
Interest Point Detection and
Matching on SIMD Architectures

Torsten Sommer

Lehrstuhl für Datenverarbeitung
Technische Universität München

Diploma thesis

Interest Point Detection and Matching on
SIMD Architectures

Torsten Sommer

April 30, 2010

Commenced on November 4, 2009
Submitted on April 30, 2010

by Torsten Sommer

Supervised by Prof. Dr.-Ing. K. Diepold, Prof. Dr. rer. nat. habil. T. Bräunl
and Dipl.-Ing S. Hawe

Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München

Executed at Robotics and Automation Lab, Centre of Intelligent Information Processing Systems,
University of Western Australia, Perth

Im Freihö� 42
D-85057 Ingolstadt
GERMANY

Matr.-Nr. 2714705

Abstract

With the soaring number of transistors per chip, graphic processing units have devel-
oped from coprocessors specialized in 3D graphics into fully programmable parallel
processors providing superior floating point performance and memory bandwidth
for data-parallel computations. This type of data processing is commonly found in
computer vision algorithms that process images and thus are predestined for a par-
allel implementation running on a GPU which offers a significant speed-up without
requiring additional or expensive hardware.

In this thesis an OpenCL implementation of the popular SURF algorithm for interest
point detection and matching is presented. After a comprehensive review of the
algorithm’s details and underlying theory, a closer look is taken at the interface
provided by the OpenCL framework and the specifics of the GPU. These sections are
followed by a description of the kernel code running on the parallel processor and the
supporting framework that facilitates development and testing. Finally the runtime
and detection/matching performance of the proposed implementation is evaluated
based on a set of standard image sequences and a reference implementation running
on the CPU.

2

CONTENTS 3

Contents

List of Symbols 5

1 Introduction 7
1.1 Motivation . 7
1.2 Objectives . 9
1.3 Outline . 10

2 Related Work 11
2.1 MinGPU . 11
2.2 OpenSURF . 12
2.3 Efficient Keypoint Matching . 13

3 Interest Point Detection, Description and Matching 15
3.1 Integral Images . 15
3.2 Hessian Matrix Based Interest Points 16
3.3 Scale Space Representation . 20
3.4 Interest Point Localisation . 22
3.5 Interest Point Description and Matching 25

4 OpenCL 27
4.1 Platform Model . 27
4.2 Execution Model . 28
4.3 Memory Model . 30
4.4 Programming Model . 32
4.5 Runtime . 34
4.6 Programming Language . 35
4.7 OpenCL on the Mac Platform . 36

5 Kernel Programs 37
5.1 Data Flow . 37
5.2 Integration . 40
5.3 Computation of the Determinant of the Hessian 44
5.4 Interest Point Detection . 48

5.4.1 Detection . 48

4 CONTENTS

5.4.2 Localization . 50
5.5 Construction of the Descriptors . 53
5.6 Matching . 56
5.7 Sum of Squared Distances . 57

6 Evaluation Framework 61
6.1 Used Libraries . 61

6.1.1 OpenCV . 61
6.1.2 Qt . 62

6.2 ROD - Realtime Object Detector . 62
6.2.1 Sources . 64
6.2.2 Processor Plug-Ins . 65
6.2.3 Configuration Files . 65

6.3 Compute Engine . 66
6.4 Unit-Tests . 67

7 Results 69
7.1 Profiling . 69

7.1.1 Total Execution Times . 70
7.1.2 Integral Image . 71
7.1.3 Calculation of the Determinants of the Hessians 72
7.1.4 Interest Point Detection and Localization 73
7.1.5 Interest Point Description . 74
7.1.6 Interest Point Matching . 75

7.2 Performance Evaluation . 76
7.2.1 Number of Interest Points . 77
7.2.2 Interest Point Matching . 79

8 Conclusion 81

List of Figures 84

Bibliography 87

CONTENTS 5

List of Symbols

CPU Central Processing Unit
GPU Graphics Processing Unit
GPGPU General-Purpose Computing on Graphics Processing Units
RAM Random Access Memory
FPGA Field-Programmable Gate Array
PC Personal Computer
GFLOPS Billion (Giga) Floating Point Operations Per Second
SIMD Single Instruction Multiple Data
Cg C for Graphics (High-Level Shading Language)
GLSL OpenGL Shading Language
HLSL High Level Shading Language
CUDA Compute Unified Device Architecture
OpenGL Open Graphics Library
OpenCL Open Computing Language
SURF Speeded Up Robust Features
SIFT Scale-Invariant Feature Transform
OpenCV Open Source Computer Vision
XML Extensible Markup Language
A Bold Uppercase Letter denotes a Matrix
v Bold Lowercase Letter denotes a Vector
Tr(A) ≡

∑n
i=1 aii (Trace of a n× n Matrix)

sign(x) Sign of the Scalar x

6 CONTENTS

7

Chapter 1

Introduction

This chapter shows the motivation for the thesis’ topic and after presenting its ob-
jectives a brief outline is given in Section 1.3.

1.1 Motivation
Over the last decade graphics processors have developed from simple coprocessors
providing a limited and very specific instruction set focusing on the acceleration of
3D graphics into general purpose processors that can be programmed using high-
level programming languages. The increase in computational power was for a long
time driven by increasing the clock frequency of the processors which causes higher
power consumption and is more and more approaching the physical limits. However
it is still possible to increase the performance by switching to even smaller structure
sizes which allows for more transistors on the same chip.

(a) Intel Core 2 Duo (b) NVIDIA GT200

Figure 1.1: Dies of a modern CPU (left) and GPU (right) [Har07, Tru08]

While this possibility has been used on the CPU side to increase the sizes of first

8 CHAPTER 1. INTRODUCTION

and second level caches the GPUs were given more cores instead of more on chip
memory which results in a higher number of transistors devoted to calculations in-
stead of data storage. By looking at the processor dies of a state of the art CPU and
GPU this becomes obvious1. Almost half the available surface area is consumed by
memory whilst the caches on a modern graphics processor take up only roughly one
eighth. This has a direct effect on the number of operations that can be performed
per second and the GFLOPS/Watt ratio which is also becoming increasingly impor-
tant especially for mobile, battery powered applications.

Figure 1.2: GFLOPS: CPU vs. GPU from [Cor09b]

First introduced by NVIDIA in 1999 it took another four years until the vast perfor-
mance of the GPU was exploited for non-graphics applications like the fast Fourier
transform [BS08]. After a number of proprietary shader languages such as Cg,
GLSL, HLSL and CUDA just to name a few the Khronos group released version 1.0
of the OpenCL standard [Mun08] in 2009 that allows programmers to harness the
power of a variety of parallel processors without having to use vendor specific APIs
and libraries. The first implementation was provided by Apple with the release of
Mac OS 10.6 "Snow Leopard" [Inc08].

Computer vision applications on the other hand have always demanded higher per-
formance to allow for faster processing. One example is real-time processing in au-
tomotive and mobile robotics applications such as object recognition and tracking
where more operations per second mean higher possible resolution, lower response
times and more accurate results. Also, for problems that can be processed offline

1The dark rectangular regions are on-chip memory in figure 1.1

1.2. OBJECTIVES 9

such as image stitching or 3D reconstruction where an exact homography estimation
is required, this approach allows for shorter runtime and more images to be taken
into account that can be processed at higher resolutions using more accurate and
therefore computationally expensive filters and descriptors.

(a) 50 percent of the images registered

(b) Blended panoramic image

Figure 1.3: Panoramic image stitching using homography estimation. Images taken
from [BL07]

Another advantage of the GPU approach is that computations run entirely on the
graphics card and thus leave the CPU available to other tasks that cannot take ad-
vantage of a data-parallel implementation and are more efficiently carried out there.
Also there is no need for additional hardware or FPGAs as a GPU ships with almost
any modern PC.

Considering the soaring performance of the GPUs on the one hand, and the large
amount parallel data processing found in today’s computer vision algorithms on the
other, graphic cards seem predestined to execute these computationally intense op-
erations. In addition to this it has to be evaluated how the limitations brought by
the new API and memory model affect the runtime and accuracy of the implement
and how much additional effort is required to map a given algorithm to the execu-
tion model used by the GPU.

1.2 Objectives
The goal of this thesis is to develop a platform independent framework that allows
for fast and reliable detection and matching of interest points taking advantage of
the vast computational power found in today’s GPUs without relying on a specific

10 CHAPTER 1. INTRODUCTION

manufacturer or product. In order to parallelize the computation and run it on
graphics processors it is necessary to carefully analyze the algorithm and subdivide
it into a number of steps that can be efficiently carried out on the GPU.

To be able to quantize the reduction of the runtime and to evaluate the performance
in the feature detection and matching process the results need to be compared us-
ing a reference implementation and a commonly used test dataset that is based on
ground truth. This facilitates the decision whether or not using this approach will
have the desired effect in a particular application.

1.3 Outline
The thesis is subdivided into four chapters. Chapter 3 provides a comprehensive
review of the SURF algorithm [BTG06] and shows the fundamental ideas that are
used to extract, classify, describe and eventually match interest points from different
images. In the following (Chapter 4) a closer look is taken at the OpenCL frame-
work and the programming language that will be used for the implementation of
the algorithm. A detailed description of the implementation is presented in Chap-
ter 5 followed by an overview of the framework that supports the development and
testing of the kernel programs in Chapter 6. Finally the runtime performance of the
proposed implementation is evaluated and compared to a reference implementation
in Chapter 7.

11

Chapter 2

Related Work

The following sections give a brief review of three papers that are concerned with
feature detection and GPGPU computations and point out the achievements and
flaws of the respective methods and implementations.

2.1 MinGPU
Released in 2007, MinGPU [BS08], short for "minimal GPU C++ library", is a
C++ library providing a variety of functions for processing images in parallel on
graphics hardware. By providing an abstract interface to the graphics processing
unit it aims at facilitating the conversion of existing CPU code to code that can be
run on the graphics board. It already provides several computer vision algorithms,
including the homography transformation between two 3D views. In their research
paper the authors provide timing charts showing that their MinGPU implementa-
tion of homography transformations runs approximately 600 times faster than the
C++ CPU implementation.

Since the library is built on top of OpenGL it runs on virtually all modern graph-
ics cards installed in today’s computers. By encapsulating the complicated GPU
programming using OpenGL into an easy-to-use interface it makes the the power-
ful resources provided by the GPU available even to less experienced programmers
that are working on computer vision problems. Due to the encapsulation paradigm,
users do not need any knowledge of its inner structure; therefore they do not need
any knowledge of the details of how the fragment processor or the OpenGL drivers
operate. The library contains only two classes: Array and Program. The Array
Class defines a 2D array in the GPU memory, while the Program class represents a
Cg program in the GPU memory. The data processing is implemented in a straight-
forward way: both array and Cg programs are created, the array holding the data
to be processed is moved to a GPU, the program parameters are set and eventually
the program is executed.

12 CHAPTER 2. RELATED WORK

Even though the library performs well at filter-like algorithms, which process every
pixel independently of the others such as Gaussian smoothing, convolutions, image
pyramids, geometric transformations, image de-noising and cross-correlation there is
no possibility of interaction between the program instances processing every output
element. The programmer is also very limited in terms of data types since MinGPU
is based on OpenGL and its shader language Cg which is only intended for graphics
processing.

There exist two major problems with this approach. The first one is the limitation
to "image like" data structures that can be processed by the Cg programs and the
second being the fact that only operations implemented by MinGPU can be carried
out on the graphics board and thus adding functionality would require modifications
of the library.

2.2 OpenSURF

OpenSURF [Eva09] is as the name suggests an open source implementation of the
SURF algorithm by Christopher Evans and was released early 2009. It also includes
an extensive documentation and commented source which facilitates the understand-
ing of the complicated code. The library itself is written in C++ and depends only on
the OpenCV library for compilation which makes it virtually platform independent
since there are compilers and versions of OpenCV for almost any operating system
used in image processing amongst others Linux, Window and MacOS X. The author
has taken care not to use any non-standard extensions to keep OpenSURF portable
between Windows and Linux but the library also compiles on MacOS X without
any major changes to the source code.

The library is organized in five different modules which are briefly described in the
following. The first one is the integral image. It takes the input image and creates
the integral image representation of the supplied input and computes the sum over
the pixel values of upright rectangular areas within the image.

The main processing step of the SURF algorithm is performed by the Fast-Hessian
module. It takes the integral image as an input and builds the Hessian response
map. Next the interest points are extracted using a non-maximum suppression and
finally interpolated. The result is a C++ std::vector of accurately localized interest
points.

To describe and match the detected interest points the descriptor module extracts
the Haar wavelet based structure vectors using the previously computed integral

2.3. EFFICIENT KEYPOINT MATCHING 13

image and returns a vector of "SURF described" interest points. The matching
procedure is not part of the library but can easily be implemented as done in the
demonstration code that ships with OpenSURF.

All detected interest points are stored in a class provided by the interest point mod-
ule. It provides accessor and mutator methods for the associated data. Last but not
least the utility module contains auxiliary functions that are not SURF specific.

Due to its portability and efficient implementation in C++ OpenSURF will serve
as a benchmark for both processing speed and quality of the obtained results.

2.3 Efficient Keypoint Matching

In "Efficient Keypoint Matching for Robot Vision using GPUs" [SW09] Michael
Schweitzer and Hans-Joachim Wuensche from the Institute for Autonomous Systems
Technology of the University of the Armed Forces Munich present a new approach
for interest point detection and matching that focuses on robot vision applications
where a very low execution time of the extraction process is required that allows for
frame rates up to 200 Hz.

To reduce the computational effort a corner detection was chosen in contrast to the
approaches taken in SURF [BTG06] and SIFT [Low99] that provide greater robust-
ness to changes in viewpoint [MS05] but require localization in scale space which
adds to the amount of operations needed. This loss in robustness can to some extent
be compensated by using additional sensor information from the robot i.e. speed
and gyration rates.

An additional difference to previous approaches is the fact that the Haar wavelet
responses are not only used to detect the interest points (here called "keypoints")
but also for their classification and description. Like in SURF an integral image is
used to efficiently compute the Haar wavelet responses.

The interest points are detected at local extrema of the response map of Ixy similar
to SURF by applying a non-maximum suppression. The Ixy, Ix and Iy components
of the "Scale Invariant Descriptive Cells" (short SidCell) together with Ixy calcu-
lated at half the scale t are then used for the classification into one of the following
groups: corner, chessboard, edge and flat. Figure 2.1 shows the three different Haar
wavelets used where t denotes the scale and a scene after the features have been
classified.

The descriptor is computed as a vector of surrounding SidCells weighted according

14 CHAPTER 2. RELATED WORK

(a)

I x I y I xy

2t

(b)

Figure 2.1: Strong/weak corners of an automotive scene (left) and Haar wavelets
for SidCell components (right) [SW09]

to their distance from the corresponding interest point. These descriptors are then
used to match the detected interest points against a list of candidates detected in
the previous frame.

The whole process is implemented in CUDA and runs entirely on the GPU and
thus makes the CPU available to other tasks. However this CUDA implementation
requires the program to run on NVIDIA hardware and thus isn’t platform inde-
pendent in terms of supported hardware. Further, the presented approach is not
robust to even smaller changes in viewpoint and relies on additional information
from the vehicle to constrain the matching which renders the algorithm useless in
environments where the camera configuration is not known or the distance between
two viewpoints and the corresponding images is too large. Finally it is worth men-
tioning that the enormous frame rate of over 200 Hz was achieved using a NVIDIA
C1060 Tesla device - four times the price of a standard laptop.

15

Chapter 3

Interest Point Detection, Description
and Matching

The following sections review the methods used in [BTG06] and provide the nec-
essary mathematical background to understand the following chapters. It is subdi-
vided into two major parts: The interest point detection that includes the computa-
tion of the integral images and determinant of the Hessians, finding the extrema and
interpolation of their position. The second part is concerned with the description
and matching of the detected features.

3.1 Integral Images

Integral images were originally introduced by Crow et al. [Cro84] as "summed-area
tables" for the efficient calculation of mipmaps (i.e. stacks of scaled versions of a
texture that can be used to reduce aliasing artifacts and increase the rendering speed
in 3D applications) but didn’t attract a lot of attention until the introduction of the
object detection framework [VJ01] proposed by Viola-Jones in 2001.

The integral image can be computed quickly from an input image and reduces the
time required to retrieve the sum over any rectangular upright region within the
image. With an input image I the integral image IΣ(x) at a location x = (x, y)T is
the sum over all values within the rectangle spanned by x and (0, 0)T . The integral
image can therefore be defined as

IΣ(x, y) =
x∑
i=0

y∑
j=0

I(i, j) (3.1)

For computational efficiency this summation can be separated into two sums for the
x- and y-direction:

16 CHAPTER 3. INTEREST POINT DETECTION, DESCRIPTION AND MATCHING

IΣ,x(x, y) =
x∑
i=0

I(i, y) and IΣ,y(x, y) =

y∑
i=0

I(x, i) (3.2)

The integral can then be written in terms of IΣ,x and IΣ,y as

IΣ(x, y) =
x∑
i=0

IΣ,y(i, y) =

y∑
i=0

IΣ,x(x, i). (3.3)

which reduces the computational complexity from O(n2) to O(n). Using the integral
image, the effort of calculating the sum over any upright, rectangular area Σ within
the image can be reduced to three additions:

Σ = A+ C −B −D. (3.4)

Therefore the calculation is independent of the size of the area which is beneficial
when computing large integrals corresponding to large filter sizes.

A

C

B

D

Figure 3.1: Only the values at the four corners that are necessary to calculate the
sum over the green rectangle.

3.2 Hessian Matrix Based Interest Points

The method to detect interest points that is used in [BTG06] is based on the Hessian
(sometimes also referred to as Jacobian matrix) that contains the derivatives of an n-
dimensional function with respect to all its dimensions and thus has a size of n×n.
It detects blob-like structures within an image. The Hessian of a 2-dimensional
function f(x, y) is given as

3.2. HESSIAN MATRIX BASED INTEREST POINTS 17

H(f(x, y)) =

[
δ2f
δx2

δ2f
δxδy

δ2f
δxδy

δ2f
δy2

]
. (3.5)

The interest points are detected at the locations where the determinant of the Hes-
sian for the 2-dimensional image function f(x, y)

det(H) =
δ2f

δx2

δ2f

δy2
−
(
δ2f

δxδy

)2

. (3.6)

is maximal. The sign of the trace of H

sign(Tr(H)) (3.7)

can be used to distinguish the detected interest points into two groups. Light blobs
on dark ground are indicated by a negative and dark blobs on light ground by a
positive sign as depicted in figure 3.2. The second order partial derivates in 3.9 can
be computed by convolution of the image function f(x, y) with scale normalized
second order derivates of Gaussians [BTG06].

negative sign positive sign

Figure 3.2: The two types of contrast: Light blob on dark ground and vice versa.

Thus the Hessian can then be expressed in terms of the second order derivatives of
the Gaussian g(x, σ) at scale σ (δ

2g(σ)
δx2 , δ

2g(σ)
δy2

and δ2g
δxδy

) as

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
. (3.8)

where Lxx(x, σ) denotes the convolution with δ2g(σ)
δx2 and similarly for Lyy(x, σ) and

Lyy(x, σ).

In order to apply the convolution to the finite and discrete image I the infinite
Gaussians have to be discretized and cropped. Even though this leads to a loss in
repeatability under image rotations around odd multiples of π/4 which is caused by
the square shape of the filters it greatly speeds up the computations of the response

18 CHAPTER 3. INTEREST POINT DETECTION, DESCRIPTION AND MATCHING

map [BTG06].

These filters are even further simplified by approximating the Gaussian derivates by
box filters as shown in 3.3 (bottom row) where the white regions have a weight of
1 and the black regions a weight of −2 for the xx- and yy-filters (left and center)
and −1 for the xy-filter (right). Gray means a weight of 0. Using integral images as
discussed in 3.1 this approximation allows for great computational efficiency when
calculating the filter responses, especially for bigger filter sizes corresponding to a
larger scale σ.

Let Lxx(x, σ) be the filter response of the approximated box filter for the xx-direction
and similarly for Lyy(x, σ) and Lxy(x, σ) the Hessian can now be written as

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
. (3.9)

Defining the convolution of the image I with the box-filters as Dxx, Dyy and Dxy

the determinant of the Hessian then becomes

det(Happrox) = DxxDyy − (wDxy)
2. (3.10)

To assure energy conservation between the Gaussian filters and the corresponding
approximations a relative weight

w =
||Lxy(1.2)||F ||Dyy(9)||F
||Lyy(1.2)||F ||Dxy(9)||F

= 0.912... ' 0.9 (3.11)

is applied to the expression where ||A||F is the Frobenius norm of a m × n matrix
A [GVL96]:

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij|2. (3.12)

Even though this weight depends on the scale it can in practice be kept constant as
proposed by [BTG06] since it doesn’t have a significant impact on the results. In
order to guarantee a constant Frobenius norm for all filter sizes the filters are ad-
ditionally normalized with respect to their size which is important when comparing
filter responses of different scales.

Using the above definitions the function used for the detection can finally be written
as

D = sign(Dxx +Dyy) (Dxx Dyy − 0.81 D2
xy) (3.13)

Figure 3.3 shows the three steps of the approximation of the filters used for the con-
volution. The first three filters are the scale-normalized second order derivatives of

3.2. HESSIAN MATRIX BASED INTEREST POINTS 19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: First row: second order Gaussian derivatives for σ = 1.2. Second row:
discretized and cropped Gaussians. Third row: corresponding box filter approxima-
tions with size 9× 9.

the Gaussians for the xx-, yy- and xy-directions corresponding to a scale of σ = 1.2.
The second row shows the discretized and cropped version with filter size 9 × 9.
The bottom row depicts the box-filter approximations of the previous row. The
two distinct shades of gray (symbolizing a weight of 0) are due to a different offset
caused by a higher weight of the black regions in the xx- and yy- compared to the
xy-filters.

20 CHAPTER 3. INTEREST POINT DETECTION, DESCRIPTION AND MATCHING

3.3 Scale Space Representation

An inherent problem when using the determinant of the Hessian is that only blobs
corresponding to the filter size are detected but on the other hand the detected in-
terest points tend to be more stable across changes in viewpoint or lighting [MS04].
The scale-space is a concept introduced by Witken in [Wit83] that addresses this
problem. In order to construct the scale-space an image is iteratively filtered with
Gaussian filters where the size of the filter depends on the corresponding scale of the
filter. The filtered images are stacked on to of each other and form the scale domain
and subsampling of the higher levels yields the image pyramid. This approach has
been successfully applied in [Low04] to find the extrema of blob responses across the
different scales.

However because of the necessity of repeated filtering (to avoid aliasing effects) this
approach is computationally expensive. Using the box filters the blob responses for
all levels of the pyramid can be computed in parallel using the integral image. It also
saves the iterative smoothing and subsampling which would otherwise be necessary.
Figure 3.4 shows the two methods to calculate the scale-space pyramid from the
original image.

scale scale

Figure 3.4: Computation of the scale-space pyramid through smoothing and sub-
sampling (left) and varying the filter size (right)

By using box filters together with integral images as described in 3.1 a significant
increase in performance can be achieved. Calculating the response for a 9× 9 filter
causes 81 memory accesses and additions compared to 8 for the box filter. Thus
the computational cost remains constant over the different scales which allows for
efficient and parallel computation of the layers. Although the use of box filters pre-
serves high-frequency components that would get lost in down-scaled versions of an

3.3. SCALE SPACE REPRESENTATION 21

image experiments in [BTG06] have shown that this effect is negligible.

The scale space starts with the response of the smallest filter of size 9×9 correspond-
ing to a Gaussian with σ = 1.2. It is subdivided into octaves each containing four
successive filter sizes that are used to retrieve the blob-responses for the different
scales. The value of the approximated Gaussian scale increases with the filter size
according to the following formula:

σapprox = Filter Size · 1.2

9
(3.14)

The scale space starts with the response of the smallest filter of size 9× 9 followed
by filters with sizes 15 × 15, 21 × 21, 27 × 27. The higher octaves are constructed
similarly by doubling the increase in filter size when going to the next higher octave
starting with a value of 6. At the same time the resolution of the image can be
reduced by a factor of two for every new octave which reduces the computational
effort to a quarter compared to the preceding level. Figure 3.5 shows the first three
and (optional fourth) octaves with filter sizes 9, 15, 21, 27 for the first, 15, 27, 39,
51 for the second and 27, 51, 75, 99 for the third octave.

Figure 3.5: Overlapping filter sizes for the first three octaves after [BTG06]

The overlap between successive octaves is necessary since the responses from the
first and last filter in every octave are only used for comparison when detecting the
extrema (as shown in Section 3.4).

There are however some constraints that have to be taken into account when increas-
ing the size of the filters. As a central pixel is required the lobe size (i.e. the width
of the white and black regions of the filters Dxx and Dyy) can only be increased by
multiples of 2 resulting in a minimum increase of 6 for the whole filter.

22 CHAPTER 3. INTEREST POINT DETECTION, DESCRIPTION AND MATCHING

+1

+1

Figure 3.6: Increasing filters from 9× 9 to 15× 15 whilst preserving a central pixel

3.4 Interest Point Localisation

To locate the interest points within the previously constructed scale-space a 3D
non-maximum suppression is applied to the four layers of every octave. Addition-
ally a threshold can be applied to control the number of detected interest points.
The lower the threshold the higher number of detected features. However a higher
threshold leaves only the most stable results in place which generally allows for more
reliable matching of the detected interest points.

To find the local maxima within the xy- and scale-space the non-maximum sup-
pression is applied in all three directions. Therefore each element is compared to
its 3 · 3 · 2 neighbors in the next higher and lower scale and the 8 neighbors in the
same scale. This process is visualized in figure 5.10 where the orange element in the
center is compared to its 26 neighbors (blue).

To get a more accurate position for the detected interest points it is necessary to in-
terpolate the position in both xy- and scale space because the scale change between
the first filters in every octave is fairly big. Another problem is that the second and
third octave have sampling intervals of 4 and 8 which means the accuracy of the
detected position is only 4 and 8 pixels respectively.

To overcome this problem the position of the detected interest points is interpolated
in both scale- and xy-space using the method proposed in [BL02]. Therefore the
H(x, y, σ) is written as a Taylor series up to second order with its center at the
position where the point was detected:

H = H +
δH

δx

T

x +
1

2
xT δ

2H

δx2
x (3.15)

In order to find the distance vector between the interpolated location and the de-

3.4. INTEREST POINT LOCALISATION 23

scale

Figure 3.7: 3D non-maximum suppression

tected interest point x̂ = (x, y, σ) the derivative of this function is set to zero:

x̂ = −δ
2H

δx2

−1
δH

δx
(3.16)

The first order derivatives of H are approximated by the finite differences of adjacent
pixels as

Dx(x, y, σ) = (H(x+ 1, y, σ)−H(x− 1, y, σ))/2 (3.17)

and for the second order derivative as

Dxx(x, y, σ) = H(x− 1, y, σ) +H(x+ 1, y, σ)− 2H(x, y, σ) (3.18)

Dxy(x, y, σ) = (H(x+ 1, y + 1, σ)−H(x− 1, y + 1, σ)

−H(x+ 1, y − 1, σ) +H(x− 1, y − 1, σ))/4 (3.19)

and similarly for Dy and Dσ as well as Dyy, Dσσ, Dxσ and Dyσ. To avoid instabilities
caused by the interpolation that can only be carried out with limited accuracy the
elements of x̂ are being limited to ±0.5.

To motivate this approximation method consider the one dimensional quadratic
function f(x) and its first and second order derivatives

24 CHAPTER 3. INTEREST POINT DETECTION, DESCRIPTION AND MATCHING

−1 0 1

−1

−0.5

0

0.5

1

Figure 3.8: Functions f(x) (blue), f [n] (red), the tangent at y = 0 (green) and the
extremum (magenta)

f(x) = x2 +
1

2
x− 1 (3.20)

f ′(x) = x+
1

2
f ′′(x) = 1

and the discretized version f [n] = f(n) with n ∈ N0 shown in figure 3.8. Applying
the approximation of the derivates to f [0] and substituting them in formula 3.16
yields the position of the extremum of f(x):

f ′[0] = (1
2

+ 1
2
)/2 =

1

2
= f ′(0) (3.21)

f ′′[0] = −1
2

+ 1
2

+ 2 = 2 = f ′′(0)

x̂ = −f ′′[0]−1 f ′′[0] = −1

4

The inverse of δ2H
δx2 can then be computed using the following formula [Mat10] where

|A| denotes the determinant of A:

3.5. INTEREST POINT DESCRIPTION AND MATCHING 25

A−1 =
1

|A|

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ ∣∣∣∣a13 a12

a33 a32

∣∣∣∣ ∣∣∣∣a12 a13

a22 a23

∣∣∣∣∣∣∣∣a23 a21

a33 a31

∣∣∣∣ ∣∣∣∣a11 a13

a31 a33

∣∣∣∣ ∣∣∣∣a13 a11

a23 a21

∣∣∣∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣ ∣∣∣∣a12 a11

a32 a31

∣∣∣∣ ∣∣∣∣a11 a12

a21 a22

∣∣∣∣

,with A ≡

a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (3.22)

3.5 Interest Point Description and Matching
The descriptor used by the SURF algorithm describes the distribution of the pixel
intensities in a scale dependent area around the detected interest points. It is sim-
ilar to the descriptor proposed by Lowe [Low99]. But through the integration of
gradient information within the subregions as explained in the following it is more
robust towards noise. The use of integral images and Haar wavelets [Haa10] which
are simple filters that are used to find gradients in the x- and y-directions allows for
a significant speed-up. Figure 3.9 shows the two Haar wavelets used to calculate the
gradients in x- and y-direction.

Figure 3.9: Haar Wavelets for the x- (left) and y-direction (right)

In order to achieve scale invariant results the descriptor needs to be dependent on
the scale at which the interest point was detected. Therefore a window of size 20σ
is defined. This window is divided into 4 × 4 equally sized subregions. For each of
the 16 subregions the Haar wavelet responses in x- and y-direction are calculated at
5× 5 regularly spaced points inside the subregion. These are summed up according
to equation 3.23 and the results are stored in the four-dimensional vector vsub.

vsub =
[∑

dx
∑
dy
∑
|dx|

∑
|dy|

]
(3.23)

The vectors of all subregions are then concatenated which results in a vector of
length 4 × 4 × 4 = 64. This descriptor is invariant to changes in scale, offsets in

26 CHAPTER 3. INTEREST POINT DETECTION, DESCRIPTION AND MATCHING

illumination and after turning the descriptor into a unit vector invariant to changes
in contrast [BTG06]. Figure 3.10 visualizes the extraction process of the SURF
descriptor.

Σ dx Σ dy Σ|dx| Σ|dy|

dx dy

64-dimensional descriptor

20 σ

20
 σ

5 σ
5

σ

vsub

Figure 3.10: Computation of the 64-dimensional SURF descriptor.

To speed up the matching process the features can be categorized into two groups:
light blobs on dark ground and vice versa (see figure 3.2). As the Hessian based
detector typically detects blob-like structures the determinant can be used to distin-
guish the two kinds of interest points as described in 3.2. This fact can be further
exploited for more advanced indexing methods.

27

Chapter 4

OpenCL

OpenCL (Open Computing Language) is a open programming language that allows
the programmer to write parallel programs that can run on CPUs, GPUs, DSPs,
Cell processors and other devices without the need to map the underlying algo-
rithms to 3D graphics APIs like DirectX and OpenGL. The OpenCL API provides
a platform independent and yet efficient, close-to-hardware interface to these devices
which allows the same code to run on embedded devices as well as high performance
computing hardware. Version 1.0 of the OpenCL Specification was released in 2009
[Mun08]. Another important aspect are the language bindings to OpenGL that
allow programs that are using OpenCL to combine their parallel algorithms with
graphics applications that are executed on the graphics pipeline.

The OpenCL framework consists of four major components that are described in de-
tail in the following sections: The platform model, memory model, execution model
and programming model. These sections are followed by a review of the runtime
components and programming language that are necessary to understand the ideas
and principles used in the implementation. The following sections presents the four
fundamental models that form the basis of the OpenCL framework and provide the
necessary abstraction to write platform independent code that runs on all supported
devices. Since the OpenCL code eventually has to run on the graphics board a closer
look is taken at the constraints introduced by the GPU’s architecture and how the
models introduced by OpenCL map to its design.

4.1 Platform Model
The platform model consist of a host with a number of compute-devices attached to
it as depicted in figure 4.1. Each compute-device is divided into a number of com-
pute units which again contain an arbitrary number of processing elements which is
where the actual computation is performed.

28 CHAPTER 4. OPENCL

Host

CPU

compute-device

processing element

compute-unit

Figure 4.1: OpenCL platform model: A host with connected compute-devices each
containing compute units that are comprised of a number of processing elements.

To execute calculations on the processing elements of a compute device the OpenCL
application enqueues the commands from the host on which it runs. The processing
elements then process a single stream of instructions as either SIMD (Single Instruc-
tion Multiple Data) where all processing elements share one stream of instructions
or SPMD (Single Program Multiple Data) [Mun08].

4.2 Execution Model

An OpenCL program can generally be divided into a part that runs on the host and
the kernels that execute on the compute-devices connected to it.

An index space is used when the host application submits a kernel to the compute
device for execution. The index-space can be either one, two or three dimensional.
Every instance of that kernel the so-called work-item is then executed for each el-
ement within the index space. Each work-item uses the same code. However the
specific data used by every work-item will be different depending on its particular
position within the index space.

The global index-space is subdivided into work-groups. Every work-group has the
same dimensionality as the index space and each work-group has a unique ID as
well as every work-item having a local ID inside the work-group. All work items
in a work-group execute concurrently on one compute unit. Figure 4.2 shows an
example of a two dimensional index-space with 12× 12 work-items subdivided into
9 work-groups of 4× 4 work-items.

4.2. EXECUTION MODEL 29

S

S

S

S

g,x

g,y

w,y

w,x

work-item

work-group

Figure 4.2: Two dimensional index space

The extent of the global index-space in every dimension denoted by Sg,x and Sg,y
must be a multiple of the work-group sizes Sw,x and Sw,y. Given the id of the work
group (xw, yw), the size of the work-groups (Sw,x, Sw,y) and the local id of a work
item (xi,l, yi,l) its global id (xi,g, yi,g) and the number of work-groups (Ng,x, Ng,y) can
be calculated as follows:

(xi,g, yi,g) = (xwSw,x + xi,l, ywSw,y + yi,l) (4.1)

(Ng,x, Ng,y) = (
Sg,x
Sw,x

,
Sg,x
Sw,x

) (4.2)

On a CUDA device all work-groups are distributed over the available compute-
units such that all work-items of a work group execute concurrently on the same
compute-unit. Thus the execution time scales with the number of compute-units on
the device. Figure 4.3 visualizes the process for two compute-devices with 2 and 4
compute-units [Cor09b].

The work-items are grouped into so-called warps of 32 elements on CUDA devices
that are executed in half-warps of 16 work-items. This further subdivision is not
part of the OpenCL execution model but plays an important role for the bandwidth
efficiency as will be seen in the following section.

When a work-group of work-items is executed on a CUDA device the compute-device
tries to hide the latencies caused by memory transactions by starting a number of
warps simultaneously. While one warp is waiting for the read/write operations to
finish another warp can perform calculations. The ratio between the maximum
number of concurrent warps and started warps is referred to as the

30 CHAPTER 4. OPENCL

compute-device
compute-unit

work-group

Figure 4.3: Distribution of 8 work-groups on compute-devices with 2 and 4 compute-
units

occupancy =
active warps

maximum number of warps
. (4.3)

This metric depends mainly on the amount of private memory (see next section)
used by each work-item that maps to the registers of a compute unit. As the num-
ber of available registers is limited the occupancy decreases with the number of used
registers. In order to completely hide memory latency the occupancy should be at
least 25 percent [Cor09a].

The runtime of a given kernel is also affected by the sizes of the index-space and
work-groups. There should be at least two work-groups per compute-unit to allow
the processor to hide memory latencies efficiently. The maximum work-group size
is limited by the number of registers on the compute-unit and the usage of private
memory by each kernel. The number of registers for one block Rblock is given as

Rblock = d
Rd T

32
32e

Rmax

32

eRmax

32
(4.4)

where R is the number of registers used by the kernel, Rmax the amount of avail-
able registers on the compute-unit and T the number of work-items per work-group
[Cor09a].

4.3 Memory Model

There exist four different types of memory a kernel can access: global, constant,
local and private memory. Any work-item can read from and write to any element
of global memory whereas the globally allocated constant memory can only be read

4.3. MEMORY MODEL 31

by the work-items. Both types are initialized by the host and may be cached de-
pending on the implementation.

processing-element
private memorylocal memory

...

global / constant memory
cache

compute-devicecompute-device memory

global memory

constant memory

compute-unit

Figure 4.4: Memory model with processing-elements and compute-units

The local memory is only available to the work-items of the same group and can be
used to share data among the work-items for fast access. The visibility of private
memory is limited to the corresponding work-item executing the kernel. Figure 4.4
shows a schematic model of the different memory types.

On CUDA devices the different memory types in the OpenCL memory model map
to the actual memory as follows: Global, local, constant and texture memory re-
side in the DRAM of the graphics board that corresponds to the compute-device
memory whereas the shared and private memory are located directly on the GPU
together with the cache for constants and textures which allows for high memory
bandwidth and fast access. A look at figure 4.4 shows the motivation for the abstrac-
tion in the OpenCL model: The compute-device memory symbolizes the video RAM
of the graphics card and the memory inside the compute-device the on-chip memory.

When accessing global memory from within a kernel that is executed on a CUDA
device this access can be coalesced into one memory operation for every half-warp.
To take advantage of the coalesced memory access a number of criteria have to be
met that allow the GPU to combine the 16 memory operations into one. First every
work-item within the half-warp must read a word from memory that consists of
either 4, 8 or 16 bytes of aligned memory. These words must be aligned in the order
of the work-items such that the first work-item in the half-warp reads the first word,
the second work-item the second word and so on.

Further, the memory regions that contain the group of words accessed by each half-
warp must be aligned similarly such that the first group starts at memory address

32 CHAPTER 4. OPENCL

0 the second at address 0 + 16× word_size etc.

half-warp

memory words 0 15

0 15

155 0 4

0 15

0 15

0 15

aligned

misaligned

misaligned

10 11

76

76

Figure 4.5: Aligned and misaligned access patterns

However not every work-item must take part in the memory access in order to allow
coalescing it. If the GPU cannot coalesce the memory access because any of the
above criteria is not met every word is read sequentially from global memory which
reduces the effective memory bandwidth by a factor of 16.

Figure 4.5 shows three different access patterns. In the first row the memory access
can be coalesced into one operation even though every fourth work-item is not tak-
ing part. The second line shows a misaligned access where work-items with IDs 6
and 7 are accessing memory words with IDs 7 and 6 respectively. This access cannot
be coalesced. In line three the access spreads across the boundary of two memory
segments which leads to 16 consecutive operations. The latest versions of CUDA
devices (compute capability 1.2 and higher [Cor09b]) have overcome most of these
limitations.

4.4 Programming Model
As mentioned above there exist two programming models in OpenCL: data parallel
and task parallel (as well as combinations of both types) where the preferred one is
the data parallel model [Mun08].

4.4. PROGRAMMING MODEL 33

In a data parallel model a sequence of operations is executed over a number of mem-
ory elements using a set of work-items defined by the index-space and all kernels can
be executed in parallel and independently of each other. However the strict binding
where every work-item maps to exactly one memory object is not necessary.

The task parallel programming model is essentially equivalent to a single work-item
that executes without depending on an index-space. Any number of these work-
items can then execute in parallel. Figure 4.6 visualizes the two approaches: While
the work-items in the data-parallel model are processing portions of the same data
every work item processes chunks of data that do not depend on each other.

work-itemsinput output

(a) Data-parallel processing

work-items

input

output

(b) Task-parallel processing

Figure 4.6: The two parallel programming models

Data can be synchronized at the level of work-groups and and command-queues of
the same context. To synchronize the work-items within a work-group a barrier is
used. Every work-item in the work-group will perform all operations up to that
barrier before any work-item is allowed to proceed. This barrier is however limited
to the work-group and does not provide means to synchronize work-items across
work-groups. Listing 4.1 shows a barrier in the kernel code.

Listing 4.1: Barrier to synchronize the work-items within the same work-group
// ... before barrier

barrier(CLK_LOCAL_MEM_FENCE); // synchronize

// ... after barrier

To achieve synchronization among the commands in the command-queue barriers
can be enqueued. All commands up to that barrier will be executed before any
command beyond the barrier is allowed to execute. The barrier is limited to the
command-queue where it was enqueued. Another option to synchronize the com-
mands is to wait for events emitted by any of the enqueued commands that can be

34 CHAPTER 4. OPENCL

read through the OpenCL API.

4.5 Runtime
During runtime all interaction of the host application with compute devices is han-
dled through the functions provided by the OpenCL API. First a context has to be
created. Within this context command-queues are used to communicate with the
attached devices and retrieve information about the devices.

Since the compute-devices have their own memory it is necessary to allocate space
inside the graphic cards memory that will hold the input and output data to the
kernels. After memory has been allocated on the device using the previously cre-
ated context a memory-object is returned that represents the data on the device.
This memory-object is essentially a pointer inside the graphic cards memory and is
stored by the host application for late use. The contents of these memory-objects
or portions of it can be copied from or to the host or within the graphics memory
by enqueuing the corresponding commands in the command-queue.

Similarly to the memory-objects the kernels are represented by kernel-objects that
are compiled from a program-object. Using the context the program-object is com-
piled from a source string presented to the OpenCL compiler during runtime. The
kernel-objects are then retained from the program.

With all the input loaded to the graphics cards memory and the kernels-objects
retained the kernel can be executed over an index space. This process involves
three steps: First all the arguments have to be set to the kernel function using the
previously allocated memory-objects and other parameters like size information.
After all parameters have been set the kernel is executed by calling the function
clEnqueueNDRangeKernel().

Listing 4.2: Enqueuing a kernel
cl_int clEnqueueNDRangeKernel (

cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

This function is a typical example of a function provided by the OpenCL API. All
functions are prefixed with "cl" and most require a large number of arguments. The

4.6. PROGRAMMING LANGUAGE 35

error code is returned as an cl_int and is the only way of finding out whether en-
queuing the command succeeded or not.

Since the enqueued commands are executed asynchronously the programmer has to
ensure that the execution of the previously enqueued commands has finished before
the content of the memory-object holding the result is read back. There are two
means to achieve this goal. The cl_event pointers returned by the API calls can be
used to wait for the corresponding event or alternatively a call to clFlush() is issued
that returns after the last command has been enqueued. The function clFinish()
achieves the same except it returns after the execution of all enqueued commands
has finished.

Another application for the event-objects is the retrieval of runtime information that
includes the accurate execution times taken by the GPU. This information can be
very helpful when profiling and optimizing the kernel code.

4.6 Programming Language
The OpenCL C programming language is based on the ISO/IEC 9899:1999 C lan-
guage specification also known as C99 with a number of specific extensions and
restrictions [Mun08]. This section gives a brief introduction to the modifications
and restrictions of OpenCL C that are needed for the understanding of the code
listings in Chapter 5.

In addition to the scalar vector types supported in C OpenCL introduces a number
of built-in vector data types. These vector data types are defined with the type
name i.e. char, int, float etc. followed by a number n which can be either 2, 4, 8
or 16. Listing 4.3 exemplifies how to access the values inside a float2 similar to a
C-struct with fields x and y.

Listing 4.3: Accessing the values of a built-in vector type
int2 coords;
coords.x = 3;
coords.y = 7;

There also exist built-in types for the 2- and 3-dimensional images (image2d_t,
image3d_t), samplers (sampler_t) and events (event_t) and a number of special
scalar and matrix types that are not used in this implementation.

To qualify the address space of a variable or pointer OpenCL provides the following
address space qualifiers that correspond to the memory spaces introduced in 4.3:
__global, __local, __constant and __private. These qualifiers can be used as a

36 CHAPTER 4. OPENCL

prefix to function arguments and when declaring pointers inside the kernel function
or when calling auxiliary functions.

The qualifiers for objects of type image2d_t and image3d_t are __read_only and
__write_only where read only is the default and may thus be omitted.

4.7 OpenCL on the Mac Platform
Since version 10.6 MacOS X provides a native implementation of the OpenCL 1.0
specification. It is implemented as a framework (OpenCL.framework) containing the
API, OpenCL compiler as well as an interface to the runtime engine. Since OpenCL
provides a C API the library can be used in any C, C++ and Objective-C program.

The included OpenCL compiler uses internally the LLVM (Low Level Virtual Ma-
chine, [Lat02]) and its front end "clang" to compile the kernels and translate those
instructions into optimized machine code for the hardware of the compute-devices.
The same technology is used to compile OpenGL code. In this process the code
converted to an intermediate representation then optimized and finally passed to
the compiler that translates it into instructions for the specific device [Inc09b].

37

Chapter 5

Kernel Programs

The kernel-code forms the heart of any OpenCL application. This chapter gives
a detailed insight to the workings of the OpenCL implementation by walking step
by step through the code. The following section gives an overview of the data flow,
memory buffers and datatypes used throughout the different stages of the extraction
and matching process whilst each of the subsequent sections focus on one processing
step. Wherever possible the intermediate results are presented to achieve a better
understanding of the underlying data used to find the interest points and matches.
Every section features a schematic chart visualizing the operations performed by
each work item. For convenience some placeholders are used that correspond to
#define statements in the source code. Table 5.1 lists these definitions and gives
some typical values for each of them.

Definition Description Typical Value
NUM_IPTS maximum number of interest points 256
WIDTH width of the source image 720
HEIGHT height of the source image 480

Table 5.1: Definitions used in the source listings and figures.

5.1 Data Flow

This section gives an overview of the kernels and memory buffers used during the
different processing stages from the interest point detected to the matching. The
first step consists in loading the intensity map of the image to device memory. If the
image data to be processed comes in RGB format it is first converted to grayscale
according to

I =
[
0.299 0.587 0.114

] [
R G B

]T (5.1)

38 CHAPTER 5. KERNEL PROGRAMS

where I is the intensity (luminance) value and R, G and B are the red, green and
blue values of the corresponding pixel (as defined in [BT95]). This is done before-
hand to reduce the amount of data being transferred from RAM to device memory
which is the greatest bottleneck along the data flow path.

integrateXKernel

integrateYKernel

buildOctave0Kernel buildOctave1Kernel buildOctave2Kernel

�ndInterestPointsKernel �ndInterestPointsKernel �ndInterestPointsKernel

sourceImage
image2d_t
HEIGHT × WIDTH

integralX
uint
HEIGHT × WIDTH

integralY
image2d_t
HEIGHT × WIDTH

octave0
char4
HEIGHT/2 × WIDTH/2

octave1
char4
HEIGHT/4 × WIDTH/4

octave2
char4
HEIGHT/8 × WIDTH/8

ipts
struct Ipoint
NUM_IPTS

Figure 5.1: Kernels and data flow for interest point detection.

After the intensity map has been loaded to device memory integrateXKernel() per-
forms as the name suggests an integration of this map in x-direction and writes the
results to an array of unsigned integers of the same size as the input image (HEIGHT
× WIDTH). IntegrateYKernel() takes this array as an input and integrates all val-
ues along the y-axis. The intermediate result, an array of the of unsigned integers of
the same size as the input, is then copied to a two dimensional texture for fast access.

5.1. DATA FLOW 39

This texture image is used by the three kernels buildOctave0Kernel() through buil-
dOctave2Kernel() to construct the three octaves each containing the four blob re-
sponses corresponding to the four filter sizes within each octave. Every four re-
sponses belonging to a position within an octave are stored in a char4. Finally three
sets of work-items of findInterstPointsKernel() are spawned to "collect" the maxima
of the response maps each processing one of the "stacks" computed in the previous
step. The interpolated results are written back to an array of Ipoints (see listing
5.1) and length NUM_IPTS.

Listing 5.1: Struct used to store interest points
typedef struct {

float x;
float y;
float scale;
int sign;

} Ipoint;

Figure 5.1 shows the data flow up to the detected interest points where blue arrows
symbolize the processing by the kernel and the boxes above and beyond the arrows
the input and output. The three lines of text next to every orange box that sym-
bolize the memory buffers give the name of the buffer used in the compute engine,
its data type and dimensions.

buildDescriptorsKernel

ipts
struct Ipoint
NUM_IPTS

ssd64Kernel

�ndMatchesKernel

descriptors
�oat
64 × NUM_IPTS

database
�oat
64 × NUM_IPTS

ssd
�oat
NUM_IPTS× NUM_IPTS

matches
int
NUM_IPTS

Figure 5.2: Data flow continued: interest point description and matching.

To find matches between interest points from different images it is first necessary to

40 CHAPTER 5. KERNEL PROGRAMS

extract the descriptors. BuildDescriptorsKernel() takes the list of detected interest
points and writes the descriptors to an array of the same length where every inter-
est point in the input array corresponds to one row of the output. The correlation
matrix between the descriptors of the current image and a database of descriptors
is calculated by ssd64Kernel(). Every element of this matrix is computed by one
work-item. In this example the database is a copy of the descriptor array computed
from the preceding image which can be the previous frame of a video sequence or
an image taken of the same scene from a different perspective and therefore has
the same size as the array holding the descriptors of the current image. Figure 5.1
visualizes the memory buffers and kernels used during the matching process.

5.2 Integration

To obtain the integral of the source image two kernels are used. The first kernel
integrateXKernel() performs an integration in x-direction. It takes an image2d_t
as an input which contains the intensity values of original image as 8-bit unsigned
chars for each pixel and has the same dimensions as the original. In a first step
the global position, the position inside the group and the group size are determined
[1]. An unsigned integer is used to hold the sum of intensities [2] which allows for a
maximum image size of UINT_MAX

UCHAR_MAX
= 232−1

28−1
> 16 MPixels.

Listing 5.2: Source Code of kernelIntegrateX()

__kernel void integrateXKernel (
__read_only image2d_t sourceImage,
__global uint * integral,
__local uint * area,
const uint width)

{
const int y = get_global_id(0); // [1]
const int gi = get_group_id(0);
const int ls = get_local_size(0);
const int li = get_local_id(0);

uint v = 0; // [2]

for (int s = 0; s < width/ls; s++) { // for every segment

// integrate [3]
for (int xl = 0; xl < ls; xl++) {

int2 coords = (int2)(s*ls+xl, y);
uint4 pixel = read_imageui(sourceImage,

CLK_ADDRESS_CLAMP, coords);
v += pixel.x;

5.2. INTEGRATION 41

area[li*ls+xl] = v;
}

// synchronize [4]
barrier(CLK_LOCAL_MEM_FENCE);

// write back results [5]
for (int yl = 0; yl < ls; yl++) {

integral[(gi*ls+yl)*width+(s*ls+li)] = area[yl*ls+li];
}

}
}

The kernel is executed over an index space of dimension HEIGHT × 1 which means
one instance of the kernel is processing one row. Since every half-warp consist of
16 kernels trying to access 16 vertically aligned pixels a image_2d_t was chosen
to avoid the loss in memory bandwidth that would occur when reading the values
directly from a byte array. Another problem arrises from the fact that this access
would have to be 32-bit aligned which requires that the loading is split up among
the work-items of each group leaving one fourth of them idling during the loading.
The result however consists of an array of unsigned integers which allows for an
efficient store of the results.

BLOCK_SIZE

BL
O

CK
_S

IZ
E

WIDTH

H
EI

G
H

T

BLOCK_SIZE

BL
O

CK
_S

IZ
E

WIDTH

H
EI

G
H

T

Source Image

Integral

sum = sum + read_imageui(x, y)

sum

Cache

Figure 5.3: Block-wise calculation of the integral in x-direction using shared memory

The integral is therefore cached in an array of size BLOCK_SIZE × BLOCK_SIZE
where BLOCK_SIZE is chosen to be 16. Every kernel runs two nested loops
[3]. The outer loop iterates over the WIDTH / BLOCK_SIZE segments of width

42 CHAPTER 5. KERNEL PROGRAMS

BLOCK_SIZE. For each of these segments the inner loop accumulates the intensity
values read from the source image. Every kernel writes one line of the segment
according to its local id. After that the work group is synchronized to ensure that
all kernels within the work group have finished their computations [4]. Finally the
integral values are written back to global memory [5]. Therefore each kernel copies
the column corresponding to its local_id_0 from the local cache to global memory.
This process is repeated for every segment until the image has been processed.

Figure 5.3 shows process of reading the intensity value from the image, accumulat-
ing and writing it to the cache and finally writing the results row by row to global
memory where every instance of the kernel is responsible for one column.

Figure 5.4: Image after integration in x-direction.

The result of the x-wise integration is shown in figure 5.4. In order to visualize
the memory contents the values were divided by biggest possible value (WIDTH
* UCHAR_MAX) such that after normalization black corresponds to a value of 0
and white to 1. The intensity map shown in figure 5.8 was used as an input for the
integration.

Listing 5.3: Source Code of kernelIntegrateY
__kernel void integrateYKernel (

__global uint * data,
const uint width,
const uint height)

{
const uint x = get_global_id(0);
const uint limit = x + (height-1) * width + 1;

5.2. INTEGRATION 43

uint sum = 0;

for(uint i = x; i < limit; i += width) {
sum += data[i];
data[i] = sum;

}
}

The integration in y-direction works very similar to the integration in x-direction
but can be implemented more efficiently since all kernels of a work group access
aligned memory for every integration step in both source and destination memory
corresponding to the intensity image to integrate and the integral respectively. Ev-
ery instance of kernelIntegrateY() calculates one column of the integral where the
column index corresponds to the global id of the kernel. After the global id has
been determined the limit for the integration is calculated from the WIDTH and
HEIGHT values of the image.

WIDTH

H
EI

G
H

T

Source Image

WIDTH
H

EI
G

H
T

Integral Image

gl
ob

al
_i

d_
0

gl
ob

al
_i

d_
0

sum = sum + value
value sum

Figure 5.5: Element-wise computation of the integral in y-direction. Every kernel
processes one column.

The integration is then performed in a for-loop as shown in figure 5.7. For every
cycle of the integration loop one intensity value is read from the source image. This
value is added to the sum and finally the new value of the sum is written directly
to global memory. The loop terminates when the bottom of the image is reached.
Since the integration is separable as shown in equation 3.2, the sum over the previ-
ous values is stored in a register and since the same data type is used for both input
and output there exists only one argument holding the data.

Figure 5.6 shows the intensity map from figure 5.8 after integration in y- and both
x- and y-direction. Similar to the x-wise integration the values where divided by
the biggest possible value HEIGHT * UCHAR_MAX and WIDTH * HEIGHT *

44 CHAPTER 5. KERNEL PROGRAMS

(a) (b)

Figure 5.6: Image after integration in y-direction (left) and both x- and y-direction.

UCHAR_MAX such that after the normalization black corresponds to a value of 0
and white to a value of 1.

5.3 Computation of the Determinant of the Hessian

After the integral image has been computed the determinants of the Hessians for all
octaves and intervals within the octaves need to be calculated. Therefore one set of
kernels is spawned for every octave. Since every kernel operates on an output array
that is one quarter of the size of its predecessor a different version of the kernel
and output exist for every octave i.e. WIDTH / 2 × HEIGHT / 2 for the first
octave, WIDTH / 4 × HEIGHT / 4 for the second and WIDTH / 8 × HEIGHT /
8 for the third. For simplicity only the kernel for the first octave is discussed here
(buildOctave0Kernel) since they are very similar.

Like before (5.2) an image2d_t is used to hold the integral image because the inte-
grated intensity values needed for the computation of the filter responses cannot be
read in an aligned fashion as will bee seen.

The first step consists again in determining the global position of the kernel instance
and defining a border around the edge of the input array [1]. This border is half
the size of the biggest filter used in this octave rounded towards the next bigger
integer value. For this example this would be d27

2
e = 14. The global position is then

checked against the border value and the response is only calculated for the inner
area where it is defined [2].

Listing 5.4: Source Code of buildOctave0Kernel()
__kernel void buildOctave0Kernel (

__read_only image2d_t integral,
__global char4 * determinant,

5.3. COMPUTATION OF THE DETERMINANT OF THE HESSIAN 45

const uint width,
const uint height)

{
const uint x = get_global_id(0) * 2; // [1]
const uint y = get_global_id(1) * 2;

const uint border = 14;

if (x < border || x > width-border || y < border || y > height-border) // [2]
return;

char4 det;
det.s0 = detHessian(integral, x, y, 3);
det.s1 = detHessian(integral, x, y, 5);
det.s2 = detHessian(integral, x, y, 7);
det.s3 = detHessian(integral, x, y, 9);

determinant[(y / 2)*(width / 2)+(x / 2)] = det; // [3]
}

The response for the four filter sizes are then calculated by the function detHessian()
and stored in a char4 where every 8 bits hold one response value. Finally the result
is written to aligned global memory since every kernel in the half warp of the group
writes 8∗4 = 32 bits [3]. The source code of buildOctave0Kernel() is given in listing
5.4.

To calculated the blob response the pointer to the integral image is passed on to
the function detHessian() together with the global position of the kernel in x- and
y-direction and the lobe size corresponding to the filters belonging to each interval
within the octave. In this example the lobe sizes for the first octave are 3, 5, 7 and
9 corresponding to the filter sizes 9, 15, 21 and 27 i.e. one third of the filter size. A
shortened version of the function is given listing 5.5.

Listing 5.5: Source Code of kernelIntegrateY()
inline char detHessian(__read_only image2d_t integral, uint x, uint y, uint l)
{

uint w = 3*l;
uint b = 2*l-1;
uint b2 = b / 2;
uint l2 = l / 2;

const float area2 = w*w*w*w;

float Dxx = (ImageBoxIntegral(integral, x-l-l2, y-b2, 3*l, b)
- 3 * ImageBoxIntegral(integral, x-l2, y-b2, l, b));

/* ... */

float D = (Dxx * Dyy - 0.81f * Dxy * Dxy) / area2;

46 CHAPTER 5. KERNEL PROGRAMS

WIDTH / 2

H
EI

G
H

T
/ 2

Octave 0 WIDTH

H
EI

G
H

T

Integral Image

det(H) = Dxx * Dyy - Dxy*Dxy} }

gl
ob

al
_i

d_
0

*
2

global_id_1*2

�lter size

char4

Figure 5.7: Calculation of the filter responses of the four filters in the first octave.

// Get the sign of the laplacian
int ls = Dxx + Dyy >= 0 ? 1 : -1;

D = D < 0 ? 0 : ls * D;

return (D*16.0f)*CHAR_MAX;
}

In a first step the lengths needed to construct the approximated filters of the sec-
ond order gaussians are determined where w is the filter width and b the height of
the boxes for the filter that yields the response in x-direction and the width of the
filter that yields the response in y-direction respectively. The sum over the inten-
sity values within each box is calculated by calling the function ImageBoxIntegral()
which takes the integral image, the position in x- and y-direction and the size of
the rectangle to integrate as arguments where col and row are the top left coor-
dinates within the source image and columns and rows the number of pixels in x-
and y-direction of the rectangle. Listing 5.6 shows the source of ImageBoxIntegral().

Listing 5.6: Source Code of ImageBoxIntegral
inline uint ImageBoxIntegral (

5.3. COMPUTATION OF THE DETERMINANT OF THE HESSIAN 47

__read_only image2d_t image,
int col, int row, int cols, int rows)

{
// The subtraction by one for row/col is because row/col is inclusive.
int r1 = row - 1;
int c1 = col - 1;
int r2 = row + rows - 1;
int c2 = col + cols - 1;

uint A = read_imageui(image, CLK_ADDRESS_CLAMP, (int2)(c1, r1)).x;
uint B = read_imageui(image, CLK_ADDRESS_CLAMP, (int2)(c2, r1)).x;
uint C = read_imageui(image, CLK_ADDRESS_CLAMP, (int2)(c1, r2)).x;
uint D = read_imageui(image, CLK_ADDRESS_CLAMP, (int2)(c2, r2)).x;

return A - B - C + D;
}

The responses obtained by filtering the test image depicted in figure 5.8 are given
in 5.9. Every image represents the filter responses for one filter size where black
corresponds to the minimum value of -128, grey to a value of 0 and white to the
maximum value of 127. One can see how the response of the smaller light bulbs on
the ceiling of the shop slowly fades towards the bigger filter sizes whereas the bigger
ones yield more response as the filter sizes grow. Note that the determinant of the
Hessian is computed for every second pixel of the source image in the first octave
and thus has only half the width and height of the source image.

Figure 5.8: Intensity map of the flowermarket test-image.

48 CHAPTER 5. KERNEL PROGRAMS

(a) Filter Size 9 × 9 (b) Filter Size 15 × 15

(c) Filter Size 21 × 21 (d) Filter Size 27 × 27

Figure 5.9: Determinants of the Hessian for the different filter sizes of the first
octave.

5.4 Interest Point Detection

The task of detecting a set of interest points across the three octaves can be split up
into two distinct sub-tasks. First the maxima within the response map need to be
found. This is achieved by applying a three dimensional non-maximum-suppression
which is explained in the following. In the second step the maxima are localized up
to sub-pixel accuracy by interpolating their position in both the spacial and scale
domain.

For efficiency both steps are combined into one kernel which allows for the reuse
of the data that is used for the non-maximum suppression and thus reduces the
amount of bandwidth consumed for the localization of the interest points. This ker-
nel is applied to every response map computed in the previous step with appropriate
parameters.

5.4.1 Detection

After the global position of the kernel has been determined the corresponding char4
is loaded from the response map [1] where every 8 bit value represents a response
within the range [−128; 127]. This information is used to check if one of the central

5.4. INTEREST POINT DETECTION 49

values is a maximum in scale-direction [2]. The read access to global memory is
aligned because all kernels in the half-warp load neighboring 32-bit values from the
input array.

If one of the central values is a maximum in scale space and exceeds a predefined
threshold this value is compared to all the remaining 8 ∗ 3 = 24 neighbors in the
scale and spacial domain [3]. The neighboring char4 values loaded for the compar-
isons are stored into a 2D array of char4 and size 3 × 3. After the last comparison
this array contains the entire 3D-neighborhood of the detected maximum including
the maximum itself. If however a greater value is found among the candidates the
function returns immediately [4]. Figure 5.10 visualizes the loading process.

Listing 5.7: Source Code of findInterestPointsKernel
__kernel void findInterestPointsKernel (

__global char4 * determinant,
__global Ipoint * ipts,
__global uint * count,
const uint pitch,
const float scale1,
const float scale2,
const float step)

{

int x = get_global_id(0);
int y = get_global_id(1);

uc4 dn[3][3];
dn[1][1].c4 = determinant[y*pitch+x]; // [1]

// maximum
char m = dn[1][1].c4.y;
float scale;

if (abs(dn[1][1].c4.x) > abs(m) || abs(dn[1][1].c4.w) > abs(m)) // [2]
return;

if (abs(dn[1][1].c4.y) > abs(dn[1][1].c4.z)) {
m = dn[1][1].c4.y;
scale = scale1;

} else {
m = dn[1][1].c4.z;
scale = scale2;

}

// scale index in neighborhood
int s = scale == scale1 ? 1 : 2;

if (abs(m) > 3)

50 CHAPTER 5. KERNEL PROGRAMS

{
// check neighborhood
char mn = 0;

for (int yn = 0; yn < 3; yn++) { // [3]
for (int xn = 0; xn < 3; xn++) {

dn[yn][xn].c4 = determinant[(y+yn-1)*pitch+(x+xn-1)];
for (int sn = 0; sn < 3; sn++) {

mn = max(abs(mn), abs(dn[yn][xn].ac[sn+(s-1)]));
}
if (mn > abs(m)) // [4]

return;
}
}

// ...

If the function does not return until the last iteration a local maximum is detected.
Up to this point the position of the maximum is only know to a precision equal
to the step size of the octave. In this example this would be 2 pixels in x- and
y-direction and a difference in scale of 1.212−9

9
= 0.4. To retrieve its exact position

is necessary to interpolate the position as discussed in the next section.

WIDTH / 2

H
EI

G
H

T
/ 2

Octave 0gl
ob

al
_i

d_
0

global_id_1
} char4

3

3

Figure 5.10: Calculation of the filter responses of the four filters in the first octave.

5.4.2 Localization

One problem of the SIMD approach is that all kernels are running virtually at the
same time and thus it is only possible to share data among the instances in the same
work group. Sometimes however it is necessary to synchronize information across
all instances of the kernel which is the case here. The problem arises from the fact

5.4. INTEREST POINT DETECTION 51

that the non-maximum suppression cannot be executed over the output but over
the input array whose size depends on the array holding the determinants of the
Hessians for the different octaves. Thus one cannot know the number of interest
points that will be detected in advance and allocating memory for every instance
with enough space to store the detected interest point would result in a huge array
that will in any case only sparsely be filled.

To overcome this problem a buffer for a pre-defined number of interest points
(NUM_IPTS) is allocated. The number of detected interest points depends on
the size of the image, the size of the used filters and number of octaves as well as
the detection threshold. Therefore NUM_IPTS has to be chosen large enough to
hold all detected interest points. For an image size of 720× 480 and normal image
contents this number will usually not exceed some 200 points.

Listing 5.8: Source Code of findInterestPointsKernel (Part 2)
// ...

if (mn == abs(m)) {
uint index = atom_inc(count);
if (index < NUM_IPTS) {

float dx, dy, ds;
interpolate(&dx, &dy, &ds, dn, s);

ipts[index].x = (x + dx) * step;
ipts[index].y = (y + dy) * step;
ipts[index].sign = m > 0 ? 1 : -1;
ipts[index].scale = scale + (scale2-scale1) * ds;

}
}

}

}

The global synchronization among the kernels is achieved by using a global index
and an atomic_inc() function inside the kernels. This allows for the global assign-
ment of an unique index for every detected interest point since the access to the
global index happens in a synchronized fashion. Additionally this value can be used
to adjust both the threshold and maximum number of allowed interest points dy-
namically.

After a local maximum has been detected this index is incremented by 1 and stored
in a local variable. Then the offset between the position at which the interest point
was detected and its exact position are computed by interpolate(). This function
takes a 2D array of char4’s as an argument that contains the neighborhood of the
detected interest point which has been preserved from the previous step and the
index of the scale that is needed to localize the maximum inside the central char4

52 CHAPTER 5. KERNEL PROGRAMS

without searching it again since the array also contains one scale layer that isn’t
needed for the computation. The variables for the return values that contain the
offsets in x-, y- and scale-direction are passed in as pointers.

In the last step the offsets are added to the coordinates of the detected points and
the sum is multiplied with the step size i.e. the sampling interval of the correspond-
ing octave (2 for the first octave, 4 for the second and 8 for the third). The slope
of the scales can be calculated from the difference of scale1 and scale2 passed in as
arguments.

Figure 5.11 shows the result of the processing steps discussed so far. Light blobs
on dark ground are indicated by red circles and dark blobs on light ground by blue
circles and the centers are marked by a green dot. The diameter of each circle cor-
responds to the scale at which the interest point was detected.

Figure 5.11: Dark (blue circles) and light (red circles) interest points detected at
different scales (diameter).

The two images in figure 5.12 show the top right region of the image with the de-
tected interest point at their original position and after the interpolation step. One
can clearly see how the circle around the two light bulbs that form one blob was in-
creased in diameter and the center was slightly shifted towards the lower left corner

5.5. CONSTRUCTION OF THE DESCRIPTORS 53

of the image. The correction resulting from the interpolation is generally bigger for
large interest points since they are detected at the highest octave where only every
eighth point is sampled. Also the difference between the scales becomes increasingly
bigger towards the higher octaves.

(a) detected position and scale (b) interpolated position and scale

Figure 5.12: Interest points before (left) and after (right) interpolation.

5.5 Construction of the Descriptors

The construction of the descriptors is performed by the kernel buildImageDescrip-
torsKernel(). In order to achieve maximum performance in terms of bandwidth the
extraction of every descriptor is split up into 16 distinct subregions as depicted in
figure 3.10. Every subregion can be processed independently by one instance of the
kernel. Thus every half-warp computes an entire descriptor for a given interest point.
To further improve the bandwidth efficiency it is necessary to group at least two
blocks of 16 work-items into one work-group so every group spans at least one warp.
A local array of floats is used to cache the intermediate results which is important
for the normalization of the descriptor vector as will be seen later. The local array
of floats has dimension local_size_0 × descriptor_dimension. Figure 5.13 shows
the memory layout used for buildImageDescriptorsKernel().

In a first step the location of the work-item inside the global an local context is
determined. The global_id_0 corresponds to the index of the interest point to be
processed and local_id_1 is used to assign the 16 sub-regions of the descriptor in
row-major order to one work-item in a work-group. The local index of the descriptor
i.e. the index inside the work-group is given by local_id_0.

54 CHAPTER 5. KERNEL PROGRAMS
N

U
M

_I
PT

S

lo
ca

l_
si

ze
_0

local_size_1 × 4 = 64

local_size_1 × 4 = 64

lo
ca

l_
si

ze
_0

global memory

local memory

Figure 5.13: Global and local memory used for the computation of the descriptors.

After the coordinates of the interest point have been read from global memory [3]
the four sums for the subregion are computed. Two nested loops are used to iterate
over this region in y- and x-direction [4]. Inside the loop the global coordinates
(x,y) are then calculated for all 25 points inside that subregion [5]. At every posi-
tion given by (x,y) the Haar wavelet responses in x- and y-direction are calculated
and weighted with a Gaussian centered at the location of the interest point [7] and
finally accumulated in the corresponding sums for the responses and absolute values
of the responses [8].

After the loop has returned the four sums are written to local memory again weighted
with a Gaussian. This step is followed by a local barrier to assure that all work-items
in the group have finished their computations and writing to local memory.

Listing 5.9: Source Code of buildImageDescriptorsKernel (Part 1)
__kernel void buildImageDescriptorsKernel(__read_only image2d_t integral,

__global Ipoint * ipts, __global float * descriptors,
__local float * cache, __local float * lengths)

{
int index = get_global_id(0); // number of ipt [1]
int lid0 = get_local_id(0); // index of descriptor in group
int lid1 = get_local_id(1); // local index

int xo = lid1 % 4 - 2; // [2]
int yo = lid1 / 4 - 2;

// read coordinates of interest point [3]
int column = convert_int_sat_rte(ipts[index].x);
int row = convert_int_sat_rte(ipts[index].y);
float scale = ipts[index].scale;
int s = convert_int_sat_rte(scale); // rounded scale

5.5. CONSTRUCTION OF THE DESCRIPTORS 55

float dx = 0.0f;
float dy = 0.0f;
float mdx = 0.0f;
float mdy = 0.0f;

// iterate over the 5x5 inner boxes [4]
for (int yi = 0; yi < 5; yi++) {
for (int xi = 0; xi < 5; xi++) {

int x = column + xo*(5.f*scale) + (xi+0.5f)*scale; [5]
int y = row + yo*(5.f*scale) + (yi+0.5f)*scale;

// get the gaussian weighted x and y responses [6]
float rx = imageHaarX(integral, x, y, s) / 255.f;
float ry = imageHaarY(integral, x, y, s) / 255.f;

float gx1 = xo*5+xi;
float gy1 = yo*5+yi;

float gauss1 = exp(-(gx1*gx1+gy1*gy1) / 200.f); // [7]

dx += rx * gauss1; // [8]
dy += ry * gauss1;
mdx += fabs(rx) * gauss1;
mdy += fabs(ry) * gauss1;

}
}

float gx2 = xo + 0.5f;
float gy2 = yo + 0.5f;

float gauss2 = exp(-(gx2*gx2+gy2*gy2) / 4.5f);

int count = lid0 * 64 + lid1 * 4;

cache[count++] = dx * gauss2; [9]
cache[count++] = dy * gauss2;
cache[count++] = mdx * gauss2;
cache[count++] = mdy * gauss2;

// synchronize
barrier(CLK_LOCAL_MEM_FENCE);

// first kernels calculate lengths [10]
if (lid1 == 0) {

float l = 0.f;
for (int i = lid0*64; i < (lid0+1)*64; i++) l += cache[i]*cache[i];
lengths[lid0] = sqrt(l);

}

// synchronize
barrier(CLK_LOCAL_MEM_FENCE);

56 CHAPTER 5. KERNEL PROGRAMS

for (int i = 0; i < 4; i++)
descriptors[index*64 + i*16+lid1] = cache[lid0*64 + i*16+lid1] / lengths[lid0]; // [11]

}

For the normalization of the descriptor vector it is necessary to determine its eu-
clidian length. Since this value depends on all the values in the vector it is most
efficiently calculated by the first work-item assigned to each descriptor [10]. The
concurrent computation in every work-item would still require local synchroniza-
tion but cause bank conflicts because all work-items would try to access the same
registers at the same time. This step is again followed by a barrier to assure local
synchronization.

Integral Image

char4

N
U

M
_I

PT
S

4 × 4 × 4

Σ dx Σ dy Σ|dx| Σ|dy|

Descriptors

subregion

Figure 5.14: Calculation of the filter responses of the four filters in the first octave.

In a last loop every work item divides its four previously calculated sums by the
length of the corresponding descriptor vector and finally writes the results to global
memory [11]. Figure 5.14 visualizes the process of extracting the descriptor using
the Haar wavelet responses calculated from the integral image where every work-
item is responsible for one subregion.

5.6 Matching
To find the correspondences between the detected interest points in two images of
the same scene it is necessary to define a measure of distance between the descriptors

5.7. SUM OF SQUARED DISTANCES 57

of each interest point in order to select a best match. This is achieved by calculating
the sum of squared distances between every two descriptors. The best match for a
given interest point in one image is the interest point in the other image for which
the distance is minimal.

5.7 Sum of Squared Distances
By writing every descriptor as a 64-vector f the feature in the current image and the
descriptors in a database used for the comparison as d the sum of squared distances
is calculated as

SSD =
64∑
i=0

fidi (5.2)

where the subscript i denotes the element index. This database can contain any
number of entries originating from images taken of the same scene e.g. previous
images in a video sequence or images taken from different angles. To obtain the
distances between every two vectors in the current image and the database the
vectors f and d are stacked to form the matrices F and D respectively. The elements
ci,j of the correlation matrix C are determined as

ci,j =
64∑
k=0

fi,kdj,k. (5.3)

This matrix has dimension m × n where m is the number of features in F and m
the number of entries in the database-matrix D. Figure 5.15 shows the memory
layout used by ssd64Kernel(). Note that the memory holding the database is also
aligned in row-major order so it can be reused for the next matching step without
reordering when moving on to the next frame of a sequence. The transpose DT was
chosen for better visualization.

For every element in C there exists one instance of ssd64Kernel(). This kernel cal-
culates the sum of squared distances for the corresponding element in a straight
forward manner according to formula 5.3. After the global position has been deter-
mined [1] a for-loop iterates over the two vectors f and d and accumulates the sum
of the squared distance for every dimension [2]. Finally this value is written back to
global memory [3].

Listing 5.10: Source Code of ssd64Kernel()
__kernel void ssd64Kernel (

__global float * C,
__global float * A,

58 CHAPTER 5. KERNEL PROGRAMS

N
U

M
_I

PT
S

64

64

global_id_1
gl

ob
al

_i
d_

0

DT

F

C

DATABASE_ENTRIES

N
U

M
_I

PT
S

DATABASE_ENTRIES

Figure 5.15: Memory layout for the computation of the correlation matrix.

__global float * B
)

{
int row = get_global_id(1); // [1]
int col = get_global_id(0);

float sum = 0.f;

for (int i = 0; i < 64; i++) { // [2]
float d = A[row * 64 + i] - B[col * 64 + i];
sum += d * d;

}

C[row * NUM_IPTS + col] = sum; // [3]
}

To retrieve the indices that map every descriptor in F to the best match in D the
kernel findMatchesKernel() is used. Every work-item is responsible for finding one
match resulting in NUM_IPTS instances - one for every series of distances in the
correlation matrix. Figure 5.16 visualizes the process for one work-item.

After determining the row in C to process the sign of the feature corresponding to
the current row is read from global memory [1]. Then a for-loop iterates over all

5.7. SUM OF SQUARED DISTANCES 59

global_id_0

C

N
U

M
_I

PT
S

DATABASE_ENTRIES

matches

best match

Figure 5.16: Every work-item searches one line of C for a suitable match.

interest points in the database [2]. If the interest point passes the sign test (see
section 3.5) the distance between the current vector and the vector in the database
is evaluated [3]. The lowest and second lowest distances are stored for a final com-
parison in [4]. If the ratio between the best and second best match is lower than a
pre-defined threshold the index of the best match is stored in the vector matches.
Since the indices can only be in the range [0; NUM_IPTS] a negative value indicates
that no suitable match could be found in the database.

Listing 5.11: Source Code of findMatchesKernel()
__kernel void findMatchesKernel (

__global const Ipoint * ipts,
__global const Ipoint * cand,
__global const float * C,
__global int * matches)

{

int row = get_global_id(0);

int mi = -1; // match index

float d1 = FLT_MAX;
float d2 = FLT_MAX;

int sign = ipts[row].sign; // [1]

for (int i = 0; i < NUM_IPTS; i++) { // [2]

if (sign * cand[i].sign > 0) // [3]
{

float dist = C[row * NUM_IPTS + i];
// if this feature matches better than current best
if(dist < d1) {

d2 = d1;

60 CHAPTER 5. KERNEL PROGRAMS

d1 = dist;
mi = i;

}
// this feature matches better than second best
else if(dist<d2) {

d2 = dist;
}

}
}

// If match has a d1:d2 ratio < 0.65 ipoints are a match [4]
matches[row] = d1/d2 < 0.65f ? mi : -1;

}

61

Chapter 6

Evaluation Framework

The framework used to develop and evaluate the OpenCL code is comprised of three
components. The "Realtime Object Detector" is a simple, platform independent and
extendable application that allows the presentation and testing of image processing
functions that are loaded as plug-ins. The ComputeEngine is a wrapper class that
facilitates the handling of the OpenCL API. Finally the framework contains a num-
ber of unit and integration tests for the different kernels.

6.1 Used Libraries

6.1.1 OpenCV

OpenCV (Open Source Computer Vision) is a C library providing functions for real
time computer vision originally developed by Intel. It is released under a BSD li-
cense and thus free for both academic and commercial use. It builds on all major
platforms i.e. Windows, MacOS X and Linux and provides over 500 algorithms
related to computer vision and image processing.

For this framework OpenCV was chosen because it provides a convenient and plat-
form independent way of loading and connecting to all kinds of sources such as image
files, videos and cameras. On the MacOS X platform can be built as a framework
including all headers and library files which allows for an easy development.

OpenCV was chosen for this framework because it provides a convenient and plat-
form independent way of loading and connecting various sources such as image files,
videos and cameras. Also, it can be built on the MacOS X platform as a private
framework1 that includes all headers and shared libraries, allowing for easy devel-

1On the Mac OS X platform "framework" refers to a "hierarchical directory that encapsulates
shared resources, such as a dynamic shared library, [...] header files, and reference documentation
in a single package" [Inc06]

62 CHAPTER 6. EVALUATION FRAMEWORK

opment.

6.1.2 Qt

Qt is an application development framework that was originally released by Troll-
tech and is now maintained by Nokia’s Qt Development Frameworks division. The
library is distributed under the GNU Lesser General Public License and is free for
non-commercial use. In addition to the GUI features it provides functions for XML
parsing, thread management, network support and a unified cross-platform API for
file handling.

As of version 4.1 Qt features a comprehensive unit-testing framework that provides
the functionality and infrastructure to perform component based tests on both GUI
and non-GUI components. Another important aspect is the support of a plug-in
mechanism that allows for runtime loading of external modules without the limita-
tions of a C-based API.

6.2 ROD - Realtime Object Detector

ROD serves as a versatile and extendible demonstration application that allows for
real-time processing and viewing of all kinds of image data such as images, videos
and frames taken from an attached camera. Figure 6.1 shows a screenshot of the
application processing input from a camera.

Figure 6.2 gives an overview of the architecture with its main class MainWindow.
After the Source and Processor plug-in have been loaded they are attached to the
processing thread class controlling the execution. Once the loading process is fin-
ished the run-method of the ProcessingThread is started.

For every time step, the ProcessingThread loads one frame from the Source and
passes it on to the ProcessorPlugin. The ProcessorPlugin performs its computations
on the input image, optionally previous frames and external data, and eventually
returns the result.

This result can be an augmented version of the input as shown in figure 6.1 where
a number of detected interest points have been marked or any intermediate result.
The result doesn’t have to be the same format or size as the input image will au-
tomatically be converted and scaled to match the size of the (resizable) ImageView
component. This is especially useful when debugging a ProcessorPlugin (see Section
6.2.2).

6.2. ROD - REALTIME OBJECT DETECTOR 63

Figure 6.1: The ROD Application processing images from a camera.

The communication between the GUI and the ProcessingThread controlling the ex-
ecution is handled using the signal and slot mechanism of the Qt framework that
provides type and thread-safe means of communication between the components.
All signals are connected to the corresponding slots of the receiver components dur-
ing the loading process.

In this case most signals are emitted by the controls pictured in figure 6.2. Every
time the user clicks a button, a signal is sent to the ProcessingThread. The Process-
ingThread can then execute the appropriate action e.g. pause the run-loop or skip
to the next frame. After a frame is processed by the ProcessorPlugin, a signal is
emitted containing the result. This signal is connected to the ImageView component
that displays the image.

Since all communication between the threads in the application is handled through
signals and slots, the GUI stays responsive at all times. A finite state machine in
the MainWindow class manages the state of the buttons and menu entries such that
they are only enabled when the corresponding operation is available.

64 CHAPTER 6. EVALUATION FRAMEWORK

MainWindow

Source ProcessorPlugin

ProcessingThread

ImageView

image

image

controls

Figure 6.2: Architecture of the ROD Application

6.2.1 Sources

There are currently three types of sources that can be used to provide input images
to the ProcessorPlugin: ImageSource to load static images from files, VideoSource
for video files and CameraSource to grab frames from attached cameras. The num-
ber of supported formats depends on the codecs installed on the system. On MacOS
X all common image and video formats as well as the built-in iSight cameras in Mac-
Books are supported.

Listing 6.1: Interface for the Sources
class Source : public QObject
{
public:

virtual const IplImage * getIplImage() = 0;
virtual int getWidth() = 0;
virtual int getHeight() = 0;
virtual double getFPS() = 0;

public slots:
virtual void capture() {}

6.2. ROD - REALTIME OBJECT DETECTOR 65

virtual void skip(int numFrames) {}
};

All sources have to implement the interface presented in listing 6.1 through which
the ProcessingThread and the ProcessingPlugin can retrieve information about the
source e.g. the dimensions of the input image and the number of frames per second.
The IplImage class serves as a container for the image data when passing it on from
the source to the ProcessingThread. The operations inside the source are controlled
via two slots: one for capturing frames and one for skipping frames. However calling
theses slots may have no result in the case of images.

6.2.2 Processor Plug-Ins

The processing of the input images is done by the ProcessorPlugins. These plug-ins
are compiled separately as a shared library and loaded during runtime by the ROD
application. There is only one method that needs to be implemented as shown in
listing 6.2.

Listing 6.2: Interface implemented by the processor plug-in
class ProcessorInterface
{

public:
virtual const IplImage * process(const IplImage *input) = 0;

};

The process() method is called for every frame by the processing thread and is given
the input image from the source as an input argument. After the method returns
the result, which may be an augmented version of the input as depicted in Figure
6.1, the ProcessingThread passes it on as a signal that is received by the ImageView
component.

6.2.3 Configuration Files

To a allow the user to create and store different combinations of sources and Pro-
cessorPlugins the configuration is loaded from a simple XML-file that contains the
source type and path as well as the path to the shared library that contains the
plug-in. Listing 6.3 shows a sample configuration file with a video source.

Listing 6.3: Example configuration file using a video source
<!DOCTYPE Configuration>

66 CHAPTER 6. EVALUATION FRAMEWORK

<Configuration>
<Source type="video" file="../videos/stan-f1.avi"/>
<Processor file="../processors/libOpenCLProcessor.dylib"/>

</Configuration>

6.3 Compute Engine

The compute engine is used internally by the ProcessorPlugin and is essentially a
wrapper for the OpenCL API that allows for more efficient coding and error han-
dling by providing an additional layer of abstraction over the purely C-based API
of OpenCL and is based on sample from [Inc09a].

The compute engine class is used as a singleton that manages the whole interaction
between the host application code and the compute-device.

The typical use-case is a static instance of the ComputeEngine class. After the com-
pute engine is connected to a compute device, the program is compiled and linked
and the kernel-objects as described in 4.5. After the memory buffers are created
using the provided methods of ComputeEngine and the initial data has been loaded
to the input buffers the kernels can be executed. Finally the results are read back
to the host application.

The major advantage of this wrapper-approach is the fact that it encapsulated the
whole error handling process which would otherwise inflate the code dramatically
and make it unreadable. This allows for streamlined coding, particularly during the
development and debugging process.

To clarify this problem consider the following example: When a memory buffer
object is created directly using the OpenCL function

Listing 6.4: Creating a buffer using the OpenCL API directly
cl_mem clCreateBuffer (cl_context context,

cl_mem_flags flags,
size_t size,
void *host_ptr,
cl_int *errcode_ret)

the pointer to the memory object is returned and the error code CL_SUCCESS is
written to an integer pointed to by errcode_ret. However if something goes wrong
during this operation one of the following codes will be returned:
CL_INVALID_CONTEXT, CL_INVALID_VALUE, CL_INVALID_BUFFER_SIZE,
CL_DEVICE_MAX_MEM_ALLOC_SIZE, CL_INVALID_HOST_PTR,
CL_MEM_USE_HOST_PTR, CL_MEM_OBJECT_ALLOCATION_FAILURE

6.4. UNIT-TESTS 67

or CL_OUT_OF_HOST_MEMORY.

If this error code is not evaluated the application will crash leaving the user with no
idea as to what went wrong. By using the corresponding method

Listing 6.5: Creating a buffer using the ComputeEngine
bool createBuffer(const char* acMemObjName,

MemFlags eMemFlags,
size_t kBytes)

of the ComputeEngine, a message is printed giving a reason and the name of the
object in case the buffer-object cannot be created.

6.4 Unit-Tests
Unit tests are a new approach to assure the quality of any software product and has
become popular with the concept of extreme programming that heavily relies on au-
tomated software test. A unit is the smallest testable component of a system. The
idea behind this approach is to provide a controlled environment for the component
to be able predict the result returned by the unit under test.

For this framework the units are the kernels that perform the calculations on the
GPU. Since the kernel code cannot run directly on the CPU (unlike any other com-
ponent in the framework such as e.g. the CameraSource) a common base class
OpenCLTest is provided that handles all the setup required to compile and run the
kernels on the graphics board.

Every time a test is executed, the function initTestCase() is called which connects
the compute engine and allocates memory for input and output. It also loads all the
data required for the test such as images and pre-calculated memory images as well
as reference data. Listing 6.6 show the declaration of IntegrateXTest that derives
from OpenCLTest.

Listing 6.6: Example configuration file using a video source
class IntegrateXTest : public OpenCLTest
{
Q_OBJECT

private slots:
void initTestCase();
void testIntegrateX();
void cleanupTestCase();

};

68 CHAPTER 6. EVALUATION FRAMEWORK

During the test-phase the Qt test library (QtTestLib) calls all private slots of the
test class starting with initTestCase(). A short message is printed after the re-
turn of every test function that indicates wether the test succeeded or not. Finally
cleanupTestCase() is called which disconnects the ComputeEngine and releases the
previously allocated memory before the next test is started.

Another important aspect in this context is integration testing. In order to assert
that all components work together as expected there exists a test class that simu-
lates the whole process from the input image to the feature extraction and matching.
This is especially useful when changing the kernel code as this allows for convenient
testing after every step (regression test).

69

Chapter 7

Results

This chapter is divided into two parts. Section 7.1 provides detailed timing results of
the proposed implementation for a number of common image resolutions. In Section
7.2 the performance of the algorithm is evaluated and compared to the OpenSURF
reference implementation running on the CPU.

Component Description
CPU Intel Core 2 Duo 2.4 GHz, L2-Cache 4 MB
Memory 4 GB DDR2 SDRAM
Operating System Mac OS X 10.6.2
GPU GeForce 8600M GT, 256 MB
Bus PCIe x16

Table 7.1: Specifications of the MacBook Pro used for the evaluation.

All measurements where taken on a Apple MacBook Pro running MacOS X "Snow
Leopard". The detailed specifications are given in table 7.1.

7.1 Profiling

This section lists the detailed timing results that where collected using the provided
testing-framework and OpenCL profiling information from the GPU. The image sizes
were chosen from a range that covers all common applications from small built-in
cameras on embedded platforms like the the EyeBot [Bra99] to high resolution we-
bcams as found in modern laptops. The number of pixels (image width × image
height) grows almost linearly across the chosen resolutions which makes it easier
to interpret the timing charts as the computational effort of most operations grows
linearly with the number of pixels to process.

70 CHAPTER 7. RESULTS

7.1.1 Total Execution Times

To give an overview of the total execution time figure 7.1 shows the accumulated
kernel execution and memory copy times for one image at the different resolutions.
For comparison the corresponding execution times of the reference implementation
running on the CPU are included in figure 7.2. In both cases the execution times
grow linearly with the number of processed pixels. The speed-up by the GPU im-
plementation is more than an order of magnitude.

320 240 640 480 1024 576 1152 768 1280 960

0

10

20

30

40

50

60

integral image interest point
extraction

resolution

m
s

Figure 7.1: Total execution times on the GPU

320 240 640 480 1024 576 1152 768 1280 960

0

100

200

300

400

500

600

700

800

900

1000

integral image interest point
extraction

resolution

m
s

Figure 7.2: Total execution times on the CPU

7.1. PROFILING 71

7.1.2 Integral Image

Figure 7.3 and 7.2 show the execution times for the calculation of the integral image
i.e. the integration in x- and y-direction. Even though the times for writing the ini-
tial image to the compute-devices memory and copying the results to an image2d_t
are not part of the actual calculation these times have been included into this step to
make it more comparable to other implementations. Again the required time grows
linear with the size of the image.

320 240 640 480 1024 576 1152 768 1280 960

0

2

4

6

8

10

12

14

16

write image integrateX integrateY copy to image2d

resolution

m
s

Figure 7.3: Execution times for the computation of the integral image on the GPU

resolution write image integrateX integrateY copy to image2d
320 × 240 0.0528 0.4244 0.2293 0.3947
640 × 480 0.1607 0.9070 0.8808 1.7820
1024 × 576 0.3038 2.7465 1.2231 3.4082
1152 × 768 0.4247 3.1381 2.2509 5.1077
1280 × 960 0.5852 3.5918 2.8732 7.1254

Table 7.2: Execution times for the computation of the integral image

72 CHAPTER 7. RESULTS

7.1.3 Calculation of the Determinants of the Hessians

For the calculation of the determinants of the Hessians three kernels are launched
- one for every octave. The global work-size for each kernel is one quarter of the
work-size of its predecessor starting with a global work-size of a quarter of the image
size for octave0. Figures 7.4 and 7.3 show the execution times for the three kernels.

320 240 640 480 1024 576 1152 768 1280 960

0

5

10

15

20

25

30

35

octave0 octave1 octave2

resolution

m
s

Figure 7.4: Execution times for the computation of the Determinants of the Hessians
on the GPU

resolution octave0 octave1 octave2
320 × 240 1.2209 0.4996 0.2069
640 × 480 4.6244 1.9720 1.0853
1024 × 576 8.8618 3.8055 2.2182
1152 × 768 13.3695 5.7793 3.7546
1280 × 960 18.5642 8.0873 4.7421

Table 7.3: Execution times for the computation of the Determinants of the Hessians
on the GPU

7.1. PROFILING 73

7.1.4 Interest Point Detection and Localization

Like in the previous step one kernel is used to detect and interpolate the interest
points in each octave. Figures 7.5 and 7.4 show the execution times for the three
kernels. These times may however vary slightly depending on the number of local
maxima in the determinants as the interpolation and storage of the interest points
require additional memory accesses.

320 240 640 480 1024 576 1152 768 1280 960

0

0.5

1

1.5

2

2.5

findInterestPoints(0) findInterestPoints(1) findInterestPoints(2)

resolution

m
s

Figure 7.5: Execution times for the interest point detection and localization on the
GPU

resolution octave0 octave1 octave2
320 × 240 0.1456 0.0473 0.0231
640 × 480 0.4492 0.1456 0.0473
1024 × 576 0.8430 0.2240 0.0648
1152 × 768 1.2692 0.3275 0.0967
1280 × 960 1.7366 0.4492 0.1456

Table 7.4: Execution times for the interest point detection and localization on the
GPU

74 CHAPTER 7. RESULTS

7.1.5 Interest Point Description

The following chart and table show the times required to extract the descriptors for
32, 64, 128, 256 and 512 interest points from the same image. Since every descriptor
is calculated by a constant number of work-items (16 per interest point) the execu-
tion time for this step scales linearly with the number of interest points.

32 64 128 256 512

0

2

4

6

8

10

12

14

16

interest points

m
s

Figure 7.6: Execution times for the interest point description

Interest Points Kernel Time [ms]
32 1.1227
64 1.8387
128 3.7107
256 7.2492
512 14.2471

Table 7.5: Execution times for the interest point description

7.1. PROFILING 75

7.1.6 Interest Point Matching

The dimensions of the correlation matrix depend on the number of descriptors from
the current image and the size of the descriptor database. A common situation is
a database that holds only the descriptors from a different image of the same scene
and thus has the same size which results in a square correlation matrix.

Since every element of the correlation matrix is calculated by one work-item the
execution time scales linearly with the number of its elements as can be seen in fig-
ure 7.7 and table 7.6. The time necessary to find the best match in the correlation
matrix is very small compared to time for its calculation and is not listed.

32 32 64 64 128 128 256 256 512 512

0

10

20

30

40

50

60

70

80

90

descriptors

m
s

Figure 7.7: Execution times for the computation of the correlation matrix

Interest Points Kernel Time [ms]
32 × 32 0.3102
64 × 64 0.5000
128 × 128 4.8558
256 × 256 19.2198
512 × 512 77.3037

Table 7.6: Execution times for the computation of the correlation matrix

76 CHAPTER 7. RESULTS

7.2 Performance Evaluation

To evaluate the performance the proposed implementation has been tested using
the datasets provided by Mikolajczyk [MS05]. The datasets contain a sequence of
images taken from the same scene and the corresponding homography matrices that
map the points in the first image to every other image in the dataset which allows
to determine the correctness of the point correspondences found by an algorithm.

To evaluate the algorithm the point correspondences [P1, P2] returned by the match-
ing stage are considered where P1 is a m×3 matrix with m representing the number
of matches. Every line in P1 and P2 contains the coordinates of one interest point
in the corresponding image and the last column is 1 (x, y, z = 1). By multiplying
P1 with the transpose of the homography matrix HT we get a matrix of the same
size as P2,

P2,ref = P1 H
T =

(x1, y1, 1)
(x2, y2, 1)

...
(xm, ym, 1)

 ·HT (7.1)

that contains the coordinates of the correct correspondences for the points in P1

in the other image after normalizing the coordinates by dividing every coordinate
by the last column such that xi = (xi

zi
, yi

zi
, 1). A point in P2,ref is considered a

correspondence if the distance to the same point in the reference matrix P2,ref is
lower than 5 pixels in x- and y-direction. The underlying theory and methods are
explained in great detail in [HZ03].

x

y

0

x
y

0

+p1 +p2

H

H-1

+p2

+p1

Figure 7.8: The homography transformation H maps points p1 and p2 between two
images of the same scene.

Figure 7.9 shows the five images of the "graffiti" sequence. The first image in every
sequence serves as a reference whose interest points are matched against the interest

7.2. PERFORMANCE EVALUATION 77

points of image one through five.

(a) (b) (c)

(d) (e)

Figure 7.9: The graffiti image sequence

7.2.1 Number of Interest Points

Table 7.7 lists the number of extracted interest points for the OpenCL (GPU) and
OpenSURF (CPU) implementations. The results clearly show how the precision
used to compute and store the blob responses affects the number of detected inter-
est points. The CPU implementation uses 64 bit floating point whereas the GPU
implementation uses only 8 bit per sample which results in a 8 times smaller mem-
ory footprint allowing for bigger image sizes and faster processing. This is especially
important due to the memory and bandwidth limitations on the graphics board. On
the other hand the lowered accuracy leads to reduction of the number of detected
interest points by a factor of approximately two.

sequence 1 2 3 4 5
Graffiti 1761/853 1938/ 926 1950/ 969 1987/819 1852/783
Boat 2028/1349 2015/1244 1929/1073 993/629 944/584
UBC 1200/636 1197/630 1218/624 1183/630 1227/677
Wall 1946/466 1902/462 1791/438 1872/508 1893/530
Leuven 963/395 776/312 598/254 490/199 391/160

Table 7.7: Number of interest points for the different sequences (CPU/GPU)

78 CHAPTER 7. RESULTS

1 2 3 4 5

0

500

1000

1500

2000

2500

CPU
GPU

image

in
te

re
st

 p
oi

nt
s

(a) Graffiti

1 2 3 4 5

0

500

1000

1500

2000

2500

CPU
GPU

image
in

te
re

st
 p

oi
nt

s

(b) Boat

1 2 3 4 5

0

200

400

600

800

1000

1200

1400

CPU
GPU

image

in
te

re
st

 p
oi

nt
s

(c) UBC

1 2 3 4 5

0

500

1000

1500

2000

2500

CPU
GPU

image

in
te

re
st

 p
oi

nt
s

(d) Wall

1 2 3 4 5

0

200

400

600

800

1000

1200

CPU
GPU

image

in
te

re
st

 p
oi

nt
s

(e) Leuven

Figure 7.10: Number of extracted interest points for the different implementations

7.2. PERFORMANCE EVALUATION 79

7.2.2 Interest Point Matching

The results of the matching process are given in table 7.8. The graffiti and boat
sequences are only included for the sake of completeness. Both sequences feature
large changes in rotation (as can be seen in figure 7.9) and are intended for the evalu-
ation of rotation invariant descriptors whereas both implementations compared here
run in "upright" mode i.e. it is assumed that there is less than 15 degrees of rotation.

The larger number of correspondences for the first pairs (images 1 and 2) using the
CPU implementation corresponds to the larger number of available candidates. The
number of matches converges towards the end of the sequence. This is due to the
fact that the (fewer) interest points detected by the GPU implementation tend to
be stronger and thus can be matched more reliably.

2 3 4 5

0

200

400

600

800

1000

1200

CPU
GPU

image

m
a

tc
he

s

(a) UBC

2 3 4 5

0

100

200

300

400

500

600

700

CPU
GPU

image

m
a

tc
he

s

(b) Wall

2 3 4 5

0
50

100
150
200
250
300
350
400
450

CPU
GPU

image

m
a

tc
he

s

(c) Leuven

Figure 7.11: Number of correspondences for the different implementations

80 CHAPTER 7. RESULTS

sequence 2 3 4 5
Graffiti 13/91 15/51 1/0 2/2
Boat 151/171 0/0 0/0 103/9
UBC 1011/560 935/532 793/482 555/444
Wall 628/200 384/156 147/85 24/21
Leuven 419/176 280/136 215/87 148/62

Table 7.8: Number of correspondences for the different sequences (CPU/GPU)

81

Chapter 8

Conclusion

An implementation of the SURF algorithm has been proposed that runs entirely
on the GPU. This implementation is accompanied by a framework that facilitates
the development and testing of the kernel code. All components are independent of
any platform specific libraries or APIs and all used libraries are multi-platform and
free for non-commercial use. This makes all components usable in future projects
without restrictions.

When writing OpenCL programs the challenge starts with the compilation of the
kernel code. Since the kernel program containing all kernel and auxiliary functions
is presented to the OpenCL compiler as a string during runtime it is not possible
to compile the kernel code beforehand. The current version of the compiler does
not provide helpful information when it fails to translate the source code into ma-
chine instructions which makes it harder to build bigger blocks of code or make big
changes to the code at a time without compiling it in between.

Another big issue is the debugging of the kernel code that has taken up a lot of
time during the development. As the memory used during the computations re-
sides completely on the graphics board there are no means to use breakpoints and
directly view the data during runtime. Further there is no means of generating
and displaying messages from within the kernels. The printf() function can only
be used when running the kernels on the CPU which does not support the use of
shared memory and thus renders it useless for debugging of all kernels that rely on
shared memory. The only way to get information about the data used during run-
time is to use the output over which the kernels are executed to retrieve information.

As there are only very few metrics that help designing efficient kernel code it in-
volves a lot of trial-and-error to find the best possible solution. There are a lot of
parameters such as the number of used registers, the amount of shared memory per
work-group and last but not least the size of the work-groups that can be adjusted.
Sometimes small changes to the code or execution sizes can increase or decrease

82 CHAPTER 8. CONCLUSION

the runtime of a kernel by up to an order of magnitude. Moreover changes to the
memory layout in favor of reduced runtime can make it necessary to rewrite entire
sections of both host and GPU code.

The results in Chapter 7 clearly show that a significant increase in speed of about
one order of magnitude can be achieved when running the interest point detection
and matching on the GPU compared to the reference implementation running on
the CPU. Sacrificing the high accuracy for the determinant of the Hessians leads to
a reduction in detected interest points of up to 50 percent. However since this affects
mostly the weak interest points in the image and thus makes the matching more
reliable for sequences that feature bigger changes in viewpoint or lighting conditions
since the stronger interest points are generally easier to find in the corresponding
images.

A future version running on GPUs that can process double precision floating point
values and provide higher memory bandwidth could exploit the improved architec-
ture to increase accuracy and match or even outperform the reference implementa-
tion. Using double precision when calculating, storing and comparing the descrip-
tors should also slightly improve the matching performance. Another point that is
promising a speed-up for the non-maximum suppression is the use of mip-maps to
store the image pyramids through the OpenGL language bindings provided by the
OpenCL language that allow for efficient sharing of image buffers on the graphics
card. Another useful extension would be the orientation assignment as proposed by
the SURF paper to make the description and matching process invariant rotation
larger than ±15 degrees.

LIST OF FIGURES 83

List of Figures

1.1 Dies of a modern CPU (left) and GPU (right) [Har07, Tru08] 7
1.2 GFLOPS: CPU vs. GPU from [Cor09b] 8
1.3 Panoramic image stitching using homography estimation. Images

taken from [BL07] . 9

2.1 Strong/weak corners of an automotive scene (left) and Haar wavelets
for SidCell components (right) [SW09] 14

3.1 Only the values at the four corners that are necessary to calculate the
sum over the green rectangle. 16

3.2 The two types of contrast: Light blob on dark ground and vice versa. 17
3.3 First row: second order Gaussian derivatives for σ = 1.2. Second

row: discretized and cropped Gaussians. Third row: corresponding
box filter approximations with size 9× 9. 19

3.4 Computation of the scale-space pyramid through smoothing and sub-
sampling (left) and varying the filter size (right) 20

3.5 Overlapping filter sizes for the first three octaves after [BTG06] . . . 21
3.6 Increasing filters from 9× 9 to 15× 15 whilst preserving a central pixel 22
3.7 3D non-maximum suppression . 23
3.8 Functions f(x) (blue), f [n] (red), the tangent at y = 0 (green) and

the extremum (magenta) . 24
3.9 Haar Wavelets for the x- (left) and y-direction (right) 25
3.10 Computation of the 64-dimensional SURF descriptor. 26

4.1 OpenCL platform model: A host with connected compute-devices
each containing compute units that are comprised of a number of
processing elements. 28

4.2 Two dimensional index space . 29
4.3 Distribution of 8 work-groups on compute-devices with 2 and 4 compute-

units . 30
4.4 Memory model with processing-elements and compute-units 31
4.5 Aligned and misaligned access patterns 32
4.6 The two parallel programming models 33

84 LIST OF FIGURES

5.1 Kernels and data flow for interest point detection. 38
5.2 Data flow continued: interest point description and matching. 39
5.3 Block-wise calculation of the integral in x-direction using shared mem-

ory . 41
5.4 Image after integration in x-direction. 42
5.5 Element-wise computation of the integral in y-direction. Every kernel

processes one column. 43
5.6 Image after integration in y-direction (left) and both x- and y-direction. 44
5.7 Calculation of the filter responses of the four filters in the first octave. 46
5.8 Intensity map of the flowermarket test-image. 47
5.9 Determinants of the Hessian for the different filter sizes of the first

octave. 48
5.10 Calculation of the filter responses of the four filters in the first octave. 50
5.11 Dark (blue circles) and light (red circles) interest points detected at

different scales (diameter). 52
5.12 Interest points before (left) and after (right) interpolation. 53
5.13 Global and local memory used for the computation of the descriptors. 54
5.14 Calculation of the filter responses of the four filters in the first octave. 56
5.15 Memory layout for the computation of the correlation matrix. 58
5.16 Every work-item searches one line of C for a suitable match. 59

6.1 The ROD Application processing images from a camera. 63
6.2 Architecture of the ROD Application 64

7.1 Total execution times on the GPU . 70
7.2 Total execution times on the CPU . 70
7.3 Execution times for the computation of the integral image on the GPU 71
7.4 Execution times for the computation of the Determinants of the Hes-

sians on the GPU . 72
7.5 Execution times for the interest point detection and localization on

the GPU . 73
7.6 Execution times for the interest point description 74
7.7 Execution times for the computation of the correlation matrix 75
7.8 The homography transformation H maps points p1 and p2 between

two images of the same scene. 76
7.9 The graffiti image sequence . 77
7.10 Number of extracted interest points for the different implementations 78
7.11 Number of correspondences for the different implementations 79

REFERENCES 85

References

[BL02] M. Brown and D.G. Lowe. Invariant features from interest point groups.
British Machine Vision Conference, Cardiff, Wales, 2002.

[BL07] M. Brown and D.G. Lowe. Automatic panoramic image stitching using
invariant features. International Journal of Computer Vision, 74(1):59–73,
2007.

[Bra99] T. Braeunl. Eyebot: A family of autonomous mobile robots. In Proceedings
of the 6th International Conference on Neural Information Prococessing
(ICONIP99), 645649a, 1999.

[BS08] Pavel Babenko and Mubarak Shah. Mingpu: a minimum gpu library for
computer vision. Springer-Verlag, 2008.

[BT95] I.T.U.R.R. BT. 601-5: "Studio encoding parameters of digital television
for standard 4: 3 and wide-screen 16: 9 aspect ratios.". ITU, Geneva,
Switzerland, 1995.

[BTG06] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
European Conference on Computer Vision, 2006.

[Cor09a] NVIDIA Corporation. Nvidia opencl best practices guide, 2009.
http:/www.nvidia.com/.

[Cor09b] NVIDIA Corporation. Opencl programming guide for the cuda architec-
ture, 2009. http:/www.nvidia.com/.

[Cro84] F.C. Crow. Summed-area tables for texture mapping. In Proceedings of the
11th annual conference on Computer graphics and interactive techniques,
pages 207–212. ACM New York, NY, USA, 1984.

[Eva09] Christopher Evans. Notes on the opensurf library. Technical Report
CSTR-09-001, University of Bristol, January 2009.

[GVL96] G.H. Golub and C.F. Van Loan. Matrix computations. Johns Hopkins
Univ Pr, 1996.

86 REFERENCES

[Haa10] A. Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische
Annalen, 69(3):331–371, 1910.

[Har07] Tom’s Hardware. Intel releases 45nm processor details, 2007.
http://www.tomshardware.com/.

[HZ03] R. Hartley and A. Zisserman. Multiple view geometry in computer vision.
Cambridge Univ Pr, 2003.

[Inc06] Apple Inc. Macos x reference library, 2006.
http://developer.apple.com/mac/library/documentation/MacOSX/
Conceptual/BPFrameworks/Concepts/WhatAreFrameworks.html.

[Inc08] Apple Inc. Apple previews mac os x snow leopard to developers, 2008.
http://www.apple.com/pr/library/2008/06/09snowleopard.html.

[Inc09a] Apple Inc. Mac OS X Reference Library, 2009.
http://developer.apple.com/mac/library/.

[Inc09b] Apple Inc. OpenCL Programming Guide for Mac OS X, 2009.
http://developer.apple.com/.

[Lat02] C.A. Lattner. LLVM: An infrastructure for multi-stage optimization. Mas-
ter’s thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, Dec, 2002.

[Low99] D.G. Lowe. Object recognition from local scale-invariant features. In
International Conference on Computer Vision, volume 2, pages 1150–1157,
1999.

[Low04] D.G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):91–110, 2004.

[Mat10] Wolfram MathWorld. Matrix invers.
http://mathworld.wolfram.com/MatrixInverse.html, 2010.

[MS04] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point
detectors. International Journal of Computer Vision, 60(1):63–86, 2004.

[MS05] K. Mikolajczyk and C. Schmid. A performance evaluation of local descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 1615–1630, 2005.

[Mun08] A. Munshi. The OpenCL Specification. Khronos OpenCL Working Group,
2008.

REFERENCES 87

[SW09] M. Schweitzer and H.-J. Wuensche. Efficient keypoint matching for robot
vision using gpus. In Proceedings of the 12th International Conference on
Computer Vision (ICCV09), 2009.

[Tru08] TrustedReviews. nvidia geforce gtx 280 review, 2008.
http://www.trustedreviews.com/.

[VJ01] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. cvpr, 2001.

[Wit83] A. Witkin. Scale-space filtering. In International Conference on Computer
Vision, volume 2, pages 1019–1021, 1983.

