
A robust Lane Detection and Tracking
System based on Bayesian State Estimation

Master’s Thesis
by

Markus Kohler

at Robotic and Automation Lab
Centre of Intelligent Information Processing Systems

University of Western Australia
Perth

Supervisor: Assoc. Prof. Dr. rer. nat. habil. Thomas Bräunl
1st Examiner: Prof. Dr. rer. nat. Thorsten Leize
2nd Examiner: Prof. Dr.-Ing. Ulrich Grünhaupt

Submitted in June 2010

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Perth, den 20. Juni 2010

Acknowledgments

I would like to use the opportunity to thank all those people who supported me and
made this thesis possible.

First of all, I would like to express my special thanks to my supervisor Associate Pro-
fessor Dr. Thomas Bräunl for his continual support and guidance, for providing such an
interesting and challenging topic, and for the chance of writing my Master’s thesis at
the University of Western Australia in Perth.

Many thanks to Professor Dr. Leize and Professor Dr. Grünhaupt for providing me great
and uncomplicated support to carry out my thesis in Australia.

Furthermore, I would like to thank the DAAD (German Academic Exchange Service) for
the financial support which made my stay in Perth possible.

Thanks to Jonathan for being always on the ball in the REV lab and to Linda for all
organizational support and proof-reading my thesis.

Special thanks to Georgie for heaps of great advices to improve my thesis structure,
for proof-reading, for being such a great house mate and for countless philosophical
discussions.

A very special thank you to Shaun and Monika for accompanying me on this exciting
journey here in Australia.

Many thanks to Frank, Jithin, Teoh, Roozbeh, Sushil and Lixin for having a great time
in the lab and for refreshing discussions in the lunch room.

Finally I would like to thank my father, my mother and my brother for all kind of support
in the last years and all my friends back home for their sympathy and support during my
time abroad.

Perth, 20th of June, 2010

Abstract

Lane recognition is one of the essential components of modern driver assistance systems.
It enables the system to form a comprehensive ”understanding”of the current situation,
on which further decisions are based.

Lane recognition is best performed by vision systems and is composed of two parts. The
first detects the lane in the image and the second tracks the detected lane in time-domain.
The combination of these comprises a challenging task in terms of image processing and
non-linear state estimation.

There are two approaches which are commonly used for tracking algorithms in image
processing: Kalman filtering and Particle filtering. This project focused on Particle filter-
ing for two reasons; firstly, Particle filtering is an approximation of an optimal non-linear
estimator, whereas Kalman filtering is an optimal linear estimator which approximates
a non-linear system. The second reason is that Particle filtering is able to introduce
non-Gaussian measurement likelihoods. Both of these reasons, make Particle filtering
the better choice for dealing with the estimation problem of LDT algorithms. Its barrier
to widespread application so far has been the high computation power that is needed
to run the system in real-time. Fortunately, with steadily increasing computer hardware
performance, this barrier is diminishing, and Particle filtering is gaining more and more
significance in state estimation.

In this thesis work a robust lane detection and tracking (LDT) algorithm for highway
applications was designed and successfully implemented. The Particle filter design is
supported by a detailed description of the mathematical background, which points out
the connections between the background and the LDT implementation. In addition,
the major implementation issues of Particle filters in general and the ways these affect
the LDT algorithm are discussed. Finally, the algorithm accuracy and performance is
analyzed and illustrated to demonstrate the possibility of using Particle filtering for real-
time LDT algorithms.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Thesis Outline . 3

2 Problem Analysis 5
2.1 Lane Detection and Tracking Systems 5
2.2 Requirements . 6
2.3 Literature Survey . 7

3 Probability Theory and State Estimation 11
3.1 Origins of Bayesian Theory . 12
3.2 Bayesian State Estimation . 14

3.2.1 Deduction of the Bayesian Estimator 15
3.3 Particle Filtering . 17

3.3.1 Deduction of Sequential Importance Sampling (SIS) 19
3.3.2 Extension to Sampling Importance Resampling (SIR) 20

4 Particle Filter Design 23
4.1 State Space . 24
4.2 State Evolution Model . 26
4.3 Observation Model . 27

4.3.1 Camera Model . 28
4.3.2 Feature Extraction . 31
4.3.3 Inverse Perspective Mapping 35
4.3.4 State Vector Projection . 36

4.4 Data Flow . 37
4.4.1 Summary . 39

4.5 Particle Evaluation . 40
4.5.1 Line Difference Measure . 41
4.5.2 Conjunction of Several Lines 42
4.5.3 Expectation Value of Gradient Direction 43

4.6 Sample Impoverishment . 44
4.6.1 Auxiliary Resampling . 46
4.6.2 Importance Sampling . 46
4.6.3 Constrained Residual Resampling 47
4.6.4 Clustered Resampling . 49
4.6.5 Grid based Density Constrained Resampling 49

x Contents

5 Implementation 51
5.1 Image Space, World Map Space and State Space 51
5.2 Lane Detection and Tracking Algorithm 52

5.2.1 Naming Convention . 58
5.3 Car Measurement Unit . 59

6 Performance and Accuracy Evaluation 61
6.1 Measuring Methods . 62

6.1.1 Performance Measuring Method 62
6.1.2 Accuracy Measuring Method 62

6.2 Design Issues . 63
6.2.1 Comparison of different Road Model Orders 63
6.2.2 Influence of Pitch Angle Variations 64

6.3 Comparison of IPM Interpolation Methods 65
6.4 Comparison of Tracking Methods . 67
6.5 Overall System Performance . 69

6.5.1 Algorithm Accuracy . 69
6.5.2 Algorithm Execution Time . 72
6.5.3 Variation of Number of Particles 73

7 Conclusion and Outlook 75

A Camera Model 77
A.1 Euclidean versus Perspective Space 77
A.2 Camera Calibration . 78

List of Figures 79

References 83

1. Introduction

Short by after the introduction of the automobile, the dream of accident-free trans-
portation arose. Now, about 100 years later, leading car manufacturers and scientists
around the world work on the dream’s fulfillment.

Nevertheless, 35.000 people died in car accidents during the year 2009 in Europe.
Worldwide, an estimated 1.2 million people are killed and 50 million people are
injured in road crashes annually. Since the 1970’s however, there has been a steady
decline in accidents even though the absolute number of registered cars has increased.

Reasons for this development within the last years are manifold: introduction of
safety systems and the legislation for obligatory usage contributed, as well as regu-
lations for alcohol consumption and improved road conditions.

Most of these safety systems protected the driver passively by reducing the injury
in situations of an accident. The most effective innovations have been the increase
of the collapsible zone, safety belts, airbag and the head rest.

In 1978, the first anti block system was produced in series, and with it a new era
of active safety systems was introduced. It was followed by the electronic stability
program, electronic brakeforce distribution, dynamic traction control and others.
These systems improved the driver’s ability to control the vehicle in already dan-
gerous situations.

In the beginning of the 21st century a new trend became apparent: active safety sys-
tems that recognize possible dangerous situations in advance and inform the driver
at an early stage or even interact autonomously to prevent dangerous situations.

The research in driver assistance systems has evolved to high diversity among the
systems. Two main categories are distinguished by the method of perceiving the
environment: active and passive sensor elements.

The motivation to build these systems based on passive sensor elements is given in
the following section. After a brief statement of the thesis’ objectives, the introduc-
tion will be finalized by an overview of the thesis’ outline.

2 1. Introduction

1.1 Motivation

Most of the currently available driver assistance system features are implemented
based on active sensor elements. Active sensor systems are systems that emit an
energy signal and measure the back reflected amount of energy to gather information
about the environment. Difficulties with these systems arise, once another system of
similar technology is present and causes interferences. Furthermore active systems
are much more expensive to produce even in high number series productions. There-
fore researchers are focusing on passive sensor systems e.g. monocular or binocular
vision systems.

Current research goes toward intelligent systems which extract relevant informa-
tion from the environment and are able to interpret the information to form an
”understanding” of the scene.

The ”understanding” includes recognition of the environment and categorizing the
objects which move within the environment. To form a comprehensive ”understand-
ing” a basic reference needs to be defined. Most driver assistance systems are there-
fore based on a road model. This brings lane detection to significant importance.

A robust and reliable lane detection method is therefore essential for the success
of every driver assistance system. Successful and fast improving driver assistance
systems can prevent injury and death of people and reduce the immense costs cased
by car accidents.

1.2 Objectives

This thesis has two major goals. The first is to give a comprehensive introduction
to Bayesian state estimation and its various implementation methods, which are
generally called Particle filters. This is achieved by giving an overview of Bayesian
theory and introducing these ideas to the problem of state estimation. Equipped
with this knowledge, the Particle filter is introduced and the connections between
the implementation steps and the Bayesian state estimation are pointed out.

The second major goal is to implement a robust lane detection and tracking system
which is designed for highway and major urban road environments. The algorithm is
implemented using the Particle filter as tracking mechanism, so that the knowledge
gained about Particle filtering is directly applied to a complex estimation problem.

For testing the algorithm, four different automotive sequences, provided by the Ger-
man car manufacturer Daimler AG, are used. As a secondary goal, a measurement
unit is designed to record further automotive sequences in the Perth city area.

1.3. Thesis Outline 3

1.3 Thesis Outline

The following chapter 2 gives a detailed analysis of the LDT problem, first as a
general formulation, then describing the specific requirements and finally by sum-
marizing current research activities in a literature survey.

In chapter 3 the mathematical background of Particle filtering, based on Bayesian
theory and the Bayesian state estimation, is introduced.

The estimation theory is followed by the design of the LDT algorithm in chapter
4. In this chapter all necessary steps of the Particle filter are designed in respect
to the LTD algorithm. Furthermore, some major implementation issues concerning
the tracking quality are discussed.

In chapter 5 the actual implementation of the LDT algorithm in C using Intel’s open
source computer vision library OpenCV is described.

The implementation is followed by an accuracy and performance evaluation in chap-
ter 6. The analysis includes several modules and gives the reader an impression of
the general algorithm function.

In chapter 7 an overall conclusion is given and several suggestions for improving the
Particle filter and LDT investigation are given.

4 1. Introduction

2. Problem Analysis

The underlying idea of every information processing system is to have a comprehen-
sive ”understanding” of the given problem. Once the ”understanding” is given, the
system can decide to react to the situation in whatever way seems to be appropriate.

The ”understanding” is therefore implemented in terms of a mathematical model on
which some system information can be matched on. For vision systems this can
be described as perceiving an image of a real world scene, then extracting relevant
information and finally matching this information to a 3D-model.

This chapter will give an understanding of the general problems one is faced with
when designing a lane detection and tracking system based on vision information
processing. First an overview of the general problem is presented which is then
followed by a brief set of requirements for the designed system. Finally a litera-
ture survey will complete the reader’s understanding of the problem and current
approaches to deal with it.

2.1 Lane Detection and Tracking Systems

The automotive driver’s scene is exposed to a wide range of different environmen-
tal conditions which are individually characterized by a wide range of variations.
Furthermore, the scene is composed of a huge variety of different objects where all
together they interact in the same environment. All these factors complicate the task
of perceiving the environment and matching these information to the mathematical
model.

Variations which might occur in automotive scenes are:

• climate and weather conditions
(snowy, rainy, sunny, foggy, dusty)

• lighting conditions
(direct sunlight, shadowing, no sunlight)

• lane markings style
(circular reflectors, solid/segmented, no markings, marking color)

6 2. Problem Analysis

• complex lane markings
(markings at cross sections, temporary lane markings)

• road surface variations
(light/dark pavement, wet pavement, dirty pavement)

• environmental structures
(landscape, forest, urban, interurban, highway)

In the survey from the year 2006, McCall et al. [McTr06] point out that the problem
of lane detection and tracking (LDT) is structured by four basic steps:

• Defining a road model which serves as a mathematical model to describe the
reality. Common road models are e.g. polynomial curves or splines on a flat
plane.

• Extracting relevant road features from the input data. Common feature ex-
traction techniques are e.g. derivation filters, steerable filters, matched filters.

• The extracted features are then segmented by the post processing step so that,
based on the segmentation, the model parameters can be determined. Com-
mon segmentation techniques are e.g. Hough transform, randomized Hough
transform, RANSAC fitting algorithm.

• More complex systems then use higher level techniques to track the lane and
vehicle position. Common tracking techniques are e.g. Kalman filtering, Par-
ticle filtering.

All four steps need to be adjusted to each other to work efficiently together. Step
2 and 3 are mainly responsible for removing noise from the signal by means of low
level image processing. In step 4 the noise reduced information is then considered
in a higher level processing step which further removes noise but also forms the
”understanding” of the automotive scene.

In the following section the requirements for this thesis are detailed, this is then
followed by a wide literature survey to give a brief introduction to current research
efforts.

2.2 Requirements
Since all possible automotive scenes cover a vast range of different situations, it is
necessary to limit the system requirements to a definite set of automotive situations.

General requirements are:

1. minimum frame rate is 30 fps
2. minimum observation range is 20 m

The system response rate for driver assistance systems is typically in the range of
30 fps. This is an important time requirement that needs to be met to achieve both,
fast interaction for safety purpose, and smooth result visualization.

The system design is focusing on highway and fast urban infrastructures. This
means, low curvature roads are expected, furthermore, relevant road features will
be different marking types (solid, segmented) and road-curb borders. The system
should also be able to handle lane changes and partially occluded roads.

2.3. Literature Survey 7

2.3 Literature Survey

Lane detection and tracking systems are distinguished in three main categories.
First, there are these systems which process the data and apply a certain model
only in image space. They do not introduce a camera model to describe the relation
between real world and image space. These applications are easy and straightfor-
ward to implement on low performance systems. However, they do not provide a
comprehensive ”understanding” of their surroundings. Two examples are given in
the following paragraphs.

Gong et al. [GWZX+08] introduced a lane detection algorithm designed especially
for high speed highway situations. They limited the general ROI to a certain area
of the image where the lane is expected to be. They used a median filtering for
smoothing and a Sobel filter for lane marking extraction. The features are then
fitted to lines in the image space by improved Hough transforming.

Saudi et al. [STHS08] proposed a lane detection method for indoor environment.
The lane features are extracted using a Sobel filter. The magnitude image is then
binarized by an adaptive threshold method. The features are then fitted to lines in
image space by randomized Hough transform. They use a simple tracking mechanism
in assuming the subsequent line having a slope within 20 percent of the last one.

The second type of system introduces a camera model to match the features given
in image space to a road model given in world space. Due to the transformation
from image to world space, these systems are more computation expensive than the
systems mentioned above. However, they provide a model located in world space
which is more convenient as interface to other system components.

For example Samadzadegan et al. [SaST06] proposed a lane detection system de-
signed for Highway and other marked roads. In order to reduce the needed com-
putation effort they apply a three-layer image pyramid to iteratively determine the
lane markings. For each layer, they use a Sobel filter to extract the road features. In
the first layer a randomized Hough transform is used to determine width and head-
ing direction, then in second and third layer they use a genetic algorithm and the
camera model to fit a parabolic road model which is assumed to be on a flat plane
to the extracted features. They also use a simple tracking mechanism by applying a
priori knowledge by setting the ROI of the first pyramid layer according the results
of the last frame.

Aly [Aly08] presented a lane detection algorithm for urban scenes. By introducing
a camera model, an inverse perspective mapped image is generated from which then
the features are extracted. For lane marking extraction they use a static two dimen-
sional Gaussian filter. The horizontal direction is a smoothing Gaussian which is
intended to reduce the noise, the vertical direction is a second-derivative of Gaussian
which is matched to the expected line width to extract the line feature. Afterwards
the image is adaptive thresholded. To fit the extracted features to the spline model
he uses a series of three different algorithms. First, the lines are roughly detected
by a simplified Hough transform, that is just a vertical sum of the filtered image
which results in a histogram like structure. In that histogram all local maximums
are expected to be lanes in the original image. Then a RANSAC-line fitting algo-
rithm first refines these found lines. Afterward a RANSAC-spline fitting algorithm
using third degree Bezier splines is applied to get the final result.

8 2. Problem Analysis

Lipski et al. [LSBL+08] presented a multi-camera based lane detection system for
clearly marked roads. They merged three different camera images together by means
of inverse perspective mapping. To map the transformed image to real world coordi-
nates they used an inertia navigation system which is corrected by GPS coordinates.
To extract the lane marking features they apply these three different assumptions to
a local area: local contrast must exceed a certain threshold; the two most weighted
grey values of a local histogram must have a minimum difference; and the bright
pixels must have an evident shape and orientation. For feature fitting they used a
piecewise linear defined lane model based on a flat plane. They assume all four lines
(lane marks of own and adjacent lane) are lying in parallel. To fit the parallel lines to
the extracted features an initial position is either deduced from previous images or
by estimating. Then the features are fitted by a RANSAC fitting algorithm. Feature
tracking is done by adding the features of the last frame of the same segment to the
feature image of the current frame. This is a cumulative feature adding approach.

The approach proposed by Lipski et al. tends already towards the third type of LDT
systems which is distinguished by introducing a camera model to match the extracted
features to a model in world space and also using vehicle motion information to
estimate the subsequent position of the lane. Dickmanns et al. [DiMy92] pioneered
these type of system already in 1992, when they proposed a 3D road model with
eight parameters and a Kalman filter to estimate their values in time-domain. Since
the Dickmanns et al. publication, the information processing hardware systems
have made major improvements in performance so that various systems have been
designed focusing on the task to equip modern vehicles with vision information
processing systems to give a comprehensive estimate about the environment.

McCall et. al. [McTr06] provide a wide survey on LDT systems. Additionally, they
proposed the ”video-based lane estimation and Tracking” (VioLET) system which
is designed for different highway environments. They tested the system on a 65
km long route through San Diego. For road feature detection, they focus on lane
markings and road texture in a great variety, that is solid lines, segmented lines
and circular reflectors and different road textures. Lane markings are extracted by
means of steerable filters for the range up to 20 meters in which they give significant
results. They are variable in angle space which enables either to tune on a single an-
gle respond for solid line detection or to tune on full-angle space respond for circular
reflector detection. For higher range than that they use adaptive template match-
ing to measure the road curvature. To eliminate perspective effects, both feature
extraction methods are applied to inverse perspective mapped images. This allows
use of a single sized kernel for steerable filtering and a straight forward template
matching method without perspective distortions. Then a multi-lane parabolic road
model is fitted to the extracted features in the inverse perspective mapped image by
minimizing the squared error. The lane position is tracked by an original Kalman
filter. To improve the estimation robustness, before finding the update measure-
ments, outlying features are removed in two stages. First, only the filter candidates
within the vicinity of the lanes are used in updating the lanes. Second, for each
lane, the first and second moments of the point candidates are computed, hence
the lines heading direction is identified. Lines with different direction as expected
are removed. Furthermore, circular reflectors are identified by single points on the
inverse perspective mapped image, where their position is determined by the vehi-
cle’s movement. Spots which do not follow these dynamics are removed. The update

2.3. Literature Survey 9

measurement estimates lane position, angle and width by means of Hough transform
and the statistic values first and second moment.

As in McCall’s et al. survey shown, Kalman filtering techniques have been used and
improved in a wide range of applications particularly for highway environments. As
will be shown with proceeding this literature review, the relevance of Particle filters
in this research area increased tremendously during recent years. Reason for this
is, that in automotive scenes a wide range of uncertainty is present due to different
whether conditions, road conditions or lane marking quality. Systems using Kalman
filtering rely on techniques like data association, robust line fitting and averaging
to deal with these uncertainties and to reduce the effects of outliers. In contrast,
Particle filters provide a method to deal with uncertainties in a comprehensive and
abstract way. It is possible to exploit information such as ”this pixel is more likely
to belong to the road than to the background”, which would not be possible with
Kalman filtering techniques.

In 2001, Southall et al. [SoTa01] introduced the Particle filter as a stochastic road
shape estimator to LDT systems. Their system is designed for different highway
scenes under varying imaging conditions. To extract lane markings a two-stage
algorithm is used. First a matched filter of triangular shape is used to detect lane
markings, then line candidates are verified by evaluating the intensity value which
must reach a certain threshold. The system is described by a six-dimensional state
space, the state variables are lateral position; heading direction; first and second
order curvature; lane width; and the camera’s pitch angle. The state hypotheses are
evaluated in image space, therefore a transformation between world space and image
space is done in the form of applying a camera model. This step is essential for every
estimation process that describes a movement in world space and uses observations
given in image space for evaluation. To improve the Particle filter performance,
they introduced importance sampler, which includes some current measurement to
adjust the prior. They used a randomized Hough transform to get a measurement
for the vehicle’s heading direction, lane width, pitch angle and lateral position. They
furthermore introduced partitioned sampling which divides the state space in groups
of subspaces. Therefore they separated the parameters which can be measured by
the Hough transform from the curvature parameters. This improves the performance
since the effective state order is reduced and less particles are needed.

Where Southall et al. only used lane markings as road likelihood, Apostoloff et al.
[ApZe03] introduced a fusion scheme to combine lane markings, road edges and the
color of the road to achieve a higher robustness.

Danescu et. al. [DNMT08] proposed a stereo vision-based probabilistic lane tracker
using Particle filters. Stereo vision is used to detect the pitch angle between camera
and road surface as well to extract lane features. They use two feature maps, they
are: curb features extracted by stereo vision and lane markings extracted by dark-
light-dark transition detection. The particle evaluation scheme undergoes a physical
boundary check, where the lane width and position are limited to a specific range.
The latter one probably reduces the particle filter to find neighboring lanes. To
evaluate the current lane estimate, they use a comparison scheme of average weight of
predicted particle set and the average weight of totally random particles, introduced
by the initialization step.

10 2. Problem Analysis

Franke and Loose et al. [FrLK07] go one step further and propose a lane recog-
nition algorithm for rural roads without any lane markings, demonstrated as lane
recognition algorithms designed for rural roads without lane markings. Similar to
Apostoloff’s et al. approach, they used multiple cues which are fused together within
the Particle filter framework. However their approach is slightly different to all ear-
lier mentioned systems, since they try to detect the complete road area instead of
separately detecting the lanes. This can be seen as a basic road detection on which
a lane separation mechanism can follow.

Franke and Loose et al. [LoFS09] further improved their system by adding measure-
ments of a Doppler radar and depth information of a stereo vision set-up as evidence
grid to the particle filter framework. The Doppler radar provides distance informa-
tion of the environment or an object as well as its relative velocity which is used to
identify whether the measurement belongs to the environment or an object within
the environment. Furthermore they introduced a Kalman filter step to compute and
track the Particle filter’s variance Q of the evolution model.

By the steady development of increasingly faster high performance information pro-
cessing systems, the idea of applying Particle filters for state space estimation in
real-time embedded systems is shifting towards the range of reality. The next chap-
ter will introduce the concept of Particle filtering starting with its very essence: The
Bayesian Theory.

3. Probability Theory and State
Estimation

In this chapter, the Bayesian theory is applied to the problem of lane detection and
tracking utilizing vision systems and state estimation methods.

The first section briefly reviews the history of the Bayesian theory, in order to
provide the reader with the knowledge necessary to understand the idea of Bayesian
estimators.

The Bayesian state estimation is then introduced in the following section. The
Bayesian theory is first formulated in the context of state estimation, then a math-
ematical deduction of the final formula of the recursive Bayesian estimator is given.

Finally, the theory of the Bayesian estimator is implemented as a Monte Carlo
Simulation approach - the so called Particle filter. A general description of the
algorithm is given, followed by an in depth mathematical description.

12 3. Probability Theory and State Estimation

3.1 Origins of Bayesian Theory

This section serves to introduce the essential idea of Bayesian theory and the ter-
minologies used in this chapter. The argument is based on an introductory article
about Bayesian methods by E. T. Jaynes [Jayn86].

Probability theory deals with the problem of reasoning in situations where only
incomplete knowledge is available. Documented records point back to 500 BC when
Herodotus was dealing with the decision policy of Persian kings.

In 1713, the principal idea of probability theory was described mathematically by
James Bernoulli in his work ”Ars Conjectandi”.

To represent incomplete knowledge, Bernoulli introduced a set of basic ”equally
possible” cases denoted by {x1, x2, ..., xN} which are called events, or propositions.
The set defines the so called sample space that is denoted as H0 (or by other authors
as Ω, S (for space) or U (for universe)). As an example, for rolling two dices
N = 62 = 36 and H0 = {{1, 1}, {1, 2}, . . . , {2, 1}, {2, 2}, . . . , {6, 6}}.

By introducing a proposition of interest A, that is defined to be true on a subset
H(A) of some points M of H0, the probability of A being the realization or outcome
of a trial can be defined as

P (A) = M/N, (3.1)

where M is referred to as multiplicity of A and N as cardinality of H0.

Plausibly, the reasoning used in decision making processes is based on the perceived
probabilities of the outcomes of possible choices. The sample space H0 does not
necessarily need to be equal to the natural sample set of the real world, HN , however
H0 can serve as a first estimate of HN and can be updated with further knowledge
added.

Bernoulli also proved the mathematical connection between probability and fre-
quency. He showed that considering n independent observations, if A is found to be
true m times, the frequency of A true, given by f(A) = m/n, becomes very close
to the probability P (A) = M/N for large n. The observed frequency f(A) is a
reasonable estimate for the probability P (A) in the natural sample space HN and as
such gives the possibility of updating the initial sample space H0. These first ideas
are a good start to describe the reasoning process in terms of mathematics, however
Bernoulli died before he got get any further.

In 1763, Thomas Bayes’ published article gives an different approach to Bernoulli’s
unfinished problem. Whereas Bernoulli stated the probability of observing event A
true n times out of m trials is given by N and M . Bayes inversed the point of view
and stated the probability that M has various values for N is given by n and m.

The terminologies probability and likelihood are distinguished based on these two
different points of view. Probability allows us to predict a particular outcome based
on known parameters, whereas likelihood allows us to estimate unknown parameters
based on observations.

In 1774, Laplace generalized Bayes’ principle in greater clarity and deduced what is
nowadays called ”Bayes’ Theorem”.

3.1. Origins of Bayesian Theory 13

Denoting the propositions A and B, where AB stands for the proposition ”both A
and B are true”. To represent joint probability let the symbol P (A|B) stand for
”the probability that A is true, given that B is true”. Then the basic product rule
is

P (AB) = P (A|B)P (B). (3.2)

Since AB and BA are the same proposition, by interchanging A and B on the right
hand side and equalizing both terms, Bayes’ Theorem is expressed as

P (A|B) =
P (B|A)P (A)

P (B)
. (3.3)

The importance of Bayes’ theorem lies in its use as a mathematical description of
learning processes in general. Therefore, it is most usefully expressed in terms of
probability distribution functions (pdfs) denoted by lower case p

p(A|B) =
p(B|A) p(A)

p(B)
, (3.4)

here p(A) is the prior probability distribution for proposition A it represents the
pre-gained knowledge about A. p(A|B) is its posterior probability distribution it
represents the knowledge [we have] about A after updating it with new information
B. p(B|A) is the likelihood function of obtaining the information B given that A is
correct. p(B) is called evidence and is merely considered as a normalization term to
fulfill the condition of

�
p(A|B) dp = 1.

The next step is to introduce the idea of Bayesian theory to state estimation prob-
lems. Therefore, the next section presents the principle and the mathematical de-
duction of the Bayesian state estimator.

14 3. Probability Theory and State Estimation

3.2 Bayesian State Estimation

The general idea of state estimation is to estimate the current state of a given system,
based on a mathematical description of the system’s dynamic behavior (system
model), its state history, some known input signals, and some noisy observations of
the current system state. The term state stands for those parameters that represent
the system’s internal condition or status.

A typical description of a linear system is given by sk+1 = Axk + B + wk, where
sk ∈ Rn is the state at time k, A is an n× n matrix, B is an n× 1 vector and w is
a n× 1 random noise vector drawn from a Gaussian distribution.

The more general, not necessarily linear form of a system description is given by the
equations

sk = fk(sk−1,uk−1,wk−1),

yk = hk(sk,uk,vk),
(3.5)

where sk ∈ Rn is the system state, and yk the noisy observation at time k. The
function fk(·) is the time-varying, nonlinear system equation which is also referred
to as state evolution model with process noise wk. The function hk(·) is the time-
varying, nonlinear observation model with observation noise vk which is assumed to
be independent from the process noise. uk represents some known input signals.

With Bayes’ theory in mind it is evident to consider the problem of state estimation
in terms of reasoning as best as possible ”finding the best state estimate”in situations
”at time k” where only incomplete knowledge ”input signals, noisy observation and
ambiguous state history” is available. Expressing this in form of Bayes’ theorem one
can write

p(sk|Yk)� �� �
posterior

=

likelihood� �� �
p(Yk|sk)·

prior� �� �
p(sk)

p(Yk)� �� �
evidence

, (3.6)

where p(sk) is the prior probability distribution of the state vector, p(sk|Yk) is the
state’s posterior probability distribution, p(Yk|sk) is the likelihood of the observa-
tion and p(Yk) is the evidence of the observation, and Yk is the set of observations
{y1, y2, . . . , yk}.

The prior probability distribution of the state vector sk represents pre-knowledge
about the current state gained from the state history, some input signals and previous
state observations. This is merely expressing a preference for the system state toward
one or several particular states. It is also called proposal distribution.

The posterior probability distribution of the state vector sk represents the knowledge
about the current state after updating the prior by the current state observation.
Both prior and posterior must be understood as distributions of the probability that
the state vector sk has a particular value sik over the state space Rn.

The likelihood of obtaining the observation, given that sk is the true state, represents
the incomplete information about the true current state. Thus it is not actually
representing the truth of the current state, but merely a preference for the system
state toward the true current state.

3.2. Bayesian State Estimation 15

The evidence of the observation is, as already stated, just to be understood as a
normalization term to fulfill the condition of

�
p(sk|Yk) dp = 1.

Reading equation 3.6 one might say ”the probability that sk = sik is correct given
the current observation is equal to the likelihood of obtaining the observation given
that sk = sik is correct, multiplied by the probability that sk = sik is correct, divided
by the probability of the observation.”

The following two subsections show the mathematical deduction of the recursive
Bayesian estimator with the intension to give a deeper understanding of its imple-
mentation.

3.2.1 Deduction of the Bayesian Estimator

The following paragraph shows, how the pdf of sk conditioned on the set of obser-
vations {y1, y2, . . . , yk} can be calculated. It is based on the deduction given by Dan
Simon [Simo06].

For the sake of simplicity the following two key points are assumed:

1. the system is a first order Markov process, that is, the current state depends
only on the previous state

p(sk|sk−1, sk−2, . . . , s0) = p(sk|sk−1)

2. the observations are conditionally independent, that is, the current observation
depends only on the current state

p(yk|sk, . . .) = p(yk|sk)

The conditioned pdf is given by applying Bayes’ theorem

p(sk|Yk) =
p(Yk|sk) p(sk)

p(Yk)
with Yk = {y1, y2, . . . , yk}. (3.7)

By again applying Bayes’ rule on the last term, p(sk) = p(sk|Yk−1) p(Yk−1)/p(Yk−1|sk),
and splitting up the observation set Yk into {yk, Yk−1}, the conditional pdf can be
rewritten as

p(sk|Yk) =
p(yk, Yk−1|sk)
p(yk, Yk−1)

p(sk|Yk−1) p(Yk−1)

p(Yk−1|sk)
. (3.8)

For the sake of eliminating the condition of the observation set {yk, Yk−1} on sk and
p(sk|Yk−1), the definition of conditional probability is applied: p(A|B) = p(A,B)/p(B).

p(sk|Yk) =
p(sk, yk, Yk−1)

p(sk) p(yk, Yk−1)

p(sk, Yk−1) p(Yk−1)

p(Yk−1) p(Yk−1|sk)
. (3.9)

To reduce the complexity, the fraction is expanded by p(sk, yk)

p(sk|Yk) =
p(sk, yk, Yk−1)

p(sk) p(yk, Yk−1)

p(sk, Yk−1) p(Yk−1)

p(Yk−1) p(Yk−1|sk)
p(sk, yk)

p(sk, yk)
. (3.10)

Using the ratios of various joint pdfs, marginals pdfs in the above equation. The
following ratios are used:

16 3. Probability Theory and State Estimation

- p(sk, yk, Yk−1)/p(sk, yk) = p[Yk−1|(sk, yk)]

- p(sk, Yk−1)/p(Yk−1) = p(sk|Yk−1)

- p(sk, yk)/p(sk) = p(yk|sk)

- p(Yk−1)/p(yk, Yk−1) = 1/p(yk|Yk−1)

to obtain

p(sk|Yk) =
p[Yk−1|(sk, yk)] p(sk|Yk−1) p(yk|sk)

p(yk|Yk−1) p(Yk−1|sk)
(3.11)

In considering assumption 2 of conditionally independent observations (since yk is a
function of xk), the term p[Yk−1|(sk, yk)] = p(Yk−1|sk) cancels in the above equation.
This yields the final equation of the conditional pdf of sk

p(sk|Yk) =
p(yk|sk) p(sk|Yk−1)

p(yk|Yk−1)
, (3.12)

Since the first observation is obtained at k = 1 the pdf of s0 is unconditioned and
assumed to be known. The pdf of s0 can be written as

p(s0) = p(s0|Y0) (3.13)

whereY0 is the set of no observations. Once the conditional pdf of s is computed, the
state estimate ŝ can be established using whatever method seems to be appropriate.

From here, the recursive Bayesian estimator is given by

p(sk|Yk) =
p(yk|sk) p(sk|Yk−1)�
p(yk|sk) p(sk|Yk−1) dsk

(3.14)

where:

prior: p(sk|Yk−1) =
�
p(sk|sk−1) p(sk−1|Yk−1) dsk−1

likelihood: p(yk|sk) is defined by the observation model

evidence: p(yk|Yk) =
�
p(yk|sk) p(sk|Yk−1) dsk

p(sk|sk−1) is given by the system equation fk(·) and p(sk−1|Yk−1) will be given at
runtime.

3.3. Particle Filtering 17

3.3 Particle Filtering

The term Particle filter refers to several different sequential Monte Carlo methods
using sets of samples, the so called particles, to represent distribution functions of
the Bayesian equations. Different methods have been proposed, including Bootstrap
filtering, the condensation algorithm, Particle filtering, interacting particle approxi-
mations and survival of the fittest.

This section gives a brief description of the condensation algorithm used in the
implementation. It starts with a general idea of how the probability distributions
are represented in Particle filters, then the algorithm steps are detailed. A clear
mathematical deduction is given in the following subsection.

Figure 3.1: distribution representation by distributed particles; a) particles of equal weight; b)
particles of unequal weight

Particle filters are intended to solve the equations given by the Bayesian estimator
numerically rather than analytically. Therefore, a given distribution, e.g. p(xk|Yk),
is mapped on a set of weighted, independent distributed samples. This is illustrated
in Figure 3.1. The mapping of the distribution on the samples can be formulated as

x(i)
k ←− � p(xk|Yk). (3.15)

Any estimate integral in the following form can be approximated by discrete sums
of the weighted samples by

E[f(xk)] =

�
f(xk) p(xk|Yk) dxk ≈

N�

i=1

w̃k(x
(i)
k) f(x(i)

k), (3.16)

where f(xk) can be any function of xk, N is the number of particles and w̃k is the
normalized particle weight.

The Algorithm

Starting from here, the final goal of the Particle filter is to compute the posterior
distribution at time k given by the Bayesian estimator equation

p(sk|Yk) =
p(yk|sk) p(sk|Yk−1)�
p(yk|sk) p(sk|Yk−1) dsk

.

18 3. Probability Theory and State Estimation

Step 1: Importance Sampling

Therefore, first, the prior distribution needs to be calculated. If s(i)k−1 is drawn
from the true posterior distribution at time k − 1 then the prior distribution is
approximated by

p(sk|Yk−1) =

�
p(sk|sk−1)� �� �

f [p(sk−1),uk−1,vk−1]

p(sk−1|Yk−1) dsk

≈
N�

i=1

w̃k(s
(i)
k−1) f(s

(i)
k−1,uk−1,vk−1),

(3.17)

where f(·) is the state evolution model and s(i)k−1 ←− p(sk−1|Yk−1). When assuming
that the particles have been resampled and the weight are all equal, this simplifies
to

p(sk|Yk−1) ≈
1

N

N�

i=1

f(s(i)k−1,uk−1,vk−1). (3.18)

If the true posterior distribution is not available, the first step is to sample from a
proposal distribution which is in the simplest case the transition density p(sk|sk−1):

s(i)k ←− p(sk|s(i)k−1) (3.19)

A more complex model introduces the past observations into the proposal distribu-
tion, that is p(sk|sk−1, Yk). However for the sake of simplicity the used algorithm
only applies the transition density.

Step 2: Particle Evaluation

In the second step, the prior distribution is multiplied with the observation likelihood
function. This is approximated as follows

p(yk|sk) p(sk|Yk−1) ≈ p(yk|s(i)k) where s(i)k ←− p(sk|Yk−1). (3.20)

The second step therefore computes the particle weight based on the observation
likelihood. In other words, a measure is given how good the particle matches to the
observation. This is also refereed to as update step. The weights (likelihood of each
individual particle) are given by

w(n)
k = p(yk|s(i)k) = P (v(i)k = ỹ∗k − hk(s

(i)
k)), (3.21)

where ỹ∗k is a specific measurement and hk is the observation model.

Evaluating the importance weights is the most crucial step of Particle filters. To
evaluate the weights a common space needs to be mapped at from both state space
and observation space, and a proper distance measure needs to be defined. A detailed
explanation of this is given in section 4.5.

Step 3: Normalizing Importance Weights

The normalization factor, given by
�
p(yk|sk) p(sk|Yk−1) dsk is easy to calculate, since

all the necessary information is contained in the importance weights. Therefore, it
is sufficient to normalize the weights on the sum of the set of all particle weights,
which is given by

w̃(i)
k =

w(n)
k�N

n=1 w
(i)
k

(3.22)

3.3. Particle Filtering 19

Step 4: Resampling Particles

The algorithm up to this point is called sequential importance sampling. The problem
with this algorithm as it stands, is that after some iterations have passed, the it
becomes unstable due to discrepancy between the weights. This is referred to as
weight degeneracy.

To overcome this issue it is crucial to perform the resampling step, which involves,
removing the low weight particles and multiplying the high weight particles. Thus,
N unequally weighted particles are mapped into a new set of N equally weighted
samples when still preserving the actual probability distribution.

�
s(i)k , w̃(i)

k

�
−→

�
s(m)
k , N−1

�
(3.23)

Several resampling algorithms have been proposed, a detailed description of these
follows in section 3.3.2.

3.3.1 Deduction of Sequential Importance Sampling (SIS)

This section describes the underlying theory of the Particle filter implementation.
It is based on the deduction given in [MDDFW01].

The integral given by the equations of the recursive Bayesian estimator are difficult to
solve analytically for nonlinear equations with non-Gaussian noise sources. However,
sequential Monte Carlo simulation provides a numerical solution to these problems.

To compute these integrals, the distribution is first mapped on independent dis-
tributed samples.

p̂(sk|Yk) =
1

N

N�

n=1

δ(sk − s(i)k) with s(n)k ←− � p(sk|Yk) (3.24)

Therefore, any estimate of the form of E[f(sk)] =
�
f(sk) p(sk|Yk) dsk can be ap-

proximated by

E[f(sk)] ≈
N�

n=1

f(s(i)k). (3.25)

Since it is often impossible to sample directly from the true posterior density it is
reasonable to sample from a known proposal distribution q(sk|Yk). The following
substitution is applied

E[f(sk)] =

�
f(sk)

p(sk|Yk)

q(sk|Yk)
q(sk|Yk) dsk

=

�
f(sk)

p(Yk|sk) p(sk)
p(Yk) q(sk|Yk)

q(sk|Yk) dsk

=

�
f(sk)

wk(sk)

p(Yk)
q(sk|Yk) dsk

=

�
f(sk)wk(sk) q(sk|Yk) dsk�
p(Yk|sk) p(sk) q(sk|Yk)

q(sk|Yk)
dsk

=

�
f(sk)wk(sk) q(sk|Yk) dsk�

wk(sk) q(sk|Yk) dsk
with wk(sk) =

p(Yk|sk) p(sk)
q(sk|Yk)

(3.26)

20 3. Probability Theory and State Estimation

Finally, by drawing samples from the proposal distribution q(sk|Yk), expectations of
interest can be approximated by

E[f(sk)] =

�
f(sk) p(sk|Yk) dsk ≈

N�

i=1

w̃k(s
(i)
k) f(s(i)k)

with w̃k(s
(i)
k) =

wk(s
(i)
k)

�N
i=1 wk(s

(i)
k)

and wk(sk) =
p(Yk|sk) p(sk)

q(sk|Yk)

(3.27)

Using the state space assumptions, the importance weights can be estimated recur-
sively [DDFMR00] by

wk = wk−1
p(yk|sk) p(sk|sk−1)

q(sk|Sk−1, Yk)
. (3.28)

When using the transition density as proposal distribution, p(sk|sk−1) cancels out
and the weight is calculated by

wk = wk−1 p(yk|sk). (3.29)

3.3.2 Extension to Sampling Importance Resampling (SIR)

The problem with using SIS is that the particle weights decrease with increasing
time. This phenomena is referred to as weight degeneracy and was first pointed out
by Gordon et al. [GoSS93].

Weight degeneracy stems from the very first step in the earlier deduction: drawing
N samples from a probability distribution at a definite time instant to represent the
distribution numerically

s(i)k ←− � p(sk).

This set of samples represents the distribution in its specific shape at time instant
k. By using this sample set to calculate, or evolve other distributions, all samples
will still have their origin at time k. Therefore, to have a time-dynamic particle
evolution it is essential to sample again to represent the distribution at the following
time instant k + 1.

Given a weighted particle set

pN(sk) =
N�

i=1

w̃(i)
k δ(s− s(i)k), (3.30)

the resampling step can be formally written as

p̂N(sk) =
N�

j=1

1

N
δ(s− s∗(j)k) =

N�

i=1

ni

N
δ(s− s(i)k), (3.31)

3.3. Particle Filtering 21

where ni is the number of particles in the new set {s∗(j)k }, which are copied from

one particle s(i)k of the old set. In terms of consistency it must be proved that the
resampled density converges to the original density for N → ∞. That is, to fulfill

E

���
g(s) pN(s) ds−

�
g(s) p̂N(s) ds

�2
�
−→ 0 for N → ∞ (3.32)

for any function g(·) [DoDFG01], [CrDo02]. There are many different resampling
methods, four basic ones are commonly used, they are:

Multinomial Resampling

Multinomial resampling was introduced by Gordon et al. [GoSS93] as the first
method of overcoming weight degeneracy. The method is as follows:

• N uniform random numbers uj ∈ [0, 1) are generated

• uj is used to select s∗(i)k as follows

s∗(j)k = sk(F
−1(uj)) for j = {1, 2, . . . , N}

where F−1 stands for the inverse of the cumulative probability distribution of the
normalized particle weights.

Stratified Resampling

Stratified resampling was introduced by Kitagawa [Kita96] with the intention of
reducing the variance between the original and resampled density. The method is
as follows:

• N ordered random numbers uj =
(j−1)+ũj

N with ũj ∈ [0, 1) are generated

• uj is used to select s∗(i)k in the same way as in multinomial resampling

Systematic Resampling

Systematic resampling was first mentioned by Witley [Whit94] and later introduced
to Particle filters by Carpenter et al. [CaCF99]. The method is as follows:

• N ordered uniform distributed numbers uj = (j−1)+ũ
N with ũ ∈ [0, 1) are

generated

• uj is used to select s∗(i)k in the same way as in multinomial resampling

Residual Resampling

Residual resampling was introduced by Liu et al. [LiCh98]. The method is as follows:

• Ni = �Nw̃(i)
k � duplicates of s(i)k are copied to the new set for i = {1, 2, . . . , N}

• the still empty space (because of floor-norming) is filled up by using one of the
earlier methods.

A comprehensive comparison of the basic resampling methods is given in [HoSG06]
and [DCPP05]. Based on these publications, it was decided to use the stratified
resampling method because of its good performance and minimized variance.

22 3. Probability Theory and State Estimation

4. Particle Filter Design

So far, the Bayesian estimator was introduced and its implementation, the Particle
filter, was described in general. In this chapter, based on the previous theory, the
lane detection and tracking (LDT) algorithm is designed in respect to the single
steps of the Particle filter.

First, a model that represents the automotive scene, refereed to as road model, is
described. Then, a model to estimate the subsequent road model state, based on
the vehicle’s movement and its current state, called state evolution model, is given.
This is then followed by the observation model which describes the observation of
the automotive scene.

These three sections provide the basic tools of the LDT algorithm. Possible orders
of applying these tools is analyzed and the optimal order is then defined as the
data flow structure. Based on the data flow structure, a method to compare the
estimated road model state and the actual observation of the automotive scene is
given. It is refereed to as particle evaluation. These steps combined together form
the Particle filter as it is described in the previous chapter.

Finally, a major issue of the Particle filtering, called sample impoverishment is dis-
cussed in the context of LDT systems in detail.

24 4. Particle Filter Design

4.1 State Space

The fundamental part of state estimation is the state space Rn in which the system
operates. The state space is spanned by those parameters that represent the system’s
status. For LDT systems these parameters are given by the road model which
describes the road curvature relative to the vehicle position and bearing as well as
its camera set-up.

A great variety of road models for LDT systems have been proposed. The best
choice of the road model depends on the type of system and intended environment
in which the system will be used.

Road models for highway and rural road applications are commonly based on linear
[ApZe03, GWZX+08, STHS08], parabolic [SaST06], or cubic curvatures [SoTa01,
McTr06, FrLK07, DNMT08, LoFS09].

Models designed for urban environment require higher flexibility and thus are usually
based on piecewise linear curvature [LSBL+08] or curvatures based on different spline
types [Aly08].

Most of these models assume a flat road surface which will be referred to as flat
ground plane. A few systems have also introduced a vertical curvature rather than
assuming a flat ground plane [DiMy92, NSGD+04] these models fit better to envi-
ronments with high height variations.

The road model used in this system extends the model introduced by Southall
[SoTa01] and is described in the following paragraphs in detail.

Road Shape

The road is assumed to lie on a flat ground plane and its shape is modeled by a
polynomial of 3rd order. The lane’s center line is given by

Yc(z) = Y0 + tan(�w)Z +
C0

2
Z2 +

C1

6
Z3, (4.1)

where Y0 is the lateral displacement between the lane center and the vehicles position,
tan(�w) is the relative vehicle bearing, C0 and C1 are the 2nd and 3rd order coefficients
describing the road’s curvature.

Relative Pitch Angle and Lane Width

The assumption of a fixed ground plane yields a very rigid and fault-prone road
model since in real world the road surface also has vertical curvature. However, this
assumption simplifies the camera modeling that is described in section 4.3.1. Impor-
tantly, the divergence between reality and model can be minimized by introducing
the vertical curvature to the state space. This is done to a 1st order approximation
by introducing the relative pitch angle αw, which is the angle between the assumed
fixed ground plane and the real ground plane, to the state space. The spatial set-ups,
both horizontal and vertical, are given in Figure 4.1.

In this implementation, the variation of the pitch angle is detected by a brute force
approach. This means that in the evolution process, there is no contribution which
gives an estimate of the next angle value. Instead, a certain region in the state space

4.1. State Space 25

is searched. This requires a higher number of additional particles and therefore a
higher computational effort. However, it resulted in good performance, as shown in
section 6.2.2 and is a good start.

Note that, in contrast the system proposed by Southall et al. [SoTa01] detects the
camera movement via visual discrepancy in the image which allows to reduce the
number of particles. Danescu et al. [DNMT08] investigates a complete different
approach and uses stereo vision information to compute the pitch angle in advance.
In this way the pitch angle does not need to be introduced to the state space.

Figure 4.1: a) road scene with vertical curvature and 1st order approximation, b) road model with
horizontal curvature

Considering the pitch angle and introducing the lane width W , the left and right
lane boundaries are approximated1 by

Yl = Yc −
W

2
− tan(αw)Z,

Yr = Yc +
W

2
+ tan(αw)Z.

(4.2)

The state space spanned by the parameters described so far is conceptually the same
as given by Southall et al., the state vector is

ss =
�
Y0 �w C0 C1 W αw

�T
. (4.3)

Stabilizer Lines

Unfortunately, although this model works well for highway scenes, it lacks robustness
in urban environments, characterized by frequent occlusions and weak road features.
It is therefore necessary to improve the system’s robustness in urban situations by
adapting the model to the urban environment.

Usually, the lane is bordered by several edge structures which lie in parallel to the
lane. These might be lane markings of one or more additional lanes, or just the
infrastructure of the surroundings. By introducing additional stabilizer lines, one on
the left and one on the right side of the lane, the parallel edge structures are taken
into account, resulting in improved robustness. The additional lines are defined by

1It is an approximation because due to perspective transform the term tan(αw) is not exactly

representing the relative pitch angle but serves as a good approximate.

26 4. Particle Filter Design

the distance that is relative to the lane width, from the left or right lane border
respectively, that is

Ysl = Yl −W ·Dl,

Ysr = Yc +W ·Dr,
(4.4)

where the stabilizer line distance is given as ratios of the lane width Dl and Dr.

The State Vector

Finally, the state space is defined by the parameters: Y0, �w, C0, C1,W,Dl, Dr and
αw. To improve the calculation performance, the actual state space is spanned by
the terms as they are processed, for example instead of the angles �w and αw their
tangents are used. The state vector is then given by

s =
�
Y0 tan(�w) C0 C1

W
2 Dl Dr tan(αw)

�T
. (4.5)

4.2 State Evolution Model
Step 1 of the Particle filter as described in section 3.3 requires the transition den-
sity p(sk|sk−1) which is calculated by the previous posterior particle distribution
p(sk−1|Yk−1) and a model which describes the transition of the system state from
time index k − 1 to k given some known input signals. This model is called state
evolution model and is formally written as

sk = fk(sk−1,uk−1,wk−1).

In this application, the system input vector u consists of the vehicle’s velocity and
yaw rate, these are so called motion parameters. The following paragraph describes
how the state transition is determined by the vehicle’s motion behavior.

Taking into account the vehicle’s position in world coordinates and its motion param-
eters as time-discrete quantities, the position change within two subsequent frames
and system states respectively is approximated by

∆Zk = vk·∆t· cos
�
�w,k +

∆�w,k

2

�

∆Yk = vk·∆t· sin
�
�w,k +

∆�w,k

2

� (4.6)

where ∆t is the time step, ∆�w,k = ψw,k·∆t is the time-discrete change of the
vehicle’s heading direction and vk is the time-discrete velocity. The state evolution
model can be rewritten as

sk = fk(sk−1,uk−1,wk−1) = Ak−1(uk−1)· sk−1 +Bk−1(uk−1) +wk−1. (4.7)

By combining the equations 4.1 and 4.6, where uk = [vk ψw,k], the transition
matrices Ak−1(uk−1) and Bk−1(uk−1) are given by

Ak−1(uk−1) =

�
AM,k 04x4

04x4 I4x4

�
and Bk−1(uk−1) =

�
0 ψw,k ·∆t 0T

5

�T
(4.8)

whereAM,k =

1 ∆Z ∆Z2

2
∆Z3

6

0 1 ∆Z ∆Z2

2
0 0 1 ∆Z
0 0 0 1

 (4.9)

4.3. Observation Model 27

and wk represents uncertainties in the evolution model. The uncertainties are in-
troduced by erroneous measurements of the vehicles motion parameters and the
time-discretization of the model itself.

4.3 Observation Model

So far, the state space to describe the real world and the evolution of the state based
on the motion parameters has been given. From here, it is essential to compare the
estimated system state with some observations of reality. The relation between the
system state and the observation is given by the observation model.

For example, a system with a straightforward relation between the measured quan-
tity yk and the system’s state variable sk, the relation can be expressed by

yk = h(sk,vk)

where h(·) is a mathematical description of the observation model, which is charac-
terized by measure uncertainties vk given as noise vector with zero mean Gaussian
distribution and covariance R. Considering a specific measurement y∗

k as observa-
tion of the reality, the difference between proposed system state sk and the reality
is then given by

v = y∗
k − yk = y∗

k − h(sk,vk).

For systems with complex measuring processes and data preprocessing, such as
applications in computer vision, a more convenient method is to split the model in
several parts, which then can be combined in whatever way seems to be appropriate.

The key point is that a measure of the difference between observation in world space
and the hypothesis in state space can be calculated.

Camera Model

The camera model hc(·) describes the process of acquiring an image. A detailed
model description is given in section 4.3.1. The image y∗

k, which is considered as
specific measurement, is given by

y∗
k = hc(real world,vk,c), (4.10)

where vk,c represents disturbances of the imaging system introduced by lens distor-
tions, sensitivity variances of the light sensitive element, spatial quantization due to
finite element segments and finally by reduction of information from R3 to R2.

From here two different data processing steps can be applied: feature extraction and
remapping of the image in the world space. The sequential order of these two steps
is left open at this point, and is treated in section 4.4.

Feature Extraction

The image yk, given either in image space or world space, is processed by different
filter algorithms, given in section 4.3.2. The resulting image is then called feature
map. This is formally expressed by

ỹk = hf (yk,vk,f), (4.11)

28 4. Particle Filter Design

where vk,f represents uncertainty of the filters for feature extraction. The reason for
this is that feature extraction is based on an operation in two dimensional space and
thus is not perfectly suited for acquiring features which originate in three dimensional
space. For example, features which do not have any meaning in three dimensions
might be extracted and some relevant features might be left out due to thresholding.

Inverse Perspective Mapping

The image yk, given either as unprocessed or preprocessed data, is projected to world
space for further image processing or evaluation purpose. The inverse perspective
mapping is described in section 4.3.3 and formally expressed by

Yk = hp(yk,vk,p), (4.12)

where vk,p represents uncertainty of the projection in the world space. The reason
for this is that the projection of the image in the world space is a reconstruction of
the real world scene, hence a back projection of R2 in R3. The missing information
needs to be assumed, thus generating projection artifacts. Due to quantization
of the image data, the data needs to be interpolated, which arises with further
uncertainties.

State Vector Projection

At this point, the observation y∗
k is given either in image space or in world space,

therefore, finally, the state hypothesis sk must be projected in the same space so
that a difference measure can be computed. The projection is given by

ỹk,s = hs(sk,vk,s), (4.13)

where vk,s represents uncertainty of the projection of the state hypothesis in the
evaluation space. This uncertainty is introduced by quantization of the evaluation
space.

The following subsections describe the model functions in detail. A comprehensive
analysis of the data flow is then given afterwards in section 4.4.

4.3.1 Camera Model

A camera’s perspective geometry can be described sufficiently using the pinhole
model. The pinhole model is an idealized model, which limits the incident light per
image pixel to a single light beam. The abstract description of the imaging function
is, as already stated, given by

y∗
k = hc(real world,vk,c).

The simplicity of this model requires that non-linear distortions, which occur due to
imperfections of lenses, sensor element and quantization are treated by introducing
a variance vk,r to the observation model.

Figure 4.2 shows the principle model set-up with its image plane I and optical
center O. All light rays that are captured by the camera will be focused at the
optical center. The distance between optical center and image plane is called focal
length f .

4.3. Observation Model 29

Assuming an orthonormal system of coordinates in the image plane, centered at the
principle point C, a three-dimensional orthonormal system of coordinates, called the
camera coordinate system, can be defined. The axis XC and YC are parallel to the
image plane and the third axis ZC lies parallel to the principle axis with the optical
center as its origin.

Figure 4.2: pin hole camera set-up (a) and details of sensor element (b)

Taking a point M , [XC , YC , XC]T , in the camera coordinate system, its light ray will
go through the optical center and pierces the image plane at point m, [u, v]T . The
relation between the coordinates of M and m is given by Thales theorem:

f

ZC
=

u

XC
=

v

YC
(4.14)

which yields

u = f · XC

ZC
, v = f · YC

ZC
. (4.15)

However, the relation between the projection m and its object M comes with a
certain ambiguity. This is, because any point [λXC ,λYC ,λXC]T along the opti-
cal ray could project onto m. This ambiguity is best described by considering
[λXC ,λYC ,λXC]T and projection m to be projective coordinates2 of the optical
ray in object and image space.

mp =

up

vp
ψ

 =

f 0 0 0
0 f 0 0
0 0 1 0

� �� �
K0

ΨXC,p

ΨYC,p

ΨZC,p

Ψ

 = K0Mp (4.16)

The Euclidean coordinates are related to projective coordinates by: u = up/ψ,
v = vp/ψ, XC = XC,p/Ψ, YC = YC,p/Ψ, ZC = ZC,p/Ψ with Ψ = 1.

In general the image coordinate system is defined by the photo sensitive element
and its pixel resolution (which might be different for each direction):

j = −muu+mutu, i = mvv +mvtv (4.17)

2The relation between Euclidean and perspective space is detailed in appendix A.1.

30 4. Particle Filter Design

where mu and mv are the pixel resolution in pixel/meter units and tu and tv are the
actual displacement of the principal axis to the image center in meter units. The
sign of the mu factor is necessary since the direction of the pixel index is opposite
to that of the actual coordinate system of the sensitive area.

Furthermore, it is desired to relate the object coordinates to a freely defined co-
ordinate system which is relative to the camera coordinate system. Therefore, the
general form of the projection matrix is:

K =

αu s u0 0
0 αv v0 0
0 0 1 0

� �� �
Ki

�
R t
0T
3 1

�

� �� �
Ke

(4.18)

where

• Ki describes the characteristics of the imaging system. Its five entries are
called intrinsic parameters. The focal length f is represented by αu and αv in
pixel units so that αu = −muf and αv = mvf respectively. The displacement
in each direction is also expressed in pixel units by u0 = mutu and v0 = mvtv
likewise. The skew parameter s is usually zero except in some particular
imaging systems.

• Ke describes the relation between the chosen world coordinate system and the
camera coordinate system. Its entries are called extrinsic parameters. It is
built up on a translation vector t and the rotation matrix R(α, β, γ) providing
three dimensions of rotation.

All in all, the projection m in the image plane of an object M , given in real world
coordinates, can be calculated by

mp = KMp, m =
mp

mp,3
. (4.19)

The Homography

Capturing an image is a projective transformation, R3 → R2, that is, information
is reduced from three-dimensional to two-dimensional space, and, as such, is not
directly invertible. The reconstruction of the captured scene using its image, R2 →
R3 is therefore ambiguous and needs additional spatial information or assumptions.

If no further information (for instance sensor data or depth information from stereo
vision) is available, a commonly used technique is to assume a flat ground plane.
In this case the reconstruction is reduced to a 2D-to-2D correspondence between
the ground plane Π and the image plane I. The ground plane represents the road
surface and is aligned with the world coordinate system as illustrated in Figure 4.3.
The image plane can have any possible position in the world coordinate system.

The 2D-to-2D correspondence is called homography of P2 and is described by a 3x3
matrix H. Generally speaking, a homography is any projective transformation H
which is linear and invertible, that is a (n+1) x (n+1) non-singular matrix for Pn.

4.3. Observation Model 31

Figure 4.3: homography between ground plane in space and image plane

Choosing the world coordinate system so that the first two axes define the ground
plane, the homography is defined by the projection matrix K and can be viewed as
transformation between two spaces P2.

up

vp
ψ

� �� �
m�

p

= K

0
Yp

Zp

Ψ

� �� �
Mp

=

K12 K13 K14

K22 K23 K24

K32 K23 K34

� �� �
Hw

Yp

Zp

Ψ

� �� �
mp

(4.20)

Finally, the projection m� of the point m in ground plane, given in real world coor-
dinates, can be calculated by

m�
p = Hwmp, m� =

m�
p

m�
p,3

, m� =

�
i
j

�
. (4.21)

4.3.2 Feature Extraction

After acquiring the image, the relevant information about the automotive scene
needs to be extracted. The information must then be given in a way that allows to
compute a probabilistic difference measure between observation and state variables.

The relevant information in automotive scenes is therefore identified in the next
paragraph, followed by a detailed description of different feature extraction methods.

Firstly, the road area needs to be separated from the background, where background
in this context is defined as every spatial area not belonging to the road area. Road
features are points, lines or areas of interest that help to separate the road from its
background. The following types of road features have been identified:

Lane markings are usually designed to have a high contrast. That is, there is a
high intensity gradient at the intersection between the road surface and lane
marking. Markings occur in various shapes, including solid lines, dashed lines,
double lines and Bott’s dots, as well as have variable width, dash distance and
dash length.

32 4. Particle Filter Design

Road-curb borders are structural features in R3 that often occur in urban envi-
ronments. These are difficult to extract without depth measurement system
such as stereo vision. However, they are detectable due to intensity gradients
generated by light-shadowing effects, but the certainty is lower than that of
lane markings.

Road-trimming borders are structural features that often occur on rural roads.
The road-trimming border produces a gradient intensity due to different road
surface color and background color. Furthermore the background texture usu-
ally has a higher local entropy than the road surface.

Figure 4.4: example of typical road features, a) from Daimler sequence No. 2 - lane marking, b)
from UWA sequence No. 1 - road-curb border

This work focuses on highway and major urban road environments, which means
that lane markings and road-curb borders need to be detected. Since this thesis
focuses on Particle filtering, the feature extraction problem is not treated in a great
deal of depth. Sobel filtering yielded reasonably good results, so the algorithm
mainly relies on the gradient magnitude and direction information. Unfortunately,
one consequence of using this approach was that the algorithm lacks robustness in
situations with weak road features and a lot of clutter present.

Intensity Gradient Filtering

As stated above, lane markings and road-curb borders generate intensity gradients
in the image of the road scene. To extract these intensity gradients it is convenient
to apply the two-dimensional, gradient operator to the intensity image y, that is

∇y(j, i) =
∂y

∂j
ej +

∂y

∂i
ei = yjej + yiei (4.22)

where ej and ei are the unit vectors in j and i direction.

The gradient magnitude gives a measure of the likelihood of observing a road fea-
ture which will be further discussed in section 4.5.1. For now though, the gradient
magnitude image is given by

M(j, i) =
�

y2
j + y2

i . (4.23)

4.3. Observation Model 33

The gradient direction gives an estimate of the spatial direction of the believed
feature and is given by

Θ(j, i) = arctan

�
yj

yi

�
. (4.24)

Since the image is given in discretized form, the above needs to be approximated by
finite differences, that is

∂y

∂j
[j, i] =

y[j + 1, i]− y[j − 1, i]

∆j
, (4.25)

∂y

∂i
[j, i] =

y[j, i+ 1]− y[j, i− 1]

∆i
, (4.26)

where ∆j and ∆i is chosen to be equal 1 pixel unit.

These gradients are usually aligned to form a certain curvature, generally called
edges. To extract the edge information, several linear aligned pixels are summed to
calculate the intensity gradient.

To improve robustness against image noise a weighted average smoothing is usually
performed in the orthogonal direction. Common edge filter kernels are Perwitt or
Sobel. Figure 4.5 illustrates the Sobel filter applied on an automotive scene.

Figure 4.5: example of intensity gradient filtering using Sobel operator; a) intensity image from
Daimler sequence No. 2; b) gradient magnitude image (inverted); c) gradient direction image; d)
filtered magnitude image (inverted) based on direction of lane hypothesis

34 4. Particle Filter Design

Entropy Filtering

Entropy is a statistical measure of randomness, and in image processing, entropy
quantifies the information content of an image. The entropy of an intensity dis-
tribution p = {p1, p2, p3, . . . , pn}, also referred to as image histogram, is defined as

H = −
�

i

pi log(pi), (4.27)

where log is the logarithm to the base 2.

The entropy measure can also be given for localized area in the image. If these areas
are defined as squares of odd size, every pixel can be assigned a certain entropy value
which corresponds to the information content of its neighboring pixels.

For areas with homogeneous pixel intensities, as e.g. road surfaces, a low information
content is expected. On the other hand, areas with high randomness, for example
meadow area, the information content is expected to be high. Figure 4.6 illustrates
the entropy filter applied on an automotive scene.

Figure 4.6: example of local entropy filtering; a) intensity image from Daimler sequence No. 2;
b) local entropy image (inverted) with kernel size 5x5; c) thresholded local entropy image (inverted)
up to 75 percent; d) thresholded local entropy image (inverted) up to 90 percent

4.3. Observation Model 35

4.3.3 Inverse Perspective Mapping

The transformation from image space to world space is called inverse perspective
mapping (IPM). As already state, the transform is formally written as

ỹk,m = hm(yk,vk,m).

IPM performs the reconstruction of the real world scene based on the camera model.
In general this relation is then given by a perspective transform, that is the inverse
transform of the imaging function described in section 4.3.1. When a flat ground
plane is assumed, this relation is given by the homography of the two planes.

The method of transforming the image data back to world space was first introduced
to lane detection tasks by Broggi et al. [Brog95].

As stated in section 4.3.1, the coordinate relation between world space and image
space is defined by the homography matrixHw. To map the image in world space the
indirect form of the transformation is used. That means, the coordinates in world
space are swept through, and for each element the corresponding pixel coordinate is
calculated and the pixel value copied. The coordinates are given by

mp = H−1
w m�

p, m =
mp

mp,3
, m =

�
Y
Z

�
. (4.28)

which can also be expressed as

Y =
iH−1

w,11 + jH−1
w,12 +H−1

w,13

iH−1
w,31 + jH−1

w,32 +H−1
w,33

, Z =
iH−1

w,21 + jH−1
w,22 +H−1

w,23

iH−1
w,31 + jH−1

w,32 +H−1
w,33

, (4.29)

where Z and Y are the coordinates in world space and i and j are the coordinates
in image space.

Figure 4.7: example of inverse perspective mapped image; a) intensity image from Daimler se-
quence No. 1; b) re-mapped image

36 4. Particle Filter Design

4.3.4 State Vector Projection

Different state hypotheses need to be evaluated to calculate the likelihood function
p(yk|sk). Therefore, the state vector must be projected either in image space or in
world space, depending on the space type of the given data.

The projection in world space is straightforward since the state vector provides pa-
rameters for the road model which is already located in world space. The projection
ỹk,s = hs(sk,vk,s) is given for the left and right lane boundaries by

Yl = Yc −W − tan(αw)Z,

Yr = Yc +W + tan(αw)Z,
(4.30)

and for the stabilizer lines by

Ysl = Yc −W ·Dl

Ysr = Yc +W ·Dr,
(4.31)

where the center line is given by Yc = Y0 + tan(�w)Z + C0
2 Z

2 + C1
6 Z

3.

The projection in image space just needs one more step, the transformation of each
point according to the camera model. This is determined by the homography matrix
H. The projection ỹk,s = hs(sk,vk,s) is then given for each line by

m�
p = Hmp, m� =

m�
p

m�
p,3

, m� =

�
i
j

�
, (4.32)

which can also be expressed as

i =
Y H11 + ZH12 +H13

Y H31 + ZH32 +H33
, j =

Y H21 + ZH22 +H23

Y H31 + ZH32 +H33
. (4.33)

The projection of the state vector on data that contains any kind of road features,
given either in image space or in world space, will be referred to as projection on a
feature map. This is formally written as

F (z, y) ←− sk, (4.34)

A detailed analysis of possible data flow structures follows in the next section. Then
the order in which the above methods are applied is defined.

4.4. Data Flow 37

4.4 Data Flow

For the sake of clarification, a brief review of the system’s spaces will be given. Then
different approaches to implement each step of the particle filter in different spaces
will be considered.

World Space refers to an Euclidean space R3 that addresses the real world scene
in which the vehicle is traveling.

State Space refers to a parameter space R8 that addresses the road model that
is matched to the real world scene in either world coordinates or world map
coordinates.

Image Space refers to a finite, discrete space N2 that addresses a projective image
of the real world scene in which the vehicle is traveling. Data given in image
space is referred to as image.

World Map Space refers to a finite, discrete space N2 that addresses a discretized
ground plane of the real world scene in which the vehicle is traveling. Data
given in world map space is referred to as map.

Four different data flow structures have been considered and analyzed in terms
implementation performance and algorithm quality. An illustration of the different
approaches is given in Figure 4.8. The focus lies in variations of the space in which
the feature extraction and evaluation takes place. The approaches are:

Structure 1

1. capturing scene

2. feature extraction in image space

3. transforming feature images to world map space

4. evolving system state which refers to world map space

5. projecting hypothesis on feature maps

6. evaluating particles in world map space

7. calculating expected gradient direction value per hypothesis during evaluation
(additional coordinate transformations)

Benefits: straightforward, no artifacts in gradient maps, accurate model matching

Drawbacks: high cost for transformation, feature extraction is faced perspective
effects

Structure 2

1. capturing scene

2. transforming scene image straight away to world map space

3. feature extraction in world map space

4. evolving system state which refers to world map space

38 4. Particle Filter Design

Figure 4.8: four data flow structures

5. projecting hypothesis on feature maps

6. evaluating particles in world map space

7. calculating expected gradient direction value per hypothesis during evaluation
(no additional coordinate transformations)

Benefits: straight forward, no additional transformation for acquiring gradient di-
rection, accurate model matching, feature extraction with almost no perspec-
tive effects

Drawbacks: artifacts in feature map are generated due to interpolation during
image transform

Structure 3

1. capturing scene

2. feature extraction in image space

3. evolving system state which refers to world space

4. projecting hypothesis on feature images via coordinate transformation

5. evaluating particles in image space

6. calculating expected gradient direction value per hypothesis during evaluation
(additional coordinate transformations)

4.4. Data Flow 39

Benefits: no artifacts in gradient maps, accurate model matching

Drawbacks: high cost for transformation, feature extraction needs to deal with
perspective effects

Structure 4

1. capturing scene

2. feature extraction in image space

3. evolving system state which refers to image space

4. projecting hypothesis on feature images

5. evaluating particles in image space

6. calculating expected gradient direction value per hypothesis during evaluation

Benefits: no artifacts in gradient maps, accurate model matching, minimum num-
ber of coordinate transforms possible

Drawbacks: feature extraction is faced perspective effects, motion parameters must
be transformed to image space, different road model which is based in image
space does not reflect the real world, hence it is an abstract approximation

4.4.1 Summary

Structure 1, 2 and 3 have the great advantage that the road model is originated in
real world coordinates and thus fits better the reality than a model in image space.
However, Structure 4 provides a minimum number of coordinate transformations,
which are quite expensive to process.

Structure 2, in contrast to the others, provides a feature extraction in world map
space with reduced perspective effects. However artifacts generated by the IPM
influence the feature extraction in world map space.

Structure 1 and 3 have about the same amount of coordinate transformations de-
pending on world map size and number of particles, however structure 1 is easier to
implement and, because the world map is static, also faster to implement.

All in all, structure 4 would be the fastest but least accurate implementation,
whereas a combination of 1 and 2 would be the most accurate and flexible struc-
ture. Since the particle filter and feature extraction can be implemented in parallel
structure easily, structure 1 and partially considerations of structure 2 were chosen
for this project.

40 4. Particle Filter Design

4.5 Particle Evaluation

This first paragraph explains the term particle evaluation by the help of a brief recall
from section 3.3. It is then followed by a detailed description of its implementation
for LDT algorithms.

The final aim is to compute the posterior distribution given by the recursive Bayesian
estimator

p(sk|Yk) =
p(yk|sk) p(sk|Yk−1)�
p(yk|sk) p(sk|Yk−1) dsk

.

Since the true p(sk|Yk−1) is not available, it is substituted by the proposal distribution
p(sk|sk−1) which is approximated by the particle distribution in state space. The
particle distribution of time k is given by applying the evolution model to the particle
distribution of time k − 1, this is formally written as

s(n)k = f(s(n)k−1,uk−1,v
(n)
k−1), (4.35)

where v(n)
k−1 is a random vector drawn from a zero-mean Gaussian distribution with

covariance Q. Therefore, one can write the following

p(sk|Yk) =
p(yk|sk) p(sk|sk−1)�
p(yk|sk) p(sk|sk−1) dsk

≡ p(yk|s(n)k)
�
p(yk|s(n)k) dsk

. (4.36)

The nominator term of the recursive Bayesian estimator is therefore approximated
by

p(yk|sk) · p(sk|Yk−1) ≡ p(yk|s(n)k) = w(n)
k , (4.37)

where w(n)
k is the particle weight which reflects the relative likelihood of the particle

representing the true lane parameters. This likelihood is determined by the difference
between the observation and the lane hypothesis. The computation of the particle
weight is called particle evaluation.

The relative likelihood of each particle is formulated in more detail by

w(n)
k = P (yk = ỹ∗k|sk = s(n)k) = P (v(n)k = ỹ∗k − hs(s

(n)
k)), (4.38)

where v(n)k is the difference measure for each particle, ỹ∗k is a specific observation given

in either image space or world space and hs(s
(n)
k) is the lane hypothesis transformed

to either image space or world space.

The difference measure is a crucial design step, because it is the interconnection be-
tween the real world measurement and the system model. Ideally, both the simplicity
of the system model, and its fit to the real world problem should be maximized. For
this reason, it must be carefully chosen with respect to the particular application.

The relative particle likelihood is then given by

w(n)
k ∼ exp

�
−v(n) 2k

2 σ2

�
, (4.39)

where σ2 is the variance of the difference measure, which represents all uncertainties
that are introduced by the observation model.

4.5. Particle Evaluation 41

A more general form of the above is given by the product of several statistically
independent observations, that is

w(n)
k =

M�

m=1

w(n)
k,m =

M�

m=1

Pm(yk,m = ỹ∗k,m|sk = s(n)k), (4.40)

where Pm denotes the likelihood, given observation m ∈ [1, 2, . . . ,M]. The distance
measures are individually designed for each feature map.

The first step of weight evaluation, independent of the type of feature data, is the
projection of the lane hypothesis on the data according to

F (z, y) ←− sk.

After the projection, the difference measures for every projected line, or the area
spanned by the lines, are computed and finally logically linked together. Different
methods of doing this will be discussed in the next sections.

Since all difference measures relate to a single particle at a single time, the time
index k and the particle index (n) will be left out.

4.5.1 Line Difference Measure

The difference measure for the projected lines can be computed in different ways
which are described in the following subsections. Before that, a description of how
the feature map values are related to the likelihood of obtaining a road feature is
described in the following paragraph.

The feature map elements F [z, y] ∈ [0, 1, . . . , 255] represent the likelihood of obtain-
ing an actual road feature with respect to an expectation value µF .

For example, an element of the gradient magnitude map FM [z, y] would be most
likely to be a road feature if its value is ”255” [FrJo00, SKAD07, LoFS09]. This is
based on the premise that lane markings have a intensity value of ”255”and the road
surface of ”0”. Therefore, the expectation value of the gradient magnitude µFM is

µFM = 255.

Since the road markings are not necessarily in saturation, a representative variance
σ2
FM

needs to be found. A different approach would be to adjust µFM to a value that
is more likely to be observed, or even to calculate the value dynamically to adapt
the system to changing light conditions.

The same principle holds for the gradient direction map FΘ[z, y]. In this case,
however, the expected value µFΘ depends on the lane hypothesis. This relation is
described in section 4.5.3.

Average Likelihood

To compute the difference measure v given by each line (yl, yr, ysl, ysr), the pixel
values of the projected line are summed and normalized to the number of pixels.
This method was proposed by several authors [SKAD07, SoTa01, DNMT08], and is
formally written as

vline =
1

Nz

Nz�

z=1

(F [z, yline(z)]− µF) , (4.41)

42 4. Particle Filter Design

Average Likelihood of Connected Elements

Since road features usually appear as segmented pixel elements, it is necessary to
apply an evaluation scheme that considers these structural aspects, and takes into
account that each element must have neighbors in the direction of the line hypothesis.

The proposed evaluation scheme therefore introduces a logical AND-conjunction
between several feature points. However, since any kind of thresholding is undesir-
able, the AND-conjunction is generalized by multiplication. The connected element
selective difference measurement is given by

vline =
1

Nz

Nz�

z=1

 M

����
M−1�

m=0

F [z, yline(z −m)]− µF

 , (4.42)

where M is the number of elements which are expected to be connected and deter-
mines the size of minimum segment length.

This method is in principle similar to edge filtering, but provides a larger range for
small features. Additionally, it can be used for feature maps which do not contain
any direction information.

Average Likelihood with Equal Distribution

Structural analysis of road boundaries reveal that the road features are spread over
the whole measuring range along the z-axis, whereas strong features introduced by
occlusions are only present at parts of the z-axis.

By introducing this information the difference measure should gain further robust-
ness against partial road occlusions like shadowing or vehicles.

Average Likelihood with Periodicity

The previous idea can be generalized by the introduction of Fourier analysis. The
lane features that occur usually have some periodic behavior. Considering the
Fourier spectrum of F [z, y(z)], the different road features might be identified by: a)
continuous lane marking, by constant spectral intensity corresponding to the likeli-
hood, b) dashed lane marking, by frequency component with intensity corresponding
to half the likelihood, assuming dashes are as long as gaps. More difficult cases are
also determinable. c) Occlusions, by high frequency or low frequency components

The problem of the last two proposed methods is the detecting phase. During
that phase, usually only small parts of the lane are detected and the rest is slowly
approached. Unfortunately, no further investigation of these ideas could follow due
to lack of time.

4.5.2 Conjunction of Several Lines

Once the cumulative likelihood is calculated for each line separately using either of
the above methods, the relative hypothesis likelihood is calculated by conjugating
the line likelihoods. This can be done in either of two ways:

The first, an OR-conjunction, yields a conjunction that is tolerant of missing data

v =
1

N

�

line

vline

4.5. Particle Evaluation 43

The second, an AND-conjunction, yields a very rigid conjunction toward present
data

v = N

��

line

vline

where line ∈ {l, r, sl, sr} and N is the number of lines used.

The lane boundary lines should always be present together so that vl and vr are AND-
conjugated. However, during the initialization phase it turned out to be convenient
to allow an OR-conjugate so that the particles can converge to an estimate by
”following a trace” which might be high likelihoods of one of the boundary lines.
Therefore, the likelihood of both boundary lines are conjugated by

vc = 0.9 ·
√
vlvr + 0.05 · (vl + vr) (4.43)

The left and right stabilizer lines do not need to be present at the same time, they
should just increase the hypothesis likelihood if they are present. Therefore, the
difference measures are OR-conjugated:

vs = 0.5 · (vsl + vsr) (4.44)

The overall difference measure and the relative likelihood of the gradient intensity
map is given by

vFM = vc + vs and wFM ∼ exp

�
−

v2FM

2 σ2
FM

�
. (4.45)

4.5.3 Expectation Value of Gradient Direction

The gradient direction represents a direction estimate of the believed road feature.
It is given by the feature map FΘ ∈ [0, 1, . . . , 255] representing the angles from 0◦

to 360◦.

The expected direction value µFΘ is simply given by the first derivative of the lane
curvature, that is

dy

dz
= tan(�) + c0z +

c1
3
z2, (4.46)

where the expected angular value is given by

µFΘ = arctan

�
dy

dz

�
= arctan

�
tan(�) + c0z +

c1
3
z2
�
. (4.47)

considering only linear road curvatures as a first order approximation it reduces to

µFΘ = arctan (tan(�)) = �. (4.48)

The expectation value given above can be used if the feature extraction was per-
formed in world map space. For feature maps resulting from feature extraction in
image space, the direction information must be transformed to image space.

Due to perspective effects, the coordinate transform needs to be performed for each
single line. A straightforward method is to use two points to represent the line,
transform the points to image space and calculate the angle estimate, based on the
slope in image space, that is

µFΘ = arctan

�
i2 − i1

−(j2 − j1)

�
. (4.49)

44 4. Particle Filter Design

4.6 Sample Impoverishment
Sample impoverishment is an implementation issue that occurs when the region of
state space in which the observation likelihood p(yk|sk) has significant values does
not overlap with the prior distribution p(sk|Yk−1). In this case, only a few distinct
a priori particles become a posteriori particles. This eventually causes all particles
to collapse to a single point in state space.

The same holds for multimodal likelihood functions. When taking first a unimodal
function and let the particles distribute accordingly, after a few iterations the sit-
uation is as given in Figure 4.9 a). Assuming the likelihood is changing towards a
bimodal distribution, even after several iterations, no particles will evolve into the
second mode because of sample impoverishment. This is shown in Figure 4.9 b).

Figure 4.9: sample impoverishment in one-dimensional state space where the black curve is the
prior distribution p(sk|Yk−1) and the blue curve the observation likelihood p(yk|sk), the bar under-
neath represents the particle distribution; a) unimodal distribution; b) multimodal distribution

Sample impoverishment is frequently present in LDT systems, for example when an
additional lane begins or in situations when a wrong mode was tracked and the real
lane is actually in a different place in the state space. To handle these situations, it
has been proposed to include initial particles which are introduced in every iteration
[SoTa01, NSGD+04, DNMT08].

Unfortunately, analyzing the Particle filter in terms of multimodal likelihood func-
tions reveals a structural problem, because the Bayesian estimator is a maximum
a posteriori (MAP) estimator. This means that even when initial particles are in-
troduced to every iteration, the original Particle filter will always converge to a
unimodal distribution, which represents the strongest lane hypothesis. This be-
havior is explained in the following thought experiment and will be referred to as
multimodal sample impoverishment.

Thought Experiment

• Given is a discrete state space with ten states denoted by n and

• a discrete multimodal likelihood function with likelihood value 4 in state three
and 2 in state six as given in Figure...

• the particle set consists of 100 particles each with weight w̃(n) = 1/100 and an
equal distribution over the state space.

after iteration 1: Initially, there are 10 particles in each state, with w(3) = 4,
w(6) = 2 and 80 particles in the remaining states with w(n) = 0.

4.6. Sample Impoverishment 45

After resampling 2/3 · 100 ≈ 66 equally weighted particles will be generated
in state three, and 1/3 · 100 ≈ 33 in state six.

after iteration 2: Now, there are 66 particles in state three with each w(3) = 4
and 33 particles in state six with each w(6) = 2. Sum of all weights will be�

w(n) = 66 · 4 + 33 · 2 = 330.

After resampling 66 · 4/330 = 80 equally weighted particles will be generated
in state three, and 33 · 2/330 = 20 in state six.

It is evident that within a few iterations, mode two, which has lower likelihood than
mode one, will vanish from the posterior distribution. Figure 4.10 illustrates the
experiment again.

Figure 4.10: sample impoverishment in one-dimensional state space where the black curve is
the prior distribution p(sk|Yk−1) and the blue curve the observation likelihood p(yk|sk), the bar
underneath represents the particle distribution; a) after 2 iterations; b) after 6 iterations; c) after
12 iterations

The thought experiment demonstrates why multimodal sample impoverishment oc-
curs for unequal multimodal likelihood functions. The reason it is present even for
equal likelihood functions is because usually the first hypotheses do not directly hit
the best estimates, but converge slowly to that position in state space. Therefore
it is very unlikely that an equal weight for all hypotheses of each mode will be
maintained.

Multimodal sample impoverishment yields two major shortcomings regarding LDT
systems. Firstly, any information about neighboring lanes is lost, and secondly,
usually the lane with strongest lane features will be tracked.

The latter issue can be handled by introducing narrow physical constraints during
the weight evaluation. This has been done by some authors [DNMT08], however it
is merely a hack since the actual idea of having a comprehensive understanding of
the scene is still lost. There are other approaches to deal with this problem, which
are discussed in the following sections.

These methods have been evaluated by simulating a three lane structure with ideal
lane markings. Figure 4.11 shows the lane set-up in world map space and its result
with multimodal sample impoverishment.

46 4. Particle Filter Design

Figure 4.11: sample impoverishment simulation: original algorithm; a) lane structure in world
map space; b) state space subset (y0 and w), green particles are initialization samples, blue particles
are prior samples and red particles are posterior samples, dashed ellipses mark the area of expected
local maxima

4.6.1 Auxiliary Resampling

One attempt to overcome the problem of multimodal sample impoverishment is to
reduce the weight of particles in highly populated regions of the state space. This
can be done by introducing an auxiliary parameter to the weight normalization step
so that the weights are regularized towards the average weight [PiSh99, RiAG04].
This is formally written as

w̃(n) =
(α− 1)w(n) + w

α
(4.50)

where w is the sample mean of all w(n) likelihoods. The auxiliary parameter α
controls the regularization, that is if α → ∞ then the regularized likelihoods w̃(n)

are equal to the original likelihoods w(n). If α = 1 then all regularized likelihoods
are equal to the mean likelihood w.

However, this turns out to be only minimally effective in terms of recovering the
multimodal distribution. Despite the fact that auxiliary resampling introduces high
randomness for low α values, the particles only occasionally cluster around multiple
modes depending on the initialization state. They always end up with a single mode
distribution. Furthermore, with decreasing α towards 1, the more iterations are
necessary until clustering can be observed.

4.6.2 Importance Sampling

A different approach is to introduce further information during sampling. That is,
instead of using the transition density p(sk|sk−1) to sample from, one modifies the
proposal distribution by adding the information gained from the stabilizer lines,
which are indicators where additional lane candidates might occur.

Based on the lateral location and curvature of the stabilizer lines, importance sam-
ples are introduced to the proposal distribution. However, due to projective effects,

4.6. Sample Impoverishment 47

Figure 4.12: sample impoverishment simulation: auxiliary resampling; a) after 15 iterations with
α = 1.5; b) after 30 iterations with α = 1.1; c) after 50 iterations with α = 1.1; d) after 100
iterations with α = 1.05

the importance samples have not matched the road features as well as the current hy-
pothesis does. Hence the weights of the importance samples are too low to compete
with the samples of the current hypothesis.

The next logical step is to combine importance sampling and auxiliary resampling.
This was attempted, but did not yield any satisfactory results for the same reasons
as given above.

4.6.3 Constrained Residual Resampling

If the situation is considered from a different point of view, it can be seen that the
problem is that there are an excessive number of particles in one single mode. From
here, the idea arises to artificially limit the number of a posteriori particles which
are generated by a single a prior particle. An easy way of implementing this is to
use residual resampling, where the number of generated particles is limited. This
is referred to as constrained residual resampling. The residual particles are then
introduced as initial particles. This approach is similar to the auxiliary resampling,
but results in less randomness, because the initial particles are not part of the
posterior distribution.

Simulations revealed the following behavior when varying the limiting value:

48 4. Particle Filter Design

Figure 4.13: sample impoverishment simulation: neighbor lane importance sampling; a) after 5
iterations; b) after 13 iterations

Figure 4.14: sample impoverishment simulation: neighbor lane importance sampling and auxil-
iary resampling with α = 1.1; a) after 20 iterations clustering is observed; b) after 40 iterations
stabilizing estimate

limit↑ limit-less behavior with unimodal distribution

limit↓ higher number of initial particles and still unimodal distribution

A change towards a slight multi modal distribution could be shown when varying
the observation variance R:

R↑ stable behavior but unimodal distribution

R↓ unstable behavior but multimodal distribution

The reason for this is that the limitation is applied to a single a prior particle.
However, considering that a mode is represented by not one, but several particles,
and the fact that the state space is continuous, the overall number of particles of
that mode is not limited at all. Therefore, one also needs to consider the particle
density to be able to limit the particle population per mode. This insight leads to
clustered resampling which is discussed in the next section.

4.6. Sample Impoverishment 49

Figure 4.15: sample impoverishment simulation: neighbor lane importance sampling and auxil-
iary resampling with α = 1.1; a) after 20 iterations clustering is observed; b) after 40 iterations
stabilizing estimate

4.6.4 Clustered Resampling

Clustered resampling is a more computationally expensive approach, which enables
present modes to be treated separately. This is achieved by limiting the number of
particles per mode so that other modes can also arise.

The modes are determined by a simple clustering algorithm e.g. hierarchical clus-
tering. Then the particle weights can be modified according to their cluster group.

4.6.5 Grid based Density Constrained Resampling

Another approach to limit the number of particles per mode is to introduce a lim-
itation on the particle density. This could be done by lying a grid over the state
space and constraining the resampling process to a maximal number of particles per
grid element. Therefore, residual resampling seems to be a straightforward method
of implementing the density constrained resampling.

Unfortunately, the last two proposed methods couldn’t be implemented due to lack
of time. However, they seem to be promising methods of achieving multimodal
particle filter implementation, and would be investigating further.

50 4. Particle Filter Design

5. Implementation

In this chapter, several implemented modules are discussed. Starting with the lane
detection and tracking algorithm based on Particle filtering, the overall algorithm
structure is shown and particular implementation issues are discussed.

Finally the embedded vehicle measurement system is explained. This system was
implemented to record image data including measurements of the vehicles velocity
and yaw rate.

5.1 Image Space, World Map Space and State
Space

Before describing each algorithm module in detail, a brief note about the imple-
mented data spaces is given in this section.

First the data structure of image space and world map space is stated, then the
relation between world map space and world space is given. Finally, the relevance
of this relation for implementation of the state space is discussed.

Both, data in image space and world map space are stored in Intel’s IplImage data
structure. The matrix indices are illustrated in Figure 5.1. It should be noted that
the indices start with 0 and go up to N−1 in contrast to MATLAB structures where
indices start with 1 and go up to N .

The relation between world coordinates and world map coordinates is then given by

�
y
z

�
= f

��
Y
Z

��
=

��
Y
Z

�
−

�
ay
az

��
·
�
by 0
0 bz

�
, (5.1)

where az and ay are the offset of the world map coordinate system relative to the
world coordinate system in meter, bz and by are the world map resolution in me-
ter/pixel. These parameters are fixed to specific values that showed good results for
both accuracy and performance given in appendix

52 5. Implementation

Figure 5.1: a) image space, where k is the discrete time index, i and j are the indices denoting
the pixels in image space. b) world map space, where z and y the pixels in world map space and Z
and Y are the axes of the world coordinate system.

The state space given in chapter 4 refers to the road model described in world space.
Since the particle evaluation is computed in world map space, the road model must
be projected in world map space, too. This projection is given by equation 5.1.

To speed up the particle evaluation module, this projection step is eliminated by
defining the state space referring to the road model described in world map space
instead of world space. Recall from chapter 4, the state vector describing the road
model in world space is

sw =
�
Y0 tan(�w) C0 C1

W
2 Dl Dr tan(αw)

�T
,

using the road model parameters for world map space, the implemented state vector
is given by

s =
�
y0 tan(�) c0 c1

w
2 dl dr tan(α)

�T
. (5.2)

5.2 Lane Detection and Tracking Algorithm
The LDT algorithm is implemented in C++, utilizing Intel’s open source computer
vision library OpenCV. The development suite for this project was Microsoft Visual
Studio 2008 Professional.

The implementation is principally identical to the structure given in the design
chapter 4. There are some deviations, though, to improve the system performance.

It shout be noted, that this implementation, as it is given, does not use any parallel
computation methods. However, the Particle filter is very well suited to be imple-
mented on highly parallel structures. These parts are marked in Figure 5.2 as 3D
structures.

Initialization

Regarding performance reasons, all data which is used in calculation expensive algo-
rithm parts, such as particle evolution and particle evaluation, is pre-allocated and
passed to the processing function by reference.

Therefore different data structures need to be allocated and initialized before the
LDT algorithm can be started.

5.2. Lane Detection and Tracking Algorithm 53

Figure 5.2: flow chart of lane detection and tracking algorithm

Caching Video File

The automotive videos are given in the form of single images in the PGM-file format.
The file header contains time discrete measurements of the vehicle’s velocity and yaw
rate. To get a higher performance, the video sequence is pre-allocated in the memory.

The file header of the videos given by the German automotive company Daimler AG
is slightly different from the file header of the videos recorded by the author and
hence specific loading functions are provided.

Listing 5.1: Daimler AG header information

P5
\# : speed dd . dddddd : s t e e r i ngAng l e dd . dddddd : cycleTime dd . dddddd
\#
640 480
255

Listing 5.2: UWA header information

54 5. Implementation

P5
\#bigEndian
\#[Units are rads , meters and seconds]
\#dt= dd . dddddd
\#Sp= dd . dddddd
\#Ax= dd . dddddd
\#Ay= dd . dddddd
\#Az= dd . dddddd
\#Pi= dd . dddddd
\#Ro= dd . dddddd
\#Yw= dd . dddddd
800 600
255

Frame Grabbing

During frame grabbing, first an image pointer is assigned to the particular image
in the source image array at time index k. This serves only to preserve overview
of the code. Second a copy of the source image is stored in a three dimensional
image structure so that extracted features, lane estimate and other information can
be displayed in color.

Feature Extraction

Intel’s open source computer vision library OpenCV provides a various amount of
different feature extraction methods so that the Sobel operator does not have to be
implemented from scratch. The function cvSobel(·) provides an intensity gradient
image in either i- or j-direction for different kernel sizes.

The gradient magnitude image is easily computed given the equation in section 4.3.2.
However, the gradient direction must be encoded in a way that the slope of a line
hypothesis given in image space can be compared to it.

The slope of a line in image space is defined as m = ∆i/−∆j, this gives m = 0 for
a vertical line and m = ±∞ for a horizontal line approached from either positive
or negative slope respectively. The negative sign results from the fact that in image
space the origin is in the left upper corner and therefore the j-axis is in the opposite
position from that of common coordinate systems. The line’s angle is then given by

θ(m) = atan

�
∆i

−∆j

�
, (5.3)

where return values of atan(·) is in the range [−π/2, π/2] so that a continuous
transition from horizontal line with m = −∞ via vertical line to horizontal line with
m = ∞ is assured.

The gradient direction must be encoded based on the same definition of line slope
given above. However, one slope has two different gradient direction values. One
for a dark-bright transition and one for a bright-dark transition. If the gradient
direction is encoded as

Θ(j, i) = [atan2 (yi,yj) + π] · 255
2π

, (5.4)

5.2. Lane Detection and Tracking Algorithm 55

where yi is the gradient image in i-direction and yj in j-direction and atan2(y,x) is
a standard c library function that computes the arc tangent of y/x, using the signs
of the arguments to compute the quadrant of the return value with return value
range [−π, π], then the line’s angle for dark-bright transition is given by

θ�(m) =

�
atan

�
∆i

−∆j

�
+

π

2

�
· 255
2π

(5.5)

and the angle for bright-dark transition by

θ�(m) =

�
atan

�
∆i

−∆j

�
+

3π

2

�
· 255
2π

. (5.6)

These expectation values are needed during the particle evaluation to compare the
expected gradient direction value θ(m) with the actual gradient direction value of
the feature map Θ(j, i).

Inverse Perspective Mapping

OpenCV provides the inverse perspective mapping function cvWarpPerspective(·)
which computes the perspective mapping using one of the following pixel interpola-
tion methods; nearest neighbor, bilinear, bicubic and pixel area relation, based on a
given homography matrix. The coordinate transform is given by1

z
y
ψ

 = H−1

i
j
1

 (5.7)

which is

wm [z, y] = img

�
ip

�
iH−1

11 + jH−1
12 +H−1

13

iH−1
31 + jH−1

32 +H−1
33

�
, ip

�
iH−1

21 + jH−1
22 +H−1

23

iH−1
31 + jH−1

32 +H−1
33

��
, (5.8)

where wm is the destination image in world map space, img the source image in image
space and ip(·) the specified interpolation method2.

It should be explicitly noted that H is the homography between the image plane and
the world map. It is significantly distinguished from Hw which is the homography
between the image plane and the ground plane given in world coordinates.

Introduce Initial Particles

During the deduction of the Bayesian estimator, it is assumed that the initial density
function p(s0) is known, see equation 3.13. Since there is no prior knowledge about
the position and shape of the lane, this density function is set to a uniform distributed
probability over the whole state space. This is implemented by introducing initial
particles which are randomly spread through the initial range of the state space.

Furthermore, to avoid sample impoverishment when tracking wrong road features,
initial particles are used to continuously search the state space for more significant
lane hypothesis. Therefore, 10 percent of the particle set are initial particles intro-
duced at each iteration.

1The coordinate system used in MATLAB is different to the one used in OpenCV, in MATLAB

this relation is given by
�
y z ψ

�T
= H

−1
�
j i 1

�T
, therefore the homography matrix

needed to be recalculated, this is given in appendix
2Further information about interpolation methods used by cvWarpPerspective(·) is given in

the OpenCV reference at http://opencv.willowgarage.com/documentation/c/index.html.

56 5. Implementation

Evolve Particles

The particle evolution as well as the particle evaluation is processed directly one
after another for each particle in a for-loop. This structure enables to implement
both modules in a highly parallel structure. This is denoted by the 3D structure in
figure 5.2 and is shown in detail in figure 5.3.

Figure 5.3: flow chart of particle evolution and evaluation in one for-loop

Since the state space is implemented referring to world map space, the evolution
process given in section 4.2 must be adapted accordingly. Recall from chapter 4, the
road model is basically3 given by

Yc(z) = Y0 + tan(�w)Z +
C0

2
Z2 +

C1

6
Z3,

and the position change in Z-direction within two subsequent states is given by

∆Zk = vk·∆t· cos
�
�w,k +

∆�w,k

2

�
.

With the given road model for world map space

yc(z) = y0 + tan(�)z +
c0
2
z2 +

c1
6
z3. (5.9)

the position change in z-direction is then given by

∆zk = (∆Zk − az) · bz.

Evaluate Particles

The particle evaluation is implemented according to the methods described in section
4.5. An overview of the evaluation algorithm is given in Figure 5.4 where the average
likelihood measure is shown.

First the lane hypothesis is projected according to equation 5.9. Then the line
individual difference measure is computed by summing up over z, subtracting the
mean either during the summation or after normalizing and normalizing the sum.
Finally computing the particle weight according to equations 4.40 and 4.39.

3For Yl, Yr, Ysl and Ysr holds the same.

5.2. Lane Detection and Tracking Algorithm 57

Figure 5.4: a) gradient magnitude world map with projected lane hypothesis; b) flow chart of
evaluation algorithm

Normalize Weights and Resample Particles

After normalizing the particle weights the particles are resampled with the stratified
resampling method described in section 3.3.2.

Compute Lane Estimate and Display Data

Finally the lane estimate is computed using a simplified clustering method. Here the
particle with maximum weight is used as center point, all particles with a certain
distance to the center or smaller are included in computing a weighted mean, others
are left out. Finally the lane estimate and other relevant information is drawn into
the output image.

58 5. Implementation

5.2.1 Naming Convention

Since the IplImage structure provides different bit-depths, all image structures fol-
low one naming convention which encodes the bit-depth and the image type, this is
for structures in main(·):

typeDescr_BIT

Since the data is passed to functions by reference, the arguments serve as input, out-
put, both or temporary data used in the function, therefore the naming convention
is extended for function arguments to:

typeIntfDescr_BIT

Table 5.1: wildcard definition: variable name

wildcard definition description

type img data in image space
wm data in world map space
tm data in travel map space
ss data in state space
mat matrix data

Intf In variable is data input
Out variable is data output
IO variable is data input and output

Descr short description what the variable is used for
BIT 08U unsigned char

16S signed short
32S signed int
32F float
64F double

Since for some functions a huge number of variables are passed by reference, the
order in which the different variables appear is also defined, that is

ldVerbObject([input],[input/output],[output],[parameters],[temp])

Table 5.2: wildcard definition: function name

wildcard description

Verb describes what the function is doing
Object is the Object which the function is applied at
[input] list of data input arguments
[input/output] list of data input and output arguments
[output] list of data output arguments
[parameters] list of function parameters
[temp] list of temporary data arguments

5.3. Car Measurement Unit 59

5.3 Car Measurement Unit

To record automotive scenes in the area of Perth, a measurement unit for the Uni-
versity of Western Australia’s renewable energy vehicle (REV) was designed. The
REV which is used is a modified Getz from the car manufacturer Hyundai to prove
the concept of zero emission vehicles for the future4.

The measurement unit needs to acquire images of the road scene and the vehicle’s
motion parameters (velocity and yaw rate). The images are captured by the high
resolution web cam QuickCam Pro 9000 from Logitech, the yaw rate is measured by
the low cost intrinsic measurement unit Atomic IMU 6DoF from Sparkfun and the
velocity was measured directly from the speed sensor signal of the car electronics
utilizing the micro controller evaluation kit AVR Butterfly from Atmel.

The measurements are pre-processed and combined using a MATLAB script. The
principal set-up is illustrated in Figure 5.5. Each single image frame is stored in a
PGM-file, where the motion parameters are stored in the PGM-header. A descrip-
tion of the image header is given in appendix

Figure 5.5: principal set-up of car measurement unit

Frequency Consideration

The IMU sends the data with a baud rate of 115200 bit/second via serial connection
using the following data protocol.

Figure 5.6: data protocol of IMU serial connection

Given the number of bits used for one byte defined by the RS232 protocol and the
number of bytes sent by the IMU, the maximum frequency is given by

fmax =
115200 bit/s

(start bit + 8 data bit + stop bit) · (16 byte)
=

115200

10 · 16 s
= 720 Hz. (5.10)

The speed signal is a frequency modulated pulse signal. The relation between fre-
quency and velocity is linear and was determined empirically to be

v = 1.413 · fv. (5.11)

4Further information on the university’s efforts on renewable energy vehicles are given at

http://robotics.ee.uwa.edu.au/rev/index.html.

60 5. Implementation

The maximum frequency that needs to be measured is therefore given by the maxi-
mum speed (defined to be 120 km/h) and is 85 Hz.

The micro controller unit serves as buffered interface which measures the frequency
varying signal and outputs the velocity with a constant frequency of 200 Hz via
serial connection. It should be noted that always the latest measurement is sent.

The bottle neck of the measurement unit is given by the image acquisition, therefore
all other measurements are buffered in an array. The final motion parameters are
computed by the mean of all measurements acquired during one cycle. Figure 5.7
shows the flow chart of the measurement system.

Figure 5.7: flow chart of MATLAB script for capturing and storing image data and motion
parameters

Finally a dynamic frame rate is given within the range 9 to 11 fps, the actual cycle
time is also stored in the image header.

Frequency Measurement

To measure the pulse frequency, a 16-bit timer and an external input interrupt of
the ATmega16 are used. The timer is used to measure the time between two edges
(half the period time), where the external interrupt is used to detect a rising or
falling edge.

Each time a rising or falling edge is detected the timer value is used to compute the
frequency, and then set to zero again to measure the next period.

6. Performance and Accuracy
Evaluation

In this chapter, the proposed LDT system and its various implementations are an-
alyzed and evaluated in terms of accuracy and performance.

In the first section, the applied error measurement methods are defined. This is fol-
lowed by a discussion of the most important algorithm issues as well as solutions for
overcoming them. In section three and four a comparison of different interpolation
methods of the IPM and of two different tracking methods is given. Finally, the
performance of the overall system is analysed.

In this context, the term performance refers to a measure of the execution time of
the algorithm or its modules.

The accuracy evaluation is based on so called ground truth data. This data holds the
information about position and shape of the actual lane which is given per frame.
The system output can then be evaluated in terms of accuracy based on the given
ground truth data.

Unfortunately, the ground truth data was not available, so the data needed to be
generated manually. This was achieved by tuning the algorithm towards the specific
road scene sequence, increasing the number of particles to 3000, and running the
sequence 50 times in a loop and computing the average value of each parameter
per frame. The result gives an estimate of the ground truth, which was validated
manually and shown to match the lane very well.

All automotive sequences used in this chapter were provided by the German car
manufacturer Daimler AG and are recorded on German Autobahn in the area of
Stuttgart in Germany.

62 6. Performance and Accuracy Evaluation

6.1 Measuring Methods
In this section a brief explanation of the used measuring methods for evaluating
performance and accuracy is given.

6.1.1 Performance Measuring Method

The execution is measured using the timeGetTime() function, provided by Microsoft
Windows’ Winmm-library, which returns the system run time in milliseconds (accu-
racy is ca. 15 ms). The measured function is looped 1000 or 10000 times to achieve
a higher accuracy.

All measurements are taken on a Thinkpad R61 running MS Windows XP Profes-
sional SP3. The residing CPU is an Intel Core 2 Duo, T8300 at 2.4 GHz which has
3GB of RAM to access.

6.1.2 Accuracy Measuring Method

The computed error between ground truth data and estimated lane can be mea-
sured in several different ways. A straightforward method would be to compute the
distance of the gound truth state vector and the estimate state vector element-wise.
The distance vector is given by

fk,ss = |sk,gt − sk|, (6.1)

where sk,gt is the state vector given by the ground truth data. This gives reasonably
good results for lane departure warning systems, where only the lateral position and
the lane width is necessary.

However, in terms of the accuracy of matching the lane estimate to the features over
distance, this error measure would give poor information.

A second approach is to project both, ground truth and lane estimate in world map
space and compute the average distance of the lateral displacement of every line
element. This measure is given by

fk,wm =
1

N

N�

z

|hs(sk,gt)− hs(sk)|, (6.2)

where N is the measure distance and hs(·) is the projection function F (z, y) ←− sk
as described in section 4.3. This method gives a reasonable error measure when
considering an overall match of the lane estimate.

To measure the accuracy against other LDT systems which do not provide any
parameters, but just the lane in image space, another error measuring method was
implemented. Here, the ground truth and the lane estimate is projected in image
space, then the average of the absolute lateral difference of pixels is computed. This
is given by

fk,im =
1

N

N�

z

|h−1
c (sk,gt)− h−1

c (sk)|, (6.3)

where N is the number of pixels that are evaluated and h−1
c is the inverse imaging

function described in section 4.3.

Which of these error measures are applied in the following sections will be indicated
by the measurement set data.

6.2. Design Issues 63

6.2 Design Issues

During the design phase, several problems arose which influenced the design of the
algorithm. The following issues influenced the design the most.

6.2.1 Comparison of different Road Model Orders

The order of the road model has a great influence on the systems accuracy. However,
the choice of the road model always depends on the application the lane estimate is
intended for. In this section polynomial road models with 1st, 2nd and 3rd order are
compared.

Figure 6.1 shows the world space distance measure fk,wm for all three model orders.
The high values in the first frames are caused by the initialization phase and can be
neglected. As can be seen, the deviation of the linear model is rather high (up to
1 meter). The 2nd and 3rd order model are almost the same, which is explained by
the presence of only parabolic shapes in this specific automotive sequence.

Figure 6.1: average line distance measured in world space for 1st, 2nd and 3rd road model order;
a) left line; b) right line

Figure 6.2 shows the state space distance vector fk,ss (position and width) for all
three model orders. There are only minor differences, which indicates that the
linear model could be used for lane departure warning systems without any loss of
accuracy. However, higher order models are necessary for other applications - for
example, it has been shown by [McTr06] that a lane change assistance system needs
a road model of third order to compute the intersection of the vehicles trajectory
and the lane.

Figure 6.2: state space distance vector for dimension: position and width for 1st, 2nd and 3rd

road model order; a) lateral position; b) width

64 6. Performance and Accuracy Evaluation

This analysis highlights two Aspects of algorithm design. Firstly, the better the
road model matches the scene, the better are the results. This means that the
choice must take the target application into account. Second, this algorithm can
easily be adapted to use lower order models as well. The following frame series
shows selected frames, which enables the data given in the diagram to be visualized.

Figure 6.3: frame series for different road model orders; first row: model of 1st order; second
row: model of 2nd order; third row: model of 3rd order; frame numbers from left to right are: 153,
384, 448

6.2.2 Influence of Pitch Angle Variations

Due to changes in the slope of the road or pitch movement of the car, the angle
between the image plane and the assumed ground plane changes continuously. The
following analysis shows that taking the pitch angle variation into account is very
important. The automotive sequence used here includes a large change in the pitch
angle.

Figure 6.4 shows the average distance of left and right lane boundary estimated
the algorithm without compensating the pitch angle change. The actual change of
the pitch angle is blended over, however, this curve is unit-less and serves just as a
reference for the dynamic vehicle behavior.

In the first half of the sequence, the difference is relatively large, and as a result of
this, only one line provides a good estimate, the other is ”hanging in the air”. There
are quite a few singularities in the curve diagram, these result from jumps from one
lane to the neighboring lane. It can also be seen that with declining pitch angle, the
system provides more stable and more accurate results. A series of frames is given
in Figure 6.5.

6.3. Comparison of IPM Interpolation Methods 65

Figure 6.4: average line distance measured in world space for algorithm without taking pitch angle
change into account; blended over unit-less pitch angle

Figure 6.5: frame series for algorithm without taking pitch angle intp account; frame numbers
from left to right and top to bottom are: 50, 150, 262, 300, 400, 450

6.3 Comparison of IPM Interpolation Methods

Intel’s open source library OpenCV offers an inverse perspective mapping (IPM)
function which can apply three different interpolation methods, they are: nearest-
neighbor interpolation, bilinear interpolation and bicubic interpolation.

Interpolation is needed when the intensity of a pixel in the source image is to be
mapped to a pixel in the destination image. The reason for this is that the des-
tination coordinates, computed by the specified transform and source coordinates,
do not necessarily match the destination image raster. Mapping is a very general
terminology and can refer to resizing, affine transform or perspective transform.

In this section the interpolation quality and performance will be analyzed. To ana-
lyze the performance, only the image size of the destination image is relevant (due
to indirect transform, the destination image will be the space where the coordinates
are swept through). Three different destination image sizes are used to perform the
evaluation: size 1, 361x400; size 2, 361x600; and size 3, 361x1000. These values have
been chosen because 1 and 3 represent the length limit at the minimum of 20 m and
at maximum of 50 m, size 2 is the length actually used which is 30 m.

There are two options to combine feature extraction and the IPM algorithm as
described in section 4.4. In the first of these, the image is gradient filtered and then
transformed to world map space. In the second option, the image is transformed
to world map space, then the gradient filter is applied. If the direction information
is maintained, this second method is preferable because the direction expectation

66 6. Performance and Accuracy Evaluation

Figure 6.6: execution time of IPM using three different interpolation methods for three world map
lengths; size 1, 20 m; size 2, 30 m; size 3, 50 m

value is faster to compute for direction information gained in world map space, see
section 4.5.3. Three example images are shown in Figure 6.7.

Figure 6.7: IPM with different interpolation methods (lower image is rescaled by the factor 3);
a) nearest-neighbor interpolation; b) bilinear interpolation; c) bicubic interpolation

The nearest-neighbor interpolation is the fastest but also least accurate method. In
comparison, the bilinear interpolation yields a smoother transition and better accu-
racy. The bicubic interpolation shows only a little improvement compared to bilinear
interpolation, and considering the higher computational effort appears to be less at-
tractive. Therefore, the bilinear interpolation appears to be the best compromise
between good accuracy and fast execution time.

Considering the results shown in Figure 6.8, it appears that the remapping process
introduces edge artifacts. The direction is determinable only with a large error. This
means that the Sobel filter is not applicable in world space, however a filter with
larger kernel size would probably work.

6.4. Comparison of Tracking Methods 67

Figure 6.8: IPM with different interpolation methods and gradient filtering in world map space;
a) nearest-neighbor interpolation; b) bilinear interpolation; c) bicubic interpolation

6.4 Comparison of Tracking Methods

The quality of particle filters is determined by the state evolution model, which
links together the information obtained by subsequent frames and filters the state
estimate in time-domain. This is called tracking.

Particle filter tracking is a non-trivial method which involves measuring motion
parameters. Another commonly used, more simple approach is to have an ini-
tial guess of the lane’s position and then search for the lane around this position
[STHS08, SaST06, LSBL+08]. The initial guess is given by the lane estimate of the
previous frame.

In Figure 6.9, a comparison of the average distance using both tracking methods
is shown for left and right lane boundary. The distance data up to frame 100
can be neglected, since this is caused by the initialization phase. Until frame 450
both tracking methods show good results. This is because the vehicle bearing has
relatively small values. Therefore, the lane position of the subsequent frame stays
almost the same. However, from frame 450 on, when the bearing angle changes
because of a lane changing maneuver, the simple tracking method lacks estimation
accuracy, as shown in the diagrams (the error of the left line is larger then that of
the right line). The bearing angle is blended over, however, this curve is unit-less
and serves just as a reference for the dynamic vehicle behavior.

Figure 6.9: blended over unit-less bearing angle

68 6. Performance and Accuracy Evaluation

Figure 6.10 shows two frames of the algorithm using the area-based tracking method
with low accuracy. For comparison, one frame of the algorithm using the evolution-
based method is also given. It should be noted that the simple tracking method
tracks very satisfactory until frame 450, so there is no need to illustrate the algorithm
accuracy for the earlier frames.

Figure 6.10: two frames of algorithm with area based tracking (left, frame 484; middle, frame
498) and one frame of the algorithm with evolution based tracking (right, frame 498)

Figure 6.11 illustrates both tracking methods. The drawn lane represents the esti-
mate based on tracking only. This means the system runs until frame 465, then the
update process is stopped and the lane estimate is computed based on the evolution
model, or kept the same (area-based tracking) respectively, until frame 475. It can
be seen that the area-based method does not follow the lane to the left, whereas the
evolution-based method does follow the lane, however with a significant difference at
the right line. This is probably caused by measurement errors of the motion param-
eters. The algorithm deals with these errors by introducing a Gaussian distribution
when evolving the particles.

Figure 6.11: illustration of tracking methods; left, area based tracking, frame 475; right, evolution
based tracking, frame 475

6.5. Overall System Performance 69

6.5 Overall System Performance

In this section, the overall system performance in terms of accuracy and execution
time is presented.

6.5.1 Algorithm Accuracy

Since no ground truth data has been available, and the manually generated data was
only available only for the first sequence, the algorithm accuracy is judged by the
author’s impression, where the percentage value refers to the sequence performance
without including the initialization time.

Four frame series, one for each automotive sequence, are given and discussed. This
is then followed by an analysis of the overall execution time. Finally, the accuracy
and execution time are analyzed with respect to the number of particles used.

All system parameters are set as given in the source code initialization. The number
of particles used is 500.

Automotive Sequence 1

This sequence provides an occlusion-free and curved run on a German Autobahn
during the day time. The weather is cloudy, providing conditions of equal light
distribution . This is an ideal test sequence because there is no shadowing, there
are no occlusions and the lane markings are very clear.

Figure 6.12: automotive sequence 1; frame numbers from left to right and top to bottom are: 20,
80, 140, 200, 260, 320, 380, 440, 498

The algorithm performs very accurately on 100 percent of the sequence. The only
deviation occurs in the first frames, during the time of initialization, when the left
lane boundary shows some deviation from the actual lane marking. The initialization
takes quite some time (about 20 to 30 frames), this could be improved by dynamically
setting the number of initial particles.

70 6. Performance and Accuracy Evaluation

Automotive Sequence 2

This sequence provides a straight run on a German Autobahn at bright day time.
There are some occlusions in front and in the neighboring lane. The weather is
cloudy, thus providing conditions of equal light distribution.

The algorithm performs well on 70 percent of the sequence. The lane estimate
occasionally jumps to one of the neighboring lanes, which demonstrates the necessity
of multimodal Particle filtering (frame 480). The particle filter also occasionally
tracks the car in front (frame 29). This is because of the trivial feature extraction
and could be prevented by using matched filters to extract the lane.

Figure 6.13: automotive sequence 2; frame numbers from left to right and top to bottom are: 29,
80, 140, 200, 260, 320, 380, 440, 480

Automotive Sequence 3

This sequence provides a slightly curved run on a German Autobahn during the
evening. There are some occlusions in front and in the neighboring lane. In addition,
a lane change maneuver is performed.

The algorithm performs well on 90 percent of the sequence. Inaccuracies are intro-
duced when changing the lane, in this situation some extra curvature is introduced
(frame 80). This probably points to inaccurate measurement of the motion variables
or an error in the evolution model, which would need further investigation.

6.5. Overall System Performance 71

Figure 6.14: automotive sequence 3; frame numbers from left to right and top to bottom are: 20,
80, 140, 200, 260, 320, 380, 440, 498

Automotive Sequence 4

This sequence provides a curved run on a German Autobahn at night time. There are
some occlusions in front and a blending effect from the adjacent lane. Furthermore,
there are some edge structures in the middle of the lane surface. In addition, the
driver performs a drift off the lane.

This sequence is the most challenging, because of the bad light conditions and the
additional clutter on the road surface. The lane is only detected correctly for about
30 percent of the sequence. The rest of the time the lane jumps to the neighbor
lanes (frame 20) and in about 40 percent of the frames it sticks to the clutter line
(frames 140, 200, 320).

Figure 6.15: automotive sequence 4; frame numbers from left to right and top to bottom are: 20,
80, 140, 200, 320, 498

72 6. Performance and Accuracy Evaluation

6.5.2 Algorithm Execution Time

Particle filtering is known as computationally expensive tracking method. The fol-
lowing figures show the execution times of th algorithm using 500 particles to get a
good idea of the bottle necks in the implementation and the Particle filter perfor-
mance using an off the shelf computer. Figure 6.16 shows the major modules that
contribute to the total execution time. The achieved frame rate is 20 fps.

Figure 6.16: execution times of: 1) preprocessing, 2) feature extraction, 3) Particle filtering, 4)
visualization

The preprocessing takes about 20% of the overall execution time. It consists of two
steps, firstly, preparation of the output image, which needs about 1% and secondly,
the transformation of two different images to world map space which needs about
19%. The execution times of these steps are shown in Figure 6.17 (right diagram).

The feature extraction takes about 33% of the overall execution time. About 25% is
needed for computing the gradient magnitude and direction images. The remaining
8% is needed to threshold filter the images in respect to the direction information.
These execution time values are illustrated also in Figure 6.17 (left diagram)

Figure 6.17: execution times of: 1) preprocessing, 2) feature extraction, 3) Particle filtering, 4)
visualization

The Particle filtering demands the most percentage of the execution time, at about
45%. The particle loop, which is the particle evolution and evaluation, takes most of
this, 35%. To compute the integral image, which is needed for the particle evaluation,
demands 3.5%. All remaining functions have only a minor contribution of about 7%.
The execution time values of the Particle filter are illustrated in Figure 6.18.

In considering these results, it is clear that one needs to find a good trade off between
a proper designed difference measure and the maximum execution time which the

6.5. Overall System Performance 73

evaluation is allowed to have. In this implementation, the trivial method showed
good results and was therefore chosen.

Figure 6.18: execution times of: 1) preprocessing, 2) feature extraction, 3) Particle filtering, 4)
visualization

All in all, the Particle filter implementation showed good performance results of 20
fps. It is possible to achieve even higher performance by using a LUT for the IPM
function or by using multi core functionality. Due to the highly parallel structure of
Particle filtering, a 10-times performance increase is expected when using modern
GPU hardware.

6.5.3 Variation of Number of Particles

The question of how many particles should be used is also essential. It affects the
overall accuracy in terms of tracking the lane, the stability in terms of finding the
lane and finally the execution time of the system as discussed in the section above.

To get the best trade off, the system was tested with varying numbers of particles -
from 100 to 500 in 100-steps, and additionally 850 and 1000 particles. The average
distance of left and right lines as well as the total execution time was averaged over
time to get a single accuracy value and performance value respectively. The results
are shown in Figure 6.19.

Figure 6.19: analysis of number of particles in terms of performance and accuracy

Even though 200 particles gave a sufficient average distance measure, the algorithm
was quite instable in terms of detecting the lane. The final conclusion is that 400 to
500 particles give a stable lane detection and an accurate lane tracking performance
and were found to be sufficient for the given test scenarios.

74 6. Performance and Accuracy Evaluation

7. Conclusion and Outlook

In this project, a lane detection and tracking (LDT) algorithm for highway and
major urban road applications was designed and successfully implemented where
the system requirements have been met to a high degree.

The algorithm developed here is similar to those proposed in other current research,
[SoTa01], [DNMT08] and works robustly for highway scenes with occlusions present.
The system design focused especially on investigating the Particle filter as tracking
module for LDT systems. For this reason, this thesis presents a comprehensive
introduction to Particle filtering and its underlying theoretical background.

The implementation allows the system parameters to be tuned, enabling the filter
state to be controlled, and the video sequence to be stopped or restarted during
runtime. This provides a tool for investigating and demonstrating the dynamics of
the particle filter, which is of particular interest for academic teaching purposes.

A small measurement unit for recording automotive scenes was also designed and
implemented. The unit includes hard- and software to capture the automotive im-
ages, to measure the vehicle’s speed sensor signal and to record measurements from
an intrinsic measurement unit.

Two major implementation issues of Particle filtering regarding LDT systems have
been identified. Firstly, the definition of the difference measure that is needed to
update the estimate by means of measurements must be specifically designed for
every application. The second problem is the inability of original Particle filters to
track multimodal likelihoods because of structural reasons. Both issues have been
investigated and suggestions for solving them have been given.

In designing the algorithm, it was found that even though the Particle filter is able
to deal with clutter at a high level, a sophisticated feature extraction method which
also reduces clutter at a low level, would improve the robustness significantly.

The algorithm works well for clear lane markings, but lacks robustness in situations
of high clutter. The feature extraction is based on the Sobel operator and uses
gradient magnitude in combination with the gradient direction information to detect
several types of road features. Because of choosing this approach, the algorithm still

76 7. Conclusion and Outlook

has problems handling weak road features with strong clutter present. For this
reason, it would make sense for future work to focus on a more sophisticated feature
extraction scheme which could handle weak road features better. The various road
feature types could be addressed specifically by using matched filters and introducing
a Markov state model to control which feature extraction method is to be used.

The feature extraction could be further improved by employing a method that de-
tects whether the feature is traveling together with the road surface or not. Then,
road features could be identified by their position in the current and the previous
frame.

Further investigation of the difference measure could also increase the overall system
performance. Suggestions for future development include: introducing structural
aspects to the difference measure as described in the design chapter, and using the
EM-Algorithm to increase the weights of dashed lines compared to solid lines.

In this algorithm, stabilizer lines were added as a method of increasing robustness.
They did improve the robustness in some situations, but unfortunately, were not flex-
ible enough to adapt to the environment. However, the underlying idea of adapting
the model to the environment makes sense, and is definitely the right way to go.

Two suggestions of how to do so are, firstly, to use a single lane model with a multi-
modal Particle filter design with high observation variance to get a rough estimate
of the environment. Based on this information, a more complex road model could
be used for tracking. One would need a road model that is able to adapt to the
situation, so that lanes can be added or removed.

A second possibility is to use global positioning system (GPS) information in combi-
nation with a pre-generated map. The map could be formed into an adaptive model
which is elastic and the deformation could be described by a few parameters.

The Particle filters barrier is the high computational effort for complex systems.
Because of steadily increasing computational power of high speed information pro-
cessing systems, this barrier is getting lower and lower and puts Particle filtering
in an attractive position for all sorts of estimation problems. This thesis provides
a wide range of basic considerations of Particle filtering and offers a basic LDT
algorithm which can be extended in many ways.

A. Camera Model

A.1 Euclidean versus Perspective Space

The camera model describes the mathematical relation between coordinates of a
three-dimensional point in the real world, and coordinates of its two-dimensional
projection onto the image plane. The real world is mathematically described by the
object space and is denoted as P3. The image plane is represented by the image
space which is denoted as P2.

Both, object and image space are perspective spaces Pn which have, as distinguished
from Euclidean spaces Rn, an additional vector element. In other words, a point in
a n-dimensional perspective space is represented by a (n+1)-tuples of coordinates.
Given coordinates in Rn, projective coordinates can be built by the correspondence

[x1, · · · , xn]
T → [x1, · · · , xn, 1]

T .

The inverse transform, from perspective to Euclidean space, is performed by simply
dividing the coordinates by the vector element (n+1):

[x1, · · · , xn, xn+1]
T → [

x1

xn+1
, · · · , xn

xn+1
]T .

In contrast to Euclidean coordinates, scaling of perspective coordinates by a non-
zero factor is not significant, so that [λu,λv,λ] and [u, v, 1] are representing the same
point in image space.

78 A. Camera Model

A.2 Camera Calibration

In general, camera calibration addresses the problem of finding the projection matrix
K by using either numerical or analytical methods. In this thesis, camera calibration
is reduced to simply finding the homography H of P2 between the ground plane and
the image plane.

The homography matrix has nine, with neglecting the scale factor, only eight entries.
Since each point correspondence (m�,m) yields two independent equations, four point
correspondences are sufficient to calculate the homography matrix.

The equations are:

up

ψ
=

h11XW,p + h12YW,p + h13Ψ

h31XW,p + h32YW,p + h33Ψ
,

vp
ψ

=
h21XW,p + h22YW,p + h23Ψ

h31XW,p + h32YW,p + h33Ψ
, (A.1)

which can be rearranged to

h11ψXW,p + h12ψYW,p + h13ψΨ− h31upXW,p − h32upYW,p − h33upΨ = 0,
h21ψXW,p + h22ψYW,p + h23ψΨ− h31vpXW,p − h32vpYW,p − h33vpΨ = 0.

(A.2)

H is determined uniquely by solving the system of linear equations which is set up
from these equations based on four non-collinear point correspondences.

List of Figures

3.1 distribution representation by distributed particles; a) particles of
equal weight; b) particles of unequal weight 17

4.1 a) road scene with vertical curvature and 1st order approximation, b)
road model with horizontal curvature 25

4.2 pin hole camera set-up (a) and details of sensor element (b) 29

4.3 homography between ground plane in space and image plane 31

4.4 example of typical road features, a) from Daimler sequence No. 2 -
lane marking, b) from UWA sequence No. 1 - road-curb border 32

4.5 example of intensity gradient filtering using Sobel operator; a) in-
tensity image from Daimler sequence No. 2; b) gradient magnitude
image (inverted); c) gradient direction image; d) filtered magnitude
image (inverted) based on direction of lane hypothesis 33

4.6 example of local entropy filtering; a) intensity image from Daimler
sequence No. 2; b) local entropy image (inverted) with kernel size
5x5; c) thresholded local entropy image (inverted) up to 75 percent;
d) thresholded local entropy image (inverted) up to 90 percent . . . 34

4.7 example of inverse perspective mapped image; a) intensity image from
Daimler sequence No. 1; b) re-mapped image 35

4.8 four data flow structures . 38

4.9 sample impoverishment in one-dimensional state space where the black
curve is the prior distribution p(sk|Yk−1) and the blue curve the obser-
vation likelihood p(yk|sk), the bar underneath represents the particle
distribution; a) unimodal distribution; b) multimodal distribution . . 44

4.10 sample impoverishment in one-dimensional state space where the black
curve is the prior distribution p(sk|Yk−1) and the blue curve the obser-
vation likelihood p(yk|sk), the bar underneath represents the particle
distribution; a) after 2 iterations; b) after 6 iterations; c) after 12
iterations . 45

4.11 sample impoverishment simulation: original algorithm; a) lane struc-
ture in world map space; b) state space subset (y0 and w), green
particles are initialization samples, blue particles are prior samples
and red particles are posterior samples, dashed ellipses mark the area
of expected local maxima . 46

80 List of Figures

4.12 sample impoverishment simulation: auxiliary resampling; a) after 15
iterations with α = 1.5; b) after 30 iterations with α = 1.1; c) after
50 iterations with α = 1.1; d) after 100 iterations with α = 1.05 . . . 47

4.13 sample impoverishment simulation: neighbor lane importance sam-
pling; a) after 5 iterations; b) after 13 iterations 48

4.14 sample impoverishment simulation: neighbor lane importance sam-
pling and auxiliary resampling with α = 1.1; a) after 20 iterations
clustering is observed; b) after 40 iterations stabilizing estimate . . . 48

4.15 sample impoverishment simulation: neighbor lane importance sam-
pling and auxiliary resampling with α = 1.1; a) after 20 iterations
clustering is observed; b) after 40 iterations stabilizing estimate . . . 49

5.1 a) image space, where k is the discrete time index, i and j are the
indices denoting the pixels in image space. b) world map space, where
z and y the pixels in world map space and Z and Y are the axes of
the world coordinate system. 52

5.2 flow chart of lane detection and tracking algorithm 53

5.3 flow chart of particle evolution and evaluation in one for-loop 56

5.4 a) gradient magnitude world map with projected lane hypothesis; b)
flow chart of evaluation algorithm . 57

5.5 principal set-up of car measurement unit 59

5.6 data protocol of IMU serial connection 59

5.7 flow chart of MATLAB script for capturing and storing image data
and motion parameters . 60

6.1 average line distance measured in world space for 1st, 2nd and 3rd road
model order; a) left line; b) right line 63

6.2 state space distance vector for dimension: position and width for 1st,
2nd and 3rd road model order; a) lateral position; b) width 63

6.3 frame series for different road model orders; first row: model of 1st

order; second row: model of 2nd order; third row: model of 3rd order;
frame numbers from left to right are: 153, 384, 448 64

6.4 average line distance measured in world space for algorithm without
taking pitch angle change into account; blended over unit-less pitch
angle . 65

6.5 frame series for algorithm without taking pitch angle intp account;
frame numbers from left to right and top to bottom are: 50, 150, 262,
300, 400, 450 . 65

6.6 execution time of IPM using three different interpolation methods for
three world map lengths; size 1, 20 m; size 2, 30 m; size 3, 50 m . . . 66

List of Figures 81

6.7 IPM with different interpolation methods (lower image is rescaled by
the factor 3); a) nearest-neighbor interpolation; b) bilinear interpola-
tion; c) bicubic interpolation . 66

6.8 IPM with different interpolation methods and gradient filtering in
world map space; a) nearest-neighbor interpolation; b) bilinear inter-
polation; c) bicubic interpolation . 67

6.9 blended over unit-less bearing angle 67

6.10 two frames of algorithm with area based tracking (left, frame 484;
middle, frame 498) and one frame of the algorithm with evolution
based tracking (right, frame 498) . 68

6.11 illustration of tracking methods; left, area based tracking, frame 475;
right, evolution based tracking, frame 475 68

6.12 automotive sequence 1; frame numbers from left to right and top to
bottom are: 20, 80, 140, 200, 260, 320, 380, 440, 498 69

6.13 automotive sequence 2; frame numbers from left to right and top to
bottom are: 29, 80, 140, 200, 260, 320, 380, 440, 480 70

6.14 automotive sequence 3; frame numbers from left to right and top to
bottom are: 20, 80, 140, 200, 260, 320, 380, 440, 498 71

6.15 automotive sequence 4; frame numbers from left to right and top to
bottom are: 20, 80, 140, 200, 320, 498 71

6.16 execution times of: 1) preprocessing, 2) feature extraction, 3) Particle
filtering, 4) visualization . 72

6.17 execution times of: 1) preprocessing, 2) feature extraction, 3) Particle
filtering, 4) visualization . 72

6.18 execution times of: 1) preprocessing, 2) feature extraction, 3) Particle
filtering, 4) visualization . 73

6.19 analysis of number of particles in terms of performance and accuracy 73

82 List of Figures

References

[Aly08] M. Aly. Real time detection of lane markers in urban streets. In
Proc. Of Intelligent Vehicles Symposium, Eidenhoven, the Nether-
lands, 2008, S. 7–12.

[ApZe03] N. Apostoloff und A. Zelinsky. Robust vision based lane tracking using
multiple cues and particle filtering. In Proc. IEEE intelligent vehicles
symposium, 2003.

[Brog95] A. Broggi. Robust real-time lane and road detection in critical shadow
conditions. In Proceedings IEEE International Symposium on Com-
puter Vision, 1995, S. 353–358.

[CaCF99] J. Carpenter, P. Clifford und P. Fearnhead. Improved particle filter
for nonlinear problems. IEE Proceedings-Radar, Sonar and Navigation
146(1), 1999, S. 2–7.

[CrDo02] D. Crisan und A. Doucet. A survey of convergence results on parti-
cle filtering methods for practitioners. IEEE Transactions on signal
processing 50(3), 2002, S. 736–746.

[DCPP05] R. Douc, O. Cappé, E. Polytech und F. Palaiseau. Comparison of re-
sampling schemes for particle filtering. In Image and Signal Processing
and Analysis, 2005. ISPA 2005. Proceedings of the 4th International
Symposium on, 2005, S. 64–69.

[DDFMR00] A. Doucet, N. De Freitas, K. Murphy und S. Russell. Rao-
Blackwellised particle filtering for dynamic Bayesian networks. In
Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence. Citeseer, 2000, S. 176–183.

[DiMy92] E. Dickmanns und B. Mysliwetz. Recursive 3-D road and relative ego-
state recognition. IEEE Transactions on pattern analysis and machine
intelligence 14(2), 1992, S. 199–213.

[DNMT08] R. Danescu, S. Nedevschi, M. Meinecke und T. To. A stereovision-
based probabilistic lane tracker for difficult road scenarios. In 2008
IEEE Intelligent Vehicles Symposium, 2008, S. 536–541.

[DoDFG01] A. Doucet, N. De Freitas und N. Gordon. Sequential Monte Carlo
methods in practice. Springer Verlag. 2001.

84 References

[FrJo00] U. Franke und A. Joos. Real-time stereo vision for urban traffic scene
understanding. In IEEE Conference on Intelligent Vehicles, Dearborn,
2000.

[FrLK07] U. Franke, H. Loose und C. Knoppel. Lane recognition on country
roads. In 2007 IEEE Intelligent Vehicles Symposium, 2007, S. 99–104.

[GoSS93] N. Gordon, D. Salmond und A. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceed-
ings, Band 140, 1993, S. 107–113.

[GWZX+08] J. Gong, A. Wang, Y. Zhai, G. Xiong, P. Zhou und H. Chen. High
speed lane recognition under complex road conditions. In 2008 IEEE
Intelligent Vehicles Symposium, 2008, S. 566–570.

[HoSG06] J. Hol, T. Sch
”on und F. Gustafsson. On resampling algorithms for particle filters.
In Nonlinear Statistical Signal Processing Workshop, 2006, S. 79–82.

[Jayn86] E. Jaynes. Bayesian methods: General background. Maximum En-
tropy and Bayesian Methods in Applied Statistics, 1986, S. 1–25.

[Kita96] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian non-
linear state space models. Journal of computational and graphical
statistics, 1996, S. 1–25.

[LiCh98] J. Liu und R. Chen. Sequential Monte Carlo methods for dynamic
systems. Journal of the American statistical association Band 93,
1998, S. 1032–1044.

[LoFS09] H. Loose, U. Franke und C. Stiller. Kalman Particle Filter for Lane
Recognition on Rural Roads. 2009.

[LSBL+08] C. Lipski, B. Scholz, K. Berger, C. Linz, T. Stich und M. Magnor. A
fast and robust approach to lane marking detection and lane tracking.
In IEEE Southwest Symposium on Image Analysis and Interpretation,
2008. SSIAI 2008, 2008, S. 57–60.

[McTr06] J. McCall und M. Trivedi. Video-based lane estimation and tracking
for driver assistance: survey, system, and evaluation. IEEE Transac-
tions on Intelligent Transportation Systems 7(1), 2006, S. 20–37.

[MDDFW01] R. Van der Merwe, A. Doucet, N. De Freitas und E. Wan. The un-
scented particle filter. Advances in Neural Information Processing
Systems, 2001, S. 584–590.

[NSGD+04] S. Nedevschi, R. Schmidt, T. Graf, R. Danescu, D. Frentiu, T. Marita,
F. Oniga und C. Pocol. 3D lane detection system based on stereovi-
sion. In Intelligent Transportation Systems, 2004. Proceedings. The
7th International IEEE Conference on, 2004, S. 161–166.

[PiSh99] M. Pitt und N. Shephard. Filtering via simulation: Auxiliary particle
filters. Journal of the American Statistical Association, 1999, S. 590–
599.

References 85

[RiAG04] B. Ristic, S. Arulampalam und N. Gordon. Beyond the Kalman filter:
Particle filters for tracking applications. Artech House Publishers.
2004.

[SaST06] F. Samadzadegan, A. Sarafraz und M. Tabibi. Automatic Lane De-
tection in Image Sequences for Vision-Based Navigation Purposes. In
Proceedings of the ISPRS Commission V Symposium Image Engineer-
ing and Vision Metrology. Citeseer, 2006.

[Simo06] D. Simon. Optimal state estimation: Kalman, H [infinity] and non-
linear approaches. Wiley-Interscience. 2006.

[SKAD07] S. Sehestedt, S. Kodagoda, A. Alempijevic und G. Dissanayake. Effi-
cient lane detection and tracking in urban environments. In 3rd Euro-
pean Conference on Mobile Robots (EMCR 07), Freiburg, Germany,
2007.

[SoTa01] B. Southall und C. Taylor. Stochastic road shape estimation. In Proc.
int. conf. computer vision. Citeseer, 2001, S. 205–212.

[STHS08] A. Saudi, J. Teo, M. Hijazi und J. Sulaiman. Fast lane detection with
Randomized Hough Transform. In Information Technology, 2008. IT-
Sim 2008. International Symposium on, Band 4, 2008.

[Whit94] D. Whitley. A genetic algorithm tutorial. Statistics and computing
4(2), 1994, S. 65–85.

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Outline

	2 Problem Analysis
	2.1 Lane Detection and Tracking Systems
	2.2 Requirements
	2.3 Literature Survey

	3 Probability Theory and State Estimation
	3.1 Origins of Bayesian Theory
	3.2 Bayesian State Estimation
	3.2.1 Deduction of the Bayesian Estimator

	3.3 Particle Filtering
	3.3.1 Deduction of Sequential Importance Sampling (SIS)
	3.3.2 Extension to Sampling Importance Resampling (SIR)

	4 Particle Filter Design
	4.1 State Space
	4.2 State Evolution Model
	4.3 Observation Model
	4.3.1 Camera Model
	4.3.2 Feature Extraction
	4.3.3 Inverse Perspective Mapping
	4.3.4 State Vector Projection

	4.4 Data Flow
	4.4.1 Summary

	4.5 Particle Evaluation
	4.5.1 Line Difference Measure
	4.5.2 Conjunction of Several Lines
	4.5.3 Expectation Value of Gradient Direction

	4.6 Sample Impoverishment
	4.6.1 Auxiliary Resampling
	4.6.2 Importance Sampling
	4.6.3 Constrained Residual Resampling
	4.6.4 Clustered Resampling
	4.6.5 Grid based Density Constrained Resampling

	5 Implementation
	5.1 Image Space, World Map Space and State Space
	5.2 Lane Detection and Tracking Algorithm
	5.2.1 Naming Convention

	5.3 Car Measurement Unit

	6 Performance and Accuracy Evaluation
	6.1 Measuring Methods
	6.1.1 Performance Measuring Method
	6.1.2 Accuracy Measuring Method

	6.2 Design Issues
	6.2.1 Comparison of different Road Model Orders
	6.2.2 Influence of Pitch Angle Variations

	6.3 Comparison of IPM Interpolation Methods
	6.4 Comparison of Tracking Methods
	6.5 Overall System Performance
	6.5.1 Algorithm Accuracy
	6.5.2 Algorithm Execution Time
	6.5.3 Variation of Number of Particles

	7 Conclusion and Outlook
	A Camera Model
	A.1 Euclidean versus Perspective Space
	A.2 Camera Calibration

	List of Figures
	References

