
FERRARI ON A STICK: A SYSTEM FOR EMULATING ENGINE

SOUNDS

Third Year Project

Chris Hellsten, 10422637
School of Mechanical Engineering

University of Western Australia

Supervisor:
Thomas Braunl

School of Electrical & Computer Engineering

University of Western Australia

Semester 1, 2009

Contents

1 Introduction 4
1.1 Background . 4

1.1.1 Electric Cars . 4
1.1.2 REV Team . 4

1.2 The Problem . 5
1.3 Industry Standards . 6
1.4 The Aim . 6
1.5 The Eyebot . 7

2 General Design 7
2.1 Overview . 7

2.1.1 Audio Recording . 8
2.1.2 Audio Processing . 9
2.1.3 Software Design . 9
2.1.4 Hardware Selection and Design . 9

2.2 Design Constraints . 10
2.2.1 Software Constraints . 10
2.2.2 Audio Quality Constraints . 10

3 Audio Processing 11
3.1 Frequency Shifting . 11
3.2 Fourier Interpolation . 13
3.3 Wave Synthesis . 15
3.4 Technique Used . 18

4 Software Design 19
4.1 Overview . 19
4.2 Double Buffered Audio . 19
4.3 Project Breakdown . 19
4.4 Sample Path . 20
4.5 Simulated Gears . 21

4.6 Wav File Format . 22

5 Future Work 22
5.1 Other Possibilities . 22

5.1.1 Sweep Cutting . 23
5.1.2 Sweep Strolling . 23

5.2 Improvements to Recording Process . 24
5.3 Hardware . 24

6 Conclusion 24

List of Figures

1 The REV projects . 5
2 A simple system schematic . 6
3 The Eyebot M6, installed in the Hyundai Getz 7
4 Cars used to record additional sound-schemes 8
5 The effect of frequency shifting on a Lotus engine sound wave 11
6 Methods for generating intermediary RPM sounds using frequency shifts . . . 12
7 2000 RPM sound wave in the time domain 13
8 Interpolating between two Fourier transforms 14
9 Example of discontinuity in wave transition 15
10 The original waveform for Ferrari at 7500rpm 16
11 Wave synthesis using a low number of sample points 17
12 Wave synthesis using a high number of sample points 17
13 Sample state diagram . 21

Executive Summary

Recent advancements in battery storage capacity have led to the electric car moving its

way away from the impractical and towards the mainstream. Electrical vehicles release no

emissions and they run almost silently which may lead to less noise-polluted cities in the

future. This silence does, however, pose a safety risk in today’s world to both pedestrians

and other road users.

This project focuses on the design and implementation of a system to emulate the sound

of a petrol-based motor to be used in electric vehicles. The goal of the system is to alert

nearby pedestrians and drivers of the presence of the car and to add an aesthetic perk to the

electric vehicle by offering a range of realistic and impressive artificial engine sounds to the

car. The software for this project has been completed and a Lotus Elise, Ferrari f350 and

Aston Martin DB9 have had their engines recorded and those sound schemes are running

on the software.

Ferrari on a Stick Christoper Hellsten (10422637)

1 Introduction

1.1 Background

1.1.1 Electric Cars

Electric cars are not a new idea. An electric powered carriage was recorded to have been
invented by Robert Anderson no later than 1839 and a working three-wheeled electric vehicle
was invented by Gustave Trouve in 1881 (Westbrook 2001). This was four years prior to the
first gasoline powered automobile invented by Karl Benz in 1885.

Electric cars were in full production by 1890 to 1912 and outsold gas powered cars due to
their simplicity. It was not until the 1920’s when the average commute distance was significantly
higher and oil was becoming mass produced that gasoline powered engines began to dominate
the market. Electric vehicles could not provide a sufficient range for public convenience due to
batteries being unable to store enough energy. By the 1930’s the electric vehicle industry had
all but disappeared.

Due to recent advancements in battery storage technology and the public push towards sus-
tainable clean development, zero-emission electric vehicles have come back into the limelight.

1.1.2 REV Team

The Renewable Energy Vehicle (REV) team at the University of Western Australia (UWA) has
converted a Hyundai Getz to full-electric drive and is in the process of converting a Lotus Elise
in a similar manner. The Getz was the team’s first attempt to produce a renewable energy vehicle
and the results were very promising. The car can be charged from any ordinary household 240V
power socket. A max speed of over 100km/h can be reached and the car costs approximately 1/3
that of its petrol twin per kilometre when charged from the grid. At UWA, solar panels charge
the car making it a completely zero-emission vehicle. (Figure 1a shows the electric Hyundai
Getz.)

The feature of the team’s work this year is the Elise, a much more ambitious project. The
main goal of which is to match (or better) the performance of the petrol-driven sports car in
many aspects while maintaining zero-emissions. (Figure 1b shows the Lotus Elise with com-
bustion engine removed.)

4

Ferrari on a Stick Christoper Hellsten (10422637)

(a) Hyundai Getz, Converted to Electric
Drive

(b) Lotus Elise, Converting to Electric Drive

Figure 1: The REV projects

1.2 The Problem

The Getz runs very silently with pedestrians sometimes only a metre away and not being aware
that the car is running. This poses a safety risk when driving around car parks or other populated
areas such as through the university. Pedestrians use the sound of cars to make themselves
aware of traffic. When a car cannot be heard pedestrians may stop paying attention to their
surroundings. Additionally, if electric cars move into mainstream production they will pose a
particularly high risk to blind and sight-impaired pedestrians.

The silent car is not only a problem for pedestrians however. Some test drivers of the Getz
have commented that the lack of engine noise can be disconcerting. The Getz has a manual
transmission and it is often useful to hear the engine to gauge when to shift gears (especially
given that the tachometer in the Getz is not currently functioning.)

The problem may also affect other road users, although generally they rely less on sound
for awareness given the background noise of their own car and other road vehicles.

5

Ferrari on a Stick Christoper Hellsten (10422637)

1.3 Industry Standards

To add an aesthetic appeal to their product and to overcome the dangers of a silent car some
commercial manufacturers of electric-cars have implemented or intend to implement an engine-
sound emulation system.

This system alerts pedestrians that the car is running and nearby. It also assists the driver’s
awareness of the engine’s current RPM. As an added bonus, with artificially generated engine-
sounds, the driver has far more control over the sound. The volume can be adjusted and even
the engine sound can be switched from a small four cylinder engine to a V8 or, in the case of
the Tesla Roadster even a formula one.

1.4 The Aim

The plan for this project is to implement such a system and run it in both the Getz and the
Lotus. The system software will run on the in-car Eyebot (see Section 1.5.) The audio data will
be stored on a USB stick, loaded and processed through the Eyebot and amplified by speakers
situated on the outer frame of the car. Figure 2 demonstrates how the system interacts with
components of the car to emulate engine sounds.

Figure 2: A simple system schematic

One of the key design goals is to have a simple user-interface making use of the LCD touch
screen on the Eyebot and allowing the driver to adjust volume and sound schemes. A realistic
sounding engine emulation is preferable for aesthetic appeal but any audible sound will fulfill
the safety requirements.

6

Ferrari on a Stick Christoper Hellsten (10422637)

To achieve this realistic engine sound, the audio pitch must scale with the current RPM of
the electric motor so as not to confuse the driver. Achieving this smooth and realistic transition
from RPM x to RPM y is the challenge of this project.

1.5 The Eyebot

The Eyebot (Figure 3) is a controller for mobile robots used throughout the Electrical and
Mechatronic Engineering department at UWA. Each REV electric car will have an Eyebot
mounted in the dashboard. Equipped with an LCD display and touch screen controls it serves
as a powerful and multi-functional in-car computer.

Figure 3: The Eyebot M6, installed in the Hyundai Getz

The Eyebot uses the RoBIOS operating system (O/S) which is based off the Linux O/S.
The relevant features of the Eyebot include: an ARM-9 400Mhz 32-bit processor, 64 Mb ram,
digital audio output and USB support (Braunl 2009).

2 General Design

2.1 Overview

The project can be effectively broken down into four parts; recording the audio, processing the
audio, writing the software and the selecting, wiring and fixing of the hardware. Each of these
will be discussed individually.

7

Ferrari on a Stick Christoper Hellsten (10422637)

2.1.1 Audio Recording

The recording of the audio is the simplest process. The engine of the subject car is recorded
whilst running at various RPMs so that the sound can be reproduced by the electric vehicle.
Background noise should be kept minimal and the recording should be conducted outside to
minimise reverberation.

A high-quality directional condenser microphone was set up approximately 50cm behind
the exhaust of the car and the audio was recorded with an audio software suite running on a
laptop. The driver was told to hold the car’s engine at constant RPM for at least 3 seconds. This
was done at various RPM intervals from 1500 RPM up to (in the case of the Ferrari) over 9000
RPM.

In some high performance cars the gas pedal may be very sensitive and difficult to keep at
a constant RPM. If this is the case then audio processing becomes significantly more difficult.
After these recordings had been taken the driver was asked to slowly rev from idle to red-line.
These recordings are not very useful in emulating the engine but they serve as a good benchmark
with which to compare the smooth transition of the emulated audio.

(a) Ferrari f350 (b) Aston Martin DB9

Figure 4: Cars used to record additional sound-schemes

The Lotus Elise was recorded before the petrol motor was pulled out by the REV team. This
will serve as the default sound-scheme for the car. Figure 4 shows a Ferrari f350 and Aston
Martin DB9 which were both later recorded. These sound-schemes will hopefully provide extra
entertainment for the driver.

8

Ferrari on a Stick Christoper Hellsten (10422637)

2.1.2 Audio Processing

The audio processing is a major part of this project and will be discussed in detail in its own
section. Audio processing is required because it is not plausible to record the engine at every
RPM or at every rate of change of RPM and yet in emulation we must produce a sound that
exactly matches the state of the electric engine. To achieve this audio at every possible RPM
must be produced from a set of recorded samples at every 500 RPM increments. This inter-
polation between the recorded samples is the main task in audio processing but conversion to
Eyebot-compatible audio files is also required. Various methods to perform this interpolation
are discussed later in Section 3.

2.1.3 Software Design

The task for the software is to load the processed audio files from USB stick and play them as
required. To do this, the software will receive input from the electric-motor controller giving
information about the current RPM.

The software should run semi-transparently on the Eyebot allowing the user to control other
applications while the sounds are running but allow simple adjustments to sound scheme and /
or volume via LCD GUI when prompted. Some of the features of the software include:

• Prediction based pre-emptive loading and discarding of relevant samples.

• Software controlled audio mixing and fading allowing for theoretically unlimited multi-
channel audio.

• A wav parsing module that allows on-the-fly format conversion and forward compatibility
for 16-bit audio.

• Scalable memory and CPU usage to balance performance with system resource usage.

• Low level double-buffered audio with variable buffer-size

More detailed information on software design will be discussed in Section 4.

2.1.4 Hardware Selection and Design

This task involves selecting speakers, amplifier and sub-woofer for each car, fixing them to the
car and wiring them. This task will roll over into next semester when the Lotus is closer to
completion. Some key aspects in selection of hardware involve:

9

Ferrari on a Stick Christoper Hellsten (10422637)

• Weather proof speakers, as they will be fixed outside the car

• Should run on the 12V car battery

• Maximum volume should be at least 90dB (at 1 metre from the speaker) to compete with
real car audio levels

• Minimising drag and weight so as to not throw off axle alignment or detrimentally affect
on-road performance.

This will be discussed further in the future work Section 5.3.

2.2 Design Constraints

The system is to run on the Eyebot and must share resources with other programs such as GPS
navigation, data-logging and user MP3 audio. For this reason there are constraints on how much
resources the software can use so that the program does not detrimentally affect the performance
of other parallel running applications.

2.2.1 Software Constraints

The system needs to have scalable memory usage so that it can run without impairing other
programs whilst maintaining the flexibility to improve performance for later versions of the
Eyebot. Likewise, the processing should be scalable. This would be in the form of updates per
second so that response time and smooth transitions can be balanced against processor usage
for different models.

2.2.2 Audio Quality Constraints

The eyebot documentation specifies that the maximum audio quality supported by the RoBIOS
O/S is 8-bit sound files at 32.8kHz sampling frequency. To put this in perspective, CD quality
is 16-bit at 44.1kHz. 16-bit audio support was added to the project for use with future Eyebot
upgrades as this results in a vast improvement in sound quality. Adding forward compatibility
for higher sampling frequencies is a simple and beneficial task.

10

Ferrari on a Stick Christoper Hellsten (10422637)

3 Audio Processing

The purpose of audio processing is to increase the resolution between recorded samples. That is,
we decrease the RPM increment between samples by producing interpolated samples to fill the
gaps. Producing samples with 50 RPM increments is sufficient to produce a smooth sounding
result. Several methods for this interpolation were investigated. This report covers three of
those methods; frequency shifting, Fourier interpolation and wave synthesis.

3.1 Frequency Shifting

Frequency shifting is a simple method for interpolating the audio files. Adobe Audition, a
sophisticated audio editor, was used to shift the frequency of one or more of the original samples
by varying factors to produce a smooth spectrum of samples. Figure 5 shows the transformation
of a waveform with the frequency shift effect.

(a) Original Lotus sound wave (b) Lotus sound wave after shifting

Figure 5: The effect of frequency shifting on a Lotus engine sound wave

There are two different ways that this can be done:

1. A suitable sample from the middle of the RPM range can be chosen as the sole source
sample, and many frequency shifts applied to it to produce the full range of audio samples.

2. Each source sample can be used to interpolate up to the next sample.

Both methods benefit from the fact that they are very easy albeit a bit time consuming to ac-
complish. Figure 6 shows the difference between the two methods.

The driving rationale for the first method is that each sample blends into the next sample
smoothly since they are all based off the same original source sample. In contrast, the second

11

Ferrari on a Stick Christoper Hellsten (10422637)

Figure 6: Methods for generating intermediary RPM sounds using frequency shifts

method causes a noticeable jump when the interpolated sample of X suddenly changes to the
original recording of Y (see Figure ref, a noticeable jump is at the 2400rpm interpolated sample
moving to the 2500rpm original recording in method (2).)

This occurs because the frequency of the recorded samples does not increase perfectly lin-
early with the RPM of the engine. In fact, the engine sound changes dramatically from low
RPM to high RPM beyond just a simple frequency shift. This fact causes problems for both
methods. For method (2), as mentioned above, this causes a non-smooth transition through the
RPM ranges and for method (1) this causes the interpolated samples to sound very different to
the actual engine at the extreme boundaries of interpolation. The end result for method (1) is a
very one-dimensional sounding car.

Frequency shifting was eventually decided upon as the best method and a compromise be-
tween methods (1) and (2) was used. This is discussed in more detail in Section 3.4.

12

Ferrari on a Stick Christoper Hellsten (10422637)

3.2 Fourier Interpolation

Figure 7: 2000 RPM sound wave in the time domain

The Fourier interpolation method takes advantage of the full range of recorded samples
whilst maintaining a smooth transition between interpolated samples. To perform the wave
analysis MATLAB was used. Each recorded sample is imported in to MATLAB (Figure 7
shows an exmaple wave) as a waveform with respect to time and a Fourier transform is applied
to switch to the frequency domain. Once in the frequency domain, data sets are created as linear
interpolations between two recorded samples, producing the Fourier transform of a wave some-
where between the two recorded samples. Figure 8 shows two Fourier transforms of recorded
samples; the third (2300rpm) is interpolated between these.

The next step is to apply an inverse Fourier transform to the newly created datasets, convert-
ing them back to the time domain (a standard wave-form) and this wave can be written to disk
in wav format. This process was entirely automated with the use of MATLAB M-files which
allows for rapid audio-processing.

Unfortunately the end result is not realistic. The act of linearly interpolating between the
Fourier of two samples simply has the same effect as playing each sample at fractional volume at
the same time. Instead of increasing the dominant frequency slowly, the dominant frequency of
the sample X fades away and the dominant frequency of sample Y strengthens as we interpolate
towards Y and it sounds like there are two very obvious discrete signals playing. A pulsing can
also be heard as the two similar dominant frequencies produce a beat effect. This method was

13

Ferrari on a Stick Christoper Hellsten (10422637)

(a) 2000 RPM Original Sample

(b) 2500 RPM Original Sample

(c) 2300 RPM Interpolated Sample

Figure 8: Interpolating between two Fourier transforms

the first to be investigated and was quickly discarded.
With both methods described so far there is a common problem of discontinuous wave-

forms. That is, if the RPM of the engine changes from one instant to the next, the software
will turn off the currently playing sample, and play the next sample corresponding to the new
RPM. Since there is no way to know the actual amplitude of the waveform of a real sound at

14

Ferrari on a Stick Christoper Hellsten (10422637)

any given moment, when switching from one sample to the next it is impossible to ensure the
resulting wave transition is continuous. Speakers cannot play a discontinuous waveform, and
the result is a popping or clicking sound similar to the clicking of an old vinyl record being
played but occurring many more times per second. Figure 9 demonstrates a possible discon-
tinuous transition between two waveforms. The wave synthesis method is designed to remove
these discontinuities.

Figure 9: Example of discontinuity in wave transition

3.3 Wave Synthesis

This method involves extracting key frequency and phase information from recorded samples
and using that information to completely synthesize the sound of the engine. While this sounds
at first like a fruitless endeavour, it solves the discontinuity problem that arises with other meth-
ods and can produce surprisingly realistic audio.

As with Fourier interpolation MATLAB is used to analyse the waveforms and the entire
process can be automated with the M-files that were created for this project.

For this method, only one sample is necessary for analysis and the first step is the Fourier
transform. The dominant frequency is determined (as the highest peak in the Fourier transform)
and its amplitude and phase angle are noted (this is all done automatically by the M-file.) Note:
the Fourier transform produces a complex number plotted against a frequency. The magnitude
of this complex number is the strength of the corresponding frequency in the original signal
(amplitude) and the argument arctan(imaginary/real) represents the phase angle of the wave.

A user-specified number of points will then be read from the graph, below and above the
dominant frequency and these points are saved as the tuple [frequency, amplitude, phase angle.]
The frequency must be converted to angular frequency. The waveform can then be approxi-
mated from this list of tuples using the formula of wave superposition:

y =
T

∑
t=0

n

∑
i=0

Ai× cos(Fi× t +π)

Where T is the number of samples in the signal and n is the number of tuples used in synthesis

15

Ferrari on a Stick Christoper Hellsten (10422637)

Figure 10: The original waveform for Ferrari at 7500rpm

The more points that are read (n), the more accurate the re-creation of the sample but the
higher the computation time. See Figures 11 and 12 below which demonstrates the approxima-
tions for different values of n as generated from the original waveform in Figure 10.

Any other RPM sample can be approximated with this method by scaling the frequency
value in each tuple. If we had just generated n tuples to describe the waveform of an RPM x
and we needed to generate the waveform for an RPM y then each tuple would become:

tuplei = [ωi×
y
x
,amplitudei,φi]

There are two ways to continue from here:

1. Produce the full range of samples now and export them as wav files to be used by the
Eyebot. Ending with a similar set of wav files to the frequency shift method.

2. Simply feed the tuples to the eyebot to reproduce the samples on-the-fly.

The second method benefits from almost zero relative memory usage, since no sound files
need be loaded. On the other hand the processor load increases dramatically as each sample
must be calculated on the fly. The higher the quality (number of tuples) the more CPU time
that will be consumed. To produce a very good quality sample, approximately 500 tuples were
used and this took a 2Ghz CPU 60 seconds to compute a 2 second sample which is clearly 30x
too slow to be performed on the fly. The expense here stems from the many cosine computa-
tions being calculated each loop. Using a pre-computed cosine lookup table the speed can be

16

Ferrari on a Stick Christoper Hellsten (10422637)

(a) Amplitude of the frequencies

(b) Phase angel of the frequencies

Figure 11: Wave synthesis using a low number of sample points

(a) Amplitude of the frequencies

(b) Phase angel of the frequencies

Figure 12: Wave synthesis using a high number of sample points

17

Ferrari on a Stick Christoper Hellsten (10422637)

increased by over 100x and 500 tuples may be overkill but it is still a high CPU load for the
Eyebot and this would surely cause other programs to perform less effectively.

The benefit that both of these methods have over other methods is that the final wave-form
is perfect. The exact amplitude can be calculated at any given time and hence the transition
between any two samples can be seamless by matching phase angles from one frequency to the
next. Additionally, a non-constant RPM recording can be used in analysis while still producing
a constant waveform output. This method was discarded because the CPU load may well be too
high for this version of the Eyebot. In the future it will be a path worth investigating deeper.

3.4 Technique Used

The final technique used was the frequency shift with two modifications to overcome the dis-
continuity and the one-dimensional sound problems.

Every sample was edited to fade in to maximum volume from zero volume over span of
approximately 0.05 seconds. This effect forces the amplitude of every sample to start at zero
and we need each sample to end on a zero amplitude as well to avoid the popping sound. It is
impossible to know when a sound will be cut off by the software so editing the samples and
forcing a fadeout is not useful. The fadeout effect has to be handled programmatically by the
software. The end result is quite pleasing to the ear. The fade-in and fade-out is inaudible and
the popping sounds disappear entirely.

To add more depth to the sounds, 3 samples are used instead of one. The first sample is at
idle and it represents the low rumbling of the car. The second sample is at approximately 3000
RPM and it represents the grunt of the car. The final sample is at very high RPM (approximately
7000) and it represents the high pitch twang of the car. Each sample is used individually to
produce a full spectrum of RPM using the frequency shift method from (1500 RPM to 9000
RPM.)

Each RPM now has 3 samples (rumble, grunt and twang) and all of these samples are mixed
together to produce the final sample for that RPM using MATLAB. Each sample is mixed with
a different scaling volume depending on the dominance of the original RPM throughout the
interpolated sample. At 1500 RPM the rumble sample is mixed at 100% volume and both other
samples are mixed at 0% volume (since the 1500 RPM should sound exactly as it was recorded.)
At 2000 RPM the rumble would be mixed at approximately 70% volume, the grunt mixed at
35% volume and the twang remains at 0% volume until we pass the grunt RPM. The result is

18

Ferrari on a Stick Christoper Hellsten (10422637)

a set of samples that blend smoothly into one another and increase correctly in pitch while still
honouring the original car’s audio profile at very low and very high RPM.

4 Software Design

4.1 Overview

The software for this project was written in C for the RoBIOS O/S. The task of the software is
to load samples from USB stick and play them via the Eyebot’s digital audio output. To achieve
the desired multi-channelling, fade effects and seamless sample loading the audio needed to be
controlled at a very low level.

4.2 Double Buffered Audio

At the base level the audio is controlled with a double buffer. A buffer is simply a contiguous
block of memory that stores raw audio data. One buffer is locked and currently being played
by the Eyebot while the other buffer is being loaded with audio data by the software. Once the
Eyebot has finished playing the first buffer the second buffer becomes locked and the Eyebot
begins playing from the second buffer. The first buffer becomes unlocked and the process
repeats. The process of switching from one buffer to the next is called a buffer flip. If a large
buffer size is used, the CPU load decreases and the chance of skipping decreases also. On the
other hand, a large buffer adds a longer latency to the sound. That is, new samples will take
longer to play and the effect is that the engine sounds are slightly delayed behind the actual
RPM of the engine.

4.3 Project Breakdown

The project consists of six source and six header files:

es_engine_sounds.c / .h
This source file contains the program entry point, the main operational loop and a handful
of utility functions used throughout the program. The corresponding header contains all
useful definitions that a programmer might like to change to tweak the performance such
as audio buffer size, number of parallel audio channels, update rate, cache size etc.

19

Ferrari on a Stick Christoper Hellsten (10422637)

es_fileio.c / .h
The file I/O source provides a set of simplified functions for accessing files in binary
form. These routines are called whenever a sample needs to be loaded from disk (often
many times per second) or if the user attempts to change the audio scheme.

es_gearbox.c / .h
The gearbox source interfaces with the car’s controllers and updates current RPM. It
is also designed to retrieve other information about the car such as speed and throttle
position though it is unclear if this data will be available to the eyebot at this stage. One
of the gearbox’s main tasks is to handle the simulated gears functionality, see Section 4.5.

es_soundtable.c / .h
The sound table is a data structure that stores an array of audio samples in memory. It
interfaces with the gearbox code to determine which samples to load and which to discard.
The main operational loop will instruct the sound table to play a new sample many times
per second and it must choose the most appropriate sample that is loaded to play.

es_audio.c / .h
The audio module handles the parsing of wav files. It retrieves data from the File I/O and
converts the binary data into a neat sample structure which is passed to the sound table
for storage. The module is also responsible for handling multi-channels, fade effects, the
mixing of these channels and the handling and flipping of the audio buffers.

es_gui.c / .h
This source file handles the GUI and user input that is displayed while the program is
running.

4.4 Sample Path

The samples move through a series of phases from USB stick to audio output. Initially the audio
files exist only on disk. If the sound table requests that an audio file be loaded this is handled
by the File I/O and audio-wav-parsing modules and the sample is now stored in a cache within
the sound table.

If the sound table chooses to play that sample it is copied to the audio module where it is
loaded into the best available channel. A channel is simply an active sound. The more channels

20

Ferrari on a Stick Christoper Hellsten (10422637)

there are the more flexible the program is but the slower the mixing phase. Once the sound is
in a channel it will be loaded into a buffer after the next buffer flip occurs. Figure 13 shows the
path of a sample through the system.

Figure 13: Sample state diagram

After a buffer flip occurs, the next stream of audio data is loaded into the unlocked buffer.
This data is the result of wave superposition of all active channels. The volume and fade effects
are handled at this mixing level. Once in the buffer, the audio will be played directly when the
next buffer flip occurs. In most cases the buffer length is many times shorter than the length
of the sample to be played, so the channel remembers how much of the audio has been played
so far and updates the position in the sample. The rest of the sample will be loaded into future
buffers unless the channel is overridden with a new sample.

4.5 Simulated Gears

The electric motor used in the Lotus Elise has constant torque from 0 to 10,000 RPM and red-
lines at 14,000 RPM. This complicates the mimicking of an internal combustion engine. To

21

Ferrari on a Stick Christoper Hellsten (10422637)

allow the electric engine to play audio at 14,000 RPM, the RPM would need to be scaled down
to the RPM range of an internal combustion engine. This would then have the side-effect of the
engine sounding like it is accelerating slower than it is.

As an alternative, the software has functionality to simulate gears entirely. If simulated
gears are being used, then the audio being played is no longer related to the RPM of the engine,
but to the speed of the car and the gear ratio of the simulated gear. It should be noted that this
simulated gear is not related to the actual gear of the car, it is simply a software state.

The software automatically shifts up and down simulated gears based on a similar algorithm
used in automatic transmission vehicles. The changing of gears is a function of simulated RPM
and throttle position. This may be misleading to the driver who can hear the engine pseudo-
changing gears without any action on their behalf (nor any physical change in torque, RPM
or engine disengagement.) It does, however, provide for a more interesting and suitable sound
profile especially in populated areas where the car may never need to change gears.

Without simulated gears, if the driver is cruising at 9000 RPM, the engine sounds would
be playing at max volume for the duration of the cruise which is unnecessary and annoying for
everyone involved.

4.6 Wav File Format

A module for parsing WAV data in binary form has been developed for the project. The soft-
ware is only compatible with the WAV file format using Microsoft’s RIFF specification. RIFF
documents exist as a series of descriptor chunks (Microsoft/IBM 1992). The only chunks han-
dled in this project are the header and data chunks which are the only two chunks used in most
WAV files. WAV files to be used with the project must be 8 or 16-bit depth and any sampling
frequency.

5 Future Work

5.1 Other Possibilities

There are a couple of other methodologies that were investigated in less detail that could pro-
duce better results. These methods involve using the recordings of the RPM sweeps rather than
the constant RPM samples. For this report the following two methods are referred to as sweep
cutting and sweep strolling.

22

Ferrari on a Stick Christoper Hellsten (10422637)

5.1.1 Sweep Cutting

If the recorded sweeps were slow enough, then they could be split into separate constant RPM
files directly at a high enough resolution to avoid any audio interpolation at all. Recording these
very slow sweeps can be troublesome though given that the car is not moving so the airflow
through the radiator drops off significantly and the engine can overheat. For this reason it was
not possible for this project to find someone with a suitable sports car that would allow this sort
of treatment.

This would however provide a perfect sound profile for any given car and this method is
often used for generating the audio in high budget car-racing video games.

5.1.2 Sweep Strolling

The idea behind sweep strolling is that the software uses the sweep samples directly rather than
a different sample for each RPM. This technique was not investigated deeply as it would require
an entirely different software architecture to perform correctly.

The recordings must be a perfect linearly increasing RPM sweep from idle to the maximum
RPM and similarly a second recording in reverse from maximum RPM back to idle. Both
recordings should be the same length (they increase and decrease at the same rate.)

The software could then move to the correct position in either of the audio files using a
simple linear interpolation between minimum and maximum RPMs to match any RPM that
the engine is running at. The strategy is then to play from the correct position in the upwards
moving audio. If the RPM of the audio exceeds that of the engine by a certain threshold after a
given period of time, the software switches to the decreasing sample and the audio RPM tends
back towards the engine RPM.

Conversely if the engine RPM is increasing faster than the rate that the audio RPM was
recorded, the position can be skipped forward to restore alignment. If the driver is hold-
ing a steady RPM the audio will be strolling up and down over that RPM by a small user-
definable window. If the driver is accelerating or decelerating then the software balances direc-
tion switches with audio skipping to keep the audio RPM in-line with the engine RPM.

Very little audio processing would be required for this method and only two samples would
need to be loaded into memory. This would bypass the need for a sound table entirely as all
sounds could be loaded at the same time.

23

Ferrari on a Stick Christoper Hellsten (10422637)

5.2 Improvements to Recording Process

As discussed earlier, the samples for this project were recorded in mono-channel (one micro-
phone behind the exhaust) due to limited resources. In commercial projects it is common to
record the engine sounds from multiple positions to create at least a dual-channel (stereo) sam-
ple (Hill 2002). This second microphone is often placed next to the engine or inside the car and
provides a richer sounding result.

Samples should also, ideally, be recorded while the car is both loaded and unloaded as the
sound in each case is very different. Loading the cars onto a dynamometer for the recording
session was not possible for this project. All samples were recorded with the car in neutral.
The thermal stress on the motor is further exacerbated when running recording sessions on the
dynamometer for long periods of time.

5.3 Hardware

For the system to function correctly, the final stage is the selection and setup of the audio-
playing hardware; including speakers and amplifier. At this stage it is unclear what the limita-
tions for this hardware are in terms of power and weight. Another important consideration will
be where to attach the speakers. If attached simply to the front of the car, it may be possible to
maintain some of the advantages of being silent when not driving towards you and only warn
those that the car is moving towards.

6 Conclusion

The final result is an artificial sound that is unmistakably an internal combustion engine. The
crudities of the recording and processing phases do, however, drop the impressiveness of the
original cars. Mostly this is due to the volume of the playback. Reproducing audio at the
volume that a Ferrari produces it at is simply not viable and the driving range of the car would
be affected by this wasteful use of energy.

Future work on the audio processing may produce far more stunning results. As long as
constant RPM audio files are continued to be used as the input, the scalable and robust software
will continue to sound better and better and should be useful for years to come.

24

Ferrari on a Stick Christoper Hellsten (10422637)

References

Bar, M (2001), Linux File Systems, McGraw-Hill.

Braunl, T (2009), ‘Eyebot m6 documentation’, Available from:
http://robotics.ee.uwa.edu.au/eyeM6/doc/ [21 May 2009].

Hill, G (2002), ‘Capturing engine sounds for games’, Available from:
http://www.gamasutra.com/features/20021030/hill_02.htm [31 March 2009].

Microsoft/IBM (1992), Microsoft Multimedia Standards Update 1.0.97, Microsoft.

University of Michigan (2005), MATLAB: The Language of Technical Computing, Mathworks
Inc.

Westbrook, M (2001), The Electric Car: Development and Future of Battery, Hybrid and Fuel-

Cell Cars, The Institution of Engineering and Technology.

Zolzer, U (1997), Digital Audio Signal Processing, John Wiley and Sons.

25

http://robotics.ee.uwa.edu.au/eyeM6/doc/
http://www.gamasutra.com/features/20021030/hill_02.htm

	Introduction
	Background
	Electric Cars
	REV Team

	The Problem
	Industry Standards
	The Aim
	The Eyebot

	General Design
	Overview
	Audio Recording
	Audio Processing
	Software Design
	Hardware Selection and Design

	Design Constraints
	Software Constraints
	Audio Quality Constraints

	Audio Processing
	Frequency Shifting
	Fourier Interpolation
	Wave Synthesis
	Technique Used

	Software Design
	Overview
	Double Buffered Audio
	Project Breakdown
	Sample Path
	Simulated Gears
	Wav File Format

	Future Work
	Other Possibilities
	Sweep Cutting
	Sweep Strolling

	Improvements to Recording Process
	Hardware

	Conclusion

