
Final Year Project

Renewable Energy Vehicle Instrumentation:

Graphical User Interface and Black Box

Author:

Daksh Varma

Supervisor:

Prof. Thomas Bräunl

October 2009

Abstract

The current energy conservation and climate change discourse is no longer about

lip service to a cause out there in the future. It is a here and now issue focused

on alternative energy sources for road transport, fuelled in part by depleting fossil

fuels, its increasing costs and the need to control vehicular emissions. One of the

most viable solutions available is the Electric Car.

A Hyundai Getz has already been converted into a fully electric car as a part of

the Renewable Energy project and a conversion is currently being undertaken on

a Lotus Elise. The Getz is road legal, and the Elise will soon be. Both cars have

performances similar to their petrol-powered counterparts, but with much better

fuel economy and with zero emissions.

This thesis focuses on designing Graphical User Interfaces (GUIs) and developing

code for the onboard controllers for both the Getz and Elise. The code is designed to

read various sensors, process the data and display it though the GUI. In addition,

there is a “Black Box” implemented in software to record relevant data gathered

from the sensors. The onboard controller for the Getz is the Eyebot Mark 6, which

runs Busy Box Linux and the controller for the Elise, is a PC running Windows XP

embedded. The code for the Eyebot is written entirely in C, while the PC uses a

Flash frontend with a Visual C++ backend. The project also focuses on interfacing

the sensor hardware with the onboard controllers.

2

Letter of Transmittal

Daksh Varma

214 South Terrace

Como 6152

Western Australia

The Dean

Faculty of Engineering, Computing and Mathematics

The University of Western Australia

35 Stirling Highway

Crawley WA 6009

Dear Sir,

I submit to you this dissertation entitled “Renewable Energy Vehicle

Instrumentation: Graphical User Interface and Black Box” in partial fulfillment of

the requirement of the award of Bachelor of Engineering.

Yours faithfully,

Daksh Varma

3

Nomenclature

ASCII American Standard Code for Information Interchange

BMS Battery Management System

CAN Controller Area Network

CRC Cyclic Redundancy Check

CSV Comma Separated Values

DHCP Dynamic Host Configuration Protocol

DSP Digital Signal Processor

GPS Global Positioning System

GUI Graphical User Interface

IDC International Data Corporation

IMU Inertial Measurement Unit

IO Input/Output

IP Internet Protocol

LCD Liquid Crystal Display

LED Light Emitting Diode

MB Mega Byte

NMEA National Marine Electronics Association

PCB Printed Circuit Board

PIN Personal Identification Number

PSD Position Sensitive Device

REV Renewable Energy Vehicle

SWF Shock Wave Format

USB Universal Serial Bus

UTC Universal Time Coordinated

XML Extensible Markup Language

4

Acknowledgments

I would like to thank my supervisor Prof. Thomas Bräunl for his support, guidance

and encouragement on this project. I would also like to thank all the members of

the REV team I worked with, in particular: Daniel Kingdom, Colin Dickie, Franz

Viertler, Jonathan Wan, Cameron Watts, Anne Flinchbaugh and Jurek Malarecki.

This project would not have been possible without their support. Special thanks

also go to the Workshop, especially Ken Fogden for his help in mounting components

in the Lotus. In addition, I would like to thank my family for their patience and

support in what has been a time of loss for us.

5

Contents

1 Introduction 13

1.1 Description of the problem . 14

1.2 Hardware Used . 15

1.2.1 Eyebot M6 . 15

1.2.2 Car PC . 16

1.2.3 GPS . 17

1.2.4 Accelerometer . 18

1.2.5 Motor Controller . 19

2 Literature Review 20

2.1 Usability . 20

2.2 Existing Designs . 20

2.2.1 Mitsubishi Lancer Evolution 21

6

CONTENTS

2.2.2 BMW Connected Drive . 21

2.2.3 iDrive . 22

2.2.4 Tesla Roadster . 23

2.2.5 Audi Q7 . 24

2.2.6 Cadillac Hybrid Escalade . 25

2.3 Performance Monitoring . 26

2.4 GPS . 27

I Hyundai Getz 29

3 Getz: Objectives 30

4 Black Box and GUI 34

4.1 Reading Digital Sensors . 34

4.2 Writing to File . 34

4.3 Code Integration . 39

5 Breakout Box 41

6 General Tasks 46

7

CONTENTS

6.1 Startup Scripts . 46

6.2 Rewiring . 47

6.2.1 Switches . 47

II Lotus Elise 50

7 Elise: Objectives 51

7.1 Design . 52

8 GUI 56

8.1 Main Tab . 56

8.2 GPS Tab . 58

8.3 Stats Tab . 60

8.4 Alerts Tab . 61

8.5 Speed Tab . 62

8.6 Trip Tab . 63

8.7 Music Tab . 64

8.8 G-Force Tab . 65

9 Program Structure 66

8

CONTENTS

9.1 Backend . 66

9.1.1 Main . 67

9.1.2 GPS Thread . 67

9.1.3 Accelerometer Thread . 70

9.1.4 Hardware Black Box Thread 71

9.1.5 Flash Thread . 72

9.1.6 Logging Thread . 72

9.2 Frontend . 74

9.2.1 Main . 74

9.2.2 Event Handlers . 75

9.2.3 Update Thread . 76

10 Installation 78

11 Conclusion 79

11.1 Future Prospects . 80

Appendices 84

9

List of Figures

1.1 Eyebot Mark 6 . 15

1.2 Car PC . 16

1.3 GPS . 17

2.1 Mitsubishi Lancer Evo . 21

2.2 BMW Connected Drive . 22

2.3 iDrive . 23

2.4 Tesla Roadster . 24

2.5 Audi Q7 . 25

2.6 Cadillac Hybrid Escalade . 25

2.7 GPS Satellites . 27

3.1 Main Screen . 30

3.2 Main Screen with Warnings . 30

10

LIST OF FIGURES

3.3 GPS Screen . 31

3.4 Stats Screen . 31

3.5 Warnings Screen . 31

3.6 Speed Screen . 32

4.1 Threads . 39

5.1 Eyebot IDC headers . 41

5.2 Connectors on Eyebot . 42

5.3 Breakout board schematic (24 pin connector) 44

5.4 Breakout board schematic (20 pin connector) 44

5.5 Breakout board layout . 45

6.1 Switch circuit . 48

8.1 Main Tab . 56

8.2 GPS Tab . 58

8.3 Area covered by maps . 59

8.4 Stats Tab . 60

8.5 Alerts Tab . 62

11

LIST OF FIGURES

8.6 Speed Tab . 63

8.7 Trip Tab . 64

8.8 Music Tab . 64

8.9 G-Force Tab . 65

9.1 Backend - Main . 67

9.2 Backend - GPS thread . 68

9.3 Backend - Accelerometer thread . 70

9.4 Backend - Hardware Black Box thread 71

9.5 Backend - Flash thread . 72

9.6 Backend - Logging thread . 73

9.7 Frontend - Main . 74

9.8 Frontend - Setting up event handlers 75

9.9 Frontend - Main button event handler 76

9.10 Frontend - Update thread . 77

1 Motor Controller Breakout - Schematic 85

2 Motor Controller Breakout - Layout 86

12

Chapter1

Introduction

This project was completed as part of the Renewable Energy Vehicle (REV) project.

The goal of the REV project is to “make electric cars that can be charged at ordinary

plug points, and produce no pollution. It is planned to produce cars, which are both

commercially viable and performance driven.”[1] Currently, both a Hyundai Getz

and a Lotus Elise are being worked on as part of this goal. The REV project also

aims at combating increasing fuel costs. [1]

The first part of the final year project is an extension on the author’s third year

project involving designing a Graphical User Interface for an Eyebot Mark 6, which

is the onboard controller in the electric Hyundai Getz. The project this year involved

integrating Black Box code with the existing GUI and interfacing with various sen-

sors. The second part of the project dealt with the instrumentation for the Lotus

Elise. The onboard controller for the Lotus was a PC running Windows XP. The

coding here was done partially in Visual C++ in the .NET environment and par-

tially in Action Scripting 3 using Adobe Flash. The author was the team leader of

the instrumentation team and was also responsible for allocating tasks to the rest

of the team.

This project is particularly relevant in the context of the energy conservation debate

and the discourse around climate change. There is an increased urgency the world

over to meet the growing threats of depleting fossil fuels, energy security and global

warming. There are numerous efforts around the globe to combat this challenge.

This project is one small step towards a better, safer, cleaner and a greener planet.

13

CHAPTER 1. INTRODUCTION

1.1 Description of the problem

Modern electric cars feature a lot of new and unconventional technologies. The

REV’s Hyundai Getz and Lotus Elise are no exceptions. There is use of Lithium

Iron Phosphate batteries, a battery management system, voltage converters, an

electric motor, a controller for the motor and various safety circuitry. The use of

these technologies means there was a need to monitor their state for:

1. Checking that they are performing as they should be and alerting the driver

about any errors present.

2. Using the data gathered to make further improvements.

In particular, the driver needs to be aware of the state of charge of the batteries so

he knows how much longer he may drive.

All the information gathered needs to be displayed graphically to the driver as well

as logged. The GUI needs to be easy to use while driving and at the same time

present a multitude of data.

The use of an embedded controller in the Getz and a PC in the Elise meant that

there was an opportunity to provide the driver with several extra features. Though

not absolutely essential for driving, these were handy as they provided the driver

with a one stop solution for all his needs.

14

1.2. HARDWARE USED

1.2 Hardware Used

1.2.1 Eyebot M6

The Eyebot Mark 6 (shown in Figure 1.1) is an embedded controller developed and

built at UWA. It is used in the Hyundai Getz to display and log data.

Figure 1.1: Eyebot Mark 6

Image from [2]

It has a colour LCD touch screen, two serial ports, three USB ports, a speaker, a

microphone. Additionally, it can interface with fourteen servos, four motors and six

Position Sensing Devices(PSDs). It also has sixteen digital IOs and three analogue

inputs.

15

CHAPTER 1. INTRODUCTION

The Eyebot uses an ARM9 processor and a Xilinx Field Programmable Gate

Array (FPGA). The FPGA handles low level tasks while the processor handles

higher level tasks [3]. The Eyebot runs a version of BusyBox Linux as its operating

system and makes use of Robot Basic Input/Output System (RoBIOS) libraries

which were developed at UWA for control of attached hardware.

The Eyebot is a general purpose controller for use in embedded systems and the

range of hardware with which it can interface makes it truly versatile.

1.2.2 Car PC

A PC specifically designed for cars was chosen for the Lotus Elise (shown in Figure

1.2). The PC used is the ZOTAC ION ITX D-E. It has a Intel Atom 330 2x1.6Ghz

processor with 2GB of DDR2 RAM and a 160GB hard drive. There are 10 USB ports

available, these allow interfacing with all the hardware in the car. It has a Ethernet

port and built in WLAN. The PC runs Windows XP as this is an architecture

independent platform.

Figure 1.2: Car PC

16

1.2. HARDWARE USED

The PC is powered directly by the 12V battery in the car. There is also a 12V

digital input for turning the PC on/off. The 12V ignition signal is connected to this

input. When the input goes high the PC is turned on after 30 seconds. The signal

going low causes the PC to perform a normal shutdown, provided the permanent

12V power is connected. This means the PC turns on when the car is on and turns

off when the car is off.

A Xenarc 7 inch LCD touch screen with 800 × 480 pixel resolution has been used

for display and interface with the driver.

1.2.3 GPS

The GPS module used in both the Hyundai Getz and the Lotus Elise is the GlobalSat

BU-353 (shown in Figure 1.3). It is connected to the car PC/ Eyebot via USB. It

is a serial device outputting ASCII strings and has a built in Prolific USB-Serial

converter.

Figure 1.3: GPS

17

CHAPTER 1. INTRODUCTION

Like most GPS units the output strings follow the NMEA0183 standard. Data is

transfered at 4800 baud, with 8 data bits, no parity, 1 stop bit and no flow control.[4].

The module outputs three strings terminated by a new line character every second.

The format of the string used to extract all the GPS information is:

“$GPRMC,hhmmss,A,llll.ll,N,yyyyy.yy,W,kk.k,tt.t,ddmmyy,mm.m,*CS”[5]

Where:

• “hhmmss is the UTC time

• A is the status: data valid (A) or receiver warning (V)

• llll.ll is latitude (degrees, minutes.m - ddmm.mm)

• N is North or South

• yyyyy.yy is longitude (degrees, minutes.m - dddmm.mm)

• W is West or East

• kk.k is speed over ground in knots

• tt.t is track made good, degrees true

• ddmmyy is the date

• mm.m is magnetic variation, degrees

• *CS is the check sum”[5]

1.2.4 Accelerometer

The Accelerometer used is the SparkFun Electronics SerAccel v5 triple-axis se-

rial Accelerometer. It is a serial device connected though a USB to serial converter.

It outputs a string containing the acceleration along the X, Y and Z axis. Data flow

is at 9600 Baud, with 8 data bits, no parity, 1 stop bit and no flow control.

18

1.2. HARDWARE USED

1.2.5 Motor Controller

The Motor Controller used for the Elise is the UQM PowerPhase 75 Traction System.

The Motor Controller has inputs for throttle, brake, direction control, and it also

has a serial and a CAN interface. It provides information about the state of the

motor and any errors that may be present though both CAN and Serial. A breakout

board was designed to connect to the Motor Controller, the schematic and layout

are shown in Appendix A and the pin out of the connector on the Motor Controller

is shown in Appendix B.

19

Chapter2

Literature Review

2.1 Usability

Background research was carried out for existing car Graphical User Interfaces as

well as general Usability design principles.

According to Jakob Nielsen [6] Usability is defined by five quality components:-

Learnability: How easy is it for users to learn how to do tasks the first time they

use the design?[6]

Efficiency: How quickly and in how many steps can users get tasks done once they

have learned how to use to design?[6]

Memorability: After not using the design for a length of time, how easy is it for

the user to re-lean how to use it?[6]

Errors: How many errors come about in normal operation, and how easy is it to

recover from these errors?[6]

Satisfaction: Is the design pleasing to use?[6]

The endeavor was to incorporate all these aspects of Usability into the design.

2.2 Existing Designs

Various display systems on commercially available cars were looked at for design

ideas. These included:-

20

2.2. EXISTING DESIGNS

2.2.1 Mitsubishi Lancer Evolution

Figure 2.1: Mitsubishi Lancer Evo

Image from [7]

As seen in Figure 2.1, the battery remaining is shown graphically and a similar design

has been used for the Eyebot GUI. However, it is better to also display the battery

remaining as a percentage for increased precision. In addition, it is important to

display the mileage and speed.[7]

2.2.2 BMW Connected Drive

BMW is developing a new system - the Connected Drive (shown in Figure 2.2).

They plan to provide full Internet access. As a safety measure, the system only

operates in the front seats while the car’s engine is off, but rear-seat passengers can

21

CHAPTER 2. LITERATURE REVIEW

surf the Internet even while the car is in motion.[8]

Figure 2.2: BMW Connected Drive

Image from [8]

2.2.3 iDrive

BMW was a pioneer in developing its unified interface - the iDrive (shown in Figure

2.3). This system has been heavily criticized as it was hard to use. It was a lesson in

what not to do in the design for this project. In early versions of iDrive, all duplicate

controls controlls were removed, this forced the driver to use a single push-button/

joystick/ knob to control the on screen software interface.[9]

While the hardware part of the iDrive worked well, its main problem was the soft-

ware interface. It lacked usability because of its deficiency in the learnability as-

pect. “Users claimed it was often difficult to figure out if you should be turning the

knob, moving it like a joystick, or pushing it like a button to select on-screen menu

items”[9]. Because of this problem, many people got frustrated with the iDrive and

just didn’t want to use it.[9]

22

2.2. EXISTING DESIGNS

As a result of such criticism, BMW later restored some controls that people are used

to and added a back button to the iDrive.[9]

Figure 2.3: iDrive

Image from [9]

However, the iDrive design was quite efficient. Once you gained some expertise in

using it, it was easy to set destinations in the navigation or make calls through the

Bluetooth interface quickly.[9]

2.2.4 Tesla Roadster

Figure 2.4 shows a picture of the user interface on the Tesla Roadster - an electric

car based on the Lotus Elise. This screen of the user interface displays the battery

remaining, time, distance remaining and a graphic of the car.[10]

23

CHAPTER 2. LITERATURE REVIEW

The Tesla has a very basic interface. There are different screens for different in-

formation about the car - including fuel saved, service history, energy history and

charge history. Other screens allow you to change charge settings and change the

time on the clock. There is also the possibility to monitor tyre pressure and ‘lock’

the car using a Personal Identification Number (PIN).[10]

Figure 2.4: Tesla Roadster

Image from [10]

While the Tesla features greater control over hardware than the interfaces on the

other cars studied, the interface is clunky and not aesthetically appealing.

2.2.5 Audi Q7

The Audi Q7 GUI (shown in Figure 2.5) provides camera assistance for parking and

also has an interface for using mobile phones (connected though Bluetooth).[11]

24

2.2. EXISTING DESIGNS

Figure 2.5: Audi Q7

Image from [11]

2.2.6 Cadillac Hybrid Escalade

Figure 2.6: Cadillac Hybrid Escalade

Image from [12]

25

CHAPTER 2. LITERATURE REVIEW

The touch button system used in the Escalade (shown in Figure 2.6) is very similar

to the one used in the design of this project. While the Escalade put its buttons at

the top, the decision was to go for buttons at the bottom of the screen in this design.

However, it must be said that the two interfaces provide different functionality.[12]

2.3 Performance Monitoring

“A team from the University of Missouri-Rolla (UMR) have developed a solar pow-

ered car that competes in the World Solar Challenge, a 10 day event, in which

contenders drive from the North to the South of Australia”.[13] A large part of the

team’s effort goes towards performance monitoring for the car i.e. monitoring volt-

age and current from the batteries and temperature of various critical components.

The data gathered is used for both making improvements and in making strategy

decisions pertaining to an on-going race.[13]

There is a trade-off for the team between obtaining highly reliable data, which can

help with fault detection, and saving weight and power. As a compromise, they use

a low powered Texas Instruments Digital Signal Processor (DSP).[13]

The DSP monitors the electrical systems and computes power consumption. It also

sends the data out through a radio modem to a computer in the support vehicle. This

computer has more processing power and does the bulk of the number crunching.[13]

The DSP has two eight-channel, ten-bit Analogue to Digital to read the hall-effect

sensor to measure current. Additionally, four eight-bit Digital to Analogue convert-

ers set the speed of the motor and run the driver’s LCD speedometer display.[13]

The issues experienced by the UMR team were very similar to the issues dealt with

by the Instrumentation team for the REV project.

26

2.4. GPS

2.4 GPS

GPS or Global Positioning System is a U.S. government-owned service. It has three

parts: the space deployed part which consists of 24 satellites which transmit one

way information about their location, a control system, which controls the position

of the satellites and the data that they send out, and lastly a receiver section which

uses the signals received from the satellites to triangulate its own position.[14]

GPS receivers as well as GPS satellites, both have clocks which keep track of time.

The GPS receiver sends the time of transmission in the data it transmits. Thus,

when the receiver gets the data from a satellite it can calculate the travel time of

the data as it knows the time the data was received and when it was transmitted.

Since the signals are simply electromagnetic waves, the distance from the satellite

can be calculated as[15]:

d = c× travel time

Now if the distance from a single satellite is known, the position of a receiver could

be anywhere on the sphere having radius d with the satellite as the centre. If the

distance from two satellites is known, the position of the receiver could be anywhere

on the circle that lies on the spheres surrounding two satellites (see Figure 2.7).[16]

Figure 2.7: GPS Satellites

Image from [16]

27

CHAPTER 2. LITERATURE REVIEW

If the distance from three satellites is known, then the three spheres intersect at

two points. If the distance from four satellites is known, there is only one point

of intersection. Thus, a receiver must get a signal from at least four satellites to

be able to calculate its position. Further, the greater the number of satellites the

receiver gets a signal from, the greater the confidence the receiver has of its calculated

position.[16]

28

Part I

Hyundai Getz

29

Chapter3

Getz: Objectives

As part of the author’s third year project, which was carried out in 2008, a GUI was

developed for the Eyebot M6 to display all relevant information about the state of

the car to the driver. Some screen shots from this program are shown below:-

Figure 3.1: Main Screen

Figure 3.2: Main Screen with Warnings

30

Figure 3.3: GPS Screen

Figure 3.4: Stats Screen

Figure 3.5: Warnings Screen

31

CHAPTER 3. GETZ: OBJECTIVES

Figure 3.6: Speed Screen

In order to display all this information, the following data needed to be gathered

from the car:

1. Analogue signals

(a) Voltage of battery

(b) Current being drawn from battery

(c) State of charge of battery

2. GPS data

(a) Exact position of car

(b) Speed of car

(c) Heading of the car i.e. exact direction car was moving in

3. Digital signals

(a) Ignition signal

(b) Inertia sensor signal

(c) Door sensor signal

(d) Seatbelt sensor signal

(e) Fuel cap sensor signal

32

(f) Throttle signal

(g) Brake signal

There was “Black Box” code that was written last year by another member of the

REV team, which read the digital and GPS signals and logged them to file. However,

due to hardware and software changes on the Eyebot, the code to read the digital

inputs no longer worked. Thus, there was a need to extend this code.

This Black Box code then needed to be integrated with the GUI, so that the data

read from the sensors could be used by the GUI and also be written to file.

Additionally, all the sensors connected to the Eyebot were connected though 9 pin

connectors placed behind the Eyebot in the centre console of the car. A system

needed to be developed for a more convenient and flexible method of connecting

sensors so that they could be easily added, removed and debugged.

33

Chapter4

Black Box and GUI

4.1 Reading Digital Sensors

Due to hardware changes with the Eyebot, the code to read from the digital sensors

no longer worked. Thus, new code to read from the sensors was written.

The steps involved in reading from the sensors were:

1. Initialise latches

2. Initialise each digital IO bank

3. Initialise each digital IO

These steps are illustrated in Program 1 (on the following page).

4.2 Writing to File

The original Black Box software read from the sensors, wrote all the information

to standard output, and printed all information onto the LCD screen in an infinite

loop, which executed as fast as the hardware would allow. While this was a simple

implementation it had the disadvantage that it would fill up the 64 MB of memory

on the Eyebot very quickly.

With 76 characters per line in the output CSV file, with 1 Byte per ASCII character,

the number of sets of readings was:

64× 1024× 1024

76× 1
≈ 883011

34

4.2. WRITING TO FILE

Program 1 Setting up digital IOs

OSLatchInit();//initialise all latches

if ((i=OSLatchBankSetup(IOBANK0, IN)) != 0){//set up bank 0

printf("Set bank 0 error %d\n", i);

return 0;

}

if ((i=OSLatchBankSetup(IOBANK1, IN)) != 0){//set up bank 1

printf("Set bank 1 error %d\n", i);

return 0;

}

for (latch_n=LATCH0; latch_n<=LATCH15; latch_n++){//Each IO

if(OSLatchSetup(LATCH1, IN)!=0){

printf("Error with %d",latch_n);

return 0;

}

}

35

CHAPTER 4. BLACK BOX AND GUI

Although this was a large number of data sets, the Eyebot was writing to file as fast

as possible and it was observed that the memory would fill up in about 4.5 hours.

This meant that the logs would have to removed from the Eyebot after every 4.5

hours of Eyebot run time, else the system would crash. Ideally, the Eyebot should

have had a logging capacity of at least a week.

The solution for this was three-fold:

1. Mount a flash drive for writing log files (see Section 6.1).

2. Do not write to file as fast as possible but write once every second (see Section

4.3 on Code Integration).

3. Log data only when car is driving.

To log data only when the car was running, the ignition signal was used to indicate

if the car was on or not. Only when the ignition signal was active was the data

written to file. Program 2 highlights this.

Program 2 Writing data to file

void writeData()

{

if(curdat.ignition == 1){

printf("Writing data\n");

bb_write();

}

}

36

4.2. WRITING TO FILE

It was also found that the original Black Box code would crash after running for

several hours. The following problems were found and rectified:

1. The log file was being opened and closed every time sensors were read - this

was changed so that the file was opened only when the ignition signal became

active, and the file was closed only when the ignition signal became inactive.

2. The buffer on the serial port for the GPS would overflow if the GPS was not

read once every second - this was fixed by reinitialising the GPS periodically.

3. Clearing the screen in an infinite loop caused a crash. This was because an

instance of LCDClear() could not be called while another instance of LCD-

Clear() was running - this was fixed by only clearing the screen when required.

Program 3 illustrates the above points.

37

CHAPTER 4. BLACK BOX AND GUI

Program 3 Black Box code

//if the ignition is on and the gps and not been initialised

if(1 == curdat.ignition && 0 == isGPSOn){

isGPSOn = 1;//reinitialise the gps

startGPS(&GPShndl);

}

//stop reading gps if ignition off

else if(0 == curdat.ignition && 1 == isGPSOn){

isGPSOn = 0;

close(usbFile);

SetGPSDefaultValues();

}

else{

readData();

if(curdat.ignition == 0 && screenBlank == 0){

//so second LCDClear() not called while one is running

sleep(3);

LCDClear();

screenBlank = 1;

}

else if(curdat.ignition == 1) {screenBlank = 0;}

}

38

4.3. CODE INTEGRATION

4.3 Code Integration

The need to integrate the GUI and Black Box stemmed from the fact that they

needed the same inputs - i.e. read from the same sensors. To have two different

processes reading from the same digital and analogue sensors, although possible,

would be inefficient. Moreover, the GPS could only be read by one process as a

serial port can not be opened by multiple processes.

A design decision was taken to write to file once every second. A timer was used

to call the write function every second. Timers were also used for the reading and

display operations. Thus, there were three different ”threads” performing three

different functions, but using the same variables in code. The function

OSAttachTimer() in the Robios library allowed a function to automatically be called

at a specified interval. Three threads and their functions are illustrated in Figure

4.1.

GUI READER BLACK BOX

DISPLAY

INFORMATION

GRAPHICALLY

READ DIGITAL

INPUTS, GPS

WRITE ALL

INFORMATION

TO FILE

Figure 4.1: Threads

As the three “threads” were operating on the same variables some protection needed

to be put into place to prevent variables being read from and written to at the same

time. Semaphores were used for this purpose.

39

CHAPTER 4. BLACK BOX AND GUI

With semaphores when one thread is accessing a protected variable or group of

variables the variable(s) in use are “locked” and can not be accessed by a different

thread. This prevented data from being corrupted. This was especially impor-

tant as many of the variables used were encapsulated into a structure. The use of

semaphores ensured that there was never a situation when some elements of the

structure were changed and others were not.

40

Chapter5

Breakout Box

The Eyebot was mounted in the centre panel of the car. Previously all the inputs

to the Eyebot were connected directly to it through 9-Pin connectors. This made

it very difficult to check the state of any of the inputs as it involved removing the

entire dashboard of the car. It was not possible to change/add/remove any of the

inputs as they were permanently soldered onto the 9 pin connectors.

Thus to improve flexibility and accessibility a Breakout Box was designed for the

Eyebot and placed next to the steering column in the car.

Figure 5.1: Eyebot IDC headers

Image from [2]

41

CHAPTER 5. BREAKOUT BOX

The Eyebot board had several IDC header strips for digital IOs, the analogue to

digital converters, Motors, Servos and PSDs as shown in Figure 5.1.

These header strips are connected to the header strip on the PCB via ribbon cables

as shown in Figure 5.2

Figure 5.2: Connectors on Eyebot

The header strips for two servos, two motors and the analogue to digital converters,

were connected to a 24 pin header on the breakout board, via a 24 pin ribbon cable,

with a 7 pin connector for the servos, a 5 pin connector for the Analogue to digital

converter and two 6 pin connectors for the motors. The functions of the pins on the

24 pin connector on the breakout PCB are tabulated overleaf.

Further, the 20 pin header with all the 16 digital IOs on the Eyebot is directly

connected to the 20 pin header on the breakout PCB. All these inputs to the header

strips were broken out into screw terminals, so that inputs could be added/removed

or changed as required. The schematic (separated into two parts) and board layout

are shown in figures 5.3, 5.4 and 5.5.

42

Pin Function

1 5 V

2 Analogue Input 1

3 Analogue Input 2

4 Analogue Input 3

5 Analogue Ground

6 Servo 1 Signal

7 Servo 1 5V

8 Servo 1 Ground

9 Not used

10 Servo 2 Ground

11 Servo 2 5V

12 Servo 2 Signal

13 Motor 1 M- signal

14 Motor 1 M+ signal

15 Motor1 Ground

16 Motor1 5V

17 Motor1 Encoder B signal

18 Motor 1 Encoder A signal

19 Motor 2 M- signal

20 Motor 2 M+ signal

21 Motor2 Ground

22 Motor2 5V

23 Motor2 Encoder B signal

24 Motor2 Encoder B signal

43

CHAPTER 5. BREAKOUT BOX

Figure 5.3: Breakout board schematic (24 pin connector)

Figure 5.4: Breakout board schematic (20 pin connector)

44

Figure 5.5: Breakout board layout

45

Chapter6

General Tasks

6.1 Startup Scripts

There are shell scripts on the Eyebot which run at startup. These scripts are named

S10Eyebot - S90Eyebot. They are located at /etc/init.d. These scripts were modi-

fied to:-

1. Run GUI at startup. This is illustrated in Program 4.

Program 4 Selecting GUI
echo "*Starting GUI*"

start GUI program!

[-x /root/demo/gui] && /root/demo/gui&

2. Set up a static IP address for the Eyebot. This is illustrated in Program 5.

Program 5 Setting static IP
#setup network

ifconfig eth0 192.168.1.101 netmask 255.255.255.0

hw ether 00:11:22:33:44:59 Up

#udhcpc -i eth0 &

As seen, the Dynamic Host Configuration Protocol (DHCP) is disabled.

3. Mount a flash drive for used by the Black Box code. This is illustrated by

Program 6.

46

6.2. REWIRING

Program 6 Mounting flash drive
echo "mounting usb stick"

mount /dev/sda1 /media/bb

The Black Box code can write to the flash drive by writing to /media/bb as

it would to any other folder.

6.2 Rewiring

The wiring behind the centre panel of the car was redone. Multi core cables were used

instead of solid core cables as they are less prone to breaking due to the vibration

experienced in a moving vehicle. A cable was run to connect all the outputs from

the relay board in the engine compartment to the Eyebot Breakout Board.

Additionally, the 12V wiring to power the Eyebot, wireless router and Inertial Mea-

surement Unit (IMU) was redone.

6.2.1 Switches

There were two switches present next to the steering wheel which turned the stereo

and the heater on and off. These switches had built in LEDs that came on when

the stereo/heater was switched on. Although the switches were wired correctly to

operate the stereo and the heater, the LEDs did not come on. This problem was

resolved as shown in Figure 6.1.

The 12V ignition signal is high (12 V) when the ignition is on and low (0 V) when

the ignition is off. The 12V line is used as a control signal for turning the heater

and stereo on and off .

47

CHAPTER 6. GENERAL TASKS

IGNITION 12V

STEREO
HEATER

CONTROL

HEATER +

550 OHM

550 OHM
CONSTANT

12V

Figure 6.1: Switch circuit

The heater+ signal is at 12 V when the heater heater switch is open, but is pulled

down to 0 V when the switch is closed. See [17] for further details on the heater

control system.

The LEDs both go from 12V to ground with a series resister in between. The current

rating for the LEDs used is 20mA and the voltage drop across them when forward

biased is about 2V. Thus, the series resister needed to be:

R =
V

i

=
12− 2

.02

= 500Ω

48

6.2. REWIRING

To limit the current to slightly below 20mA, the resistance used was 550 Ω.

Closing the stereo switch forward biased the stereo LED, thereby turning it on.

Closing the heater switch brought the heater+ line to ground, thereby forward

biasing and turning on the heater LED. It was observed that disconnecting the

heater had the effect of bringing the heater+ line to ground. Thus, to prevent the

heater LED being forward biased when the heater switch was open and the heater

was disconnected, a protective diode was put into the heater+ line.

49

Part II

Lotus Elise

50

Chapter7

Elise: Objectives

The idea for the Elise was to have a one stop solution for all driver assistive

technologies. There was also a need to record all information about the state of the

car to file for performance analysis. The information that needed to be recorded

included:-

1. Battery information

(a) Voltage

(b) Current being drawn

(c) State of charge

(d) Temperature of batteries

2. Digital inputs from

(a) Headlamps

(b) Handbrake

(c) Door

(d) Indicators

3. All information about state of Motor Controller

4. GPS information

5. Acceleration in three dimensions

A subset of this information was required to be displayed to the driver in a way,

which was both intuitive and efficient i.e. took minimum number of steps to perform.

This idea is expanded in Section 7.1.

51

CHAPTER 7. ELISE: OBJECTIVES

7.1 Design

The five Usability design principles mentioned in Section 2.1 were kept in mind while

designing the GUI for the Lotus. The design followed on from the GUI developed

for the Getz last year.

To avoid a compromise between functionality and aesthetics, a combination of two

programming languages were used. There was a backend which did all the inter-

facing with sensors, manipulation on data and writing to file, and a frontend which

graphically displayed all the data to the driver. While the backend was written in

Visual C++, using Microsoft Visual Studio 2008, the frontend was written in Action

Scripting 3 using Adobe Flash CS4. Flash was chosen for its aesthetic appeal while

the core functionality was handled in VC++.

Flash was convenient for the frontend as it allowed use of basic building blocks like

buttons, images, text boxes and labels without compromising on flexibility. The

different screens, which were accessed by pressing different buttons could be kept

at different “depths”, with the current screen being at the highest depth. Action

Script 3 provided high level functionality to dynamically change the display.

A Flash Shockwave file was created for the frontend, which was embedded as an

Active X control in the VC++ project. The VC++ code was able to modify variables

in the loader for the Flash Active X control. An example of this is shown in Program

7.

Program 7 Changing loader variables from VC++
paramString = "bestCornering=";

paramString = paramString + acc.getBestCornering();

this->gui->FlashVars = paramString;

52

7.1. DESIGN

These variables could then be read in Flash as illustrated in Program 8.

Program 8 Reading loader variables in Flash
cornerG.text = root.loaderInfo.parameters.bestCornering;

However, these loader variables could not be modified in Flash, hence for the backend

to respond to a user input in the frontend an XML file was passed from Flash to

the backend. An example of this is shown in Program 9.

Program 9 Sending XML file from Flash

private function forward(event:MouseEvent):void

{

ExternalInterface.call("ResizePlayer", 1, 0);

}

This sends an XML file to VC++ which can be read as shown in Program 10.

Program 10 Reading XML file in VC++

XmlDocument^ document = gcnew XmlDocument();

document->LoadXml(e->request);

XmlNodeList^ list = document->GetElementsByTagName("arguments");

int playlist = Convert::ToInt32(list[0]->ChildNodes[1]->InnerText);

int song = Convert::ToInt32(list[0]->FirstChild->InnerText);

Another benefit of separating the front and backend is that the Flash frontend can

be modified or changed without changing the VC++ code. This effectively makes

the application “skin-able” i.e. the look and feel can be changed without modifying

the backend code. Any future frontends need only access the variables changed in

the ActiveX loader by the backend.

53

CHAPTER 7. ELISE: OBJECTIVES

These variables are listed below:

1. curSpeed: The current speed of the car (string).

2. distanceRemaining: The distance the car can travel on the remaining charge

(integer).

3. batteryPercentage: The percentage of usable change remaining in the battery

(integer).

4. voltageValue: The instantaneous voltage of the the battery pack (integer).

5. currentValue: The instantaneous current being drawn from the battery pack

(integer).

6. powerValue: The instantaneous power being supplied by the battery pack

(integer).

7. mapX: The X co-ordinate of where origin of map should be placed (integer).

8. mapY: The Y co-ordinate of where origin of map should be placed (integer).

9. songFile: The name of the song currently being played (string).

10. albumArtFilename: The path to the album art file to be displayed (string).

11. playlist: The name of the play list (folder) the current song belongs to (string).

12. heading: The rotation (in degrees) the GPS marker needs to undergo to

indicate the direction the car is heading in (integer).

13. totalDistance: The total distance that has been traveled by the car (float).

14. distanceSinceCharge: The distance the car has traveled since the last charge

(float).

15. moneySaved: The dollar value of money saved by driving an electric car (float).

16. best60: Best 0-60 km time in seconds (integer).

17. best100: Best 0-100 km time in seconds (integer).

18. averageSpeed: Average speed of car(in km/h) for the current trip (float).

19. x: The instantaneous sideways acceleration of the car (float).

20. y: The instantaneous lateral acceleration of the car (float).

54

7.1. DESIGN

21. bestForward: The greatest forwards acceleration of the car in the current trip

(float).

22. bestBraking: The greatest braking acceleration of the car in the current trip

(float).

23. bestCornering The greatest cornering acceleration of the car in the current

trip (float).

Any future versions of the frontend must also send variables to the backend via an

XML file. These variables are listed below:

1. nextSong: 1 if song should be changed to next song, -1 for previous song and

0 otherwise.

2. nextPlaylist: 1 if current play list should be changed to the next play list, -1

for previous play list and 0 otherwise.

55

Chapter8

GUI

The Flash frontend consisted of a number of different “Tabs” which grouped related

sets of information. The tab could be changed using the menu buttons at the bottom

of the screen. The native resolution of the Flash SWF was 800 × 600 pixels, which

was scaled down to 800 × 480 pixels by the VC++ application it was embedded in,

so that it was exactly the same resolution as the screen used.

8.1 Main Tab

Figure 8.1: Main Tab

The Main Tab showed a graphic of the car, which looks like (Figure 8.1) when

no alerts are present. Alert signage appears on the car graphic to communicate

potential hazards to the driver. The driver may then navigate to the Alerts Tab to

gain further information about the warning.

56

8.1. MAIN TAB

There is also a graphic indicating the percentage of the usable charge remaining in

the battery and text fields with the exact battery percentage, the speed of the car

and the distance the car can drive on the remaining charge in the battery.

The battery information - percentage, charge remaining, voltage and current is gath-

ered from the Battery Management System which is first serialized by the Hardware

Black Box system. The speed comes from the serial GPS (see Section 1.2.3). The

speed obtained from the GPS is inaccurate when the car is stationary, so the speed

displayed is 0 when the speed indicated by the GPS is less than 5km/h. To calculate

the distance remaining, a running mileage is maintained:

mileage(km/Ah) =
Distance traveled(km)

Charge depleted(Ah)

Both the distance traveled and charge depleted are reset when the battery is recharged.

The distance remaining is calculated as follows:

Driveable distance = mileage× usable charge remaining in battery

The usable charge differs from the actual remaining charge in the battery as a

minimum charge of 30% or 18 Ah is always maintained in the battery. Maintaining

this minimum charge extends the life of a Lithium Iron Phosphate battery to about

3000 charge-discharge cycles.

57

CHAPTER 8. GUI

8.2 GPS Tab

Figure 8.2: GPS Tab

The GPS Tab (Figure 8.2) contains a single large map image of 5108 × 6130 pixels.

This image was created by combining several maps which were downloaded from

Open Street Maps[18], an on-line repository of free to use maps. The area covered

by this map spans from the coast in the West to Midland in the East, and from

Joondalup in the North to Jandakot Airport in the South as show in Figure 8.3.

Only 800 × 555 pixels of the map are visible at any one time. This is because the

resolution of the Flash movie is 800 × 600 pixels and the bottom 45 pixels are used

by the buttons. The map moves around in the background to enable the current

GPS location to lie in the centre of the screen where the pose indicator is present.

The co-ordinates for the boundaries of the map in GPS co-ordinates are:

North 31.823◦ S

South 32.085◦ S

58

8.2. GPS TAB

West 115.743◦ E

East 116◦ E

Figure 8.3: Area covered by maps

Image from [18]

As a convention, North and East are positive and South and West are negative.

This means we have a range in latitude from -32.085 to -31.823 and a range of

longitude from 115.743 to 116. Because Open Street Maps approximates the earth

at a cylinder, there is a linear one-to-one correspondence between GPS and pixel

co-ordinates on the image. The pixel co-ordinates can be calculated as follows:

x = Image width× Longitude - West boundary

East boundary - West boundary

y = Image height - Image height× Latitude - South boundary

North boundary - South boundary

59

CHAPTER 8. GUI

There is an extra step of subtracting from the image height for the y-position because

y should be the pixel distance from the top of the map, rather than from the bottom.

There is a pose (position and orientation) indicator in the centre of the screen which

tells the driver where in the map he is currently located. This indicator rotates to

indicate which direction the car is heading (the heading is obtained from the GPS).

Since this heading information is only accurate when the car is moving, the rotation

of the position indicator is only changed when the speed is greater that 5km/h. This

means the pose indicator still provides an accurate approximation of the direction

the car is facing even when the car stops.

8.3 Stats Tab

The Stats Tab (Figure 8.4) has a graphical display of the instantaneous voltage,

power and current drawn from the battery. This is used to provide a visual indication

of the effects of accelerating and regenerative braking on the battery.

Figure 8.4: Stats Tab

60

8.4. ALERTS TAB

Additionally, there are text fields to indicate the total distance traveled by the car,

the distance traveled in the current trip, charge remaining in the battery and the

amount of money saved by driving an electric car. The charge remaining is gathered

from the battery management system, while the distance traveled is calculated form

the GPS information. The GPS sends a serial string to the PC once a second. This

string contains the instantaneous speed. The distance traveled in the last second

can then be approximated by multiplying the speed by one second. The distance in

the current trip and the total distance can then be incremented by this amount. The

total distance traveled is written to file once a second and is read by the program

at startup. A “trip” is defined as having started at either program startup or when

the car moves after being stationary for 10 minutes. When a new trip starts, the

trip distance is reset.

The combined urban and extra-urban mileage of a Lotus Elise is 8.3 l/100 km or

12.04 km/l [19]. The money saved is based upon the cost of running the Elise

on electric power and the cost of running the car on petrol. The price per litre

of fuel is input from a text file at program startup. As an example - if the price

of fuel as given by the text file is AU$1.50/l the price of running the car for 100

km (distance that can be traveled on a full charge) is AU$12.45 which equates to

AU$0.1245/km. On electric power, the expected cost would be AU$2.5 per 100 km

which amounts to AU$0.025/km. This gives a saving of AU$0.0995/km. This figure

can then multiplied by the total distance traveled to obtain the money saved.

8.4 Alerts Tab

The Alerts Tab (Figure 8.5) provides addition textual information about any po-

tential hazards that a driver may need to know about. The driver will be alerted

about the following events:

61

CHAPTER 8. GUI

1. Battery charge low

2. Particular cell in battery is unbalanced - i.e its voltage is too high or too low

3. Temperature of battery cage too high

4. Door open

5. Light on when ignition off

Figure 8.5: Alerts Tab

8.5 Speed Tab

The Speed Tab (Figure 8.6) is an additional safety feature when the driver goes over

the speed limit. There are some commonly used presets on the left, and there is

the flexibility provided to increase or decrease the speed limit by one. The system

beeps when the set speed limit is exceeded. It is also possible to turn this feature

off if one is driving around a racetrack.

62

8.6. TRIP TAB

Figure 8.6: Speed Tab

8.6 Trip Tab

The Trip Tab (Figure 8.7) provides all information relevant to the current trip (see

Section 8.3 for definition of a trip). The best times for 0-50 km/h and 0-100 km/h

are measured in seconds and are calculated from a standing start. A time stamp of

the last time the car was at 0 is maintained and the time period to get to 50/100

km/h is recalculated every time the car is at 50/100 km/h. The displayed values are

updated when a time period less than the displayed time period is achieved. There

is a linear interpolation performed to calculate the exact period as the GPS is only

updated once a second (see Section 9.1.2).

The average trip speed is calculated as the total distance traveled in the current trip

divided by the time since the start of the trip. There is also a manual stopwatch

with the standard start/stop, split and reset functionality.

63

CHAPTER 8. GUI

Figure 8.7: Trip Tab

8.7 Music Tab

The Music Tab (Figure 8.8) allows a user to play mp3 files by plugging in a USB

flash drive. The song details - name, artist, album is extracted from the mp3 tag.

Figure 8.8: Music Tab

64

8.8. G-FORCE TAB

Album art is displayed on the left of the screen. A folder with a group of songs

in it is read by the system as a play list. The play list name (folder name) is also

displayed.

There are standard start, stop, pause, song forward and song back buttons provided.

The fast forward and rewind buttons go forward and backwards between play lists.

8.8 G-Force Tab

The G-Force Tab (Figure 8.9) indicates the acceleration of car. It is measured in

multiples of g (acceleration due to gravity). There is a graph which gives a visual

indication of current acceleration, and three text fields indicate the best forward,

braking and cornering accelerations. These three fields are reset to zero at program

startup or at the beginning of a new GPS trip.

Figure 8.9: G-Force Tab

65

Chapter9

Program Structure

This chapter details the structure of both the frontend and the backend. With

over 2500 lines of code the structure needed to be modular and upgradeable. The

flowcharts in this chapter are a guide to how the code was laid out.

9.1 Backend

The backend as detailed by Figure 9.1 has different threads for the GPS, Accelerom-

eter, Hardware Black Box, Motor Controller, Flash updater and Data logger. While

the GPS, Accelerometer and Hardware Black Box threads are called when there is

serial data present, the Flash updater and Data logger are called by timers to update

the variables to be read by Flash and to write all data to the log file.

This multi-threaded interrupt driven approach means that the serial ports are not

constantly polled.

66

9.1. BACKEND

9.1.1 Main

START

INITIALISE

COMPONENTS

INITIALISE GPS

RECEIVER THREAD

INITIALISE

ACCELEROMETER

RECEIVER THREAD

INITIALISE HARDWARE

BLACK BOX

RECEIVER THREAD

INITIALISE MOTOR

CONTROLLER

RECEIVER THREAD

INITIALISE FLASH

SENDER THREAD

LOAD FLASH SWF

DONE

INITIALISE DATA

LOGGING THREAD
INITIALISE THREADS

INITIALISE THREADS

DONE

Figure 9.1: Backend - Main

9.1.2 GPS Thread

The GPS thread inputs the GPS data from the GPS module provided the data is

valid. Note that the GPS module must have a signal from at least four satellites to

have a lock. Further, there is a check sum calculation to check that data was not

corrupted during the serial transmission.

67

CHAPTER 9. PROGRAM STRUCTURE

GPS DATA

RECEIVED

CHECK IF

CHECKSUM

VALID

CHECK IF

VALUES WITHIN

RANGE

INPUT DATA

INTO VARIABLES

IS SPEED 0?

IS SPEED > 50?

IS SPEED > 100?

INCREMENT

TRIP, TOTAL

DISTANCE

STORE TOTAL

DISTANCE TO

FILE

IS THIS

FASTEST TIME

TO 50

UPDATE BEST 0-

50 TIME

UPDATE BEST 0-

100 TIME

IS THIS

FASTEST TIME

TO 100

RESET LAST 0

TIME STAMP

CALCULATE

DISTANCE

TRAVELED

YES YES

NO

NO

YES

YES

YES

NO

NO

DONE

CHECK FOR

BEST TIMES

CHECK FOR

BEST TIME

DONE

NO

Figure 9.2: Backend - GPS thread

68

9.1. BACKEND

There is also a check made on each field, to check if it is within expected bounds.

For example, the hour field must be between 0 and 23, the second field must be

between 0 and 59, the latitude should be between -90 and 90 and the longitude

should be between -180 and 180, etc.

Because data is received from the GPS module only once a second there needs to

be a linear interpolation for approximating when the car starts moving and when it

crosses 50/100 km/h to determine the best 0-50 and 0-100 times. Once again, the

car is only said to be moving once a speed of 5 km/h or higher is detected by the

GPS. If:

t1 was the first instant the car was in motion i.e. was traveling at over 5km/h

(measured in seconds)

s1 was the speed at time t1(measured in km/h)

t2 was the first instant the car was traveling at over 50km/h (measured in seconds)

s3 was the speed at time t2(measured in km/h)

s2 was the speed at time t2 - 1(measured in km/h)

Note that t1 - 1 was the last instant the car was at rest and t2 - 1 was the last

instant the car was traveling at under 50km/h (this is because the resolution of the

GPS is one second). Interpolating from these values, we can approximate the time

the car was at 5km/h (t5) and the time the car was at 50km/h (t50) and hence the

0-50 time (t0−50) as follows:

t5 = t1 − 1 +
1

s1 − 0
× (5− 0)

t50 = t2 − 1 +
1

s3 − s2

× (50− s2)

t0−50 = t50 − t5

A similar calculation can be made for calculating the best 0-100 time.

69

CHAPTER 9. PROGRAM STRUCTURE

9.1.3 Accelerometer Thread

The Accelerometer thread reads from the serial Accelerometer connected via a USB-

to-serial adapter. The best forwards, braking and lateral acceleration is maintained.

This data is sent to the frontend by the Flash thread.

ACCELEROMETER

DATA RECEIVED

CHECK IF DATA

WITHIN RANGE

INPUT DATA TO

VARIABLES

IS THIS HIGHEST

LATERAL

ACCELERATION?

IS THIS LOWEST

LATERAL

ACCELERATION?

IS THIS HIGHEST

MAGNITUDE OF

CORNERING

ACCELERATION?

DONE

NO

UPDATE BEST

FORWARDS

ACCELERATION

YES

UPDATE BEST

BRAKING
YES

UPDATE BEST

CORNERING
YES

NO

NO

Figure 9.3: Backend - Accelerometer thread

70

9.1. BACKEND

9.1.4 Hardware Black Box Thread

The Hardware Black Box system was developed by Daniel Kingdom. It has a USB

interface with FTDI drivers for an emulated serial port. It provides serialised infor-

mation from the BMS - battery pack voltage, battery pack current and individual

cell voltages and currents. It also transmits information about the state of the digi-

tal inputs and analogue inputs - temperature of the battery packs, headlights, door

sensor and seatbelt sensor via serial.

All this data is sent via two ASCII strings. The Hardware Black Box thread tokenises

these strings and extracts all the information.

HARWARE BLACK

BOX DATA

RECEIVED

CHECK CRC

CHECK IF DATA

WITHIN RANGE

INPUT DATA TO

VARIABLES

DONE

Figure 9.4: Backend - Hardware Black Box thread

71

CHAPTER 9. PROGRAM STRUCTURE

9.1.5 Flash Thread

The Flash thread transmits all the variables mentioned in Section 7.1 to the frontend.

UPDATE FLASH TIMER

TICK

SEND ALL

RELEVENT

VARIABLES TO

FLASH

DONE

Figure 9.5: Backend - Flash thread

9.1.6 Logging Thread

Logs are written to the output CSV files once every 10 seconds, two new files are

created at program startup and are named according to the date and time of file

creation. The main log is named as ddMMyyyyhhmmMain.csv, while the battery

log is named ddMMyyyyhhmmBattery.csv where dd is the day, MM is the month,

yyyy is the year, hh is the hour and mm is the minute. The main log file stores the

GPS time, GPS co-ordinates, heading, speed, distance traveled and Accelerometer

data. The header for the main file is:

day, month, year, hour, minute, latitude, longitude, heading, speed, distance, accX,

accY, accZ

72

9.1. BACKEND

WRITE TO FILE

TIMER TICK

WRITE ALL

VARIABLES TO

LOG FILE

DONE

Figure 9.6: Backend - Logging thread

The battery log file stores all the information about the overall battery pack voltage,

current, state of charge, and percentage of usable charge remaining. Additionally,

there is information about each of the the 99 cells in the battery pack. The individual

voltages, the maximum and minimum voltages and the bypass current of each cell

is also logged. The sampling interval is the interval between successive polls of the

BMS system by the Hardware Black Box. The bypass current is the current being

drawn by a BMS module to discharge a particular cell during charging of the overall

battery pack, if the voltage of the cell is too high. The header for the battery log is:

voltage, current, charge, percentage, cell1Voltage, cell1MaxVoltage, cell1MinVoltage,

cell1BypassCurrent, ..., cell99Voltage, cell99MaxVoltage, cell99MinVoltage,

cell99BypassCurrent

73

CHAPTER 9. PROGRAM STRUCTURE

9.2 Frontend

The user interface in Flash is provided by eight buttons at the bottom of the screen

which allow the user to change the tab they are currently in. There are also addi-

tional buttons on some of the screens for functionality specific to the tab: such as

the music control buttons in the Music tab and the Stopwatch control buttons in

the trip tab.

9.2.1 Main

START

INITIALISE

VARIABLES

INITIALISE

EVENT

HANDLERS

INITIALISE

UPDATE TIMER

DONE

Figure 9.7: Frontend - Main

The main thread initialises the event handlers for the eight menu buttons, the stop-

watch buttons and the buttons for music player buttons. An event listener calls the

74

9.2. FRONTEND

appropriate event handler when a button is pressed. Further the update timer is

initialised, this sets up a timer which updates the display ten times a second.

9.2.2 Event Handlers

INITIALISE EVENT

HANDLERS

INITIALISE MAIN

BUTTON

PRESSED

HANDLER

INITIALISE GPS

BUTTON

PRESSED

HANDLER

INITIALISE

STATS BUTTON

PRESSED

HANDLER

INITIALISE

ALERTS BUTTON

PRESSED

HANDLER

INITIALISE

SPEED BUTTON

PRESSED

HANDLER

INITIALISE TRIP

BUTTON

PRESSED

HANDLER

INITIALISE

MUSIC BUTTON

PRESSED

HANDLER

INITIALISE G-

BUTTON

PRESSED

HANDLER

INITIALISE PLAY,

PAUSE, STOP

BUTTON

HANDLERS

INITIALISE

ALBUM

FORWARD/BACK

BUTTON

HANDLERS

STOP

Figure 9.8: Frontend - Setting up event handlers

Figure 9.8 shows all the event handlers for all the buttons in the GUI being set up.

Figure 9.9 shows the event handler for the Main button. Such event handlers also

exist for each of the other menu buttons. Flash allows components to be displayed

at different “depths”. This means that while all components are active they will not

be visible if there are other components at the same position which are at a higher

depth. When a menu button is pressed, all the components of the relevant tab are

75

CHAPTER 9. PROGRAM STRUCTURE

MAIN BUTTON

PRESSED

SET DEPTH OF

MAIN TAB

COMPONENTS

TO MAX DEPTH

SET ACTIVE

SCREEN TO

MAIN SCREEN

DONE

Figure 9.9: Frontend - Main button event handler

set to the highest depth, this makes all components in other tabs invisible.

There are also event handlers for the stopwatch buttons, and for the music control

buttons. The music control buttons simply update variables in the backend indi-

cating the song/play list needs to be changed. The frontend then sends the path of

the song to be played.

9.2.3 Update Thread

This update thread is called ten times a second. The update thread checks what

tab the GUI is currently displaying and updates all the items in that tab.

76

9.2. FRONTEND

UPDATE TIMER

TICK

ACTIVE TAB

=

MAIN TAB?

ACTIVE TAB

=

STATS TAB?

ACTIVE TAB

=

GPS TAB?

ACTIVE TAB

=

ALERTS TAB?

ACTIVE TAB

=

MUSIC TAB?

ACTIVE TAB

=

G-FORCE TAB?

ACTIVE TAB

=

TRIP TAB?

UPDATE MAIN

TAB

COMPONENTS

UPDATE GPS

TAB

COMPONENTS

UPDATE STATS

TAB

COMPONENTS

UPDATE ALERTS

TAB

COMPONENTS

UPDATE ACTIVE

TAB

COMPONENTS

UPDATE MAIN

TAB

COMPONENTS

UPDATE MAIN

TAB

COMPONENTS

DONE

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

YES

Figure 9.10: Frontend - Update thread

77

Chapter10

Installation

The Eyebot code was successfully loaded and run on the Eyebot in the Getz. The

Breakout Board was mounted to the side of the steering column. This meant that

it was easily accessible and also took clutter away from the cramped space behind

the Eyebot. Ribbon cables with IDC crimp connectors were used to connect the

board to the Eyebot and a multi-channel, multi-core cable was used to connect the

outputs of the Motor Controller to the Breakout Box.

For the Lotus, it was decided to mount the car PC in the passenger cabin rather

than in the boot to preserve signal integrity of the VGA cable running to the screen

which had to be mounted where the driver could access it. The PC was mounted

behind the passenger footrest. An Aluminium mounting plate was designed for this

purpose. There was a permanent 12V power supply from the 12V battery. The 12V

signal from the ignition was used to turn it on and off. This meant that turning the

car on turns the PC on and turning the car off causes the PC to perform a normal

shutdown. The screen was mounted just above the car PC where the stereo was

originally located. This placement made the screen accessible to both the driver

and passenger. Further, the dashboard provided shade to the screen which meant

there was reduced glare when the car was being driven in bright sunlight. A mount

was designed which slotted into the gap left by removing the stereo. The screen

could be slid on and off this mount.

78

Chapter11

Conclusion

Working on the REV project proved to be challenging, stimulating and hugely re-

warding. With over 2500 lines of code, this was the single largest software application

developed by the author. In working on this project the author was able to extend

his knowledge of electronics, specifically PCB design. He also learnt extensively

about working with various sensors and integrating data from these sensors.

The project proved to be successful with the onboard driver assistive system working

well on both the Getz and the Elise. Both these cars now have a whole host of

capabilities, some of which are not available even on high end commercial cars. The

dual objectives of providing the driver with all the information he requires as well as

logging data for analysing and improving performance have been achieved. The logs

obtained from the software can be used for performance benchmarking as well as

for tweaking the Motor Controller or the Battery Management System. The project

was also successful in providing the driver with extra features such as a mp3 player,

an Accelerometer, GPS navigation and a stopwatch. The interface in particular is

user-friendly and visually appealing.

As the hardware makes use of mostly standard off the shelf equipment and the

software is written in widely used languages, this system can easily be ported to

run on other cars, whether they are powered by electricity or by more conventional

means.

79

CHAPTER 11. CONCLUSION

The REV project as a whole has been very successful in performing conversions on

both performance and economy cars.It has also been an excellent learning experience

for all the students working on the project.

This project is at the forefront of onboard driver assistive systems and can lead on

to further innovation.

11.1 Future Prospects

This project builds a base for further innovation in driver assistive technology. Some

ways in which the project could be extended in subsequent years are:

1. Development of a full-fledged navigation system, where the driver can input

destinations.

2. Extension of the area covered by the maps to all of Australia, or even have

worldwide coverage.

3. Use of voice communication with the system while driving.

4. Integration of bluetooth for use of mobile phones.

5. Improvement upon design of the GUI.

80

Bibliography

[1] “About rev.” http://www.therevproject.com, March 2008.

[2] J. Ward, “Embedded libraries,” tech. rep., University of Western Australia,

2008.

[3] E. McLeod, “Eyebot m6 controlled sensor package in a renewable energy vehicle

- hyundai getz ,” tech. rep., University of Western Australia, 2008.

[4] GlobalSat, USB GPS Users Guide - WIN.

[5] W. S. Ltd, “Extracting information from the gps’s string of data.”

http://www.windmill.co.uk/gps.html, 2001.

[6] J. Nielsen, “Usability 101: Introduction to usability.”

http://www.useit.com/alertbox/20030825.html, August 2003.

[7] M. Trend, “135i vs evo 2008 mitstubishi lancer evolution mr dash display.”

http://www.motortrend.com/photo gallery/112 0806 135i vs evo photo gallery/photo 10.html,

2008.

[8] B. Blog, “More info on bmw car access.”

http://www.bmwblog.com/2008/03/05/more-info-on-the-bmw-full-in-car-

web-access, 2007.

81

BIBLIOGRAPHY

[9] W. Cunningham, “Driving it: Car interfaces and usability.”

http://reviews.cnet.com/4520-10895 7-6744922-1.html, June 2007.

[10] AutoBlogGreen, “First drive: Tesla roadster.”

http://green.autoblog.com/gallery/first-drive-tesla-roadster-sport-2, Octo-

ber 2009.

[11] Engadget, “2007 audi q7 in-dash system leaked.”

,http://www.engadget.com/2006/02/20/2007-audi-q7-in-dash-system-leaked,

February 2006.

[12] R. Menezes, “Cadillac announces pricing for the 2009 escalade hybrid.”

http://blog.pricewheels.com, August 2008.

[13] A. R. C. H. W. Louis McCarthy, Josh Pieper, “Performance monitoring in umrs

solar car,” IEEE Explore, vol. 1, p. 5, September 2000.

[14] N. National Space-Based Positioning and T. C. Office, “The global positioning

system.” http://www.gps.gov/.

[15] “How does a gps receiver figure its distance from a gps satellite?.”

http://www.how-gps-works.com/faq/q0111.shtml, 2006.

[16] “How does gps triangulation work?.” http://www.how-gps-

works.com/faq/q0110.shtml, 2006.

[17] R. Matthew, “Electric vehicle design concepts and project management,” tech.

rep., University of Western Australia, 2008.

[18] www.opensteetmap.org.

[19] “Technical specifications of 2006 lotus elise.”

http://www.carfolio.com/specifications/models/car/?car=144782, 2007.

82

BIBLIOGRAPHY

[20] UQM TECHNOLOGIES, INC., User and Installation Manual for PowerPhase

75 Traction System.

83

Appendices

84

Appendix A

Motor Controller Breakout

This board was a joint effort of Cameron Watts, William Price and the author.

Figure 1: Motor Controller Breakout - Schematic

85

Figure 2: Motor Controller Breakout - Layout

86

Appendix B

Motor Controller Pinouts

Pin Signal

A Vcc user

B GND user

C Reserved

D Enable

E Direction

F Drive Ready

G ACCEL 2

H GND user

J GND serial

K GND user

L Brake

M Accelerator

N +12 VDC

P Reserved

R CTRL IN

S CAN L

T CAN H

U Serial transmit

V Serial receive

This data was obtained from the Motor Controller manual [20]

87

