
Design of an embedded data acquisition and display system using a

modular approach

Beau Trepp

Electrical, Electronic and Computer Engineering

University Of Western Australia

A thesis submitted for the degree of

Bachelor of Computer Science/ Bachelor of Electronic Engineering

2011 November

mailto:20261142@student.uwa.edu.au
http://ee.uwa.edu.au
http://www.uwa.edu.au

Abstract

The topic of electric vehicles is becoming increasingly popular due to rising

fuel costs and growing concern over emissions. Despite this attention, most

electric vehicles have little or no telemetry systems, making many aspects

of there operation and e�ciency a mystery.

The aim of this project was to develop an extend-able system in order to

capture various data-points that can be available in a vehicle, as well as an

interface to display this data inside the car. The design developed di↵ers

from traditional embedded systems by being completely modular. It uses

existing network protocols to allow the system to be distributed between

various smaller embedded components. This will enable it to be easily

extended, should the need for more data-points arise, and allows the use

of many smaller systems to be implemented incrementally, rather than one

expensive monolithic design.

In order to help facilitate robustness and code re-use, a windowing toolkit

was also developed. This provides a common platform for user interac-

tion, and defines pre-built components in order to speed up the design and

implementations of the user interface.

By exposing and recording more data, deeper analysis can be done on the

e�ciency of the car, and help justify di↵erent technological improvements

to the vehicle. The higher granularity of data acquired can also be used to

analyze the economy of the vehicle in di↵erent conditions.

Acknowledgements

During work on this project, I received help from many people whom I

would like to thank.

The members of the gumstix and ZeroMQ mailing lists who helped me with

issues regarding compilation of both code-bases.

Ian Hooper who helped with work on the vehicle, and provided knowledge

into the construction of the vehicle.

Jonathan Oakley who showed helped me with understanding the safety

issues regarding driving the car, and for showing me the routes used to

performance test it.

The maintainers of the open icon library, for the images used in the project.

To my supervisor Prof Thomas Brunl for the opportunity to work on the

project and vehicle and for guidance during the project.

Kevin Vinsen, for looking after the REV project while Thomas was on

sabbatical.

Finally I would like to thank all the members of the REV Team, for pro-

viding assistance and support throughout the project.

Contents

List of Figures xi

List of Tables xiii

Glossary xv

1 Introduction 1

1.1 The REV Group . 1

1.1.1 Motivations . 1

1.1.1.1 Pollution . 1

1.1.1.2 Rising Fuel Prices . 2

1.2 Hardware used . 2

1.2.1 Vehicle used in this project . 2

1.2.2 Embedded Controller . 2

1.2.3 Battery Monitor . 3

1.2.4 GPS . 3

1.3 Technological concepts . 3

1.3.1 Threading and Process . 3

1.3.2 Messaging . 3

1.3.2.1 Brokerless . 4

2 Aims of the project 5

2.1 Final Aim . 5

2.2 Goals . 5

iii

CONTENTS

3 Literature Review 7

3.1 Getz Graphical User Interface . 7

3.2 Renewable Energy Vehicle Instrumentation: Graphical User Interface

and Black Box . 8

3.3 Development of a User Interface for Electric Cars 10

4 System Design 11

4.1 Distributed Design . 11

4.1.1 Isolation . 11

4.1.2 Distribution of Components . 12

4.1.3 Simpler Component Architecture 12

4.2 Network Protocol . 13

4.2.1 Messages . 14

4.2.2 Publish-Subscribe model . 15

4.2.3 Description of Network Protocol 15

4.3 Error Logging . 17

4.4 GPS Module . 18

4.4.1 Hardware . 18

4.4.2 Drivers . 18

4.4.3 Design . 20

4.4.3.1 Initial Design . 20

4.4.3.2 Final Design . 20

4.4.3.3 Network Protocol . 21

4.5 TBS Module . 21

4.5.1 Hardware . 21

4.5.2 Expert protocol . 23

4.5.2.1 Destination and Start Byte 23

4.5.2.2 Source . 24

4.5.2.3 Device ID . 24

4.5.2.4 Message Identifier . 24

4.5.2.5 Data . 25

4.5.2.6 Trailing Byte . 25

4.5.3 Design . 25

iv

CONTENTS

4.5.3.1 Network protocol . 25

4.6 Arduino Digital Input Module . 27

4.6.1 Speedometer and Tachometer . 28

4.6.2 Hardware . 29

4.6.3 Drivers . 29

4.6.4 Design . 30

4.6.4.1 Arduino . 30

4.6.4.2 Host side . 31

4.7 Accelerometer Module . 31

4.7.1 Hardware . 32

4.7.2 Drivers . 32

4.7.3 Design . 33

4.8 File Logger . 33

4.8.1 Design . 33

4.8.1.1 Program Flow . 33

4.8.1.2 File storage . 35

4.8.1.3 File Format . 35

4.9 Network Logger . 36

4.9.1 Design . 36

5 Windowing Toolkit 39

5.1 Motivation . 39

5.2 Elements . 40

5.2.1 UIElement . 40

5.2.1.1 addChild() . 40

5.2.1.2 draw() . 42

5.2.1.3 enqueueDraw() . 42

5.2.1.4 animate() . 42

5.2.1.5 setActive() . 43

5.2.1.6 isActive() . 43

5.2.2 base . 45

5.2.2.1 base() . 45

5.2.2.2 draw() . 45

v

CONTENTS

5.2.2.3 getButton() . 46

5.2.2.4 addButton() . 46

5.2.2.5 addGlobalButton() . 47

5.2.2.6 refreshTouchMap() . 47

5.2.2.7 buttonPressed() . 47

5.2.2.8 activate() . 48

5.2.3 Popup . 49

5.2.3.1 popup() . 49

5.2.3.2 buildUI() . 49

5.2.3.3 run() . 50

5.2.3.4 getButton() . 50

5.2.3.5 activate() . 50

5.2.4 runnable . 50

5.2.4.1 isScreenChange . 51

5.2.4.2 run() . 51

5.2.5 Button . 51

5.2.5.1 button() . 52

5.2.5.2 setPosition() . 52

5.2.5.3 getX() . 52

5.2.5.4 getY() . 53

5.2.5.5 getWidth() . 53

5.2.5.6 getHeight() . 53

5.2.5.7 invertButton() . 53

5.2.5.8 getRunnable() . 53

5.2.6 Digitelement . 53

5.2.6.1 getX() . 54

5.2.6.2 getY() . 54

5.2.6.3 getWidth() . 54

5.2.6.4 getHeight() . 55

5.2.6.5 setValue() . 55

5.2.6.6 setError() . 55

5.2.7 Console Element . 55

5.2.7.1 consolelement() . 56

vi

CONTENTS

5.2.7.2 addLine() . 56

5.2.7.3 draw() . 57

5.2.8 UIImage . 57

5.2.8.1 uiimage() . 58

5.2.8.2 setPosition() . 58

5.3 Subscriber Queue . 58

5.3.1 Subscriber . 58

5.3.2 Filter . 60

5.3.3 Listener . 60

5.4 Button Translation . 61

5.5 Screen Drawing Queue . 62

5.5.1 Refresh on Arrival . 62

5.5.1.1 Message speed greater than redraw rate 62

5.5.2 Add to Queue . 64

5.5.3 Redrawing the Screen . 64

5.5.4 Redraw rate . 64

5.5.5 Batch Redraw . 65

5.5.5.1 Maximum batch size . 65

5.5.5.2 Incomplete batch . 66

5.6 Alpha Transparency . 66

6 Interface 69

6.1 Layout . 69

6.1.1 Background . 69

6.1.2 Navigation Model . 70

6.2 Overview Panel . 70

6.3 Battery . 70

6.4 Maps . 72

6.4.1 Map Data . 75

6.4.2 Tiling . 76

6.4.2.1 Converting GPS Co-ordinates 78

6.4.3 Palleted File Format . 79

6.4.4 Sliding Maps . 80

vii

CONTENTS

6.5 Trip Meter . 81

6.5.1 Distance Driven . 82

6.5.2 Time Elapsed . 83

6.5.3 Moving Time . 84

6.5.4 Average Speed . 84

6.5.5 Average Moving Speed . 85

6.5.6 Reset . 85

6.5.7 Current Speed . 85

6.5.8 Time Trial Data . 85

6.5.9 Persistence . 87

6.6 Interial Measurement Unit Display Panel 88

6.7 Digital Inputs . 88

6.8 Economy Panel . 90

6.8.1 Petrol approximation calculation 90

6.8.2 Electricity calculation . 91

6.8.3 Resetting . 92

6.8.4 Persistance . 92

6.9 About . 93

6.10 Settings . 93

6.11 Debug . 95

6.12 Network Status Display . 96

6.13 System Logs Display . 96

6.14 Copy Log Files . 98

6.15 Delete Log Files . 99

6.16 Exit Program . 100

7 Performance 103

7.1 Limitations . 103

7.1.1 Restricted Access to Vehicle . 103

7.2 Message throughput . 103

7.3 Inter-message Timings . 105

7.3.1 Arduino Board . 105

7.3.2 Accelerometer . 105

viii

CONTENTS

7.3.3 GPS and Battery Monitor . 105

7.4 Memory Utilization . 107

7.4.1 Arduino Board . 107

7.4.2 Accelerometer . 108

7.4.3 User interface . 108

7.4.4 GPS and Battery Monitor . 108

7.5 Logged data . 109

7.5.1 Path recording . 109

7.5.2 Speed and Current . 109

7.5.3 Charge vs Time . 111

8 Conclusions 113

8.1 Limitations . 113

8.2 Advantages . 114

8.3 Applications . 114

8.4 Future work . 115

References 117

A Remotely Accessing Eyebot 119

A.1 SSH Details . 119

A.2 Installing programs to Eyebot . 119

B Development environment setup 121

B.1 Buildroot setup . 121

B.1.1 Checkout Buildroot source code 121

B.1.2 Setup environment . 122

B.1.3 Modify the source . 122

B.1.4 Build . 123

B.2 Compiling ZeroMQ for the arm cpu . 123

B.2.1 Setup path variable . 123

B.2.2 Run Automake . 124

B.2.3 Build . 124

ix

CONTENTS

C Tile server setup 125

C.0.4 Get the planet file . 125

C.0.5 Install a postGIS database . 125

C.0.6 Install osm2pgsql . 126

C.0.7 Tweak the GIS database . 126

C.0.8 Create a database . 126

C.0.8.1 Create PostGIS data structures on the database 127

C.0.8.2 Change ownership of database 127

C.0.8.3 Set the Spatial Reference Identifier 127

C.0.9 Load the planet into the database 127

C.0.10 Install mapnik . 127

C.0.10.1 Setup build environment 127

C.0.10.2 Build mapnik from source 128

C.0.10.3 Install mapnik tools . 128

C.0.10.4 Optional: get world boundaries 128

C.0.11 Generate maps . 129

D Performance Testing Scripts 131

D.1 Memory Utilization . 131

E Utility Programs 133

E.1 ZeroMQ Viewer . 133

E.2 ZeroMQ Emulator . 133

E.3 ZeroMQ Evaluator . 134

F Message Timing Tables 135

x

List of Figures

4.1 ZeroMQ layer in network topology . 13

4.2 Messages Vs Streams of Data . 14

4.3 Publish Subscribe Model . 15

4.4 Flow chart of the GPS daemon . 22

4.5 Structure of data payload . 25

4.6 Flow chart of the battery monitor daemon 26

4.7 Speed (km/h) vs Frequency (Hz) . 28

4.8 RPM vs Frequency (Hz) . 29

4.9 Arduino Uno . 30

4.10 Flow chart of the Logger component . 34

4.11 Sample entry in log file . 35

4.12 Flow chart of the Network Logger component 37

5.1 UML diagram of the window toolkit . 41

5.2 Animation Events in screen drawing queue 44

5.3 UML Diagram of messaging system for the window toolkit 59

5.4 Processing message flow chart . 63

5.5 Appending to Queue . 65

5.6 Screen drawing flow chart . 67

5.7 Example of alpha blending . 68

6.1 Basic Navigation of the interface . 71

6.2 Panel showing other panels . 72

6.3 Battery state panel . 73

6.4 Map display panel . 74

xi

LIST OF FIGURES

6.5 Map display panel with hidden controls 74

6.6 Pre-rendered map size . 77

6.7 Tiling Maps . 78

6.8 Trip Meter Panel . 81

6.9 Time Trial Data flow chart . 86

6.10 IMU display panel . 89

6.11 Arduino display panel . 89

6.12 Savings Panel . 90

6.13 About Panel . 94

6.14 Options Panel . 94

6.15 Debug Messages Panel . 95

6.16 Daemon Status Panel . 97

6.17 Syslog Panel . 97

6.18 Copy Popup . 99

6.19 Copy Completed Popup . 100

6.20 Delete Log Files Popup . 101

6.21 Exit Popup . 101

7.1 Message throughput . 104

7.2 Inter message timing for Arduino network messages 106

7.3 Inter message timing for accelerometer network messages 106

7.4 Memory usage of the Arduino daemon 107

7.5 Memory usage of the Accelerometer daemon 108

7.6 Memory usage of the user interface . 109

7.7 Map of test drive . 110

7.8 Speed & Current vs Time . 111

7.9 Charge vs Time . 112

xii

List of Tables

4.1 Network protocol for the distributed system 16

4.2 Network protocol for GPS daemon . 21

4.3 Connection settings for Battery Monitor 23

4.4 Hexadecimal values of di↵erent TBS messages 24

4.5 Network protocol for Battery Monitor daemon 27

4.6 Connection settings for Arduino . 30

4.7 Network protocol for the distributed system 31

4.8 Connection settings for Atomic IMU . 32

4.9 Network protocol for Atomic IMU daemon 33

6.1 Properties of the pre-rendered map data 76

6.2 File statistics of map data . 76

6.3 File Format for persistance of Trip Panel 88

6.4 File Format for persistence of Economy Panel 93

A.1 SSH Details . 119

F.1 Clock ticks Vs Number of messages for 32byte random data 136

F.2 Time (us) Vs Number of messages for 32byte random data 136

F.3 Clock ticks Vs Number of messages for 128byte random data 137

F.4 Time (us) Vs Number of messages for 128byte random data 137

F.5 Clock ticks Vs Number of messages for 512byte random data 138

F.6 Time (us) Vs Number of messages for 512byte random data 138

F.7 Clock ticks Vs Number of messages for 1024byte random data 139

F.8 Time (us) Vs Number of messages for 1024byte random data 139

F.9 Clock ticks Vs Number of messages for 10kilobyte random data 140

xiii

LIST OF TABLES

F.10 Time (us) Vs Number of messages for 10kilobyte random data 140

F.11 Clock ticks Vs Number of messages combined data for varying message

sizes . 141

F.12 Time(ms) Vs Number of messages combined data for varying message

sizes . 141

xiv

Glossary

ACK Network Acknowledgment

ACSII American Standard Code for Infor-

mation Interchange

ARM Microprocessor manufactured by

Arm holdings

BMS Battery Management System

C Low level programming language

C++ Extension of C that supports OOP

CPU Central Processing Unit

CSV Comma Separated Value

FPGA Field programmable gate array

GPS Global Positioning System

ICE Internal combustion engine

IMU Inertial Measurement Unit

IP Internet Protocol

IPC Inter Process Communication

Kernel Central component of operating sys-

tem

Linux Open source operating system devel-

oped by Linus Torvalds

LSB Least significant byte/bit

MSB Most significant byte/bit

NACK Negative Network Acknowledgment

OOP Object Orientated Programming

PC Personal computer

PNG Portable Network Graphic

PPM Portable Pixel Map

Qt Windowing toolkit developed by

Nokia

RGB Red Green Blue

RGBA Red Green Blue Alpha

RPM Revolutions per minute

RS232 Standard for serial communication

TBS Manufacturer of industrial electron-

ics devices

TCP Transmission Control Protocol

TTY Text terminal

UI User Interface

UML Unified Modeling Language

USB Univeral Serial Bus

ZMQ Zero MQ

xv

GLOSSARY

xvi

1

Introduction

1.1 The REV Group

The Renewable Energy Vehicle project aims to explore the use of electric engines in

vehicles in place of the traditional internal combustion engine. This can provide many

benefits; including helping remove societies dependency on oil and reducing emissions

from personal transportation. The Hyundai Getz is designed to be a substitute for

economical cars. This car is designed to fit into the daily driver market. This market

needs smaller cars, with short range but cheap running costs, as well as being enjoyable

to drive.

1.1.1 Motivations

Many factors motivate research into electric based vehicles. The two most prominent

are the emissions of traditional vehicles and the continuing rise in cost of fuels.

1.1.1.1 Pollution

Electric vehicles are advantageous over traditional ICE vehicles as they operate with

zero emissions while operating . These vehicles have no exhaust, so therefore have no

emissions. While this does not make them completely pollutant free, it does help limit

and control the emissions being produced by the act of transport. It is important to

remember when discussing electric vehicles that the components must be manufactured

using industrial processes and the act of generation electricity. This does not making

1

1. INTRODUCTION

them truly carbon neutral, but helps limit the sources of pollution. It is much more eas-

ier to manage the pollution produced from one power plant, than that from thousands

upon millions of vehicles.

1.1.1.2 Rising Fuel Prices

Public concern over rising fuel prices has also sparked interested in electric vehicles.

As the vehicles do not consume traditional fuels directly, and use a cheaper source

of power, they become attractive to those trying to save money. This has created

consumer demand for this mode of transport, triggering research into the e�ciency

and e↵ectiveness of said vehicles.

1.2 Hardware used

1.2.1 Vehicle used in this project

The vehicle that this project will be developed for is a 2008 Hyundai Getz. This

vehicle contains a 39kW electric motor (1). To power these motors, batteries have

been installed resulting in a providing a total of 13kWh of power. These batteries

are protected by the use of an EV Power Battery Balancing System (2). This system

balances the charge contained in each cell, and prevents the individuals cells from under

or over charging.

1.2.2 Embedded Controller

An Eye-bot M6 embedded controller is the platform that all software developed in this

project will run on. This controller contains a Gumstix board with a 400Mhz PXA255

processor that uses the ARMv5TE instruction set (3). This runs a version of busy-box

linux and has also had libraries developed by the University of Western Australia to

access a Xilinx FPGA and a Samsung LTE430WQF0 touchscreen (4). This hardware

is no longer supported by the manufacturer, and as of writing the kernel is a few years

old (5). This hardware is currently installed in the vehicle.

2

1.3 Technological concepts

1.2.3 Battery Monitor

The battery monitor is current installed in the car also. It is a commercial product

manufactured by TBS electronics (6). This device is able to read the voltage charge and

current of the battery cells installed in the vehicle. It will interface with the embedded

controller via a RS232 serial link. It transmits all the information automatically over

the link everyone second (7).

1.2.4 GPS

GPS works via the concept of resection. This is a mathematically concept that can

determine the an objects current location relative to 3 or more other locations (8).

There are many satellites in the sky which transmit signals received by a GPS unit. By

calculating the intersection of 3 or more spheres, each centered at a di↵erent satellite,

the unit is able to calculate its current position on the earth. Once positional data

has been obtained this can be compared against other values such as time, in order to

calculate distance. This information can also be interpreted to calculate the distance

the vehicle has traveled over arbitrary intervals.

1.3 Technological concepts

1.3.1 Threading and Process

Having a program complete multiple tasks at once is a must for modern day systems.

This is usually achieved through two methods. The first method is threading, in which

a single program will have multiple ”threads” accessing the same memory. The other

technique is daemons, or individual processes, in which each concurrent aspect of the

system will be handled by a separate program.

1.3.2 Messaging

Communication between devices can often be abstracted to the use of messages. There

are two ways of dealing with messages, the two methods are called broker and broker-

less (9) . In this project a broker-less model will be used.

3

1. INTRODUCTION

1.3.2.1 Brokerless

The broker less method allows each component to connect directly to any other com-

ponent. There is no centralized ”broker” to send messages to. This provides extra

resilience as there is no single point of failure. A open source implementation that

supports the broker-less method is called ZeroMQ (10). It has many di↵erent internal

models and supports communication over TCP/IP.

4

2

Aims of the project

2.1 Final Aim

The Ultimate goal of the project is to developed a distributed system for use in an

automotive environment. This will culminate into a completed system, provided data

logging functionality and a user interface to view the live data.

2.2 Goals

The goals this project aimed to achieve were set out as follows.

1. Investigate the use messaging protocols inside a minimal embedded systems

2. Develop GPS capability

3. Develop Battery monitor capabilty

4. Integrate this data into a user display

5. Log this data to be reviewed later

During development, the author also kept the following goals in-line, to make the

system easier to develop for. This was done to give the software a better chance of

being developed further by future projects on this topic.

1. Allow the system to be easily extend-able

2. Attempt to minimize future exposure to concurrency

5

2. AIMS OF THE PROJECT

3. Use simpler individual designs, to make it easier for engineers (as opposed to

programmers) to modify

4. Develop standards for inter-module communication

5. Develop common UI elements to facilitate ease-of-layout and interface design.

6. Develop the system in such a way that it is portable to other devices. The

hardware used is slightly older, and the system will be developed in a way that

it can be ported across to new hardware.

6

3

Literature Review

This section discusses similar work that has previously been undertaken. The vehicle

that is the basis for this project has been worked on for the past few years. Many

solutions to the various problems have been developed. This section will examine the

strengths and weaknesses of each project, so the strengths can be applied to the new

design.

3.1 Getz Graphical User Interface

In 2009 a student named Jurek Malarecki performed work on the Getz (11). This is

documented in a report called ’Getz Graphical User Interface. The objective of the

project was display information that had been partially completed in previous work.

Malarecki opted to store all the user data in one structure. This contained all

the variables in one element. This would have allowed for all the variables to be easily

accessible, but has many obvious dis-advantages. There is very little separation between

the functionality of di↵erent components, they all occupy a similar space in memory.

This makes it very easy for the data to be changed by any aspects of the program,

either accidentally or maliciously. This also presents the problem of synchronization.

If locking is used on the whole structure, it prevents the other variables from being

updated when an unrelated variable is updated.

Malarecki implemented basic map functionality using a tiling technique. This splits

a map up into di↵erent smaller ”tiles” which can be loaded individually. Malarecki

converted the images to PPM format, which is supported by the Eyebot, but is a very

7

3. LITERATURE REVIEW

rare file-format today. This can cause problems as conversions will always need to be

conducted to get PPM format files. This becomes an extra step in obtaining map files.

Malarecki also used lookup tables in order to determine which image to display in order

to determine which image to display. This involves scanning a text file for co-ordinates

that correspond to the current position. This technique would have problems as the

time taken to find a image will increase as the total number of images is increased.

This gives the method an O(n) complexity at best. This is problematic as if the world

was stored in the map data, it would take very long to load any image.

External storage was utilized to overcome the small storage capabilities of the Eye-

bot. This enabled virtually unlimited storage possibilities to be used. This idea allows

much a larger scope of maps to be stored and displayed, and also greatly increased the

logging duration possible with the system.

The use of tiles and external memory is the strong points of Malarecki’s design.

Other aspects of the program, while functional, were not optimized to their full extent.

This would result in instability due to bugs, and a larger than needed time to load map

data.

3.2 Renewable Energy Vehicle Instrumentation: Graphi-

cal User Interface and Black Box

In 2009 Daksh Varma completed a project entitled ’Renewable Energy Vehicle Instru-

mentation: Graphical User Interface and Black Box’ (12). This project developed

systems for the Hyundai Getz featured in this project, and another vehicle, a Lotus

Elise. This project focused on developing user interfaces and logging functionality for

both vehicles.

The system for the Getz was implemented on the current hardware installed in

the vehicle. Varma implemented everything using C, rather than experimenting with

more complicated languages. This code was very much tied to the current hardware

configuration of the car, and is not functional with the unknown hardware changes that

have occurred to the car since 2009. This highlights an interesting point, even though

Varma had created a functional system, changes that happened after his system was

deployed had large negative e↵ects. Changes that were not under Varma’s control,

8

3.2 Renewable Energy Vehicle Instrumentation: Graphical User Interface
and Black Box

caused the system to crash and hang. This decreased the acceptance and view of the

system.

Varma used the FPGA present on the board to interface with the digital outputs

available. This implementation would produce the fastest speed, but has some prob-

lems. Due to di↵erences in the hardware revisions of the eyebot, several eyebots require

di↵erent drivers for the FPGA. This means any code developed would require the cor-

rect drivers, which can be di�cult to maintain. It also greatly ties the program to the

eyebot platform, which limits future expansion to other machines.

For threading Varma used the timers that were implemented in the RobiOS libraries.

These would cause functions to be called at periodic intervals. Varma discussed the

use of locks in order to protect shared variables. This of course did make the system

complicated. Locking variables in thread’s, if not implemented correctly, has a chance

of causing deadlocks. This can cause the program to never respond to user input. The

use of timers also restricts the ability of implementing the code on platforms that do

not run RobiOS.

When developing code for the Lotus, Varma separated front-end and back-end func-

tionality. This separation was a good idea, as it helped provide robustness. The use of

two programming languages allowed Varma to leverage the strengths of each individu-

ally.

When implementing the maps functionality in the Lotus, Varma created the whole

of Perth as one giant image. This would make the code simpler to maintain, as there

is no complicated image swapping that needs to be performed. However this greatly

limits the usability of the map system developed. The giant map image would need to

be replaced manually for driving the car in di↵erent locations. It would also consume

more ram than is necessary, as the whole image is always in memory. The map system

develop also has no support for zoom, leaving the display stuck at the one size.

Varma’s system was functional and performed its tasks well. It su↵ers from a very

rigid design, that is not very expandable. While a good technique of separating the

user interface and the backend functionality was implemented for one vehicle, it was

not done for the other. There is no indication why this was the case. Varma’s system

implemented functionality not seen on other cars, and improved the experience for the

driver.

9

3. LITERATURE REVIEW

3.3 Development of a User Interface for Electric Cars

In 2010 Thomas Walter undertook a project names ’Development of a User Interface

for Electric Cars’. This project was concerned with developing a user interface for the

Lotus Elise.

Walter implemented the interface by using a windowing toolkit named Qt. This

toolkit is available for all major platforms, such as the windows operating system the

project was developed on. Qt provides a large array of elements that the designer can

use to lay-out the interface. The use of this framework would make development easier,

and the final product more stable.

Like Varma in 2009, Walter continued the ideal of separating the user interface

from the back-end of the program. This helped diagnose problems with the system,

and provided increased flexibility in development.

Walter heavily relied on the use of an Object Orientated language in order to

implement his system. This abstraction made it easier to identify what each classes

functionality was, and makes the overall system design easier to understand. This also

tied in well with the use of Qt for the user interface, as Qt is written in an Object

Orientated Language.

Network logging was an interesting feature added in Walters project. This logger

enable the system to log data via an Internet enabled server. This logger functionality

takes into account the unreliable nature of the connection used, and stores unsent

messages in a queue if communication is lost.

Walter provides a solution to the problems with the map system used in Varma’s

project. Rather than storing the map in one giant file, Walter uses a technique called

tiling. This technique breaks the map up into many smaller images. By knowing

the current location, the relevant images can be loaded and displayed. This reduces

memory consumption, as only the active tiles are displayed, and allows the system to

expand to other locations.

Walter’s design utilized abstractions and data structures in order to provide a more

expandable system. This enabled the system to adapt to changes in location, and

problems with the network. These two features are highly desirable, and would be

welcome additions to the system installed in the Getz.

10

4

System Design

4.1 Distributed Design

The system design developed is a distributed system. This means all that all the com-

ponents of the system are isolated from each other. They are able to run independently,

and can developed separately. In order to share data between di↵erent components of

the system, a protocol is developed using the ZeroMQ messaging framework to trans-

mit the data between components. This also helps separate the user interface from the

design, which benefits the development of both sections (13).

4.1.1 Isolation

The main motivation for developing the complete system as a distributed system is

isolation. Each component is isolated from the code in other components. This isolation

property brings numerous advantages to the system design.

The first advantage is that each component of the system can be developed indepen-

dently. As the code for each component is separate, the component can be developed

at di↵erent rates, even completely di↵erent developers. This can be used to speed up

the development, and debugging process, as individuals do not need to worry about

conflicts created due to changes they may make.

Another advantage of the isolation property is robustness. As each system compo-

nent is run, it consumes it’s own space of the operating systems memory. This space

is protected from interference by the operating system. No other running process will

11

4. SYSTEM DESIGN

be able to manipulate it’s contents. This protects the process as errors in other com-

ponents cannot a↵ect this process. If any process were to hang, or exhibit unexpected

behavior, it’s e↵ects will be isolated to the process that caused it. This provides sta-

bility in the final system, as an error in one component will still allow all the other

components to function correctly.

4.1.2 Distribution of Components

Another advantageous property of the distributed system is that each component can

run on isolated hardware. The entire system can be spread among many devices, or

just the one. This property allows for increased flexibility in the allocation of resources.

If the current hardware is unable to support all the components at the same time, extra

hardware can be purchased to take some of the load. Due to the design, the displaced

components will not need to be re-compiled or modified in order to run on the new

hardware. The displaced components will only need to be installed and configured to

communicate with the existing hardware.

By allowing flexibility in the layout of hardware, the system can be simply expanded

in future. Hardware requirements can be much more flexible, allowing older slower

hardware to be supplemented by newer components, rather than replaced entirely.

This will save costs in development of the system.

This property also has advantages for debugging the system. Components can be

run on other devices, such as the machines used to developed them. These machines

can also use the network protocol to communicate to the existing system. This allows

utilities to simulate the functionality of components, see Appendix E, which greatly

simplifies the task of debugging the system.

4.1.3 Simpler Component Architecture

As the system uses individual processes for each component, development does not

require extensive knowledge of threading. Threading and synchronization is compli-

cated. It is hard to analyze and debug multi-threaded programs, as any variable may

be changing at any time. This architecture removes threads, as concurrency is provided

by running multiple components in isolated processes. This greatly simplifies the design

and debugging of each individual component, which results in a more stable and faster

developed system.

12

4.2 Network Protocol

4.2 Network Protocol

As each component cannot access the memory of any other component, a protocol was

developed to facilitate communication between di↵erent components. This protocol

is transmitted using the ZeroMQ layer, which exists on top of the standard TCP/IP

network layer. This library was used as it has been developed by a larger group of

developers than this single project, and as such will implement more functionality and

have more robustness than could have been developed in the time-frame for this project.

Figure 4.1: ZeroMQ layer in network topology -

Figure 4.1 shows the ZeroMQ layer with respect to the application and network

layers. It illustrates how ZeroMQ exists between the applications and the TCP/IP layer.

ZeroMQ can also be used to communicate without using the network, however both

applications must be running on the same device. This gives performance increases, as

13

4. SYSTEM DESIGN

it does not transmit the messages onto the network.

4.2.1 Messages

The ZeroMQ layer transmits all information as messages, as opposed to the stan-

dard networking design or streams. Figure 4.2 shows the di↵erence between these two

methodologies.

Figure 4.2: Messages Vs Streams of Data -

TCP transmits data as a stream, it is stored and then read from a bu↵er on the

receiving end. This method of transmission makes it hard to synchronize were the

data stream has begun. Assumptions must be made as to the position of the currently

received byte in the stream. While the nature of TCP does provide some guarantees as

to the start of the stream, a careless error in reading the length of the message could

result in the program believing the wrong location is the current one. This can cause

instability in the program, as the data would be interpreted incorrectly. This can either

occur via accidental, or malicious means, such as a bu↵er overflow attack (14).

A ZeroMQ message di↵ers from a TCP stream as it is a bounded element of data.

A message is received in full when it arrives. This allows the entire message to be

processed, and removes concern about missing data that may still be on the network.

It is important to note that the TCP issues still exist over the ZeroMQ layer, as ZeroMQ

runs on-top of the TCP layer. It is still theoretically vulnerable to these issues, but these

problems can be prevented by di↵erent programming techniques. As these protections

exist in this layer, there is no concern with implementing them, and the layer can be

used in multiple projects, simplifying development time.

14

4.2 Network Protocol

4.2.2 Publish-Subscribe model

The system developed will use a publish subscribe model. Each component will pub-

lisher data, that any number of subscribers can listen to. This simplifies communication

as there are no ACKs or NACKs to worry about. Each publisher can have an infinite

number of subscribers listening. This is taken care of by the ZeroMQ layer, so the

development of the publisher is unaware of how many subscribers exist. Figure 4.3

shows an illustration of this.

Figure 4.3: Publish Subscribe Model - This diagram shows a publish subscribe model

of communication. The publisher is unaware of the subscribers and has no code to deal

with them, simplifying transmission

4.2.3 Description of Network Protocol

As the system communicates via messages, no synchronization is needed in order to

sync the sender and receiver. The protocol is thus a standard ordering of bytes that can

15

4. SYSTEM DESIGN

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Header

Filter Minor Filter Revision Number

Byte 6 Byte 7 Byte 8 Byte 9 Byte 10 Byte 11 Byte ...

Data Payload

Meaning depends on filter

Table 4.1: Network protocol for the distributed system

be used to identify di↵erent messages from each other. Table 4.7 shows the meaning of

each byte.

Each message is started with a 5 byte header, followed by a variable length data

payload. The formatting of the data inside the payload depends on the individual

message being transmitted. The header consists of a 3 byte major filter, a single minor

filter, and the revision number of the protocol. As the major filter takes up 3 bytes

there are over 16 million possible unique messages, see equation 4.1. This is more than

will ever be needed, however it provides a 3 byte way of identifying messages. This

is useful for inspecting the bytes, as it is easy to remember 3 unique numbers and

di↵erentiate between them.

UniquePossibleMessages = Possible values of a byte3 (4.1)

= 28 ⇤ 28 ⇤ 28

= 16777216

After the major filter is a minor filter. The purpose of this filter is to di↵erentiate

between subsets of the same component. If a component wishes to perform some form

of processing on the data, or to transmit its message in a di↵erent format, it can specify

a minor filter to use. This di↵erentiates the two di↵erent messages, but groups them

logically as coming from the same source.

The last component of the header is the revision number. This is used to break

compatibility with older programs. Whatever component is receiving the messages will

only process messages that have a compatible revision number. When a component has

a major change in the structure of it’s messages, it will increase the revision number

16

4.3 Error Logging

transmitted. This will cause any other components expecting the older revision to

not accept the new version. This helps avoids errors, as the old receiver will not mis-

interpret the new message, it will ignore it and record an error.

4.3 Error Logging

All components of the system will log any errors or unusual occurrences so they can

be examined and the causes investigated. There are many di↵erent methods that can

be utilized in order to log this data. The simplest is to allow each daemon to create

it’s own file to log to. This method is simple to implement, but can become di�cult

to manage. Code must be written in each module to record the error messages, which

requires time and e↵ort to debug. The files that the system is logging to must also be

managed, as there is only finite space available on the device.

As all components of the system will be run on Linux, a much more elegant solu-

tion exists to solve this problem. A set of standards was defined for logging data from

programs. This method is commonly referred to as ”syslog” (15). These logging mech-

anisms are native to most Linux installations, they exist on the platform the device

is running on. There have been implementations of syslog on Linux, Unix and BSD

platforms. Syslog separates the logging functionality from the code of the program,

which helps simplify development of the program. It has been developed by many con-

tributors over many years (15). This makes it much more robust and scalable than any

logging system that could have been developed for this thesis.

The added advantage of using syslog is that it has been developed to also work

over a network. A Log device can log messages to a Log collector that is running on a

di↵erent device. This provides a good synergy with the system design. As the logging

of each device can take place on one central device, making it easier to check the log

files for any errors.

All the components developed in this project use the in syslog.h file which is a

part of the standard C libraries. There is no special libraries required to utilize the

functions required to log to the system logger. By default the log messages are stored in

/var/log/messages. The resulting log messages contain information about the process

that created the message, the time it occurred, and the contents of the message itself.

17

4. SYSTEM DESIGN

This allows the log files to be filtered for specific circumstances, helping track down

errors that may occur in the system.

4.4 GPS Module

4.4.1 Hardware

A vital part of the data logging and user-interface of the software is finding the cars

current location. This is done by the use of a o↵-the self GPS unit. Currently the

system is using a Qstar usb equipped GPS receiver. This receiver operates at a rate of

10hz , though it can be set to operate at a slower frequency of 1hz. For the purposes

of recording positional data, along with estimating the vehicles current speed, the unit

should run as fast as possible. The extra precision is useful for the data-logging aspect,

with no negative e↵ects on the user-display aspect.

The GPS device can be enumerated as a standard serial port. This is beneficial as

it can be used on any device that has the correct drivers and a available usb port. As

it appears as a normal serial port, it can be queried using standard system routines.

This allows the program that reads the device to operate any custom knowledge of the

device it is connected to, aside from the serial parameters to make the connection.

4.4.2 Drivers

While the Eyebot M6 has hardware usb support, it was not immediately compatible

with the GPS sensor. Various versions of usb-serial drivers where tried each with their

own problems. The main cause of this di�cultly was the out-dated Linux kernel being

run in the system. This was kernel version number 2.6.17 and was released in 2006,

which is 5 years old as of writing (16). This was a major cause of incompatibilities,

as the GPS receiver was manufactured a significant time after this kernel was written.

The drivers had no clue as to what the usb product keys were, nor the specific quirks

that the devices may have had.

The first driver attempted was the generic usb-serial driver, included as a kernel

module in 2.6.17. This drivers success would mean that the sensor and program could

be easily installed in just about any machine running Linux. The driver would have

matured after the 2.6.17 kernel, and newer kernels would have support by default. This

18

4.4 GPS Module

is beneficial to the system as it would require the least amount of configuration and

setup if the GPS program was set to run in a di↵erent machine.

Sadly this driver did not perform correctly with the GPS device. While the driver

was able to be loaded into the kernel without any errors, it caused problems when trying

to associate with the GPS. The device uses extra features, which were unsupported by

the generic driver. This caused strange symptoms in the operating system. The main

symptom of an incorrect driver was the generation of the /dev/ttyUSB0 device. This

availability of this device implies that a tty is available to read/write from. Due to the

incompatibility of the driver, this serial port would never report any bytes to be read,

which is why it is unsuitable for use with this device. Customizing the generic driver

to support this device would be unfeasible because it is unlikely that newer versions

of this driver would support the device. This leads to the situation that if the GPS

program is ported to a di↵erent machine, a custom version of the generic usb serial

drivers would have to be ported as well.

As the GPS device did not work with the generic serial drivers, alternative drivers

were investigated in order to support this device. Experiments indicated that this device

was automatically detected and loaded in a newer kernel. This functioned correctly and

was able to communicate with the GPS device at the full rate of 10hz. The driver used

by this kernel was called cdc-acm. Further investigation showed that this driver could

be included as a kernel module for the gumstix platform.

This driver was not immediately compatible with the device. This was because the

device was manufactured after the kernel . As such the driver did not recognize the

manufacturer ID and product ID of the GPS. The driver was then modified to include

this information and re-deployed to the eye-bot. This was successful in creating the

virtual serial device inside /dev, and also in allowing data to be read from this device.

While the cdc-acm driver was able to be loaded and functioned, it still contained

errors. If the system was under intense CPU load, the program may not run quick

enough to remove all the data from the serial port bu↵er. This would cause the oper-

ating system to throttle the port. Examination of the driver source code reveals that

new information is dropped while this driver is throttled. This is acceptable behavior

in this instance, however this driver had a race condition. If the TTY was throttled

under certain conditions, it would be unable to unthrottle later on. This cause the

TTY to drain its bu↵er and never accept any new data from the GPS even if its bu↵er

19

4. SYSTEM DESIGN

was empty. The driver was further modified to include spin-locks, a primitive kernel

locking technique, in order to prevent this situation. The driver is now able to run

for extended periods of time without locking up, enabling a reliable GPS reporting

mechanism to be developed.

4.4.3 Design

Development of the GPS reporting component was done in C. This was chosen as it

is a relatively low level language, with wide support. It is simpler to understand than

more complicated object oriented style languages. This makes it a good choice for the

GPS reporting mechanism, as it only has to do one task. In order to ensure that the

code can be easily modified by future programmers, the structure of this program is

simple. It runs in only one-thread, aside from the back ground ZeroMQ threads, and

thus requires no concurrency management.

4.4.3.1 Initial Design

This first iteration of this code used blocking ports and read a single byte at a time.

This was the style used to match existing examples (12). This was a functional design

however it did lead to some problems. One problem with this approach was excessive

throttling. The process would be woken up every time one character could be read, and

would only remove one character from the bu↵er, even if there were hundreds waiting.

This is a bad situation, as the process will continually be awoken to do trivial work.

This steals cpu-time from another process, and caused the program to appear sluggish.

This design was also in-su�cient as blocked the process while attempting to read from

the port. This would cause the program to appear to hang if no data was available. It

made it di�cult to diagnose errors with this program.

4.4.3.2 Final Design

The design was refined in order to support bulk-reads and non-blocking operation. This

fixes the two problems with the first approach. Rather than reading one character at

a time, the program now reads as many as possible and stores the information into it’s

own circular bu↵er. This allows the serial port to be purged as quickly as possible. It

also has the added feature of allowing the program to decide how to discard messages

20

4.5 TBS Module

47 50 53 0 0 01

Header Data Payload

Filter Minor Filter Revision Number Fix

4E1FE968 00000000 C1FFD54D 42E7A1F1 43B40000 41200000

Data Payload

Time(s) Time(us) Latitude Longitude Bearing Speed

Table 4.2: Network protocol for GPS daemon

in the case that it cannot keep up with the GPS. Figure 4.4 shows the program flow of

the final design.

4.4.3.3 Network Protocol

Table 4.2 shows the protocol for the GPS message when transmitted over the network.

The protocol uses a binary format instead of an ASCII based one. This reduces the

space/data transmitted over the link, which helps reduce cost and improve speed. The

motivation for ASCII based protocols is that control characters can be used to help

synchronize the data. As this design uses ZeroMQ in order to manage the flow of data,

such control characters are unnecessary. All values are transmitted in network order,

this is big-endian order so that the most significant byte is transmitted first.

4.5 TBS Module

4.5.1 Hardware

The most important external device used in the user interface and data-logging aspect

of the software is that of the battery monitoring module. The car has 45 Lithium Ion

batteries installed, and it is useful to monitor the charge, current and voltage of the

battery cells at all times. The system that the monitoring software runs on is not a

highly reliable embedded system. It requires a few minutes to start up, and consumes

too much power to leave running all the time. As such a di↵erent device is used to

track the health and charge of the batteries. This device is a e-xpert pro battery

monitor manufactured by TBS electronics. This is a commerical unit which increases

the reliability of the data that it produces. Unlike the eyebot, it is powered as long as

21

4. SYSTEM DESIGN

Figure 4.4: Flow chart of the GPS daemon -

22

4.5 TBS Module

Property Value

Baud Rate 2400

Data Bits 8

Stop Bits 1

Parity Even

Flow Control None

Table 4.3: Connection settings for Battery Monitor

the cells in the car remain energized, so it will always log and monitor the health of

the batteries.

4.5.2 Expert protocol

The e-xpert device has a set protocol that it uses to communicate with other devices.

It uses a RS232 connection over a 9 pin plug. This is a common way of communicating

with external modules, and the eyebot has a serial port available to communicate with

the e-xpert pro module. The module communicates using asynchronous communica-

tion. It automatically sends out updates at a rate of 1hz(17). These updates contain all

the information that is recorded by the e-expert pro module. As the communication is

asynchronous, this will happen automatically, even while the eyebot is not connected.

This is not a problem as the e-xpert pro does not expect a response. This mode of

operation is referred to as broadcast mode in the e-xpert documentation (17).

4.5.2.1 Destination and Start Byte

The message data that the module outputs is transmitted via serial. The first byte

in the message is the start byte, in order to identify this start byte as the start byte

it must be unique and never occur anywhere inside the payload. This is done by

reserving the most significant bit (MSB) to be one only if it is a start or ending byte.

The documentation refers to this bit as the IDHT (Identify Header Trailer) bit. This

does mean that there are only 7 bits available in each byte for transmitting data, but

guarantees that the start and end of messages can be synchronized. As the first bit is a

one due to the start byte being the header, the value of this byte is greater than 0x80.

The rest of the bits in this first byte are the destination address. While communicating

23

4. SYSTEM DESIGN

Property Value

Battery Voltage 0x60

Battery Current 0x61

Amphours 0x62

Charge 0x64

Time Remaining 0x65

Table 4.4: Hexadecimal values of di↵erent TBS messages

with a PC in broadcast mode, these bits can be ignored (17). The module also will not

know where it is sending the byte, it is in broadcast mode, so there is no destination

address. Thus the destination address bits will be 0, so the first header byte is always

received as 0x80.

4.5.2.2 Source

The next byte transmitted is the source address. This byte is not a IDHT byte, so the

MSB will always be 0. The device installed in the car, ”e-xpert pro” will always set

the source address as being 0. Combining this with the IDHT bit results in the second

byte always being hex 0.

4.5.2.3 Device ID

The third byte in the message is the device ID. This is a unique number that identifies

the type of equipment being used. This number is set by the manufacturer to distinguish

di↵erent devices it it’s product range. For the case of this product, the ”e-xpert pro”

the device id is 0x22.

4.5.2.4 Message Identifier

The e-xpert pro module transmits a variety of messages, which can be categorized

into three groups. These di↵erent groups are handshake, commands and data. In

broadcast mode, handshake and command messages are not required in order to extract

information from the battery monitor. Table 4.4 shows the hexadecimal values for

di↵erent messages.

24

4.5 TBS Module

4.5.2.5 Data

Following the message identifier is the actual payload of the message. This can take on

various forms, but in the most simplistic sense is a number spread across a few bytes.

Figure 4.5 shows the data layout for the battery voltage message. For more information

about the di↵erent values, see ”e-xpert pro communications interface specifications”

(17). Due to the MSB of each byte being reserved, it is only possible to transmit 7 bits

of data inside a byte, any value that requires more than 7 bits to be represented must

be transmitted across multiple bytes.

Figure 4.5: Structure of data payload - Note that each byte transmitted only has

seven usable bits of data, the 8th bit becomes the lowest bit in the next byte (17)

4.5.2.6 Trailing Byte

The last byte in the message is the ”end of transfer” byte (17). The purpose of this

byte is to signal that the message has been sent. Like the starting byte, the MSB of

this byte is set to one. The rest of the bits in this byte are also set to one, to signify

that this is the end byte, rather than the start byte. The value transmitted is 0xFF,

and this is the only location in which 0xFF can appear.

4.5.3 Design

Like the GPS module, the battery monitor module was developed using C. This keeps

in line with the design principles of making each component as simple as possible.

Figure 4.6 shows the program flow of this daemon.

4.5.3.1 Network protocol

Table 4.5 shows the protocol for the battery monitor message when transmitted over

the network. As the design uses a binary format file like the GPS module, this format

is impossible to read natively, but more e�cient on space. There is no need for these

25

4. SYSTEM DESIGN

Figure 4.6: Flow chart of the battery monitor daemon -

26

4.6 Arduino Digital Input Module

54 42 53 0 0 4e1fe968 00000000

Header Data Payload

Filter Minor Filter Revision Number Time(s) Time remaining (s)

42b40000 43710000 c150000 00000000 00000000 00000000

Data Payload

Charge(%) Voltage(V) Current(A) AmpHours(Ah) Temperature(C) Status

Table 4.5: Network protocol for Battery Monitor daemon

values to be read on the network layer anyway. All values are transmitted in big endian

network order.

4.6 Arduino Digital Input Module

The car has access to many physical inputs that would be useful to monitor and record.

Variables such as the state of the air-conditioning or the radio are useful aspects to

monitor. These are currently exposed via bare wires inside the vehicle. As these

signals are simple digital logic, they need a way to interface with the controller in order

to be used in the system.

Previously the in-built FPGA on the Eye-bot was used to accomplish this end

(12). This method requires complex cabling to the inside of the Eye-bot. Use of the

FPGA also requires special code to be written to interface with the FPGA, which will

be di↵erent for di↵erent kinds of FPGA devices. This makes maintaining this design

di�cult, and ties the code in with the specific Eye-bot it was developed for.

Investigation was done into a top16 digital input and output module. This module

has 8 digital input lines, and 8 digital output lines. This allows for a total of 8 inputs to

be read. While this would be enough to satisfy the input variables, it su↵ers from some

drawbacks. This board was found to use an FTDI chip for usb serial communication.

This chip appears as a serial port when the correct drivers are present. Sadly the FTDI

drivers for the older Linux kernel were not stable, and it was not possible to use this

board in the system.

As the current methods were unsuitable to fulfill this role, a new digital interface

system was developed in order to satisfy the requirements needed. This new board

27

4. SYSTEM DESIGN

would have digital inputs, analogue voltage inputs, and be able to read other signals

generated by the car.

4.6.1 Speedometer and Tachometer

A desired feature would be to record more complicated signals from the car, such as the

current speed. While the GPS can provide speed readings, a more accurate source of

speed data is available. This source is the cars built-in speedometer. The speedometer

and tachometer use hall e↵ect sensors in order to read the rotational rate of the gearbox

and motor respectively.

Figure 4.7: Speed (km/h) vs Frequency (Hz) -

Figures 4.7 and 4.8 show the output on the in-built dash in response to various pulse

train frequencies. Both these graphs show that the relationship between the frequency

and desired variable are highly linear. Thus it is possible to count the amount of pulses

that have transpired and perform a calculation in order to determine the cars current

speed.

28

4.6 Arduino Digital Input Module

Figure 4.8: RPM vs Frequency (Hz) -

4.6.2 Hardware

The hardware used to accomplish this task is an Arduino Uno compatible board. This

board provides 14 Digital IO pins and 6 Analogue Input pins (18). The Atmega chip

inside the board also has inbuilt timers, which can be used to implement the frequency

component of the requirements. The board is quite small in size, and only needs 5v to

run. Figure 4.9 shows the Arduino Uno board.

4.6.3 Drivers

One advantage of the Arduino Uno board over other Arduino boards is that it im-

plements the cdc-acm device drivers that were used in section 4.4.2. The fixes to the

drivers implemented previously allow the Arduino Uno to work with the system without

any hassle.

29

4. SYSTEM DESIGN

Figure 4.9: Arduino Uno -

Property Value

Baud Rate 115200

Data Bits 8

Stop Bits 1

Parity None

Flow Control None

Table 4.6: Connection settings for Arduino

4.6.4 Design

4.6.4.1 Arduino

The program designed for the Arduino uses the internal interrupts of the Arduino in

order to keep track of time and the amount of pulse that have occurred. The Arduino

contains an ATmega328 (18). This chip contains internal circuitry that is able to count

the number of pulses independently of the current system clock. There are two pins

available on the micro-controller to facilitate this functionality, and two frequencies the

system is interested in recording.

The main logic of the Arduino program is fired in an interrupt that fires at a

frequency of 125Hz. This interrupt checks the overflow of the 8 bit counter, and stores

the result so it can be used later on in the calculation. This allows the program to work

with larger numbers than a 8 bit byte can contain. Every 125 cycles of this interrupt,

or every one second, the system calculates the number of pulses that have occurred

30

4.7 Accelerometer Module

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Header Count 7 Bits DIO 5 bits DIO Analog0 MSB Analog0 LSB Analog 1 MSB

Byte 8 Byte 9 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15

Analog 1 LSB Frequency 0 Frequency 1

Byte 16 Byte 17 Byte 18 Byte 19 Byte 20 Byte 21 Byte 22

Frequency 1 Reserved Trailer

Table 4.7: Network protocol for the distributed system

since the last second, and stores it in a di↵erent memory location. The program also

sets a flag inside the micro-controller, signaling that the data is ready to be sent via a

serial link.

When the serial link is signaled, it will read all the digital inputs and analogue

inputs as well as the calculated pulses, and transmit them to the device on the other

end. As this is a serial stream, it must have some values that are reserved in order to

synchronize the data stream. The same method as used in section 4.5.2.1. This uses

the same header byte (0xFF) and allows for 7 bits of data to be transmitted per byte.

Rather than sending multiple messages, the Arduino sends everything in one message,

that is transmitted at 1Hz.

4.6.4.2 Host side

On the host side, the program functions similarly to that of the GPS program, such as

in Figure 4.4. This module of course, will not set the system date, but otherwise they

perform similarly, attempting to read as much data as possible into a bu↵er, and then

finding the correct section to synchronize on.

4.7 Accelerometer Module

Acceleration data is an important addition to any telemetry software. The aim behind

this module is to provide various acceleration data so it can be analyzed later. Like all

the previous components, this module reads information from a hardware device, and

transmits it using the network protocol developed earlier.

31

4. SYSTEM DESIGN

Property Value

Baud Rate 115200

Data Bits 8

Stop Bits 1

Parity None

Flow Control None

Table 4.8: Connection settings for Atomic IMU

4.7.1 Hardware

The hardware used in this module is a Sparkfun 6Dof Atomic IMU (19). This unit con-

tains 3 accelerometers and 3 gyros. It also features a ATMega168 microprocessor that

outputs the accelerometer data over a hardware UART. Table 4.8 show the properties

of the serial connection to the device.

4.7.2 Drivers

The device used to capture the inertial data outputs the data over a serial link. As

such any serial to usb module can be used. The serial connections on the eyebot itself

are already used for the battery monitoring hardware. As mentioned earlier, there are

issues with the FTDI drivers under this kernel, thus any FTDI branded hardware should

be avoided. The other main manufacturer of usb to serial converters is Prolific. During

development a Prolific usb to serial converter was used, using the pl-2303 drivers that

are bundled with the kernel. This worked successfully and is currently the recommended

way of interfacing with the IMU.

The Atomic IMU has di↵erent modes of operation. It can output data in an ASCII

or binary format. In order to simplify the code that interprets the IMU data, the device

is set into the binary format. This outputs bytes that can be directly interpreted by

the component software. The device is also set into auto-run mode, so it will output

information as soon as it recieves power. The IMU synchronizes messages via two

ASCII characters. A message starts with the ’A” character and is then followed by the

’Z’ character exactly 15 bytes later. As the distance between characters is static, the

chance that this exact combination would appear in the data is very low.

32

4.8 File Logger

49 4d 55 0 0 4e1fe968 01F5

Header Data Payload

Filter Minor Filter Revision Number Time(s) Accel X

01FE 0314 0209 01F8 01EC

Data Payload

Accel Y Accel Z Pitch Roll Yaw

Table 4.9: Network protocol for Atomic IMU daemon

4.7.3 Design

The IMU program control loop works exactly like the GPS and Arduino loops. It

will attempt to read as much data as possible into a bu↵er, and then find the control

codes in the bu↵er. It will then process and transmit the data using the protocol

mentioned earlier. Table 4.9 shows the ZeroMQ layer message that is transmitted from

this component.

4.8 File Logger

The previously mentioned components all generate data at various periodic rates. Data

acquisition is useful, but it would be more useful to record this data so it can be analyzed

at a later stage. This section outlines the design of a logging mechanism that will record

the Battery Monitor and GPS data to a file.

4.8.1 Design

4.8.1.1 Program Flow

The process flow of the logger component is shown in Figure 4.10. This process will log

the data for bother the GPS and Battery monitor components. It adapts to the speed of

the slowest component. This was done to make the processor utilization more e�cient.

As the system will only write to a file when both values have data, it will automatically

match that of the slowest component. Thus the limitation in the resolution that can

be logged, is the resolution of the slowest data generating component.

If a component is does not transmit any messages in a reasonable time, the system

will log the other values. This has been implemented so the system will not wait forever,

33

4. SYSTEM DESIGN

Figure 4.10: Flow chart of the Logger component - This figure shows the process

flow of the logger daemon. It will log both the battery monitor and GPS messages together,

or individually one component is not transmitting.

34

4.8 File Logger

for values that will never come. This allows the battery health, or the current location

of the car to be recorded in all instances. Ideally this should never occur, but if the

vehicle loses GPS signal, for instance when inside a tunnel, it is desirable to still record

any changes in the battery status.

4.8.1.2 File storage

A massive file containing all the information logged is troublesome to manage. Each

entry in the logger is recorded with a time-stamp. This time-stamp can be used to

determine the current system date. A more manage-able solution to storing the data

is to provide a unique file for each day. All new entries are appended to the end of this

file. This makes it much easier to manage the logged data, and also makes it easier to

observe how many days the logger has been active for.

4.8.1.3 File Format

The file format is a simple ASCII based CSV file. Each property of an entry is separated

by a comma. A new entry occurs on the next line. This format is simple, human read-

able and does not require much space to store. Figure 4.11 shows a sample entry of the

text file logger.

Figure 4.11: Sample entry in log file - This figure shows a sample entry in the file

logger. The file is CSV formatted. The second line shows what each entry in the file means

As seen in figure 4.11 each line in the file contains 78 characters. Each line will also

store the newline character as-well. With the information the rate that the logging file

consumes storage can be calculated using equation 4.2. In ideal conditions the log file

will fill up at a rate of 4760 bytes per minute. This is equivalent to 277 kBytes an

hour, or 6.5 megabytes per day. The internal storage of the eyebot is approximately 16

megabytes, but most of this needs to be taken up by the operating system and the code

to run the various components. Luckily the eyebot can support usb storage devices. A

35

4. SYSTEM DESIGN

inexpensive 16GB usb drive has enough capacity to last 2520 days, which is more than

enough logging capacity for the system.

Bytes per minute = Characters per line ⇤ Frequency ⇤ Seconds per minute (4.2)

= 79 ⇤ 1 ⇤ 60

= 4740

4.9 Network Logger

Previously developed by other students was a server that provides Internet logging

functionality. This server exists on a separate system, and uses TCP/IP to commu-

nicate with various clients. The car is equipped with a 3g module that enables it to

access this server remotely. This component is concerned with receiving information

from the existing components, and logging them to the already existing server so they

can be displayed and analyzed via a web-portal. The logger implements the protocol

according to Pearce’s thesis (20).

4.9.1 Design

An important limitation of any network communication is that the network is unstable.

At any time the network connection could disappear, preventing the program from

logging data to the server. This would cause the program to hang while it waits for

communication to resume. In order to solve this problem non-blocking communication

was used. Non-blocking communication is when any data transmission will return

instantly from being called. This allows the program to examine what has happened

and react accordingly.

If the network is down for an extended period of time, the system will not discard

messages generated during this period of inactivity. These unsent messages are stored

in memory in a queue. This queue maintains all the unsent messages, until the time

in which they are able to be transmitted. Figure 4.12 shows the program flow of the

internet based logger.

36

4.9 Network Logger

Figure 4.12: Flow chart of the Network Logger component - This figure shows the

process flow of the logger daemon. It will log both the battery monitor and GPS messages

together. This diagram has simplified the receiving of ZeroMQ messages

37

4. SYSTEM DESIGN

38

5

Windowing Toolkit

5.1 Motivation

In order to improve stability of the system, a windowing toolkit was developed to

display information to the user. Interactions with the user occur in only a few pre-

definable ways. The user will either view data that the system has produced, or press

buttons on the screen in order transition the display to another screen. The currently

developed software (EyeLin) provided very low level access to complete these actions.

This allows for greater flexibility in developing using the software, but makes it more

confusing to deal with, and contributes to bugs in the software. In order to alleviate this

problem, a high-level abstraction was developed on top of the existing software. This

abstraction allows the low level functionality, such as interacting with the touchscreen,

to be hidden. This simplifies development when layout the user interface. This also

allows for code to be written and debugged once, for example the toolkit completely

removes interactions with the touchscreen, allowing buttons to be added in a much

simpler fashion.

As other requirements of the system required C++ libraries, the windowing toolkit

was implemented using C++. This is an object oriented language that provides a few

distinct advantages over the C language that is traditionally used on embedded devices

such as this. The first advantage is the use of object orientation. When constructing

a user interface, it is much easier to understand the di↵erent elements of the interface

as unique objects. By thinking of a text display as a single object, it becomes more

intuitive to manipulate. The other advantage in the use of C++ is that it allows

39

5. WINDOWING TOOLKIT

for objects to inherit from other objects. This use of polymorphism allows elements to

implement the functionality they require by inheriting from specifications in the toolkit.

The toolkit is able to call these new functions due to use of virtual methods.

The toolkit has been written in a way that the programmer utilizing it does not

need to understand anything about threads. While the mechanics inside the toolkit do

use threads, the interaction with this threads is completely abstracted away. It is not

possible to directly manipulate the underlying threads with the toolkit. This removes

any problems with synchronization between threads, as they cannot be manipulated.

There are three threads running inside the toolkit. One thread is responsible for ma-

nipulating the screen, one thread is responsible for responding too events occurring

on the touchscreen and the last thread is responsible for reading and processing the

network messages.

The final advantage of developing this toolkit, is that it is not limited to use in this

project. As the toolkit is written in a generic way, with the exception of being able to

receive the messages transmitted over the network, it is able to be deployed on future

projects. This allows future projects to have a rich user interface, while keeping the

high-level abstraction in place.

5.2 Elements

The windowing toolkit consists of pre-made classes that the are either used directly,

such as the digit display element, or are inherited from, such as the base or runnable

classes. Figure 5.1 shows the classes developed in the toolkit.

5.2.1 UIElement

The UIElement is the most basic class definition in the toolkit. It is an abstract class

that can never be instantiated. Its purpose is to define methods for interacting with

the screen and other objects. It also provides default functionality for most methods,

this allows all the classes that inherit from it to function the same way.

5.2.1.1 addChild()

An important definition of the UIElement class, is that it may contain any number

of other UIElement classes inside it. To add another UIElement class the method

40

5.2 Elements

Figure 5.1: UML diagram of the window toolkit -

41

5. WINDOWING TOOLKIT

addChild() is called. This stores the child element inside a C++ vector whose length

is only limited by the amount of ram inside the machine. The advantage of this is that

actions can be performed on a UIElement and all it’s children. If a element needs to be

drawn, all it’s children will be drawn too or if an element is disabled, all it’s children

will be disabled too.

5.2.1.2 draw()

The most important method of the UIElement class is the draw method. This method

definition is not implemented in the UIElement class, it is defined a virtual abstract

method. All classes that can be instantiated must implement this function call. The

purpose of this function call is to allow the user to specify the low level commands that

are used to display this element. This can include drawing lines, squares, or setting

individual pixels. This method should be implemented by the programmer, but should

only ever be called by the mechanics of the toolkit. The developed of the user interface

should never directly call this method.

5.2.1.3 enqueueDraw()

enqueueDraw() is called whenever the system, or the programmer, wants to trigger a

refresh of the screen. This will signal the toolkit that a redraw should be prepared.

The purpose of this method is two-fold. Firstly it allows the toolkit to perform op-

timizations of the draw function in order to maximize speed (see 5.5). Secondly it’s

implementation has O(1) complexity. This means that the call to enqueueDraw() com-

pletes in constant time. This is used for performance reasons, as whatever thread has

called enqueueDraw(), will not need to wait for the screen to be redrawed, it will re-

turn instantly. The draw will be scheduled to occur some time after enqueueDraw()

is called. By default this method will also call the enqueueDraw() method of all it’s

children, allowing entire sections of the display to be redrawn using one function call.

5.2.1.4 animate()

In order to improve the user experience the ability to transition between two panels

was implemented. This transition is triggered via two calls to the animate command.

The first call signals the screen driver that it wishes to animate from the currently

42

5.2 Elements

displayed panel, to some other panel. This backs up the current panel to memory, so

it can be drawn at the beginning of the animation later. After the first call, all the

drawing functions for the second screen are run. This will draw the new panel to a fake

screen, it will not actually be displayed to the user until later. Once the fake screen

has been drawn, the final call to animate is called. This triggers the transition with

the supplied animation and number of frames.

The extra calls allow any of the existing image functions to still be used. Due to the

method in which the screen is backed up, and new images are drawn to a temporary

screen, the existing commands to set pixels or draw lines will still function. This allows

the animations to exist without requiring complicated re-programming of the entire

screen manipulation libraries.

In section 5.5 the drawing commands are stored in queues before they are processed.

As such the animate commands must also be stored in that queue, so they are executed

at the correct time in relation to the drawing commands. Figure 5.2 shows this.

5.2.1.5 setActive()

A property that is required of any draw-able object inside the toolkit is whether it

is current being displayed to the user. This property allows elements to exist in the

machines memory, but only be draw if they are current being displayed. To manipulate

this property, the method setActive() is called. This method allows the state to be set

to either true or false, meaning that the object will be drawn or not drawn respectively.

If the active state is false, calls to enqueueDraw() will be processed, but the call to the

draw() function will be skipped. Thus individual elements of the display can be hidden

at will. This method will also call the setActive() method of all the children of this

element. Thus allowing sections of the display to be hidden with one function call.

5.2.1.6 isActive()

This method will return the current state of the element. This is used to check whether

the current element is being drawn or not. This method is called internally by the

screen drawing mechanics. It can also be used in order to check whether the element

is being displayed, and perform di↵erent tasks if it is not being displayed.

43

5. WINDOWING TOOLKIT

Figure 5.2: Animation Events in screen drawing queue - This figure shows anima-

tion signals relative to various draw commands

44

5.2 Elements

5.2.2 base

The base element represents the panels or windows that are being displayed to the user.

An important property of the base element is that it is defined to occupy the whole

screen. This element will draw the entire width of the screen, which will clear any old

draws that may still be present. Another extended property of the base element is that

it maintains a list of all the other base elements that are present. This is used in order

to allow for global navigation buttons. Rather than layout buttons in the same location

on every screen, a button can be added as a global button. This will ensure that it

appears on all the screens present in the list. This allows the buttons and their location

on the screen to be defined once, making the final program more stable and simpler

to understand. For further discussion on the button element see 5.2.5. The base class

itself is abstract, it cannot be instantiated. There is no way to display a ”default” base

element. In order to build a panel, the panel must inherit from the base element, and

implement at minimum the abstract function getButton().

5.2.2.1 base()

The constructor for this class takes a single argument. This argument is a boolean

value indicating whether this panel will display global buttons or not. By default this

option is set to true, though it can be easily overridden when a new class is inheriting

from this one. This optional argument allows a panel to forgo global buttons. This is

used in the case when the developed only wishes to display a simpler panel, or when

the current set of global buttons would appear in-appropriately on this panel.

5.2.2.2 draw()

This class implements a rudimentary version of the draw method. This specifies a

default display for each full-screen panel the user will view. The reasons for this func-

tionality are two-fold. Firstly, it allows a common backdrop to be defined for each

screen. This keeps a sense of constituency while navigating, as the background will

always be similar. It is also useful in speeding up development, as having a default

state for a panel is useful for prototyping and implementing new panels. The second

reason a default is specified is to remove any elements that were present on the previous

screen. Even though buttons and UIelements may not be active anymore, pixels may

45

5. WINDOWING TOOLKIT

still be set corresponding to their images. These pixels may have last been refreshed

a long time ago. They will remain in the frame-bu↵er until they are overwritten by a

new set of image data. As the a base panel is defined as occupying the whole screen,

it will replace and UIElements that may already exist on the screen, thus removing

them from being visible. As the instance of this base class with be enqueued onto the

drawing queue first, all it’s child elements will still be drawn correctly.

5.2.2.3 getButton()

In order to transition to a panel, an action must be undertaken by either the user or

the system. The most common way of transitioning would be when the user wants to

display a di↵erent screen. Typically this would occur by the use of pressing buttons.

This is why any base panel must implement the getButton() function. This function

returns a button object that contains the image data to display for this button, and

the action to undertake when the button is pressed. This action will typically be a call

to the activate() function of the panel, though other actions can be called before the

call to activate().

5.2.2.4 addButton()

A common element that will be placed on any panel is a button element. This is the

basic way in which the user navigates. A button element itself is a child element of

the panel it is contained in, it needs to be drawn when the panel is drawn. A button

will also have extra functionality than just being drawn, namely, it can be pressed by

the user. As the existing addChild() function only adds the element to the list of child

elements to be drawn, an extra method was developed to add buttons to a panel. This

method is the addButton method. This method adds the button element to the list

of children, but also registers the button element as an interact-able object. Internally

this is achieved by adding the button to a list that contains only buttons. This list is

ordered in the order that the buttons were added to the panel. Maintain this list is

important in order to translate the lower level screen interactions into finding which

button was pressed see 5.4.

46

5.2 Elements

5.2.2.5 addGlobalButton()

Mentioned earlier was the use of global buttons, which are buttons that will appear on

every class that inherits from base. In order to distinguish between buttons that are

added to every base panel and buttons that are added only to the current base panel,

the addGlobalButton() function was developed. This method is declared statically and

does not need to be called on an instance of a base class, however it does need at least

one instance to have been created for it’s e↵ects to be observable. In it’s simplest form,

this method iterates over the list of base elements, and calls the addButton() method on

each base using the supplied button argument. This allows the same button to appear

on multiple screens, due to the fact that it is the exact same object, it will perform the

exact same action and be laid out in the exact same place on each screen.

5.2.2.6 refreshTouchMap()

This method is an internal method to the framework, and should not need to be called

by the developer. It is responsible for setting up the touch screen in the lower level

libraries. It takes the list of buttons that has been built by calling addButton() and

registers each button and the region the button exists on with the touch drivers. This

abstracts any interaction or understanding of how the touch screen mechanics away from

the developer. This function will be called whenever activate is called, thus setting up

the framework to respond to actions on the buttons that exist on the current panel.

It will also clear the previously registered buttons, so they cannot be clicked while the

system is displaying the new panel.

5.2.2.7 buttonPressed()

The buttonPressed() method defines what happens when the user presses a button.

This method is implemented in the base class definition in a way that it should never

need to be overwritten in any classes inheriting from the base class. This method takes

the position in the list of buttons that is pressed and performs the actions that occur

when the button is pressed. The runnable abstract class allows any action to be coded

and run by this method see 5.2.4. This method also performs things like animating

the buttons. In order to provide instant feedback to the user pressing a button, the

framework will invert the colour of the button. After a short while, the button will

47

5. WINDOWING TOOLKIT

turn back to it’s previous state, and the buttons action will be performed. This small

animation provides instant feedback that the user has pressed the button, and results in

a much more enjoyable user experience. Delaying the action also has another advantage.

By waiting a short time between running the action, which is usually the display of a

di↵erent base panel, the framework is able to remove and duplicate key-presses that

may occur. This prevents the user from pressing a button to transition into a panel,

and then immediately pressing a button in the new panel which they did not intend to

press.

5.2.2.8 activate()

The activate method is defined in the base class. It can be overwritten in classes that

inherit from the base class, though any class implementing di↵erent functionality should

call the base classes activate() method as well. This method’s main responsibility is to

display or ’activate’ the panel that it is called upon, and to translate the touch driver

information into button presses. The default functionality of this method, is to call

enqueueDraw() first. This will display the current panel on the screen. Next it will call

refreshTouchMap(), to register the active buttons to the framework. Once the panel

has been setup, this method will then block and await input from the user via screen

events. Thus this method should only ever be called in the thread that is responsible

for controlling the button presses. A apparent downside to this is that there is no easy

to for the developer to change the active panel inside a di↵erent thread, it is certainly

possible to change the active panel though it is more di�cult than changing in response

to user interaction. On the other hand, this limitation is actually advantageous from a

user friendliness standpoint. As the screen will only change from di↵erent base panels

in response to actions performed by the user, it is easier for them to mentally link

actions they have performed into re-actions displayed by the device. This specification

means that the panels won’t transition by themselves, leading to a much simpler and

easier to understand user interface.

This method also allows animations to be specified. By supplying an argument

defining the type of screen transition to use, activate method will perform the actions

necessary to animate the transition between the previous panel and this one. These

transitions are implemented inside the screen driver, and include sliding the screen in

48

5.2 Elements

and out. For performance reasons, the default transition is an in-place swap, which is

the most e�cient in respect to CPU time.

When this method finishes it returns the next action to run. This could either be

a class that runs the next panel, or some other action to be performed when this panel

is not longer being displayed.

5.2.3 Popup

No user interface is complete without pop-up windows. These are smaller windows that

overlay the existing panel. A pop-up can be positioned anywhere on the screen, and

have any width and size, making it a flexible element for displaying information. The

pop-up window will prevent any interaction with the panel they are sitting on top of.

This is defined as a modal behaviour (21). The reason the pop-ups will only implement

modal interfaces is due to the fact that there is no way for the user to manipulate the

position of the dialog box. This was done to simplify the user interface, and make

it easier to understand. By default a pop-up will include a close button, so any new

pop-up will always be able to close and return to the normal operation of the panel.

Other buttons must be added by the developer.

5.2.3.1 popup()

The constructor to the pop-up takes arguments in the form of the size and position of

the pop-up, and an action to be performed when the pop-up closes. The last argument

is a runnable object that will be called when the pop-up is closed. This allows actions

to be scheduled in between the pop-up disappearing, and the previous panel taking

focus. This flexibility can be used to trigger screen refresh events, or to flush a file to

the disk, or even make another panel take focus. The pop-up class is a child of the base

class, and the runnable class.

5.2.3.2 buildUI()

Due to the way C++ calls constructors, a method buildUI has been created in order to

over-ride the default button layout. Any class that inherits from another class will call

the super-classes constructor. This is a problem if the child class does not wish to use

the default exit button provided. To overcome this, the elements inside the pop-up are

49

5. WINDOWING TOOLKIT

laid out when buildUI() is called. This method is called after the pop-up has been fully

constructed. Due to polymorphism, the method will always call the implementation of

the child class. This allows the child class to completely override the default layout.

The method has returns a pointer to the class it was called on. This is done to

allow the object to be constructed and the layout generated in one line of code, and

still return a pointer to the popup object.

5.2.3.3 run()

The pop-up class implements the runnable abstract class by default. This allows the

pop-up to be passed as a runnable object. This run action performs the necessary steps

in order to activate the pop-up and display it on the screen. The advantage of this is

that a pop-up can be passed as an argument to the button class, meaning that when

the button is pressed the pop-up will be shown. This results in very simple and easy

to read code.

5.2.3.4 getButton()

This method exists because the popup inherits from the base class. It allows the popup

to specify a button element that should be used to display the popup. This button

element will usually contain a runnable class that activates the popup. This method

can return null if there is no button for this popup.

5.2.3.5 activate()

This method is inherited from the base class. See section 5.2.2.8 for more information.

5.2.4 runnable

The runnable class is an abstract class which is used to allow the developer using the

toolkit to run actions inside the toolkit. By using polymorphism, the toolkit is able

to call methods on classes which were not programmed or compiled with the toolkit.

This runnable aspect is used in order to ’run’ various aspects of the user interface. For

instance, the base class’s activate function must return a pointer to a runnable class.

This is used to define what happens when the panel is no longer active. Runnable

classes are also used extensively by the button system. A button must contain a

50

5.2 Elements

runnable class. This class will be run when the button is pressed. Thus allowing any

code to run whenever a button is pressed by the user.

5.2.4.1 isScreenChange

A property used in the runnable class is whether this action is triggering a screen change

or not. This property is set to true by default. If this property is to, the previous base

panel that called this action will have it’s active property set to false. This suppresses

the last screen from being changed, so the runnable action does not need to know where

it was called from. If this property is set to false, the previous panel will not be flagged

as inactive. This is used whenever an action is updating a element on the user interface,

and does only wants to trigger a redraw of the element that changed. The previous

panel will remain active, and will resume listening to touch events when the runnable

action is finished.

5.2.4.2 run()

This is the abstract method that must be implemented in any class inheriting from the

runnable class. It is called by the framework in order to run developer specified actions.

Any code inside this method is run by the thread that controls the button interactions.

This means that whatever is inside this method will block the touchscreen until it has

completed, though this method is able to interact with the touch screen and read of

events itself. This is a useful property, as while the system is performing some action,

the user will be prevented from transitioning the screen, or running another action.

5.2.5 Button

The button class is a fully implemented class in the framework. The developer using

the framework does not need to inherit from this class in order to use it’s functionality,

though they are able to if they desire more control over the way buttons behave. This

element is a object representation of a button, and contains all the information required

to use the button in the framework. It stores information pertaining to the position,

size, state, image and action to be performed when this button is pressed. This allows

the framework to lay the button out and display it to the user, and perform actions

when the button is pressed. The thumbnail is able to exist as a simple RGB based

51

5. WINDOWING TOOLKIT

image, or an alpha enabled RGBA image see ??. The information stored in this object

is also used to correctly set up the touch drivers in order to correctly identify when the

button is pressed.

5.2.5.1 button()

The constructor of this button requires two parts of information, the action to run when

the button is pressed and the image data that will represent this button on the screen.

The runnable action must be a class that inherits from the runnable class see 5.2.4.

The image data must be an array of bytes formatted as either RGB or RGBA pixels.

As the image data is a contigous array, the function also requires the knowledge of it’s

width and height. In order to di↵erentiate the di↵erence between RGB and RGBA,

the constructor also needs to know how many channels are in the image data. 3 defines

a RGB image and 4 defines a RGBA image. In order to neaten code, if the channels

argument is omitted the system will assume a RGB image is supplied. This will be

safe, as if an RGBA image is supplied but the channels are 3, the framework will not

read outside the array of the image. It will however display a corrupted looking image,

so it is recommended to explicitly pass the number of channels inside the image. Note

that the size of the image is the size of the area that responds to the users touch. If the

areas were di↵erent sizes, image scaling would have to be performed, which will lead to

high levels of distortion on the very low resolution images displayed.

5.2.5.2 setPosition()

This method allows the developer to move the location of the button. It takes two

arguments, the x and y co-ordinates where the top left corner of t he button will sit.

The co-ordinate system used is that of pixels available on the screen. By default the

button will be placed at (0,0) which places the top left corner of the button at the top

left corner of the screen.

5.2.5.3 getX()

This method returns the current x position of the top left corner of the button. It

is mainly used to find out the location of the button on the screen, in order to avoid

laying another button over the same space.

52

5.2 Elements

5.2.5.4 getY()

Performs the same function as getX(), except it returns the y co-ordinate in pixels.

5.2.5.5 getWidth()

Returns the width of the image in pixels. This is used to find out how wide the image

is on the screen.

5.2.5.6 getHeight()

Performs the same function as getWidth(), except returns the height instead of the

width.

5.2.5.7 invertButton()

This method inverts all the colours on the button. This is used in the base class when

a button is pressed (see 5.2.2.7). This method marks the button as inverted, and the

next call to enqueueDraw() will draw the button with inverted colours. Calling this

function a second time will restore the state to it’s original condition.

5.2.5.8 getRunnable()

When the button object is created, it requires a runnable object to perform when the

button is pressed. This method returns a pointer to that object so that it may be run,

or inspected by the framework.

5.2.6 Digitelement

The digit element is a class that is repsonsible for displaying numbers to the screen. It is

fully implemented in the framework, and does not need any methods to be implemented

to be use-able. It renders white colour numbers from zero to nine, with a transparent

surrounding so it is able to be overlaid on any image. Internally the digitelement

is aware of the number that it has currently displaying and the new value it needs to

display. It maintains this awareness in order to change only the information that di↵ers

from that present on the screen. This is done in order to maximize performance of the

system. If a number, say zero, is displayed the system will not draw a zero over the

top of it, it will skip to drawing the next digit.

53

5. WINDOWING TOOLKIT

One caveat of this element is that it records the current background when it is

initialized. This snapshot is used to clear out the previous image data if it di↵ers from

the desired data. This is done to prevent the digits from being drawn on-top of each

other continuously. This does make the digit element currently unsuitable for display

over any moving image data, though moving image data is not used extensively in the

interface.

The digitelement is highly configurable, allowing the developer to specify the po-

sition, size, integer places, decimal places and units to be displayed after the digit

element. Common engineering units are defined in the image element, such as km/h,

V and A. This allows relevant information to be laid out quickly. The class takes dou-

ble length floating point values as an input, but will display the number according to

the parameters specified during construction. This ensures the element has consistent

sizing, as a change in the magnitude of the number will not cause it to shift about on

the display. If decimal places is less than 1, the element will round the value to the

nearest integer.

Finally the digitelement can also represent an error state. This is typically used

when no information has been recieved, so the number to be displayed is undefined.

In this situation displaying any number would be incorrect. As such the element will

display a horizontal dash. This indicates that an error has been triggered, and their is

no valid data to display.

5.2.6.1 getX()

This method returns the current x position of the top left corner of the button. It is

mainly used to find out the location of the button on the screen.

5.2.6.2 getY()

Performs the same function as getX(), except it returns the y co-ordinate in pixels.

5.2.6.3 getWidth()

Returns the width of the digitelement in pixels. This will be the width of a individual

digit element multiplied by the number of digits that are being displayed.

54

5.2 Elements

5.2.6.4 getHeight()

Returns the height of the digitelement. This is the same as the height of any individual

number in the element, as they are all rendered at the same size.

5.2.6.5 setValue()

This function is used to set the value to be displayed on the digitelement. The new

value will be displayed on the screen after a call to enqueueDraw().

5.2.6.6 setError()

This function is used to set or reset the error state. It will cause the digitelement to

display a horizontal line instead of numbers.

5.2.7 Console Element

The console element is a generic text element that is used to display full width text

to the screen. The main purpose of this element is to provide an easy way to see

debugging information on the screen itself, without requiring any remote connections

to the controller. This element takes any string and converts it to be correctly displayed

on the screen. It is designed to be used with data that is dynamically changing.

The console element maintains an internal queue of the elements it is currently

displayed. This allows a bu↵er to exist that will display the most recently added

strings. The older strings will be removed as newer strings are added. To avoid any

conflicts with memory, a string is copied into the internal bu↵er when it is added.

This prevents any other section of the program from freeing or overwriting the memory

where the string was stored. When a string is no longer being displayed, it is removed

from the queue, and the memory used to store it is cleared.

As the queue has the possibility of being accessed from multiple threads, it must

have security in place to ensure the queue does not become corrupted. If any strings

memeory is cleared at the same it is being drawn, the system will have undefined

behaviour. In order to prevent this, a mechanism calling locking is used. When a

thread needs to manipulate or read the queue, it locks the queue. Any other thread

that tries to lock the queue at this point will be forced to wait. When the thread is

finally finished with the queue, it will unlock the queue, allowing the other thread to

55

5. WINDOWING TOOLKIT

perform an operation on it. This will cause the second thread to stop until the first

thread is finished. This simple method of synchronization will prevent the queue from

becoming corrupt, and ensures the stability of the console element.

The console element is concerned with displaying the newest values first. In order

to best illustrate this, the new values appear at the bottom of the screen, and move

upwards until they are no longer displayed. This mimics the display of consoles in

normal computers.

A problem that can occur with the display of the strings is the string length. The

display only has a fixed width, and the desired string may be longer than the screen

width. This could cause some of the data to not appear on the screen. In order to

alleviate this problem, the string is split into multiple strings, each with a maximum

length that is equal to the width of the screen. This allows the string to be rendered on

multiple lines. When a string spills over to multiple lines, it means less space for the

older lines that are to be rendered. The element takes into account multi-line strings,

and may not always display the desired amount of strings if some strings are too long.

This is done to enable all of the information of the newer strings to be read.

A problem with multiple-lined strings is that it can be hard to di↵erentiated between

the di↵erent lines. To solve this the console element uses alternating colours when

displaying di↵erent lines. This provides strong visual indicators as to which lines are

grouped together as one string, making it easy to identify what the element is trying

to say.

5.2.7.1 consolelement()

The constructor to the consoleelement takes two arguments. The first is an o↵set. This

o↵set specifies how many lines at the top of the screen the element should not print in.

This is to prevent the element from drawing text over buttons or other elements that

may appear at the top of the screen. The second element is the maximum number of

lines that should be drawn. This argument is used to prevent the element from drawing

over buttons or other elements at the bottom of the screen.

5.2.7.2 addLine()

This method adds a line to the queue. It will lock the queue, add the line, free any

lines that are now too old and then finally unlock the queue. Note that this makes it’s

56

5.2 Elements

own copy of the supplied string, so it’s argument may be destroyed after this method

is called.

5.2.7.3 draw()

This method is implemented in the console element and does not need to be overridden.

It will lock the queue, split any multiple line strings, draw the lines and then unlock

the queue. This method is called by the framework, if the developed wants to refresh

the console element, enqueueDraw() should be called instead.

5.2.8 UIImage

Basic functionality that is useful to have in any graphical display is that of displaying

images. This ability is faciliated by the image class. This is a simple class that allows an

image to be displayed and placed anywhere on the display. The image class represents

an image internally as an uncompressed byte array. This image is sent to the lower

layers for display, and can have it’s location manipulated by calling functions on the

class.

The image class does not need to be extended to be utilized by the developer. It is

fully implemented inside the windowing toolkit. Once it has been instantiated it is able

to display the image to the screen. The image class can accept either raw uncompressed

byte data to display, or it can load up a PNG format image from the devices file-system.

This flexibility was introduced in order to allow images not compiled with the executable

to be displayed. This functionality is used in depth in the Map display panel of the

user inter-face see section 6.4.

Image data that is loaded via a byte array will only be displayed by the image

class. The memory used to store the image will not be cleared on destruction of the

image object. This is done for stability reasons, as it is impossible to know if any other

portion of the program is using this data, or if the data was statically compiled into

the executable. If a filename is supplied, the image class will perform all the memory

management functions. It will load the PNG image and convert it to the internal

structure required by the lower level display drivers. It will also free the converted data

when the image class is destroyed. As this is all done internally, the developer does not

need to worry about memory management when using the image class. This was done

57

5. WINDOWING TOOLKIT

to minimize memory leaks, as the class will always free internal data when it will no

longer needed to be used.

5.2.8.1 uiimage()

Two constructors exist for the image class. The first constructor takes the position

and image data as an argument. This constructor will set the internal pointers to

the image data towards the supplied arguments. It will set up the image in a non

memory managed mode. In this mode the image class will not free the image data

when it is destroyed. This mode of operation is suited towards static image data that

is compiled into the program. An example of this is images or icons that are used to

display navigational or informational aids.

The other constructor for this class takes the filename of an image on the device’s

filesystem. If the file cannot be found, a substitute error message is used in it’s place.

This will cause something always to be displayed to the user inter-face on this images

location. This mode will convert the supplied file from the PNG format to a contiguous

array of bytes. When destroyed, the array of bytes will be cleared automatically.

5.2.8.2 setPosition()

This method allows the developer to set the x and y position of the top left corner of

the image.

5.3 Subscriber Queue

As the interface will receive many di↵erent types of messages that are described in

section 4.1, the ability to easily process these messages was added to the framework.

Three classes were developed in order to facilitate this functionality. A UML diagram

of the classes is shown in figure 5.3. This functionality uses a listener based system, in

order to direct each message to the class that needs the information.

5.3.1 Subscriber

The subscriber class is the class that takes care of reading the messages from the

network. This class maintains a instance of a ZeroMQ socket, and registers to receive

all messages that are sent to that socket. It is able to listen to multiple endpoints, so

58

5.3 Subscriber Queue

Figure 5.3: UML Diagram of messaging system for the window toolkit - This

figure shows the UML diagram of the message subscriber, filter and receiver classes

59

5. WINDOWING TOOLKIT

it can receive messages from multiple unique devices and deal with them from the one

class.

The class can be run directly, or can spawn it’s own thread. When the class is run,

it will block indefinitely, as to direct messages to their intended destination. Thus it is

recommended that the threaded functionality be utilized when this class is instantiated.

An infinite number of listeners can be registered to this class. Each listener will

specify a filter that indicates what messages it is interested in. This associates the

added listener with the desired filter. If the filter does not currently exist, it will be

created by the subscriber class.

When a message is received, all the implemented filters are compared to the message.

If a filter matches the received message, the message is forwarded to all the classes that

are listening to this filter.

5.3.2 Filter

The filter class is responsible for identifying what messages will pass this filter, and

maintaining a list of classes that should receive the message if it passes. Any class

implementing the listener interface can be registered to a filter.

A filter also has some other options that are useful to it’s operation. It is possible to

set a timeout for each filter that is created. If a message that matches the filter is not

received in the length it takes the timeout to occur, the listeners of this filter will be

notified. This allows the listeners to respond to lapses in communication in whatever

way they want.

A filter can also throttle the message rate. It is possible to specify a minimum time

between messages, in order to reduce processing time used by the CPU. If the message

rate is greater than the throttle rate, messages will be discarded at the filter level.

This can be used to help prevent too many messages from appearing at a listener that

cannot cope.

5.3.3 Listener

A listener is a abstract class that defines the function that will be called when a valid

message arrives. If a class implements the recieveEvent method, whenever a message

that it is interested in arrives it will call this method. This arguments passed through

60

5.4 Button Translation

are the length of an array of bytes, and a pointer to the start of this array. This allows

the class the receive the contents of the message, and use it in whatever way it pleases.

5.4 Button Translation

Discussed in section 5.2.5 is the class that represents buttons on the display. In order to

interact with these buttons, and not interfere the operation of the other aspects of the

system, a separate thread must be utilized. This thread has the sole responsibility of

navigating through the display that is shown to the user, and triggering the actions of

the button. The functionality of this thread is implemented in the activate() function

of the base class. This ensures that any element created that will contain buttons has

the ability to trigger them.

The existing libraries for interfacing with the touch screen written by Sommer

provided an integer indicating which button had been pressed (22). This method,

while usable, is complicated and can cause many problems when determining what

action had occurred. In order to simplify this, the activate() loop will take this integer

value, and determine which button element it corresponded to.

The buttons on any element are stored in a vector that is separated from other

elements. This provides a list of the buttons that have been added to the device in

order. When refreshtouchmap() is called on an element, the loop will setup the touch

regions using methods provided by Sommer’s library. Sommer’s libray will associate

each button to a bit in a 32 bit register. Each bit corresponds to a section of the screen

for an individual button. This allows multiple buttons to be pressed at the same time.

The relationship between the value in the register and the position in the vector is

given by equation 5.1. Thus it is possible to convert the value returned from Sommer’s

library into an index in the vector. Knowing this, the loop will retrieve the runnable

action from the button at this vector location. If the runnable action is valid, the result

will be returned to the framework. When the framework recieves a runnable action,

it will run it. As a safe-guard, if a runnable action is invalid for whatever reason, it

will perform the action to display a default panel. As all calls to activate will return to

the highest level of the framework, there is no nesting of panels in the system memory.

Hence activate will always return to the top level.

61

5. WINDOWING TOOLKIT

Buttoni = log 2(Register) (5.1)

5.5 Screen Drawing Queue

Due to the limited resources of the system, care must be taken when attempting to up-

date the screen. As as windowing system was already being developed, it was desirable

to have this system abstract these actions away from the programmer. By using the

toolkit the programmer can trigger when an element should be draw, and specify the

drawing code to draw the element. The abstraction means that the developed code will

never be called directly by the programmer, it is all taken care of by the underlying

mechanisms.

5.5.1 Refresh on Arrival

Whenever a new message is received by the user interface, it would seem appropriate to

process that message instantaneously. Figure 5.4 shows the flow of this methodology.

A message is received, then the system processes the message, redraws the screen, and

then starts over again. While this is a working solution, it does present problems in

regards to performance and the overall usability of the system.

The performance penalty in such a design is not immediately obvious. Data that is

received should be displayed instantaneously. Inspecting Figure 5.4 further does help

highlight the problem that occurs in this situation. While the system is processing

or displaying the message, it is unable to process anymore messages. This can be a

problem when the source of the messages is generating messages faster than the device

can process.

5.5.1.1 Message speed greater than redraw rate

In situations such as the BMS module, the program was able to su�ciently cope with

the input. This lead to all the messages being instantly removed from the network

layer when they arrived. Thus the program was always in the state of ”waiting for

a message”. However another important sensor caused problems with this method.

This sensor was the one designed to read the GPS signals. Messages containing GPS

62

5.5 Screen Drawing Queue

Figure 5.4: Processing message flow chart - This figure shows the naive approach to

processing and displaying received message data

63

5. WINDOWING TOOLKIT

information where generated at a rate of 10 messages per second, or 10hz. This speed

led to the situation where when a new message arrived, the process was still in the

”Draw” state. This would cause the message to be delayed on the network layer.

The rate of input regarding the GPS module was constant, these messages would

continually build up on the network layer. Any new messages that were transmitted

would be dropped when they were attempted to be sent. While this is acceptable,

eventually space would be cleared for new messages, it would lead to alot of new

messages to be dropped. The other issue that occurred here, was the new messages

appeared at the back of the ”Queue”. Until all the older messages were processed,

the new ones would not be seen. This is expected from how ZeroMQ functions (10).

However, this meant that there was a significant delay until new data was seen.

The delay that occurred was proportional to the size of the ZeroMQ Message Queue

(10). This delay could be up to a couple of seconds, which is unacceptable for live

feedback to the driver. Reducing the size of the Message Queue helped alleviate the

problem, however the screen would still attempt to redraw as fast as the messages

where received. This also led to the interface portion of the system hogging the CPU.

Thus an alternate method of dealing with screen updates was developed.

5.5.2 Add to Queue

5.5.3 Redrawing the Screen

The previous section discussed the problems that occurred with allowing the screen

to update whenever a message was received. The biggest performance penalty that

occurred was not from the actual processing of the data, but from having to display

it on the screen. All of the processing is relatively trivial computation wise. It is the

transfer of variables into various memory locations so they can be accessed when the

screen is displayed. Copying a variable itself is trivial, however processing that variable

for display on screen is incredibly intense.

5.5.4 Redraw rate

Inspection of the EyeLin library source code showed that the library was using a simple

frame-bu↵er in order to interact with the screen . This frame-bu↵er method stored the

entire screen state as an 24bit image. By default, whenever one pixel was changed

64

5.5 Screen Drawing Queue

Figure 5.5: Appending to Queue - This figure shows the flow of appending screen

refreshes to a queue

in this image, all the data was copied to the frame-bu↵er again. This was incredibly

wasteful, and contributed to the large delays in redrawing the screen. Many items on

the screen need to be redrawn together, for instance, a digit display has three or more

digits that may change from it’s last appearance. By default the library would redraw

three times if the number changed by a large amount. This caused a lot of performance

issues in previous projects using these libraries see

5.5.5 Batch Redraw

In order to o↵set this problem the way in which the queue processed draws was modified.

The thread that processed the queue would attempting to dequeue as much items as

possible and process them as a batch. This gives more performance than attempting

to redraw the screen for every change.

5.5.5.1 Maximum batch size

Attempting to remove as many items as possible is a problem in a multi-threaded

system. Consider the case where a thread is adding elements, the producer thread,

65

5. WINDOWING TOOLKIT

at the same time the drawing thread is removing them, the consumer thread. If the

producer thread is operating faster than the consumer thread, the consumer thread

will always be removing elements from the queue. Thus the consumer thread has a

maximum amount of elements it will process at a time. This guarantees that the

consumer thread will always refresh the screen.

5.5.5.2 Incomplete batch

Another issue that can occur with processing drawing events in a batch format is that

no new draw events may be generated. Consider that the thread is attempting to

remove a certain number of redraw events, however there may only be half present

inside the queue. If , for whatever reason, no more redraw events are added, the queue

will wait forever attempting to remove them. This is undesirable, as some transitions

may only trigger a few redraw events and do nothing more. A good example of this

is a static page, like the sponsor page. It only has a few elements, the buttons and

the sponsor logos, and is not dynamically updated in response to any data. If the

thread was waiting for more draw events, they would never be received. The solution

to this problem is to continue on with the drawing actions if the queue is ever empty.

This prevents the thread for waiting for more events, and helps guarantee the constant

refreshing of the screen.

5.6 Alpha Transparency

In modern user interfaces, elements on the screen may be any shape or size. This

presents a problem as all image data consists as square objects. A solution to this

problem is to create images that contain an alpha channel. This is an extra channel

on-top of the RGB channel that represents the transparency of that pixel. This allows

a pixel to completely disappear when drawing the image. Only the existing data will

be drawn. This is illustrated in figure 5.7.

This alpha channel was integrated as an extra function into the existing libraries.

The new function will accept images formatted with alpha channels and blend them

with the current displayed data. This is done for each channel, red green and blue, for

each pixel according to the formula 5.2.

66

5.6 Alpha Transparency

Figure 5.6: Screen drawing flow chart - This figure shows the managing and drawing

of elements inside the drawing queue

67

5. WINDOWING TOOLKIT

Figure 5.7: Example of alpha blending - This figure shows the advantage of using

alpha blending to display non-square objects on the screen

Drawn Pixel = New Pixel ⇤ ↵+ (1� ↵) ⇤Old Pixel (5.2)

68

6

Interface

6.1 Layout

An important aspect of user interfaces is that they must be visually impressive. This

keeps the user interested in the product, and helps new users want to learn how to

operate the device. The work done in the windowing toolkit allowed a much more

visually impressive layout to be developed. This was achieved through the use of

transparencies in order to overlay di↵erent elements on top of each other.

6.1.1 Background

As the device does not have enough power to dynamically render any sort of complex

images or motions, a pre-rendered static background was used. This background was

designed on another pc, and converted for use on the embedded system. It consists

of two main regions. The first area is the main display region. This section is the

largest of the space and exists so the current data being displayed can be laid over

it. The second region is the navigation bar region. This area is at the bottom of the

image, it uses a more uniform texture in order to contrast the main data display area

above it. The background itself is rendered in black and white. The black and white

styling allows important information to contrast against it easily. This helps highlight

the information and user interface actions present to the user, and avoids a simple

single-colour background on the user interface.

69

6. INTERFACE

6.1.2 Navigation Model

Figure 6.1 shows the basic routes throughout the user interface. This model is a generic

tree, that can have as many leafs as possible. When the user wishes to navigate to a

new panel, a pointer to that new panel is required. Thus as-long as the panel knows

of the panel it wishes to transition to, any panel can be made active from any other

panel. This allows the nested elements, such as syslog and status to navigate to any

of the higher level panels easily as-well. These routes are not shown on the diagram,

as there would be too many pathways to follow. If a panel returns a NULL pointer,

the system will navigate to the App Panel to avoid a crash. This also provides handy

functionality for traversing back to the top-most panel in the tree, as any leaf panel

can request to transition to NULL and the App Panel will be displayed.

6.2 Overview Panel

To facilitate easy navigation a panel was designed that shows all the di↵erent panels

available. This panel is shown in figure 6.2. It contains 8 di↵erent aspects of the

program, with room available for 12. This will allow the system to be extended in the

future.

6.3 Battery

The battery panel is the main display panel used in the user interface. It is the first

panel displayed to the user when the system turns on. It displays five important pieces

of information to the user operating the vehicle. This panel listens to both the battery

(TBS) and GPS messages. It requires the battery messages to display the battery

voltage, current and charge to the user. These are displayed using the digit-elements

mentioned in 5.2.6. It also uses a custom charge element class that exists outside of the

framework to draw a battery on the center of the screen. This green bar on this battery

will decrease in proportion to the charge remaining in the car, providing a quick visual

indicator for how much charge is still stored.

This panel also displays the speed in km/h, which is why it has to register to the

gps module. The speed is included so the user does not have to interact with the screen

70

6.3 Battery

Figure 6.1: Basic Navigation of the interface - The basic navigation routes through

the user interface, does not show ”quickbar” navigation routes

71

6. INTERFACE

Figure 6.2: Panel showing other panels - Shortcuts to di↵erent aspects of the program.

(Battery, Maps, Trip Meter, Accelerometer, Arduino, Savings, About, Options)

while driving. This panels main purpose was to provide a quick overview to data points

that are immediately of concern to the driver.

Displayed in the top left corner is a rudimentary calculation of how much distance

is remaining in the car. Range tests conducted by the REV team indicated that this

distance was 80km from a full charge. To provide some security while driving, the

interface assumes that the max distance the car will travel on a full charge is 70km. It

uses this to calculate the distance remaining according to the formula 6.1

Distance Remaining = Charge ⇤ 0.8� 10 (6.1)

6.4 Maps

A common, yet useful driver aid is displaying the map of the current location. This is

what the maps panel does. It listens to the GPS messages to determine the position of

the car. A screen-shot of this panel is shown in Figure 6.4. This panel uses the full area

to display the current location of the vehicle on the screen. The actual position of the

vehicle is centered on the middle of the screen, allowing the driver to view streets and

72

6.4 Maps

Figure 6.3: Battery state panel - Screen-shot of the battery state panel, showing the

voltage, current, charge, speed (via gps) and distance remaining

landmarks relative to his current position. The panel features several levels of zoom,

controlled by the bar on the top right corner on the screen. The plus button will zoom

in, and move the slider to the right, while the minus button will zoom out, and move

the slider to the left. The system supports various levels of zoom, being able to display

a few buildings relative to the car or being able to display the surrounding suburbs.

The controls visible on Figure 6.4 are not always required by the operator. They

can obscure parts of the map in which the driver may be interested in. This can be

a problem as the driver should not be expected to adjust the position of the car, in

order to see a part of the map that is hidden by the UI controls. In order to prevent

this problem, the controls can be hidden by tapping any area of the screen that is not

occupied by a button. Doing this will hide all the navigation elements and just display

the map as shown in 6.5.

.

73

6. INTERFACE

Figure 6.4: Map display panel - Screen-shot of the map display panel, showing the

map of the current location and the map controls visible

Figure 6.5: Map display panel with hidden controls - Screen-shot of the map display

panel, showing the map of the current location and the map controls hidden

74

6.4 Maps

6.4.1 Map Data

In order to display the map images, the map data must first be obtained and stored.

There are many possible methods for doing this, ranging from creating the maps as

needed, or downloading them from external services and storing them in a cache. The

relatively low CPU power of the eye-bot m6 makes rendering the maps on-the-fly a

undesirable prospect. Open source map data for the entire planet results in a file that

is 18GB in size (23). This file is much too large to store locally, and this file is actually

storing a compressed version of the data. Even if it were possible for the eye-bot to

store this file, via the use of external storage, it would be a large strain on the CPU

to convert the street level data into viewable maps. It would also require many other

pieces of software to be installed on the device, making it much more complicated to

manage.

Another possibility is to use an existing Internet based map server and download the

map imagery as needed. The has several downsides. Foremost it requires an Internet

connection whenever to display the maps. The system does have a 3G connection

installed, but this cannot be considered a dependable communication channel. It is

highly likely to drop out, and is limited in coverage to the areas in which it has reception.

Even without these issues, most map-servers do not allow you to download maps in

bulk, as this violates their usage policies (24). This makes this method undesirable

as it is not suit-able for downloading maps in bulk, or as needed. Attempting to pre-

download all these maps using a non-3g link would result in a violation of the usage

policy.

The method chosen to obtain the map data was to pre-create create the map data

using a more powerful machine. A map-server was setup and loaded with all the street

data for the Oceania region. For more information on the map-server setup see appendix

C. This method overcomes the problems of the previously mentioned methods. All the

processing is done on the much faster machine in advance. The area processed in

advance is defined by the properties in table 6.1. This area is depicted by the image

shown in Figure 6.6. The expanse of these maps covers all of metropolitan Perth. In

future more maps can easily be processed, however this will result in more storage space

being required. The current settings are a good balance between storage and expanse

of data. This is because the map data will be less useful outside of the city, and the

75

6. INTERFACE

car is typically not driven any further than the pre-rendered maps. The current space

usage of the map data is given in table 6.2. As this is much much larger than the

internal 16MB of flash storage the eyebot has, it must be stored on external storage.

Luckily, storage is now cheap, and 8GB usb thumb drive has enough performance and

space to store and serve the image data.

Property Value

Minimum Zoom Level 11

Maximum Zoom Level 18

Top Left 115.687,-31.71

Bottom Right 116.508,-32.253

Table 6.1: The properties of the pre-rendered map data

Property Value

Zoom Levels 7

Number of Files 435,456

Total Size 580.2 MB

File Resolution 256*256 pixels

File Format Palette PNG

Time taken to process Approximately 1 Day

Table 6.2: File statistics of map data

6.4.2 Tiling

As mentioned previously, the map data is much larger than the internal storage of the

eye-bot. It is also much much larger than the operating systems 64MB of ram. This

makes it impossible for the entire map data to be loaded inside any program to be

displayed to the user. In order to overcome this limitation, the map panel only loads

a small subset of the map data at a time, and displays it using a method called tiling.

Rather than have one giant map that displays all of the information, and sliding this

around to view the correct part, this method divides the map into many smaller maps.

These smaller maps are referred to as tiles. Each tile consists of a 256 pixels wide

76

6.4 Maps

Figure 6.6: Pre-rendered map size - This figure shows the area that has been pre-

rendered for use in the map panel display

77

6. INTERFACE

by 256 pixels high image. These images are combined in order to display the current

location, as seen in figure 6.7. By loading the adjacent tiles in all directions the screen

will always have data to display.

Figure 6.7: Tiling Maps - This figure shows the tiles that are loaded, labeled 0-8, and

the area of the screen that is able to view them.

6.4.2.1 Converting GPS Co-ordinates

The GPS outputs the current position in latitude/longitude format. This format must

be converted so that the correct tiles may be loaded. To do this the GPS co-ordinates

78

6.4 Maps

are converted to grid based co-ordinates using a Mercator projection (25). The equa-

tions to convert to this format are given by 6.2 (25). It is possible to convert from a

grid co-ordinate back to a GPS co-ordinate using the equations given by 6.4 (25). This

of course will only be able to return the top left corner of the tile in GPS co-ordinates,

and not the original position.

Tile X = b(longitude + 180.0

360
⇤ 2zoom)c (6.2)

Tile Y = b

0

BB@1�
ln

✓
tan(⇡⇤latitude

180

) + 1

cos(

latitude⇤⇡
180)

◆

⇡

1

CCA ⇤ 2zoom�1c (6.3)

Longitude =
X ⇤ 360
2zoom

� 180 (6.4)

(6.5)

n =
⇡ � 2.0 ⇤ ⇡ ⇤Y

2zoom
(6.6)

Latitude =
180 ⇤ tan� 1(0.5 ⇤ (en � e

�
n))

⇡

(6.7)

With the GPS co-ordinate converted it is possible to locate the tile to display to

the user. Rather than utilize lookup files to locate the tile, a specific folder structure

is used to instantaneously load the file. This is done by storing the files in the format

/zoom/tilex/tiley.png. This allows the system to directly open the file and display it.

Thus even if the entire world was loaded in the maps folder, for many di↵erent zoom

levels, the display time of the current location would not change.

6.4.3 Palleted File Format

The amount of storage required for all these tiles in an uncompressed format is shown

in equation 6.8 using the data obtained in table 6.2. This amounts to approximately

81 gigabytes of information at all the various zoom levels. This size is much too large

to store and a small usb drive. It would be possible to store this data on a mechanical

disk, but this is much more costly than a cheaper flash based drive, and would require

79

6. INTERFACE

much more power to run. In order to solve this problem, a compressed file format is

used. The PNG file format results in a much more smaller filesize per tile. The average

filesize of the final compresed files is approximately 1.3 kB. This is a large contrast

to the size of one file in an uncompressed format, being 192 kB. PNG uses various

compression techniques to greatly reduce the filesize of the tiles.

TotalSpaceRequired =
height ⇤ width ⇤ image ⇤ number of tiles

bytes in a megabyte
(6.8)

=
256 ⇤ 256 ⇤ 3 ⇤ 435456

1048676
= 81648 MB

The main technique that is utilized in this system is the use of pallettes. Palleting

restricts the colour space in the image, in order to save space. The map images do

not utilized the full 24bit colour space that the screen is capable of displaying as the

maps need to be visually clean, they only use a handful of colours to represent the

area. Palleting works by defining the sets of colours that will be used in the image

beforehand, or the pallette of this image. Consider an image with only two colours. If

each colour in the pallette is given a value, each pixel in the image can be represented

by that value. Hence each pixel can be represented by 1 bit, rather than 3 bytes (24

bits). This is a simple example, but it highlights how pallettes can be used to save

space. The downside to using this technique, is that it is slightly slower than using raw

image data. As the pallette is represented in a di↵erent format, it must be loaded and

converted to the unprocessed data when needed. This takes some time compared to

just reading the raw data. This trade-o↵ is worthwhile however, as the space saving

more than makes up for the extra CPU time to load the images. The method also

has the advantage that the tile images can be easily read or modified by consumer

software on other machines, PNG files are very common and can be natively viewed on

all full-blown operating systems.

6.4.4 Sliding Maps

The last feature that the map panel implements is centering the vehicles position on

the screen. This means that the screen will slide around in response to changes in

the vehicles position. It does this by using a modified version of the equations in 6.2.

80

6.5 Trip Meter

These modified equation works takes the same inputs, but returns the position of the

car inside the grid co-ordinate as a floating point number. This return result has the

range 0 result < 1. A return value of 0 indicates that the top right corner of the

image should be placed in the center of the screen. A return value of 1 is never possible,

as this would be 0 on a di↵erent tile. This allows the tiles to be moved around as the

car moves, providing sleek graphical feedback to the operator of the vehicle.

6.5 Trip Meter

A useful driver aid that is common on vehicles is that of a trip meter. Traditionally

this component records the distance the car has traveled since the trip meter was set.

This functionality is usually a result of the simple systems in place, and is tied to the

revolutions of the wheels on the vehicle. As this system has more hardware at it’s

disposal, the trip meter can implement more functionality than a standard trip meter,

making it much more useful in examining the performance of the car. Figure 6.8 shows

the trip meter panel being displayed on the screen. An important note of this panel is

that all calculations are done whether the panel is being displayed or not.

Figure 6.8: Trip Meter Panel - This figure shows two independent trip meters and the

best record speed data

81

6. INTERFACE

The first unique point of this trip meter, is that it contains two independent meters.

This is useful as it allows the driver to evaluate the statistics of two overlapping trips.

One trip meter can be used to record the distance traveled since the car was last

charged, while the other can be used to record the distance traveled in the last week or

month. This independence allows the operator to decide how best to use the trip meter

data, resulting in a high level of flexibility. In figure 6.8 the trip meters are located on

the left, sitting above each other.

Each trip meter records the distance traveled, the time elapsed since the meter was

started, the time the car has been moving since the meter was started and calculations

based on the elapsed and moving time. These statistics are displayed live to the user,

but are not logged, as the logging functionality is taken car of by a di↵erent component

in the system. The trip meter panel also displays the current moving speed in the top

right. Below the moving speed are the best run records in seconds. This allows the

driver to have quick feedback as to how the car is performing, without having to do

lots of processing on logged data.

6.5.1 Distance Driven

The most important part of a trip meter, is the distance that the meter has recorded.

This is shown on figure 6.8 at the bottom of each trip meter. The meter stores the

distance driven internally as a double length floating point number, but displays it

on the screen as a rounded integer. This is done in order improve precision for later

calculations as other values will depend on the distance that has been driven. Equation

6.9 shows the the distance is calculated based on the GPS position.

Distance = Distance
lastrun

+ Speed(Time
now

� Time
lastrun

) (6.9)

The method for working out is a continuous function that is based on the last

known distance the car has traveled. This method was chosen as it does not require

any information other than the last time the formula was run, and the last distance

calculated. This also makes the trip meter flexible in that the distance calculation

does not need to be processed at exact intervals. If messages are dropped for whatever

reason, the calculation will still take place, though it will not be as accurate as it could

82

6.5 Trip Meter

be. The calculation will be able to cope with fluctuations in the message timing, and

can adapt to the speed of the GPS being used.

The downside of this method, is that big changes in time can cause problems with

the calculation. If the signal drops out for an extended period of time, such as going

through a tunnel, the calculation in 6.9 would have a big margin for error. In order to

prevent this, the trip meter will ignore large time di↵erences. If two calculations are over

10 seconds apart, the result will not be trusted, and not be used in the calculation. This

prevents GPS signal loss from having an adverse e↵ect on the trip meter calculations,

but does impose a limit on the trip meter.

The limitation of this method of calculating the distance driven is that it relies on

the GPS messages being sent to it. If the GPS signal is lost, the distance driven will not

be increased. This is a limitation imposed by the use of the GPS sensor, and cannot

be avoided, as attempting to guess the distance driven while the GPS signal has been

lost has a very high probability of being incorrect.

6.5.2 Time Elapsed

Another variable displayed on the trip panel is the time elapsed. This is simply the

time elapsed since the trip meter was last reset. This time increments even while the

GPS signal has been lost, performing a stop-watch like action on the trip. While it may

seem natural to just record the time that the trip meter was started and subtract it

from the current system time, this would lead to problems during the system startup.

The time needs to increment even while the GPS is connecting, and must be resistant

to changes in the systems internal clock. Thus the time is calculated similar to section

6.5.1. The formula used to calculate the elapsed time is given in equation 6.10. The

time elapsed is displayed as the highest element of the trip meter in Figure 6.8

TimeElapsed = TimeElapsed
lastrun

+ (Time
now

� Time
lastrun

) (6.10)

Much like the distance, this method of calculation depends on the last known values.

This means it does not matter at the actual time the system trip started once the timer

has been running. This makes it resistant to changes in the system time, and thus makes

the timer more robust. This timer records the time elapsed on the nanosecond level,

83

6. INTERFACE

as it is used elsewhere in calculations. For display, the timer converts these values into

the traditional hours, minutes, seconds format that is easy for the operator to read.

6.5.3 Moving Time

An aspect of the cars telemetry that would be interesting to the driver is the cars

moving time. This is defined as the time in which the car has spent in motion. The

main use of this data point is to contrast it against the elapsed time, to highlight how

long the car has spent sitting still in tra�c. This variable is also useful to record for

future calculations, such as working out the average speed of the trip. This element

is calculated according to equation 6.10, except that it will not update if the current

speed of the car is 0 km/h. As such this element requires the speed of the car to be

processed, so it cannot be calculated when the GPS signal is lost. This fits in with

the functionality defined in section 6.5.1, as the trip meter will not update the moving

time or distance driven if the GPS signal is lost. The moving time is displayed below

the elasped time and above the distance driven in Figure 6.8

6.5.4 Average Speed

When reviewing the trip meter data, it is useful to know the average speed the car

was traveling during the trip. Having this information allows the driver to better

understand the characteristics of the drive. This element is also easy to calculate, as

the time elapsed and the distance driven are already available. Equation 6.11 shows

the formula used to calculate the average speed. The calculated value is displayed to

the right of the elapsed time in figure 6.8.

AverageSpeed =
DistanceDriven

TimeElapsed
(6.11)

This value is calculated whenever the distance driven or elapsed time values are

updated. As this value is using two calculated values, it does not need to worry about

discrepancies in time or the loss of the GPS signal.

84

6.5 Trip Meter

6.5.5 Average Moving Speed

The average moving speed is like the average speed. The only di↵erence is that it uses

the moving time to calculate the speed, rather than the elapsed time. This is done

using the same equation 6.11, only substituting ”Time Elapsed” for ”Moving Time”.

This value provides the average speed of the car when it was actually being driven,

thus ignoring time spent waiting in tra�c.

6.5.6 Reset

The final functionality of each independent trip meter is the reset button. This button

resets the trip meter it is attached to. The distance driven, moving and elapsed time

counters will all display zero, and the average speed calculators will display zero. As

each trip meter is independent, one can be reset without a↵ecting the other. To reset

the trip meters, the driver just has to press the reset button, located below the average

moving time and to the right of the distance driven in Figure 6.8.

6.5.7 Current Speed

The trip meters provide statistics on where the car has been driven, but do not provide

much insight into the instantaneous speed of the vehicle. As this variable is already

being used in calculations it is trivial to display it to the driver. This is displayed using

a simple digit element, and appears in the top right corner of Figure 6.8.

6.5.8 Time Trial Data

A common metric in measuring the performance of cars is to measure how long the car

takes to achieve a certain speed. Usually this requires expensive equipment in order

to accurately measure the time and speed data. As the information exists inside the

trip meter in some form already, it is useful to display a less accurate version of this

time trial data. By recording the time it takes to reach 50 or 100 km/h the operator

is able to have quick feedback on the performance, without having to setup lots of

equipment. The flow chart of this calculation is given by Figure 6.9. The results of this

are displayed below the current speed in Figure 6.8

An important condition on this flow chart is that the zero time must be set before

any calculations are performed. The zero time is the time at which the car was last

85

6. INTERFACE

Figure 6.9: Time Trial Data flow chart - The program flow used to calculate the 0-50

km/h and 0-100 km/h time trial data

86

6.5 Trip Meter

traveling 0 km/h. This time will be reset whenever the car is stopped, so the calculation

requires no input from the user. Also present in the flow diagram is that the system

will display the best time recorded. If there is a previous best time, and a new one is

achieved, the new one will automatically be displayed. This allows the user to ignore

the trip meter panel entirely, and be able to trigger and record some performance data

on normal drives.

6.5.9 Persistence

A required feature of this panel, is persistence of the calculated results. If the system

is o↵-line, it should remember the calculated values when it next starts up. It achieves

this functionality by storing the values needed in a simple text file, that is present

with the program’s executable. If this file is not present when the program is run,

it will be created with zero values. The system will write data to this file every 10

seconds. The delay is required so that the file-system is not overloaded by requests to

continually write the data to the file system, which would result in poor performance

of the messaging loop. 10 seconds is an adequate trade-of between loss of data due to

a system crash, and the performance cost of saving the data.

Table 6.3 shows the file structure used to store the persistent information. This file

format is stored as an ASCII file, so it is easy to modify the values displayed should

the need arise. Each property is separated by a newline character. There is only one

property stored per line, making the file a simple one-dimensional column. It creates

it’s own file under the name of tripsaved.txt in order to simplify loading and protect it

from errors in other files.

Most of these values are directly displayed on the screen, so it is easy to verify if

they have been set correctly. Line 1 is the current distance value. This value is used

to o↵set the other trip meters. This value should be 0 under normal operation. Lines

2 and 3 represent how far the each individual trip meter has recorded. Lines 4 and 6

represent the elapsed time of each meter and Lines 5 and 7 represent the moving time.

The average speed values are calculated from these values.

The last important aspect of the file is that it is written atomically. All the values

are written out to the file together. This is done in an attempt to minimize the a↵ect

of power outages on the file. It reduces the chances that half the file has been written

when the power was cut, thus helping to protect the file’s integrity.

87

6. INTERFACE

Line Property Example Value

1 Current Distance (km) 0

2 Trip 1 Start (km) -118.962

3 Trip 2 Start (km) -128.845

4 Trip 1 Time (s) 70430

5 Trip 1 Moving Time (s) 46652

6 Trip 2 Time (s) 70162

7 Trip 2 Moving Time (s) 46384

Table 6.3: File Format for persistance of Trip Panel

6.6 Interial Measurement Unit Display Panel

Developed in section 4.7 was a system that read accelerometer data from a serial con-

nection. This data is displayed on the device via the IMU display panel. This panel is

shown in figure 6.10. As the data in 4.7 is not currently calibrated, this panel outputs

the raw data for display on the screen. The main purpose of this is to verify that

the module is functioning correctly, and to developed a template for future work with

displaying and interpreting this data. This panel displays the acceleration on the x, y

and z axis and also shows the pitch roll and yaw of the IMU device.

6.7 Digital Inputs

Described in section 4.6 was a hardware system able to interface with digital inputs.

The purpose of this panel is to display those inputs to the operator. This display is

shown in figure 6.11. It uses digit elements to display the two connected voltages,

and the two calculated frequencies. It also uses a boolean triggered display element to

display the status of 8 individual digital inputs. This display shows the raw data from

the input board, enabling the values being transmitted to be examined and analyzed

in real-time.

88

6.7 Digital Inputs

Figure 6.10: IMU display panel - This figure shows the information output by the

IMU daemon

Figure 6.11: Arduino display panel - This figure shows the information output by the

Arduino based IO board

89

6. INTERFACE

6.8 Economy Panel

Reduced running costs are one of the most cited reasons for the interest in electric

vehicles. As such the system tries to quantify the savings that occur by providing a

screen which shows an approximation of the running costs of the vehicle. It does this

by making some assumptions as to the cost that the petrol version of the car would

consume. This is contrasted against the power that the car has consumed over the same

duration. Using these values, the cost of running the car on electricity and on petrol

can be calculated and the di↵erence can be displayed. Figure 6.12 shows this panel

displayed on the device. The values displayed here are persistent through multiple

drives, allowing for the di↵erences to be calculated over a long period.

Figure 6.12: Savings Panel - This figure shows the savings panel, it calculates the cost

of running the car on electricity and approximates the cost of running the car on petrol

6.8.1 Petrol approximation calculation

The car does not consume any petrol, so it is not able to provide data in relation to the

amount of fuel consumed. As such the system attempts to approximate the amount of

fuel that would be consumed. It does this by using the cars advertised fuel consumption,

at 6.1 L per 100 km (26). It uses the same method to calculate the distance driven as

90

6.8 Economy Panel

seen in section 6.5.1. This value is calculated independently of the values calculated

in the trip panel, this was done to ensure that each panel cannnot a↵ect the other

panel. It is not possible to reset the a trip meter and change the economy panel. The

last variable required to calculate the cost is the price of the fuel. While this is highly

variable, a single value is used to provide an approximation to the cost.

Petrol Cost = Distance Driven ⇤ Fuel Economy ⇤ Price per Litre (6.12)

Equation 6.12 shows the formula used to calculate the petrol cost. The distance

driven, and cost per litre of fuel are displayed on the display providing insight into how

the calculation is performed. The static price of petrol used works with this display, as

the user is able to see the links between the numbers.

This is not an incredibly precise calculation, as the GPS can drop out or be slightly

o↵ with the distance traveled. It also will not reflect the real cost, due to a static fuel

consumption being assumed. It is also unable to take into account the fluctuation of

fuel prices over a long period of time. The calculations purpose is to provide a rough

ballpark figure, so the user is able to have some indication of the cost the petrol car

might have incurred.

6.8.2 Electricity calculation

Given the voltage and current, the instantaneous power can be calculated according to

Joule’s Law (27). The formula for calculating the power is given in equation 6.13.

P = V I (6.13)

The battery monitor module outputs both the current flowing out of, and the voltage

level of the battery at a rate of 1hz. With this information it is possible to calculate

the power that the vehicle has consumed. By dividing equation 6.13 by the number of

seconds in an hour, the power consumed in units of kwh is obtained for the last second.

Continually summing this value will lead to the total kwh consumed by the vehicle.

By multiplying the result by the cost in per kwh hour, the total cost can be obtained.

Like the petrol calculation, the units of this calculation are displayed on the screen,

so the user is able to intuitively understand the calculations being performed. This

91

6. INTERFACE

calculation does have some drawbacks, as it does not take into account fluctuations in

electricity costs, such as on and o↵-peak charging. It does also not take into account

in-e�ciencies in the charging equipment. The power present in the batteries, and

consumed by system while running will not be equal to the power that was supplied

to charge the batteries. This is acceptable however, as the purpose of the calculation

is to provide rough estimates, in order to provide feedback as to how much the car is

costing to drive.

6.8.3 Resetting

Over time, the operator may want to reset the settings back to an initial zero state.

This could possibly after months of driving. To facilitate this, the panel has a reset

button present. This button will reset the distance driven and kwh consumed values.

As these values are now both zero, the calculated cost values will also become zero.

6.8.4 Persistance

Like the trip panel, see section 6.5.9. The Economy panel also requires memory if the

system goes o↵-line. It achieves this functionality by storing the values needed in a

simple text file, that is present with the program’s executable. If this file is not present

when the program is run, it will be created with zero values. The system will write data

to this file every 10 seconds. The is exactly the same method use to provide memory

to the trip panel.

Table 6.4 shows the file structure used to store the information. Like the Trip panel

the format used stored is an ASCII file. It creates it’s own file under the name of

moneysaved.txt in order to simplify loading and protect it from errors in other files.

This file is completely independent of tripsaved.txt so changes in one file will not a↵ect

the other.

Most of these values are directly displayed on the screen, so it is easy to verify if

they have been set correctly. Lines 1 and 2 are the variable values of distance driven

and power consumed. These lines will be updated every 10 seconds as discussed earlier.

The other values on lines 3-5 are read from the file. These are the parameters of the

car used in the calculation. They will remain static throughout each update of the file.

92

6.9 About

Line Property Example Value

1 Distance Driven (km) 145.242

2 Power Consumed (kWh) 44.2259

3 Petrol Cost (c/L) 147

4 Power Cost (c/kWh) 18

5 Petrol Economy (km/L) 0.062

Table 6.4: File Format for persistence of Economy Panel

6.9 About

The about panel is a simple panel that only displays one image element. This image

element consists of a brief information about the program follow by images of all the

sponsor logos. The purpose of this panel is to help provide advertising for the sponsors,

and to highlight that the system is a project of the Renewable Enegrgy Vehicle group.

This panel has one image element that takes up the whole screen, and a button that

is not visible to the user. This button also takes up the whole screen. The purpose of

the button is to provide a trigger point to transistion back into the main program. If

the user presses anywhere on the screen, the button will be pressed, and the interface

will return to the application selection panel.

6.10 Settings

The previous features have all discussed elements of the interface that are useful to any

general driver. These are features that are useful while operating the vehicle. There

also exists another user that has a di↵erent set of requirements to fulfill. This user is

the maintainer of the car. This user will need access to various aspects for debugging

and development purposes, including the ability to easily examine and transfer the

internal logs of the system. In order to help simplify the navigation of the program,

these elements are located in the settings screen. A screen-shot of the settings screen

is shown in figure 6.14.

93

6. INTERFACE

Figure 6.13: About Panel - This figure shows the about panel, which displays the

sponsor information of the car.

Figure 6.14: Options Panel - This figure shows the options panel, which displays various

utilities that are needed by the maintainer of the vehicle.

94

6.11 Debug

6.11 Debug

The top left most button in figure 6.14 will navigate to the debug panel. This panel

is shown in figure 6.15. The purpose of this panel is to display the messages that are

being received from the daemon programs, see section 4.1. This panel displays the byte

level contents of each message to the user as it is received. This is used to help facilitate

debugging, as the writer of the daemon is able to see exactly what is being received in

the interface.

Figure 6.15: Debug Messages Panel - This figure shows the Debug panel, it allows the

user to filter which messages are displayed and alternates the colour between each received

message

This display panel has various buttons that exist on the top of the screen. These

buttons allow known messages to be filtered out, enabling specific debugging to be

undertaken. As discussed earlier, the first 3 bytes of a message are used to filter

di↵erent kinds of messages. When a button is enabled, it will allow those messages to

be drawn on the screen. Multiple combinations of messages can be combined to display

any combination. The buttons labeled, TBS,GPS,IMU and DIO will filter the ASCII

values of the first three bytes of each message. The all button will ignore any filtering,

and will allow any message to be displayed, including ones that may not have been

95

6. INTERFACE

developed or seen before.

This panel uses a ConsoleElement to display it’s data as seen in section 5.2.7. This

allows new messages to be displayed on the bottom of the screen, and travel upwards

as they become outdated. It also provides a clear distinction between messages, as seen

in figure 6.15. The messages alternate between red and white as they are displayed,

making it easy to identify the trailing portions of each message.

6.12 Network Status Display

In order to verify that the system is working correctly, it is helpful to view the mes-

sages being sent as in the Debug Panel. This panel can provide too much information,

and requires the user to understand hex in order to verify that each message is being

received. In order to simplify this, a panel was developed that displays the status of

each di↵erent type of message. This uses the simple boolean display element previ-

ously mentioned in section 6.7. This element will display green whenever messages

are currently being received by the system. If no message is received in the previous

10 seconds, the marker will transition to red in order to illustrate this. This allows a

quick view as to the health of the system, and highlights components that need to have

further inspection.

6.13 System Logs Display

As mentioned in section 4.3, all aspects of this system report errors by logging them to

the syslog application. This prints out the warnings and errors created to /var/log/messages.

This panel loads and displays any information logged into this file. This information

may come from any of the daemons mentioned in section 4.1, the interface itself, or

even other systems that are running on the Linux installation.

An important aspect of this panel is that it only displays the most recent information

that has been logged. This makes it compatible with the ConsoleElement described

in section 5.2.7. The Console Element will automatically take care of displaying the

last pieces of information it has received. This would produce the desired functionality,

however further optimization needed to be undertaken.

96

6.13 System Logs Display

Figure 6.16: Daemon Status Panel - This figure shows the status of the various

daemons, green indicates the daemon is active, red indicates a timeout

Figure 6.17: Syslog Panel - This figure shows the System Log panel, this displays the

most recent entries in /var/log/messages

97

6. INTERFACE

The file /var/log/messages, is logged to by all applications since the system started.

Thus it grows in size the longer the system has been operational. Without optimizing

the way this file is read, it would take O(n) time to display the newest entries in the

file on the Console Element, where n is the number of entries in the file. This is not

acceptable as the time taken to display the logs will increase the longer the application

is running. In order to fix this problem, the file is read from the end of the file minus a

2048 byte o↵set. The maximum width that can be displayed is 60 characters, and the

maximum possible lines that can be shown on the screen is 20. This yields the result of

1200 possible characters as seen in equation 6.14. This size is roughly doubled to 2048,

in order to ensure more than enough lines are read for each update. This method of

reading the last 2048 characters and finding the unique lines inside them is not a↵ected

by the file size, so the time taken to update the display is now O(1). The update is not

dependent on the number of lines in /var/log/messages

Maximum Characters = Characters per line ⇤Number of Lines (6.14)

= 20 ⇤ 60

= 1200

As the actual log file may be updated very quickly the screen must not update

automatically. This is to stop the screen transitioning while the user may be reading

something on it. As such the panel does not support any automatically updating

functionality. In order to update the screen, a system like that in section 6.9 is used.

A invisible button is created to span the whole display. When pressed, this button will

read the /var/log/messages file and update the screen accordingly. This allows for the

maximum utilization of space possible, as no space needs to be created to display a

refresh button. The messages will also be updated when this panel becomes the active

panel displayed on the screen.

6.14 Copy Log Files

Discussed in section 4.8 is a utility that records the telemetry data locally. In order

to make the files created by this logger easier to access, the user interface provides a

mechanism for them to be copied onto an external usb drive. Figure 6.18 shows the

98

6.15 Delete Log Files

display asking for user confirmation to copy the log files. If the user confirms the action,

the program will navigate to the directory in which the log files are stored, and copy

them byte by byte to the external drive. Once completed the screen will display the

figure 6.19.

Figure 6.18: Copy Popup - Popup asking the user if they wish to copy log files to the

an external drive

If an error occurs, the system will log the results to the in-built system logger,

syslog. This will allow the results to be viewable at /var/log/messages, and thus can

be viewed by the Syslog panel. While copying, the interface will display the progress of

the action. It does this by indicating the amount of files to be copied, and the current

file it is copying across. This is implemented so the user can be sure the system has

not hung or encountered another error.

6.15 Delete Log Files

In order to prevent the storage media from filling up, and to help organize the files

when they are copied over the interface provides a mechanism to delete all the log

files. Figure 6.20 shows a popup asking the user if they wish to delete the files. This

functionality functions much the same way as copy, except that it does not require an

99

6. INTERFACE

Figure 6.19: Copy Completed Popup - This popup confirms that all the log files have

been correctly copied to the usb drive

external drive. It will simply open the folder and delete the files one by one. This

action will also display its progress, and will provide the user with a message once the

action is complete.

6.16 Exit Program

In order to allow other programs that use the various hardware, such as the screen or

the touch driver, to run the current application must be exited. The system facilitates

this be placing an exit action on the options panel. When this button is pressed, the

popup shown in figure 6.21 will be displayed. This popup confirms that the user wishes

to exit the application. If the user agrees, the program will exit and the screen will

be set to black. If the user cancels, the system will return to the previously displayed

panel, allowing normal operation to resume.

100

6.16 Exit Program

Figure 6.20: Delete Log Files Popup - This asks the user if they want to delete all

the log files stored on the system

Figure 6.21: Exit Popup - This popup confirms that the user wants to exit the running

application

101

6. INTERFACE

102

7

Performance

7.1 Limitations

In testing the final system, issues arose which limited the depth in which the systems

could be evaluated. As such only partial evaluation has been undertaken. This was

done in an e↵ort to provide some indication as to the stability of the system, and this

section will provide analysis over what data could be obtained.

7.1.1 Restricted Access to Vehicle

On the 15th of August the vehicle that was the main target for development was

involved in a car accident. For safety reasons, the author was not allowed to work on

the car in any form after this accident. This severely limited the amount of testing

that could take place, as many aspects of the hardware are installed in the car which

was no longer accessible.

7.2 Message throughput

Figure 7.1 shows the amount of time it takes to receive varying sized messages. The raw

data is available in appendix F. This data was obtained by having the eyebot receive

messages while a laptop sent them as fast as possible.

The interesting thing about this graph is that it shows that the time taken to receive

the messages does not di↵er greatly with larger message sizes. This is useful to observe

as it means more complicated messages will not slow down the system, in regards to

103

7. PERFORMANCE

Figure 7.1: Message throughput - Time taken for a varying amount of messages to be

received, for varying message sizes

transmission times. More complicated messages do mean there is more data to process,

which would adversely a↵ect the system. A peculiar aspect is that of the 10 kilobyte

payload size. It appears to take less time than the others. This is most likely due to

the processor of the laptop or the eyebot being more busy when the other tests took

place. This is very hard to prevent, as it is impossible to control the operating system

to prevent this. However the di↵erence is not too great, so the slight change in values

is not a large problem.

This graph also shows that the system does not slow down too much when under

1000 messages are being sent. The fact that 10,100 and 1000 are all reasonably similar

indicates that the physical transmission and overhead of sending the data has more

impact than the amount of messages being sent. This is good as the system currently

does not exceed a message rate of 100 messages per second, using packets much smaller

than the minimum in the test. As such the current configuration will not be hampered

by transmission delays.

It is important to note that this is transmitting the data from a laptop to the eyebot.

104

7.3 Inter-message Timings

On the hardware, the components reside on the same device, as such the transmission

statistics would be much more favorable. This of course out-weighed by the fact that

the hardware would be doing two things, generating and transmitting messages. The

message subsystem was not tested this way as it would be hard to identify what was

causing delays when the same device is both transmitting and receiving the messages.

7.3 Inter-message Timings

This section reveals the time in between messages for the various components that

transmit them. This was done using an eyebot to run the programs, and the messages

were received on another laptop. Errors in the measurement can be contributed to the

process switching active on both devices, as well as the fact that the laptop was commu-

nicating via a wireless network connection. All tests were conducted for approximately

20 minutes.

7.3.1 Arduino Board

Figure 7.2 shows the time between messages received vs the running time in the pro-

gram. It is interesting to note that there are occasions when the time between two

messages can be as much as 4 seconds. As the graph displays, this phenomenon ap-

pears to occur every 7 seconds. This is most likely caused by delays in the operating

system on the receiving or sending end, as the process will not switch to the foreground

automatically. As the delay is rarely more than 4 seconds, this will not interfere with

the timeouts implemented in section 5.3.2

7.3.2 Accelerometer

The accelerometer runs at a much faster rate than the Arduino board. This is reflected

in graph 7.3. It can easily be seen that this program sends out messages much more

frequently. It still su↵ers the same problem with longer delays occurring. However each

occurrence is still well under any timeout limits.

7.3.3 GPS and Battery Monitor

Due to both being physically installed in the vehicle, it was not possible to evaluate

the message timings of these systems. See section 7.1.1

105

7. PERFORMANCE

Figure 7.2: Inter message timing for Arduino network messages - The time delay

between messages plotted against the time the program has been running for

Figure 7.3: Inter message timing for accelerometer network messages - The time

delay between messages plotted against the time the program has been running for

106

7.4 Memory Utilization

7.4 Memory Utilization

This section shows plots of the memory usage of each daemon vs the running time of

the program. If a program has a memory leak, it will eventually cause exhaust the

systems memory and cause instability. These graphs exist to highlight any issues that

may occur with running programs.

7.4.1 Arduino Board

Sadly, as shown in figure 7.4, the Arduino based daemon does have a minor memory

leak. After running the program for one hour, the memory usage had increased by

100kb. This memory leak is not too much of a problem. The system will never be on

for more than a day at one time. After a day running non-stop, the program will only

consume a little over 2mb. This is nothing compared to the 64mb of ram available to

the system, so this problem is very minor.

Figure 7.4: Memory usage of the Arduino daemon - Memory usage (in kb) plotted

against the time the program has been running for

107

7. PERFORMANCE

7.4.2 Accelerometer

As shown in figure 7.5 the Accelerometer daemon has a memory leak at the rate of

760kb per hour. This is much worse than the leak in the Arduino board. Extrapolating

this usage out to one day yields a memory usage of approximately 18mb. This is still

small enough to not cause major problems, though it does warrant an investigation

into the cause of the memory leak. As long as the system is not run for over a day

without a restart, this leak will not be a problem.

Figure 7.5: Memory usage of the Accelerometer daemon - Memory usage (in kb)

plotted against the time the program has been running for

7.4.3 User interface

The user interface was tested with a simulator sending messages from all four compo-

nents developed in section 4.1. As figure 7.6 shows, the user interface does not have any

memory leaks. The interface can run for any amount of time and will not cause system

instability. This is a good result as the user interface will always remain responsive.

7.4.4 GPS and Battery Monitor

Due to both being physically installed in the vehicle, it was not possible to evaluate the

message timings of these systems. See section 7.1.1. Running these programs without

access to the hardware would not yield reliable results.

108

7.5 Logged data

Figure 7.6: Memory usage of the user interface - Memory usage (in kb) plotted

against the time the program has been running for

7.5 Logged data

Discussed earlier was logging mechanisms in order to record information about the

vehicle. The following shows some of the data obtained through this mechanism. The

following sections discuss the results obtained from a single drive. The intent was to

undertake much more test drives, but due to the circumstances mentioned in section

7.1.1 this was not possible.

7.5.1 Path recording

The system developed records the GPS location. This will be recorded at a minimum

of 1hz, so there will be one entry in the log file for each second. Figure 7.7 shows

the path the car undertook on a test drive. This path drove from the ’University of

Western Australia’ to ’East Fremantle’ and back again.

7.5.2 Speed and Current

Other aspects also recorded by the system are the speed and the current. These two

variables are showed graphed against time in figure 7.8. This graphs shows a few

interesting points that would not be evident without the use of the logging system.

109

7. PERFORMANCE

Figure 7.7: Map of test drive - The path taken by the car during a test drive

110

7.5 Logged data

The main point of this graph is that it shows the highest current consumption during

times of acceleration. This is to be expected, however it also highlights that while the

car is up to speed, it uses minimal current to maintain that speed. All the energy built

up is wiped o↵ by the breaks when the car slows down. This highlights that driving

style may have a large impact on the range of the car, and prompts investigation into

the use of regenerative breaking to capture the lost kinetic energy of the car.

Figure 7.8: Speed & Current vs Time - Instantaneous speed and current plotted

against time for a test drive

7.5.3 Charge vs Time

As figure 7.8 showed, the speed kept was reasonably constant. This is important when

considering figure 7.9, which shows the charge plotted against time for the same drive.

As the charge decreases reasonably linearly, and the speed is constant, the distance

traveled will be proportional to the charge depleted. This validates equation 6.1 used

to predict the remaining distance.

111

7. PERFORMANCE

Figure 7.9: Charge vs Time - Instantaneous charge plotted against time for a test drive

112

8

Conclusions

This project shows that it is possible to use high level programming techniques when

developing for embedded devices. The hardware used in this project was powerful

enough to separate into multiple components. This is significant as it provides flexi-

bility in the development of embedded devices and highlights how these products are

becoming more like traditional computers.

This project also illustrates the viability of using existing networking techniques,

such as TCP/IP, in providing communication between di↵erent devices. The appli-

cation of this technology to embedded systems provides increased robustness and de-

creases development time. This shows that a network of small embedded systems that

each contribute a portion of the overall system functionality is a viable solution to the

problems of scaling and system cost.

The ability to automatically log all the information recorded by the car is of great

help to the goals of the REV team. The group will be able to log much more detailed

data, and the system has been constructed in a way to make it easily extend-able.

This will ultimately help in the research and development of the vehicle the system is

running on.

8.1 Limitations

The system currently has a few limitations. These are caused by various constraints in

the hardware and the design of the system.

113

8. CONCLUSIONS

The system will be unable to support too many more additions with it’s current

processing power. The CPU is not able to run many high frequency data sources at

the same time. This will limit the future expansion unless new hardware is acquired.

The system also su↵ers some issues with the memory utilization of some compo-

nents. Further investigation will need to take place in order to eliminate the bugs that

are causing these issues.

Due to time constraints the Arduino and Accelerometer were not developed fully in

regards to the user interface. This is a limitation that can be overcome in the future,

when a more specific use of these components is required.

8.2 Advantages

The system is easily expendable, providing a framework for the transmission and display

of any data that the group may want to develop in the future. The development of the

windowing toolkit makes it much easier to work with the touch interface on the device.

The messaging protocol developed, and the use of a message abstraction, makes it

much easier to communicate between di↵erent sections. The fact that the complicated

components of networking are abstracted from the developer make it easier to concep-

tualize what is happening. A component in this system only needs to worry about the

data being sent, and not a complicated method of ensuring it is received correctly.

Due to it’s distributed nature, the system is easy and cost-e↵ective to extend.

Rather than having to source expensive new hardware to perform all the tasks, cheaper

hardware can be used to take the role of some of the tasks. This allows the complete

system to adapt to the conditions that it is being used in.

8.3 Applications

The system has applications in the project it was developed for. It provides a clean

user interface for the display of data, and logging functionality so it can be analyzed

later.

The system is a proof of concept that embedded systems can communicate reliably

using network protocols. This concept could be applied to newly developed systems, en-

abling products that can be purchased in sections, with each section providing di↵erent

114

8.4 Future work

or improved functionality. This paves the way for embedded systems to be configured

via pre-built components , rather than developed using one monolithic structure.

8.4 Future work

The first aspect of future work is the finishing of the Arduino and Accelerometer com-

ponents. These components are able to be decoded, but do not have very useful user

interfaces.

Currently the networking is not encrypted, which does expose the possibility that

it can be attacked. This does require access to the network, which is not easily, and

understanding of the protocols being communicated. Future work would include the

investigation of SSL in order to prevent any third party from viewing the data that is

transmitted.

The windowing toolkit could be further developed by providing rendering of the

full alphabet at varying sizes. This would simplify the use of the toolkit, as it would

be much easier to make text appear. The toolkit could also be further developed into

it’s own standalone package, either with dependencies on the existing libraries or not.

Navigation could be added to the maps portion. A path-finding algorithm could be

developed and implemented that would be able to direct the driver towards a specific

destination.

Further research could be conducted into sensor fusion. As the system has access

to GPS, the speedometer pulse frequency, current, as well as the acceleration the car is

undertaking a system could be developed in order to compensate for loss of a sensor. For

instance the other sensors could approximate the GPS position when inside a tunnel.

This would increase the user experience, has it would appear that the GPS works in

all locations.

New hardware should also be investigated for the system. Either in the form of

additional devices to o↵set the load, or replacement of the main component running

the system. This would increase the processing power of the system, and allow more

complicated functionality to be developed.

115

8. CONCLUSIONS

116

References

[1] REV Project. REV Eco, 2008. 2

[2] EV-Power. EV Power Battery Managment System,

2010. 2

[3] Blackham. The Development of a Hardware Platform for

Real-time Image Processing. Master’s thesis, School of

Electrical, Electronic and Computer Engineering, Perth,

Western Australia, Australia,, 2010. 2

[4] MacLeod. Eyebot M6 controlled sensor package in a renew-

able energy vehicle. Master’s thesis, School of Electrical,

Electronic and Computer Engineering, Perth, Western

Australia, Australia,, 2010. 2

[5] Gumstix. Buildroot, 2010. 2

[6] T. B. S. Electronics. Expert Pro Features, 2010. 3

[7] T. B. S. Electronics. e-xpert pro communication interface

specification, 2008. 3

[8] Ahmed El-Rabbany. Introduction to GPS: The Global Posi-

tioning System, Second Edition. Artech House Publishers,

August 2006. 3

[9] Pieter Hintjens. Switch or Broker?:A comparison of

two models for Reliable Messaging. 2006. 3

[10] Pieter Hintjens. ZeroMQ: The Guide, 2010. 4, 64

[11] Jurek T. Malarecki. Getz Graphical User Interface. Mas-

ter’s thesis, October 2009. 7

[12] Daksh Varma. Renewable Energy Vehicle Instrumentation:

Graphical User Interface and Black Box. Master’s thesis,

School of Electrical, Electronic and Computer Engineer-

ing, Crawley Western Australia, October 2009. 8, 20,

27

[13] Kathleen Potosnak. Modular implementation ben-

efits developers, users. (separating user interface

from rest of computer program). IEEE Software,

6(3):91+, May 1989. 11

[14] Charles A. Shoniregun. A novel approach against the

system bu↵er overflow. Int. J. Internet Technology and

Secured Transactions, 2:32+, 2010. 14

[15] Ian Eaton. The Ins and Outs of System Logging

Using Syslog. SANS Institute InfoSec Reading Room,

2003. 17

[16] Thom Holwerda. Linux 2.6.17 Released, June 2006.

18

[17] T. B. S. Electronics. e-xpert pro communication interface

specification. TBS Electronics, May 2008. 23, 24, 25

[18] Arduino. Arduino. 29, 30

[19] Sparkfun Electronics. Atomic IMU - 6 Degrees of Free-

dom. Sparkfun Electronics, March 2009. 32

[20] John Pearce. Electric Vehicle Telemetry. Master’s thesis,

Crawley Western Australia, November 2010. 36

[21] Power Basic. Modal vs. Modeless. 49

[22] Thomas Sommer. Application Program Interface for an

Embedded Linux Syste. Master’s thesis, February 2007.

61

[23] Planet OSM, October 2011. 75

[24] OpenStreetMap. Tile Usage Policy, August 2011. 75

[25] Slippy Map Tile Names, October 2011. 79

[26] Review: 2008 Hyundai Getz 1.4L. October 2008. 90

[27] Beaty and Donald G. Fink. Standard handbook for

electrical engineers, 2007. 91

117

http://therevproject.com/vehicles/economy
http://www.ev-power.com.au/-Thundersky-Battery-Balancing-System-.html
http://docwiki.gumstix.org/Buildroot
http://www.tbs-electronics.nl/products_expertpro_features.htm
http://www.worldcat.org/isbn/1596930160
http://www.worldcat.org/isbn/1596930160
http://www.zeromq.org/whitepapers:switch-or-broker
http://www.zeromq.org/whitepapers:switch-or-broker
http://zguide.zeromq.org/page:all
http://robotics.ee.uwa.edu.au/theses/2009-REV-3-GUI-Malarecki.pdf
http://robotics.ee.uwa.edu.au/theses/2009-REV-Instrum-Varma.pdf
http://robotics.ee.uwa.edu.au/theses/2009-REV-Instrum-Varma.pdf
http://www.inderscience.com/storage/f571021131298164.pdf
http://www.inderscience.com/storage/f571021131298164.pdf
http://www.sans.org/reading_room/whitepapers/logging/ins-outs-system-logging-syslog_1168
http://www.sans.org/reading_room/whitepapers/logging/ins-outs-system-logging-syslog_1168
http://www.osnews.com/story/14931
http://arduino.cc/en/Main/ArduinoBoardUno
http://www.sparkfun.com/datasheets/Sensors/IMU/SFE-0012-DS-6DOFAtomic_v3.pdf
http://www.sparkfun.com/datasheets/Sensors/IMU/SFE-0012-DS-6DOFAtomic_v3.pdf
http://robotics.ee.uwa.edu.au/theses/2010-REV-Telemetry-Pearce.pdf
http://www.powerbasic.com/support/help/pbwin/html/modal_modeless.htm
http://robotics.ee.uwa.edu.au/theses/2007-Embedded-Sommer.pdf
http://robotics.ee.uwa.edu.au/theses/2007-Embedded-Sommer.pdf
http://planet.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://www.pressportal.com.au/news/272/ARTICLE/3562/2008-10-23.html
http://www.worldcat.org/isbn/9780071441469
http://www.worldcat.org/isbn/9780071441469

REFERENCES

118

Appendix A

Remotely Accessing Eyebot

A.1 SSH Details

To connect to the eyebot, issue the command from any linux machine that has ssh

installed.

ssh root@192.168.1.50

You will then be prompted for a password. There is no password set by default.

Hit enter when prompted for a password. The table A.1 shows the settings to connect.

A.2 Installing programs to Eyebot

Each program is accompanied with a makefile. This makefile will connect to the default

IP address of the machine, and install the program in the folder /root/demo/rev2011/.

To install any program just run

make install

Property Value

SSH Address(IP) 192.168.1.50

Account name root

Password ¡empty¿

Table A.1: SSH Details

119

A. REMOTELY ACCESSING EYEBOT

From the source folder of the desired program on the development machine. Press

enter when prompted for a password.

120

Appendix B

Development environment setup

B.1 Buildroot setup

The following section is based upon the legacy buildroot installation guide obtainable

from

http://docwiki.gumstix.org/Buildroot

This section purpose is to describe the steps needed to be undertaken to build the

compiler and libraries required by the eyebot. The online guide requires some tweaks

for newer versions of GCC to compile the older versions. This section will detail the

changes required for Ubuntu 10.10. Other distributions may require further changes

aswell.

B.1.1 Checkout Buildroot source code

1. To perform this section you must have subversion installed on your machine. This

is a common version control system, and it’s installation is out of the scope of

this document.

2. Checkout the 1083 release of buildroot. The eyebot was built with older buildroot

libraries, these are version 1083 in the repository. To check out this source use

the command (all one line)

svn co -r1083 http://svn.gumstix.com/gumstix-buildroot/trunk

gumstix-buildroot

121

B. DEVELOPMENT ENVIRONMENT SETUP

B.1.2 Setup environment

3. Next you will have to setup the buildroot make environment. Change into the

folder buildroot was downloaded too.

4. Remove the existing config (if present) with

rm ./.config

5. Run the autoconfig program

make defconfig

You will be prompted to select settings about the eyebot. The eyebot contains

a 400mhz xscale processor, so select the options according to this. Any other

options can be selected with the defaults.

B.1.3 Modify the source

6. Modifying the source files.

The source files will not compile correctly on ubuntu 10.10 without some minor

modifications. This has occured because most systems use gcc4+, while this code

was originally compiled on gcc3

(a) Makeinfo will complain about not being installed to fix this edit the file.

toolchain_build_arm_nofpu/binutils-2.17-build/Makefile

Change line 258 to

MAKEINFO = /usr/bin/makeinfo

or whatever the correct path to makeinfo is.

(b) The older GCC did not require permission settings when opening a file, this

must be added in. Edit the file

toolchain_build_arm_nofpu/gcc-3.4.5/gcc/collect2.c

On line 1537 change it to read

122

B.2 Compiling ZeroMQ for the arm cpu

redir_handle = open (redir, O_WRONLY | O_TRUNC | O_CREAT,0666);

(c) The limits.h file is not included by default when compiling using the newer

GCC (caused by changes in libraries) to fix edit.

build_arm_nofpu/linux-2.6.17gum/scripts/mod/sumversion.c

And insert at the top of the file

#include <limits.h>

7. Include the e2fs files for the UUID functions. UUID functions are required by the

ZeroMQ library. Run

make menuconfig

And navigate the menus and enable the e2fs library.

B.1.4 Build

8. Compile the environment. Run

make

This will download and compile the build environment. Note that some packages

may no longer be mirrored online. You will need to search the internet and

manually download these files to the dl folder that is created. The compile process

will fail with the name of the missing packages, so you can hunt them down.

B.2 Compiling ZeroMQ for the arm cpu

This section details the commands used to build zeroMQ libraries to run on the arm

board. These commands work with zeroMQ version 2.2 on a ubuntu 10.10 machine.

B.2.1 Setup path variable

1. First you must setup the path variable so the automake process knows the location

of the compiler. To do this run this command in the terminal. (all one line)

123

B. DEVELOPMENT ENVIRONMENT SETUP

export PATH=$PATH:%PATHTOBUILDROOT%/gumstix-buildroot/

build_arm_nofpu/staging_dir/bin/

Where %PATHTOBUILDROOT

B.2.2 Run Automake

2. ZeroMQ contains an configure utility that will generate make files for you. Run

this utility with this command (all one line)

CC=arm-linux-uclibc-gcc CFLAGS=" -pthread -D_REENTRANT

-march=armv5te -mtune=xscale -DZMQ_FORCE_POLL"

CXX=arm-linux-uclibc-g++

CXXFLAGS=" -pthread -D_REENTRANT -march=armv5te -mtune=xscale

-DZMQ_FORCE_POLL"

LDFLAGS="-L%X%/gumstix-buildroot/build_arm_nofpu/e2fsprogs-1.38/lib/"

CPPFLAGS="-I%X%/gumstix-buildroot/build_arm_nofpu/staging_dir/include

-I%X%/gumstix-buildroot/build_arm_nofpu/e2fsprogs-1.38/lib/uuid/"

./configure --host=arm-linux

--prefix=%X%/build_arm_nofpu/root

Where %X% is the path to the gumstix buildroot environment setup earlier.

B.2.3 Build

3. To build ZeroMQ run the command

make

This will build zeroMQ. To obtain the libraries run

make installl

This will copy the libraries to %X%/build arm nofpu/root/%ZEROMQVER%/

124

Appendix C

Tile server setup

In this project tiles for all of Perth were generated. This was done on a much more

powerful machine then the eyebot before hand. This section details how to setup a

server to generate these tiles.

C.0.4 Get the planet file

First you will need the raw map data in order to generated the maps. To download the

latest version of earth run this command.

cd planet

wget http://planet.openstreetmap.org/planet-latest.osm.bz2

This file is quite large and will take a while to download. Smaller extract files do

exist, so if you are only interested in a subsection, use one of these files instead.

C.0.5 Install a postGIS database

PostGIS is a postgresql extension for GIS functions. To install it in ubuntu run

sudo apt-get install postgresql-8.4-postgis postgresql-contrib-8.4

sudo apt-get install postgresql-server-dev-8.4

sudo apt-get install build-essential libxml2-dev libtool

sudo apt-get install libgeos-dev libpq-dev libbz2-dev proj

Or use the package manager of your distribution.

125

C. TILE SERVER SETUP

C.0.6 Install osm2pgsql

Earlier we download a osm file, we need to import that into the GIS database. Luckily

scripts exist to do that for us. Run

cd ~/bin

svn co http://svn.openstreetmap.org/applications/utils/export/osm2pgsql/

cd osm2pgsql

./autogen.sh

./configure

make

C.0.7 Tweak the GIS database

There will be alot of data inserted into this database, so it is best to modify the running

parameters for some extra performance. Edit these lines to match in /etc/postgresql/8.4/main/postgresql.conf

shared_buffers = 128MB # 16384 for 8.1 and earlier

checkpoint_segments = 20

maintenance_work_mem = 256MB # 256000 for 8.1 and earlier

autovacuum = off

Optionally increase the size of shared memory available

sudo sysctl -w kernel.shmmax=268435456

sudo sysctl -p /etc/sysctl.conf

Then restart postgresql

C.0.8 Create a database

Create a database called gis. Substitute user-name for the user-name that will be used

to generate maps

sudo -u postgres -i

createuser username # answer yes for superuser

createdb -E UTF8 -O username gis

createlang plpgsql gis

exit

126

C.0.8.1 Create PostGIS data structures on the database

Run

psql -f /usr/share/postgresql/8.4/contrib/postgis-1.5/postgis.sql -d gis

C.0.8.2 Change ownership of database

Substitute user-name with the user that will be used to generate maps

echo "ALTER TABLE geometry_columns OWNER TO username;

ALTER TABLE spatial_ref_sys OWNER TO username;" | psql -d gis

C.0.8.3 Set the Spatial Reference Identifier

psql -f ~/bin/osm2pgsql/900913.sql -d gis

C.0.9 Load the planet into the database

Now we have to load the osm file into the GIS database. Run the command

cd ~/bin/osm2pgsql

./osm2pgsql -S default.style --slim -d gis -C 2048

--number-processes=1 --cache-strategy=dense

~/planet/planet-100217.osm.bz2

Substituting for your planet file. This will take a very long time to complete.

C.0.10 Install mapnik

C.0.10.1 Setup build environment

Run the commands

sudo apt-get install libltdl3-dev libpng12-dev libtiff4-dev libicu-dev

sudo apt-get install libboost-python1.40-dev python-cairo-dev python-nose

sudo apt-get install libboost1.40-dev libboost-filesystem1.40-dev

sudo apt-get install libboost-iostreams1.40-dev

libboost-regex1.40-dev libboost-thread1.40-dev

sudo apt-get install libboost-program-options1.40-dev libboost-python1.40-dev

sudo apt-get install libfreetype6-dev libcairo2-dev libcairomm-1.0-dev

127

C. TILE SERVER SETUP

sudo apt-get install libgeotiff-dev libtiff4 libtiff4-dev libtiffxx0c2

sudo apt-get install libsigc++-dev libsigc++0c2 libsigx-2.0-2 libsigx-2.0-dev

sudo apt-get install libgdal1-dev python-gdal

sudo apt-get install imagemagick ttf-dejavu

C.0.10.2 Build mapnik from source

cd ~/src

svn co http://svn.mapnik.org/tags/release-0.7.1/ mapnik

cd mapnik

python scons/scons.py configure INPUT_PLUGINS=all

OPTIMIZATION=3 SYSTEM_FONTS=/usr/share/fonts/truetype/

python scons/scons.py

sudo python scons/scons.py install

sudo ldconfig

C.0.10.3 Install mapnik tools

cd ~/bin

svn co http://svn.openstreetmap.org/applications/rendering/mapnik

C.0.10.4 Optional: get world boundaries

These mark out ocean areas, which will increase map rendering speed. Run

cd ~/bin/mapnik

mkdir world_boundaries

wget http://tile.openstreetmap.org/world_boundaries-spherical.tgz

tar xvzf world_boundaries-spherical.tgz

wget http://tile.openstreetmap.org/processed_p.tar.bz2

tar xvjf processed_p.tar.bz2 -C world_boundaries

wget http://tile.openstreetmap.org/shoreline_300.tar.bz2

tar xjf shoreline_300.tar.bz2 -C world_boundaries

wget http://www.naturalearthdata.com/http//www.naturalearthdata.com/

download/10m/cultural/10m-populated-places.zip

unzip 10m-populated-places.zip -d world_boundaries

wget http://www.naturalearthdata.com/http//www.naturalearthdata.com/

download/110m/cultural/110m-admin-0-boundary-lines.zip

unzip 110m-admin-0-boundary-lines.zip -d world_boundaries

128

C.0.11 Generate maps

If all goes well then the server is now setup. The file /̃bin/mapnik/generate image.py

will allow you to generate images. Other scripts in there will allow the generation of

images based on gps co-ordinates, so bulk image generation can be scheduled.

129

C. TILE SERVER SETUP

130

Appendix D

Performance Testing Scripts

D.1 Memory Utilization

In section 7.4 the memory usage of various programs was recorded. To do this the

following script was used

while true

do

date +%s | awk ’{ printf "%s ", $0 }’ >> output.txt;

ps | grep %EXECUTABLE_NAME% | grep -v grep | head -n1 \

| awk ’{print $3}’ | awk ’{printf "%s", $0}’ >> output.txt;

echo ’’ >> output.txt

sleep 20;

done

131

D. PERFORMANCE TESTING SCRIPTS

132

Appendix E

Utility Programs

During the development of this system, various utility programs were developed in

order to help debug and test the system.

E.1 ZeroMQ Viewer

This component is located in the file

Utilities/programs/ZeroMQViewer

This program is a subscriber that will attach to any publisher component. It print

the time-stamp and hexadecimal values of the message whenever a message is received.

E.2 ZeroMQ Emulator

This component is located at

Utilities/programs/ZeroMQMessageEmulator/

This component acts as a publisher, it will transmit messages that can be inter-

preted by subscribers. It loads the information ASCII information from a text file and

interprets it as hexadecimal. It supports spaces in-between hexadecimal values and

comments so the file should be human readable. Examples are contained in the folder

with the binary.

133

E. UTILITY PROGRAMS

E.3 ZeroMQ Evaluator

This program is contained in

Utilities/programs/ZeroMQMessageEvaluator/

This program is a modified version of the Viewer. It will read in the specified

number of messages and then stop. It also records the start and end time that this

took place. This allows the time it take a certain volume or messages to be transmitted

to be recorded and analyzed.

134

Appendix F

Message Timing Tables

The following section shows the data measured for the time taken to receive varying

numbers of messages. This data was obtained by running the Evaluate program on

the eyebot, and sending messages from a laptop. This laptop generated messages as

fast as it could using the Emulator program. When the Evaluate program recieved the

desired number of messages it would halt and print the timing results. The results are

available in system clock ticks, and the system time that elapsed during this period.

The results are also available in varying message sizes. These messages were generated

randomly using /dev/random on a linux system, and stored in a file that the Emulator

could load and run.

135

F. MESSAGE TIMING TABLES

Test Number 1 2 3 4 5

1000 20000 40000 20000 20000 20000

10000 170000 180000 120000 160000 160000

100000 870000 970000 1250000 1010000 1000000

1000000 9560000 10220000 10230000 11220000 9710000

Test Number 6 7 8 9 10 Average

1000 10000 20000 30000 10000 30000 22000

10000 140000 160000 130000 120000 150000 149000

100000 1020000 1040000 940000 890000 1050000 1004000

1000000 9580000 10980000 10570000 10800000 11760000 10463000

Table F.1: Clock ticks Vs Number of messages for 32byte random data

Test Number 1 2 3 4 5

1000 243750 212332 256312 3156460 341224

10000 1419011 1349485 1436313 1534302 1349040

100000 15145656 15590986 15703572 15657899 15649278

1000000 152007642 156742950 157926991 158742238 157040941

Test Number 6 7 8 9 10 Average

1000 356874 204477 386403 233102 359293 575022.7

10000 1405605 1662092 1697169 1501454 1398061 1475253.2

100000 15663356 15267476 15416116 15363871 15265640 15472385

1000000 156889964 158464172 153960703 159458560 158363673 156959783.4

Table F.2: Time (us) Vs Number of messages for 32byte random data

136

Test Number 1 2 3 4 5

10 30000 20000 20000 20000 0

100 70000 30000 90000 60000 50000

1000 80000 30000 70000 40000 80000

10000 150000 190000 160000 210000 150000

100000 1930000 2210000 1850000 1890000 2080000

Test Number 6 7 8 9 10 Average

10 20000 30000 60000 40000 30000 27000

100 10000 40000 10000 30000 10000 40000

1000 50000 30000 50000 50000 80000 56000

10000 280000 290000 180000 220000 180000 201000

100000 2150000 2030000 1870000 2020000 2090000 2012000

Table F.3: Clock ticks Vs Number of messages for 128byte random data

Test Number 1 2 3 4 5

10 323135 306990 220649 220649 191386

100 393113 205562 315971 328754 357496

1000 496815 438725 389029 505927 465334

10000 2740074 2723108 2601828 2576363 2711420

100000 27669065 27824854 26609896 25919529 26034126

Test Number 6 7 8 9 10 Average

10 266575 220406 317913 307281 189971 256495.5

100 301369 291968 198676 311395 331863 303616.7

1000 488639 5468 519439 474776 523848 430800

10000 2732068 2710042 2631575 2639119 3595522 2766111.9

100000 27232333 26982161 27233195 26655991 27697161 26985831.1

Table F.4: Time (us) Vs Number of messages for 128byte random data

137

F. MESSAGE TIMING TABLES

Test Number 1 2 3 4 5

10 0 20000 0 20000 30000

100 10000 50000 50000 30000 10000

1000 90000 70000 50000 50000 80000

10000 230000 170000 190000 270000 350000

100000 2170000 1800000 2230000 2240000 2020000

Test Number 6 7 8 9 10 Average

10 30000 20000 20000 10000 40000 19000

100 20000 40000 90000 30000 30000 36000

1000 10000 30000 10000 40000 70000 50000

10000 260000 260000 150000 170000 3177625 522762.5

100000 2180000 2040000 1980000 1940000 2260000 2086000

Table F.5: Clock ticks Vs Number of messages for 512byte random data

Test Number 1 2 3 4 5

10 202744 299140 243188 224886 310320

100 3134384 336945 344085 229151 226242

1000 527391 546638 584975 529211 548475

10000 3049670 2849869 2671973 2945053 3007291

100000 30712493 31676926 30686329 30285899 31565685

Test Number 6 7 8 9 10 Average

10 320544 306020 220204 372283 325050 282437.9

100 203972 377633 368549 319270 336170 587640.1

1000 477733 595697 484988 587090 561919 544411.7

10000 2872847 2891389 2926986 3177625 2871762 2926446.5

100000 30283039 31059473 31532265 32491691 31771619 31206541.9

Table F.6: Time (us) Vs Number of messages for 512byte random data

138

Test Number 1 2 3 4 5

10 30000 20000 30000 20000 30000

100 100000 40000 40000 40000 0

1000 60000 30000 60000 50000 90000

10000 140000 200000 190000 200000 260000

100000 1800000 1890000 2410000 2210000 1700000

Test Number 6 7 8 9 10 Average

10 10000 10000 30000 10000 30000 22000

100 80000 30000 10000 60000 20000 42000

1000 60000 50000 60000 0 80000 54000

10000 330000 200000 170000 280000 210000 218000

100000 2210000 2180000 2410000 2060000 1900000 2077000

Table F.7: Clock ticks Vs Number of messages for 1024byte random data

Test Number 1 2 3 4 5

10 344441 307364 330483 315630 344759

100 383476 351497 350538 417289 339274

1000 539349 601257 716008 548840 711210

10000 3429580 3497672 3247387 4596539 3276066

100000 36594732 35013510 34448621 34661021 35992978

Test Number 6 7 8 9 10 Average

10 310805 231331 267536 345342 335819 313351

100 352329 366358 197007 312781 215691 328624

1000 566045 520301 500614 591720 548868 584421.2

10000 3489945 3114163 3573906 3328063 3611572 3516489.3

100000 35032912 35081602 33674882 34417770 35152012 35007004

Table F.8: Time (us) Vs Number of messages for 1024byte random data

139

F. MESSAGE TIMING TABLES

Test Number 1 2 3 4 5

10 30000 30000 40000 40000 20000

100 80000 40000 70000 30000 70000

1000 80000 50000 20000 60000 60000

10000 170000 200000 230000 190000 180000

100000 1730000 1580000 1580000 1570000 1490000

Test Number 6 7 8 9 10 Average

10 40000 10000 70000 30000 40000 35000

100 50000 60000 30000 20000 80000 53000

1000 20000 60000 20000 60000 30000 46000

10000 210000 230000 190000 170000 220000 199000

100000 1970000 1570000 2100000 2070000 1900000 1756000

Table F.9: Clock ticks Vs Number of messages for 10kilobyte random data

Test Number 1 2 3 4 5

10 377608 331011 285319 186330 224346

100 387303 395092 349759 344359 364674

1000 606900 694347 651131 470944 584394

10000 3034906 3020777 2916406 3016008 3014637

100000 29623959 30323297 31451455 31070588 30427494

Test Number 6 7 8 9 10 Average

10 383401 243644 345962 264199 319124 296094.4

100 337517 395891 387481 216318 401400 357979.4

1000 491953 581445 603782 583448 704321 597266.5

10000 2909019 3082147 3222074 3322947 2926152 3046507.3

100000 29400026 31617928 30323380 30336067 32110036 30668423

Table F.10: Time (us) Vs Number of messages for 10kilobyte random data

140

Message Size 128 512 1024 10240

10 256495.5 282437.9 313351 213073.6

100 303616.7 587640.1 328624 304995.2

1000 430800 544411.7 584421.2 390158.225

10000 2766111.9 2926446.5 3516489.3 2304761.925

100000 26985831.1 31206541.9 35007004 23324844.25

Table F.11: Clock ticks Vs Number of messages combined data for varying message sizes

Message Size 128 bytes 512 bytes 1024 bytes 10 kilobytes

10 256.4955 282.4379 313.351 213.0736

100 303.6167 587.6401 328.624 304.9952

1000 430.8 544.4117 584.4212 390.158225

10000 2766.1119 2926.4465 3516.4893 2304.761925

100000 26985.8311 31206.5419 35007.004 23324.84425

Table F.12: Time(ms) Vs Number of messages combined data for varying message sizes

141

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 The REV Group
	1.1.1 Motivations
	1.1.1.1 Pollution
	1.1.1.2 Rising Fuel Prices

	1.2 Hardware used
	1.2.1 Vehicle used in this project
	1.2.2 Embedded Controller
	1.2.3 Battery Monitor
	1.2.4 GPS

	1.3 Technological concepts
	1.3.1 Threading and Process
	1.3.2 Messaging
	1.3.2.1 Brokerless

	2 Aims of the project
	2.1 Final Aim
	2.2 Goals

	3 Literature Review
	3.1 Getz Graphical User Interface
	3.2 Renewable Energy Vehicle Instrumentation: Graphical User Interface and Black Box
	3.3 Development of a User Interface for Electric Cars

	4 System Design
	4.1 Distributed Design
	4.1.1 Isolation
	4.1.2 Distribution of Components
	4.1.3 Simpler Component Architecture

	4.2 Network Protocol
	4.2.1 Messages
	4.2.2 Publish-Subscribe model
	4.2.3 Description of Network Protocol

	4.3 Error Logging
	4.4 GPS Module
	4.4.1 Hardware
	4.4.2 Drivers
	4.4.3 Design
	4.4.3.1 Initial Design
	4.4.3.2 Final Design
	4.4.3.3 Network Protocol

	4.5 TBS Module
	4.5.1 Hardware
	4.5.2 Expert protocol
	4.5.2.1 Destination and Start Byte
	4.5.2.2 Source
	4.5.2.3 Device ID
	4.5.2.4 Message Identifier
	4.5.2.5 Data
	4.5.2.6 Trailing Byte

	4.5.3 Design
	4.5.3.1 Network protocol

	4.6 Arduino Digital Input Module
	4.6.1 Speedometer and Tachometer
	4.6.2 Hardware
	4.6.3 Drivers
	4.6.4 Design
	4.6.4.1 Arduino
	4.6.4.2 Host side

	4.7 Accelerometer Module
	4.7.1 Hardware
	4.7.2 Drivers
	4.7.3 Design

	4.8 File Logger
	4.8.1 Design
	4.8.1.1 Program Flow
	4.8.1.2 File storage
	4.8.1.3 File Format

	4.9 Network Logger
	4.9.1 Design

	5 Windowing Toolkit
	5.1 Motivation
	5.2 Elements
	5.2.1 UIElement
	5.2.1.1 addChild()
	5.2.1.2 draw()
	5.2.1.3 enqueueDraw()
	5.2.1.4 animate()
	5.2.1.5 setActive()
	5.2.1.6 isActive()

	5.2.2 base
	5.2.2.1 base()
	5.2.2.2 draw()
	5.2.2.3 getButton()
	5.2.2.4 addButton()
	5.2.2.5 addGlobalButton()
	5.2.2.6 refreshTouchMap()
	5.2.2.7 buttonPressed()
	5.2.2.8 activate()

	5.2.3 Popup
	5.2.3.1 popup()
	5.2.3.2 buildUI()
	5.2.3.3 run()
	5.2.3.4 getButton()
	5.2.3.5 activate()

	5.2.4 runnable
	5.2.4.1 isScreenChange
	5.2.4.2 run()

	5.2.5 Button
	5.2.5.1 button()
	5.2.5.2 setPosition()
	5.2.5.3 getX()
	5.2.5.4 getY()
	5.2.5.5 getWidth()
	5.2.5.6 getHeight()
	5.2.5.7 invertButton()
	5.2.5.8 getRunnable()

	5.2.6 Digitelement
	5.2.6.1 getX()
	5.2.6.2 getY()
	5.2.6.3 getWidth()
	5.2.6.4 getHeight()
	5.2.6.5 setValue()
	5.2.6.6 setError()

	5.2.7 Console Element
	5.2.7.1 consolelement()
	5.2.7.2 addLine()
	5.2.7.3 draw()

	5.2.8 UIImage
	5.2.8.1 uiimage()
	5.2.8.2 setPosition()

	5.3 Subscriber Queue
	5.3.1 Subscriber
	5.3.2 Filter
	5.3.3 Listener

	5.4 Button Translation
	5.5 Screen Drawing Queue
	5.5.1 Refresh on Arrival
	5.5.1.1 Message speed greater than redraw rate

	5.5.2 Add to Queue
	5.5.3 Redrawing the Screen
	5.5.4 Redraw rate
	5.5.5 Batch Redraw
	5.5.5.1 Maximum batch size
	5.5.5.2 Incomplete batch

	5.6 Alpha Transparency

	6 Interface
	6.1 Layout
	6.1.1 Background
	6.1.2 Navigation Model

	6.2 Overview Panel
	6.3 Battery
	6.4 Maps
	6.4.1 Map Data
	6.4.2 Tiling
	6.4.2.1 Converting GPS Co-ordinates

	6.4.3 Palleted File Format
	6.4.4 Sliding Maps

	6.5 Trip Meter
	6.5.1 Distance Driven
	6.5.2 Time Elapsed
	6.5.3 Moving Time
	6.5.4 Average Speed
	6.5.5 Average Moving Speed
	6.5.6 Reset
	6.5.7 Current Speed
	6.5.8 Time Trial Data
	6.5.9 Persistence

	6.6 Interial Measurement Unit Display Panel
	6.7 Digital Inputs
	6.8 Economy Panel
	6.8.1 Petrol approximation calculation
	6.8.2 Electricity calculation
	6.8.3 Resetting
	6.8.4 Persistance

	6.9 About
	6.10 Settings
	6.11 Debug
	6.12 Network Status Display
	6.13 System Logs Display
	6.14 Copy Log Files
	6.15 Delete Log Files
	6.16 Exit Program

	7 Performance
	7.1 Limitations
	7.1.1 Restricted Access to Vehicle

	7.2 Message throughput
	7.3 Inter-message Timings
	7.3.1 Arduino Board
	7.3.2 Accelerometer
	7.3.3 GPS and Battery Monitor

	7.4 Memory Utilization
	7.4.1 Arduino Board
	7.4.2 Accelerometer
	7.4.3 User interface
	7.4.4 GPS and Battery Monitor

	7.5 Logged data
	7.5.1 Path recording
	7.5.2 Speed and Current
	7.5.3 Charge vs Time

	8 Conclusions
	8.1 Limitations
	8.2 Advantages
	8.3 Applications
	8.4 Future work

	References
	A Remotely Accessing Eyebot
	A.1 SSH Details
	A.2 Installing programs to Eyebot

	B Development environment setup
	B.1 Buildroot setup
	B.1.1 Checkout Buildroot source code
	B.1.2 Setup environment
	B.1.3 Modify the source
	B.1.4 Build

	B.2 Compiling ZeroMQ for the arm cpu
	B.2.1 Setup path variable
	B.2.2 Run Automake
	B.2.3 Build

	C Tile server setup
	C.0.4 Get the planet file
	C.0.5 Install a postGIS database
	C.0.6 Install osm2pgsql
	C.0.7 Tweak the GIS database
	C.0.8 Create a database
	C.0.8.1 Create PostGIS data structures on the database
	C.0.8.2 Change ownership of database
	C.0.8.3 Set the Spatial Reference Identifier

	C.0.9 Load the planet into the database
	C.0.10 Install mapnik
	C.0.10.1 Setup build environment
	C.0.10.2 Build mapnik from source
	C.0.10.3 Install mapnik tools
	C.0.10.4 Optional: get world boundaries

	C.0.11 Generate maps

	D Performance Testing Scripts
	D.1 Memory Utilization

	E Utility Programs
	E.1 ZeroMQ Viewer
	E.2 ZeroMQ Emulator
	E.3 ZeroMQ Evaluator

	F Message Timing Tables

