

6.1 Hardware Implementation

Throughout its development, this architecture was synthesised for the Xilinx Spartan-
6 XC6SLX45 FPGA. The configuration onto a physical device would only re-
quires the addition of for input/output pin allocations [15]. It is likely that to
achieve useful results on physical hardware, an FPGA model with a greater num-
ber of CLBs would be required. It is possible to explore techniques such as hand-
ling small sections of the image at one time. The viability of such an approach
depends on the specifics of the imaging tasks that must be performed. For ex-
ample, as covered earlier, for calibrated cameras the SAD method only examines
windows along a single horizontal line, so a system than can break-down the im-
age into horizontal strips could be appropriate, while other imaging tasks would
be most performant with square image sections. This kind of image partitioning
of images thus creates its own set of design compromises. With current hardware
it is possible that a dynamically reconfigurable approach would also be useful,
by creating a versatile system that can perform a variety of tasks, but requires re-
configuration when moving between them. This may allow a better balance to be
struck between PE capability and PA size.

38



6.2 Camera Interfacing

The architecture in its current state has been developed based around a purely
serial image signal as the input to the processing grid. This requires the image
data for each pixel to traverse the grid from the final PE to the appropriate element.
It is likely that the specific output and timing requirements of the cameras used
would necessitate the development of a buffer stage, and increased logic dealing
with missed pixels, resynchronisation and timing.

6.3 Conditional Logic

For this kind of architecture to be more readily used, especially via a higher level
programming interface, there should be a greater investigation of the systems re-
quirements in terms of conditional logic functions. A greater number of condi-
tional flags would allow a broader range of conditional behaviours, at a relatively
low cost in terms of FPGA logic area. This would include the development of a
nested conditional structures, and operations such as while loops. It would also be
useful to pass each PU information about its coordinates during generation (this
could be done with a generic map), so that operations can be performed condi-
tionally of the PE’s specific array location.

6.4 Connection Changes

Another set of potential interconnections that may yield useful results is the cre-
ation of diagonal connections between processing elements. This would directly
increase the accuracy of some operations, for example, mean filtering. Improve-
ments in filtering processes are particularly useful in computationally constrained
scenarios, as often filtering improvements can give greater additionally accuracy
than equivalent improvements to more high-level operations. The addition of di-
agonal interconnections would also enable the simplification of currently possible
image processing tasks. Processing element interconnections that create a binary-
tree configuration would also provide improved performance for reduction tasks
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[28]. The changes to array performance that can caused by changes to inter-array
connectivity can be significant, with one potential path being the simplification of
each PE, while creating a more complex structure between neighbouring elements
As one example, allowing local chaining between PEs can allow them to act as a
single, more capable PE when appropriate [25].
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A PEs.vhd

1 l i b r a r y IEEE ;
2 use IEEE . STD_LOGIC_1164 .ALL ;
3 use IEEE . NUMERIC_STD .ALL ;
4

5 e n t i t y pe i s
6

7 port (
8 in_up : in s i g n e d (7 downto 0) :=

t o _ s i g n e d ( 0 , 8 ) ;
9 in_down : in s i g n e d (7 downto 0) :=

t o _ s i g n e d ( 0 , 8 ) ;
10 i n _ l e f t : in s i g n e d (7 downto 0) :=

t o _ s i g n e d ( 0 , 8 ) ;
11 i n _ r i g h t : in s i g n e d (7 downto 0) :=

t o _ s i g n e d ( 0 , 8 ) ;
12

13 i n _ l o a d : in s i g n e d (7 downto 0) ;
14 o u t _ l o a d : out s i g n e d (7 downto 0) ;
15

16 o u t p u t : out s i g n e d (7 downto 0) ;
17

18 o p e r a t i o n : in STD_LOGIC_VECTOR (4 downto 0) ;
19 c l k : in STD_LOGIC
20 ) ;
21

22 end pe ;
23

24
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25 a r c h i t e c t u r e b e h a v i o r of pe i s
26 ��R e g i s t e r s
27 s i g n a l a : s i g n e d (7 downto 0) := t o _ s i g n e d

( 0 , 8 ) ;
28 s i g n a l b : s i g n e d (7 downto 0) := t o _ s i g n e d

( 0 , 8 ) ;
29

30 ��Enable S i g n a l s
31 s i g n a l z e r o f l a g : b i t : = ’ 0 ’ ;
32 s i g n a l e n a b l e : b i t : = ’ 1 ’ ;
33

34 ��16 x 1 b y t e S t a c k
35 type s t a c k t y p e i s array (0 to 15) of s i g n e d (7

downto 0) ;
36 s i g n a l s t a c k : s t a c k t y p e := ( o t h e r s => ( o t h e r s

=> ’ 0 ’ ) ) ;
37 s i g n a l s t a c k i n d e x : i n t e g e r range 0 to 15 : = 0 ;
38

39

40

41

42 begin
43

44 p r o c e s s ( c lk , a )
45 begin
46

47 i f ( r i s i n g _ e d g e ( c l k ) and e n a b l e = ’1 ’ ) then
48

49 case o p e r a t i o n i s
50 when " 00000 " => ��NOP

47



51

52 when " 00001 " => ��Copy B t o A
53 a <= b ;
54

55 when " 00010 " => ��Copy A t o B
56 b <= a ;
57

58 when " 00011 " => ��BITWISE OR
59 a <= a or b ;
60

61 when " 00100 " => ��BITWISE AND
62 a <= a and b ;
63

64 when " 00101 " => ��BITWISE XOR
65 a <= a xor b ;
66

67 when " 00110 " => ��AddBA
68 a <= a + b ;
69

70 when " 00111 " => ��SubBA
71 a <= a�b ;
72

73 when " 01000 " => ��AbsA
74 a <= abs ( a ) ;
75

76 when " 01001 " => ��Clr A
77 a <= " 00000000 " ;
78

79 when " 01010 " => ��Clr B
80 b <= " 00000000 " ;
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81

82 when " 01011 " => ��Load from UP i n t o B
83 b <= in_up ;
84

85 when " 01100 " => ��Load from DOWN i n t o B
86 b <= in_down ;
87

88 when " 01101 " => ��Load from LEFT i n t o B
89 b <= i n _ l e f t ;
90

91 when " 01110 " => ��Load from RIGHT i n t o B
92 b <= i n _ r i g h t ;
93

94 when " 01111 " => ��Load In
95 b <= i n _ l o a d ;
96

97 when " 10000 " => ��SwapAB
98 a <=b ;
99 b<=a ;

100

101 when " 10001 " => ��Double A
102 a <= ( SHIFT_LEFT ( a , 1 ) ) ;
103

104 when " 10010 " => ��Halve A
105 a <= ( SHIFT_RIGHT ( a , 1 ) ) ;
106

107 when " 10011 " => ��Maximum o f A and B
108 i f a < b
109 then a <= b ;
110 end i f ;
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111

112 when " 10100 " => ��Minimum o f A and B
113 i f a > b
114 then a <= b ;
115 end i f ;
116

117

118 when " 10101 " => ��PushA
119 s t a c k ( s t a c k i n d e x ) <= a ;
120 s t a c k i n d e x <= s t a c k i n d e x + 1 ;
121

122 when " 10110 " => ��PopA
123 a <= s t a c k ( s t a c k i n d e x �1) ;
124 s t a c k i n d e x <= s t a c k i n d e x � 1 ;
125

126 when " 10111 " => ��PushB
127 s t a c k ( s t a c k i n d e x ) <= b ;
128 s t a c k i n d e x <= s t a c k i n d e x + 1 ;
129

130 when " 11000 " => ��PopB
131 b <= s t a c k ( s t a c k i n d e x �1) ;
132 s t a c k i n d e x <= s t a c k i n d e x � 1 ;
133

134 when " 11001 " => ��IncA
135 a <=a +1;
136

137 when " 11010 " => ��DecA
138 a <=a�1;
139

140 when " 11011 " => ��DisablePU i f A=0.
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141 i f ( a=0 ) then enab l e <= ’0 ’ ; end i f ;
142

143 when o t h e r s =>
144

145 end case ;
146

147

148

149 end i f ;
150

151 i f ( o p e r a t i o n =" 11100 " ) then enab l e <= ’1 ’ ;
end i f ;

152

153 ��o u t p u t A t o each .
154 o u t _ l o a d <= a ;
155 o u t p u t <= a ;
156

157 end p r o c e s s ;
158

159

160 end a r c h i t e c t u r e ;
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B PA.vhd

1 l i b r a r y IEEE ;
2 use IEEE . STD_LOGIC_1164 .ALL ;
3 use IEEE . NUMERIC_STD .ALL ;
4

5 e n t i t y PA i s
6 ��g e n e r i c (N : I n t e g e r := 15) ; D e f a u l t t o 15 x15
7 port (
8 g I n s t r u c t i o n : in STD_LOGIC_VECTOR (4

downto 0) ;
9 gLoad : in s i g n e d (7 downto 0) ;

10 gOut : out s i g n e d (7 downto 0) ;
11 gDummy : out STD_LOGIC_VECTOR(N⇤N�1

downto 0) ;
12 c l k : in STD_LOGIC
13 ) ;
14

15 end e n t i t y PA ;
16

17

18 a r c h i t e c t u r e s t r u c t u r e of PA i s
19

20 component pe
21 PORT
22

23 (
24

25 in_up : in s i g n e d (7 downto 0) := t o _ s i g n e d
( 0 , 8 ) ;
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26 in_down : in s i g n e d (7 downto 0) :=
t o _ s i g n e d ( 0 , 8 ) ;

27 i n _ l e f t : in s i g n e d (7 downto 0) :=
t o _ s i g n e d ( 0 , 8 ) ;

28 i n _ r i g h t : in s i g n e d (7 downto 0) :=
t o _ s i g n e d ( 0 , 8 ) ;

29

30 i n _ l o a d : in s i g n e d (7 downto 0) :=
t o _ s i g n e d ( 0 , 8 ) ;

31 o u t _ l o a d : out s i g n e d (7 downto 0) :=
t o _ s i g n e d ( 0 , 8 ) ;

32

33 o u t p u t : out s i g n e d (7 downto 0) :=
t o _ s i g n e d ( 0 , 8 ) ;

34

35 o p e r a t i o n : in STD_LOGIC_VECTOR ;
36 c l k : in STD_LOGIC
37 ) ;
38 end component ;
39

40 type t e s t t y p e i s array (N�1 downto 0 , N�1 downto 0) of
s i g n e d (7 downto 0) ;

41 s i g n a l dou t : t e s t t y p e ;
42

43 begin
44

45 G1 : f o r i in N�1 downto 0 g e n e r a t e
46 G2 : f o r j in N�1 downto 0 g e n e r a t e
47

48 LT : i f ( ( i =0) and ( j =0) ) g e n e r a t e
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49 apu0 : pe port map
50 (
51 o p e r a t i o n => g I n s t r u c t i o n ,
52 c l k => c lk ,
53

54 in_down=> dou t ( i , j +1) ,
55 i n _ r i g h t => dou t ( i +1 , j ) ,
56 i n _ l o a d => dou t ( i +1 , j ) ,
57

58 o u t _ l o a d =>gOut ,
59

60 o u t p u t => dou t ( i , j )
61

62 ) ;
63 end g e n e r a t e LT ;
64

65 CT : i f ( ( i /=N�1 and i /=0 ) and j =0) g e n e r a t e
66 apu0 : pe port map
67 (
68 o p e r a t i o n => g I n s t r u c t i o n ,
69 c l k => c lk ,
70

71 in_down=> dou t ( i , j +1) ,
72 i n _ r i g h t => dou t ( i +1 , j ) ,
73 i n _ l o a d => dou t ( i +1 , j ) ,
74 i n _ l e f t => dou t ( i �1, j ) ,
75

76 o u t p u t => dou t ( i , j )
77

78 ) ;
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79 end g e n e r a t e CT ;
80

81 RT : i f ( ( i =N�1) and ( j =0) ) g e n e r a t e
82 apu0 : pe port map
83 (
84 o p e r a t i o n => g I n s t r u c t i o n ,
85 c l k => c lk ,
86

87 in_down=> dou t ( i , j +1) ,
88 i n _ l o a d => dou t ( 0 , j +1) ,
89 i n _ l e f t => dou t ( i �1, j ) ,
90

91 o u t p u t => dou t ( i , j )
92

93 ) ;
94 end g e n e r a t e RT ;
95

96 RC: i f ( ( i =N�1) and ( j /=0 and j /=N�1) ) g e n e r a t e
97 apu0 : pe port map
98 (
99 o p e r a t i o n => g I n s t r u c t i o n ,

100 c l k => c lk ,
101

102 in_up => dou t ( i , j �1) ,
103 in_down=> dou t ( i , j +1) ,
104 i n _ l o a d => dou t ( 0 , j +1) ,
105 i n _ l e f t => dou t ( i �1, j ) ,
106

107 o u t p u t => dou t ( i , j )
108
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109 ) ;
110 end g e n e r a t e RC;
111

112 RB: i f ( ( i =N�1) and ( j =N�1) ) g e n e r a t e
113 apu0 : pe port map
114 (
115 o p e r a t i o n => g I n s t r u c t i o n ,
116 c l k => c lk ,
117

118 in_up => dou t ( i , j �1) ,
119 i n _ l e f t => dou t ( i �1, j ) ,
120 i n _ l o a d =>gLoad ,
121

122 o u t p u t => dou t ( i , j )
123

124 ) ;
125 end g e n e r a t e RB;
126

127 CB: i f ( ( i /=N�1 and i /=0 ) and j =N�1) g e n e r a t e
128 apu0 : pe port map
129 (
130 o p e r a t i o n => g I n s t r u c t i o n ,
131 c l k => c lk ,
132

133 in_up => dou t ( i , j �1) ,
134 i n _ r i g h t => dou t ( i +1 , j ) ,
135 i n _ l o a d => dou t ( i +1 , j ) ,
136 i n _ l e f t => dou t ( i �1, j ) ,
137

138 o u t p u t => dou t ( i , j )
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139

140 ) ;
141 end g e n e r a t e CB;
142

143 LB : i f ( ( i =0) and ( j =N�1) ) g e n e r a t e
144 apu0 : pe port map
145 (
146 o p e r a t i o n => g I n s t r u c t i o n ,
147 c l k => c lk ,
148

149 in_up => dou t ( i , j �1) ,
150 i n _ r i g h t => dou t ( i +1 , j ) ,
151 i n _ l o a d => dou t ( i +1 , j ) ,
152

153 o u t p u t => dou t ( i , j )
154

155 ) ;
156 end g e n e r a t e LB ;
157

158 LC : i f ( ( i =0) and ( j /=0 and j /=N�1) ) g e n e r a t e
159 apu0 : pe port map
160 (
161 o p e r a t i o n => g I n s t r u c t i o n ,
162 c l k => c lk ,
163

164 in_up => dou t ( i , j �1) ,
165 in_down=> dou t ( i , j +1) ,
166 i n _ r i g h t => dou t ( i +1 , j ) ,
167 i n _ l o a d => dou t ( i +1 , j ) ,
168
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169 o u t p u t => dou t ( i , j )
170

171 ) ;
172 end g e n e r a t e LC ;
173

174 CC: i f ( ( i /=0 and i /=N�1) and ( j /=0 and j /=N�1) )
g e n e r a t e

175 apu0 : pe port map
176 (
177 o p e r a t i o n => g I n s t r u c t i o n ,
178 c l k => c lk ,
179

180 in_up => dou t ( i , j �1) ,
181 in_down=> dou t ( i , j +1) ,
182 i n _ r i g h t => dou t ( i +1 , j ) ,
183 i n _ l o a d => dou t ( i +1 , j ) ,
184 i n _ l e f t => dou t ( i �1, j ) ,
185 o u t p u t => dou t ( i , j )
186

187 ) ;
188 end g e n e r a t e CC;
189 end g e n e r a t e G2 ;
190 end g e n e r a t e G1 ;
191

192 end s t r u c t u r e ;
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