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Abstract 

In the context of the Renewable Energy Vehicle (REV) project at the University of 

Western Australia, a GPS-aided inertial navigation system has been developed. In 

the first part of this work the inertial navigation equations are derived. The inertial 

navigation solution is then combined with the GPS information to an integrated 

navigation system. Hence, an Extended Kalman Filter is presented, which is 

necessary to improve the inertial navigation solution due to low quality sensors. 

The equations are implemented in Matlab for testing and validating the results which 

are also presented in this work. Finally everything is implemented on the EyeBot M6, 

a microcontroller system developed at the Centre for Intelligence Information 

Processing Systems, which is installed at one of the Renewable Energy Vehicles, the 

REV Eco, a plug-in electric conversion of a Hyundai Getz. 
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1 Introduction 

1.1 Renewable Energy Vehicle Project 

The Renewable Energy Vehicle project (REV) is an initiative to design and develop 

environmentally, sustainable technology for future transportation. Further 

developments in electrical motors and improvements in battery technologies make 

electrical vehicles more and more attractive for public use. In the REV project we 

want to demonstrate the feasibility of modern technology to convert a petrol car into 

an electrical vehicle. In the application environment many people are using their car 

only for driving to work and back, that means less than 80 km a day. This distance is 

now achievable with battery-based electrical cars, which can be charged over night. 

The use of electrical vehicles reduces the air pollution in large cities and by producing 

the energy with a photovoltaic system, like for this demonstration project, completely 

clean, emission free energy is used. 

There is still the challenge to achieve the same performance as a conventional car 

has with a combustion engine, since people will always compare new technology to 

previous systems. We want to improve the disadvantages of electrical vehicles, 

namely the limited range, the long charging time and lower performance. Hence an 

economy car, the Hyundai Getz, see Figure 1.1, has already been converted in last 

year’s project. To develop the performance of electric vehicles, a Lotus Elise, see     

Figure 1.2, and a racing car of the formula SAE are going to be converted until the 

end of this year (2009). 

  

Figure 1.1: Economy Car, Hyundai Getz     Figure 1.2: Performance Car, Lotus Elise 
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The main tasks in converting a car into electrical systems are of course to replace the 

combustion engine and the fuel tank by an electrical engine and batteries. Hence we 

need a motor controller and battery management system for charging and 

discharging. Besides that, we also require a new instrumentation and for our 

research we design a black box to collect all necessary data for evaluating the 

performance of the electrical vehicle. 

 

1.2 Black Box and Navigation System 

The primary function of the black box is to log important data about the state of the 

car and about the states of the electrical systems, similar to a black box in an aircraft. 

Hence we installed several new digital and analog sensors to measure the state of 

charge of the main batteries, safety critical systems and the acceleration of the car. 

We also included a GPS-Receiver to locate the car and a mobile broadband modem 

is projected for a connection to the internet. 

We also use the black box to display the import information for the driver on a touch 

screen. The mobile broadband connection will be used to get online information 

about the car during a test drive. The main part of the black box consists of the 

microcontroller system “EyeBot M6” from the robotic and automation research at the 

UWA1. It has many digital I/Os, analog inputs, serial and USB connections to collect 

the data and log it on an USB-stick. A Linux operation system is installed and 

“RoBIOS Library Functions” are developed to facilitate software development. A large 

touch screen provides the user interface. 

The main focus of this thesis is on the integrated navigation system. After a more 

detailed description of the hardware setup in chapter 1.3, a brief introduction to the 

Global Positioning System GPS is given in chapter 1.4, before we derive the inertial 

navigation equations in Chapter 2. In chapter 3 the problem of measurement noise is 

specified and we discuss methods to align the inertial sensors. After that, in Chapter 

4, we add the information of the GPS-Receiver to the calculated position of the 

inertial navigation equations. For this we use a Kalman Filter, which bases on the 

state space description of dynamic systems and is the optimal estimator for linear 

systems. After a brief introduction to the probability theory of random signals and the 
                                            
1
 The University of Western Australia 
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basics of the Kalman Filter we derive the linearized Kalman Filter and the extended 

Kalman Filter version to apply it to our nonlinear system. Chapter 5 shows the results 

of the integrated navigation solution and compares the two Filter versions. It also 

mentions the in-car visualization with “Open Street Maps” as a source of maps, 

before finally a conclusion is given in chapter 6. 

 

1.3 Hardware Setup 

An inertial measurement unit is structured as shown in Figure 1.3. It includes the 

inertial system assembly (ISA) which consists of the accelerometers and gyroscopes. 

The IMU has already a processor with analog-digital converters (ADC) and the 

required software to provide digital data for the INS equations ([4] Dorobantu). 

 

Figure 1.3: IMU Structure 

In our project we are working with the Atomic six degree of freedom IMU from 

“SparkFun” ([17] Atomic IMU). It uses a MEMS three axes accelerometer ([8] 

MMA7260Q) and three MEMS single axis gyroscopes ([18] LISY300AL) shown in 

Figure 1.4. 

 

Figure 1.4: Atomic six degree of freedom IMU ([17] Atomic IMU) 
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The principle of operation of a low-cost micro-machined capacitive accelerometer is 

the variation of the gap between a fixed electrode and a moving electrode, the proof 

mass. The capacitor’s value will change with the distance of the electrodes Eq. (1.1), 

 D

A
C ⋅= ε   (1.1) 

Figure 1.5 shows a simplified physical model. The advantages of that kind of 

accelerometer are: a simple structure, high performance, low temperature sensitivity 

and low power dissipation.  

 

Figure 1.5: Simplified Transducer physical model ([8] MMA7260Q) 

MEMS gyros are known as vibrating structure gyros. The physical principle is that a 

linearly vibrating object at a known frequency, changes the frequency after rotating it 

because of the Coriolis acceleration. Measuring and interpreting this frequency 

modification yields the angular velocity ([19] Sukkarieh, [21] Titterton/Weston). For 

more information about the sensors see the datasheets ([17] Atomic IMU, [8] 

MMA7260Q, [18] LISY300AL). The Atomic IMU is designed for mobile applications 

and therefore it has an XBee socket to connect it over an XBee antenna to a wireless 

network. We are using an “UART to RS232 Interface Card” (Figure 1.6) from 

SparkFun to connect the IMU via a serial cable to our microcontroller system, 

because in a car it is not necessary to use a wireless connection. 

 

Figure 1.6: UART to RS232 Interface Card 
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To read out the sensor signals and to calculate the navigation equations we use the 

“EyeBot M6” microcontroller system ([1] Bräunl). As already mentioned the main 

advantages are numerous digital and analog inputs, the serial and USB ports and a 

large touch screen for the visualization, see Figure 1.7 and Figure 1.8. It has an 

ARM9 processor which provides us enough processing power. For more information 

see the documentation ([1] Bräunl, [6] EyeBotM6). 

  

Figure 1.7: EyeBotM6 Front             Figure 1.8: EyeBotM6 Rear 

  

For detailed information about the IMU settings and for the serial connection see 

appendix A.1. 

 

1.4 Global Positioning System 

The Global Positioning System (GPS) is used in this work as additional position 

information to the inertial navigation system. The GPS aided navigation system is 

able to limit the growing error of the stand alone low-cost inertial navigation system.  

GPS needs 24 satellites in six orbits to provide the minimum of four required 

satellites in the view of the user anywhere on the globe, see Figure 1.9. Four 

satellites are needed to obtain the three unknown in position and to correct the 

receiver clock bias.  
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Figure 1.9: GPS satellites around the globe ([21] Titteton) 

The principle of the position fixing is to determine the flight time of the signal from the 

satellite to the receiver. The range between the receiver and the satellite is then 

given by multiplying the time difference with the speed of light. Very accurate clocks 

are needed and hence a fourth satellite is required to correct the receiver clock bias 

([19] Sukkarieh, [22] Wagner). 

Besides the receiver clock bias there are a few other error sources which can cause 

a loss of accuracy in the GPS navigation. In Table 1-1 some error sources are listed 

in combination with their estimated range error for a stationary GPS receiver ([22] 

Wagner). 

Error source Estimated fault tolerance [m] 

Satellite clock error 3.1 
Ephemeris error 2.6 
Ionosphere delay error 6.4 
Troposphere delay error 0.4 
Receiver noise/quantization error 2.4 
Receiver interchannel bias 0.6 
Multipath 3.1 

Table 1-1: Error source and range error 

 

We are using the standard USB-GPS-receiver “BU-353 (SiRF III) from “GlobalSat 

Technology Cooperation”. For detailed information about the GPS-receiver settings 

see appendix A.2. 
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2 Inertial Navigation Equations 

Accelerometers and gyroscopes do not measure directly the position. They only 

measure the linear acceleration and angular velocity. Since they measure only the 

first or second derivative we have to integrate the signals to achieve the velocity, 

position and attitude of the vehicle ([16] Skog/Händel). The inertial navigation is a 

kind of “dead reckoning” method because we cannot measure the initial state. Hence 

we need external information to initialize the INS ([22] Wagner). The accuracy of an 

INS depends on the quality of the inertial sensors. There is a large loss of accuracy 

over a longer period of time due to the double integration of the acceleration, 

including also the measurement error, to obtain the position. Submarines use inertial 

navigation with high accurate sensors since they should be able to navigate without 

external sources, like GPS for example. INS is also used in aircrafts because for a 

high dynamic system, like an aircraft, an accurate navigation system is desired, 

which is even operating without a satellite signal or between the GPS sampling time 

steps. The conception of an INS is shown in Figure 4.2. 

 

Figure 2.1: INS information flow ([16] Skog/Händel) 

The angular velocities of the gyroscopes are used to determine the attitude of the 

vehicle and thus the direction of the linear accelerometer axes with respect to the 

navigation coordinate frame. Subtracting the earth gravity of the accelerometer signal 

and integrating it twice yields the position. The motion of a vehicle in-plane for 

example has three degrees of freedom, two linear and one rotational motion. Hence 

we need two accelerometers and one gyroscope. The motion in the real world has six 
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degrees of freedom, three linear and three rotational motions. Hence, the Atomic six 

degree of freedom IMU ([17] Atomic IMU) consists of a three axes linear 

accelerometer and three gyroscopes. It is also possible to use only accelerometers to 

measure all six degrees of freedom. If we combine a minimum of six single linear 

accelerometers in a special cube configuration, we can build a gyroscope-free six 

degree of freedom IMU. For more information see ([20] Tan/Park). 

 

2.1 Coordinate Transformations 

In comparison to an expensive gimballed IMU, where the accelerometers are 

mounted on platform which is always aligned to the navigation frame ([19] Sukkarieh, 

[22] Wagner), our low-cost MEMS sensors are mounted in the vehicle aligned to the 

body frame. Hence the sensors require a higher bandwidth and dynamic range. For 

the transformation of the accelerations in the body frame to the navigation frame we 

derive the strap down navigation equations.  

The following coordinate frames are used for the strap down navigation equations: 

• Earth Centered Inertial Frame - ECI 

• Earth Centered Earth Fixed Frame - ECEF 

• North East Down Frame - NED 

• Body Fixed Frame – B 
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Figure 2.2 shows the inertial frame, which is applied for using Newton’s laws, 

because for the vehicle dynamics it is regarded as not accelerated. 

 

Figure 2.2: Earth Centered Inertial Frame ([10] Holzapfel) 

ECI – Earth Centered Inertial Frame 

Index I 

Role Inertial system 

Origin Geocenter 

Translation Around the sun 

Rotation No 

x-Axis In the equatorial plane, pointing at vernal equinox 

y-Axis In the equatorial plane, building a right hand system with x-axis and z-axis 

z-Axis Earth rotation axis 

Table 2-1: ECI – Earth Centered Inertial Frame 
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In the Earth Centered Earth Fixed Frame, shown in Figure 2.3 the position of the 

vehicle is noted. 

 

Figure 2.3: Earth Centered Earth Fixed Frame ([10] Holzapfel) 

ECEF - Earth Centered Earth Fixed Frame 

Index E 

Role Position system 

Origin Geocenter 

Translation Moves with ECI system 

Rotation Earth rotation 

x-Axis In the equatorial plane, pointing at Greenwich Meridian 

y-Axis In the equatorial plane, building a right hand system with x-axis and z-axis 

z-Axis Earth rotation axis 

Table 2-2: ECEF - Earth Centered Earth Fixed Frame 

The angular velocity (2.1) from the Earth Centered Earth Fixed Frame relative to the 

Earth Centered Inertial Frame is the earth rotation: 

 ( )
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Figure 2.4 shows the orientation system, the North East Down Frame. 

 

Figure 2.4: North East Down Frame ([10] Holzapfel) 

The main task of the North East Down Frame is to note the information about the 

orientation of the vehicle. In this work we use the NED frame as navigation frame for 

deriving the navigation equations. 

NED - North East Down Frame 

Index O 

Role Orientation system 

Origin Point of reference of the vehicle 

Translation Moves with the point of reference 

Rotation Transport rate 

x-Axis Parallel to the geoid-surface, pointing at the geographic north pole 

y-Axis Parallel to the geoid-surface, pointing east direction  

z-Axis Pointing down, normal to the geoid-surface  

Table 2-3: NED - North East Down Frame 

The transformation matrix (2.2) from the Earth Centered Earth Fixed Frame to the 

North East Down Frame is: 

 











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And from the North East Down Frame to the Earth Centered Earth Fixed Frame: 

 
T

OEEO MM =  (2.3) 

The angular velocity (2.4) from the North East Down Frame relative to the Earth 

Centered Earth Fixed Frame becomes: 

 ( )
















−

−=

µλ

µ

µλ

ω

sin

cos

&

&

&
r

O

EO

 (2.4) 

 

The Body Fixed Frame is shown in Figure 2.5. It is used as notation frame for all 

forces and moments which affect on the vehicle. That means our inertial sensor input 

is noted in the B-frame. 

 

Figure 2.5: Body Fixed Frame ([10] Holzapfel) 

B - Body Fixed Frame 

Index B 

Role For notation of forces and moments 

Origin Point of reference of the vehicle 

Translation Moves with the Point of reference  

Rotation Rotate with the vehicle 

x-Axis Pointing at the nose of the vehicle, in the xz-plane of symmetry 

y-Axis Pointing  starboard, building an orthogonal system 

z-Axis Pointing down in the plane of symmetry 

Table 2-4: B - Body Fixed Frame 
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The transformation matrix  (2.5) from the North East Down Frame to the Body Fixed 

Frame is: 

 
















ΦΘΦΨ−ΦΘΨΦΨ+ΦΘΨ
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 Where ΦΘΨ ,,  are the three Euler angle. And the transformation matrix (2.6) from 

the Body Fixed Frame to the North East Down Frame is: 

 
T

BOOB MM =  (2.6) 

The angular velocity (2.7) from the Body Fixed Frame relative to the North East Down 

Frame becomes: 
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We also use the World Geodetic System 1984 definition ([10] Holzapfel, [22] Wagner) 

and consider that the earth is flattened and not completely spherical. Geodetic 

coordinates are used in form of two angles, longitude λ  and latitude µ , and the 

altitude h  in meters, shown in Figure 2.6:  
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Figure 2.6: WGS 84 – World Geodetic System 1984 ([10] Holzapfel) 

To describe the reference ellipsoid the major and minor semi axes are given by: 

Semi-major:    ma 0.6378137=  

Semi-minor:    mb 3142.6356752=  

The first and second eccentricity with the flattening is given by: 

Flattening:       0033528.0=
−

=
a

ba
f   

First eccentricity:    0818191.0)2( =−= ffe   

Second eccentricity: ( ) 0066944.0
2

22
2

=
−

=′
a

ba
e

 

Figure 2.7 shows the difference between the geoid, topographic and the ellipsoid 

reference surface. 
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Figure 

Since the earth is regarded as an ellipsoid, the radii

We obtain the meridian radius of curvature 

 

And the transverse radius of curvature 

 µ aM =

The transformation of geodetic to Cartesian coordinates is given by the following set 

of equations (2.10), ([19] Sukkarieh, 

 

On the other hand, the transformation of Cartesian coordinates into geodetic 

coordinates is only possible with iteratively 

approximation (2.12). For this purpose we have to calculate some coefficients first

(2.11): 

 

Equations 

22 

Figure 2.7: Reference Ellipsoid ([22] Wagner) 

ed as an ellipsoid, the radii differ, dependent on the latitude. 

eridian radius of curvature with Eq. (2.8): 
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On the other hand, the transformation of Cartesian coordinates into geodetic 

coordinates is only possible with iteratively calculations or with the following 

. For this purpose we have to calculate some coefficients first
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dependent on the latitude. 

(2.8) 

 (2.9) 

The transformation of geodetic to Cartesian coordinates is given by the following set 

(2.10) 

On the other hand, the transformation of Cartesian coordinates into geodetic 

or with the following 

. For this purpose we have to calculate some coefficients first 

(2.11) 
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For our application we can assume that the meridian radius of curvature is constant, 

since the latitude doesn’t change significantly. And if we neglect the altitude above 

sea level by regarding only a two-dimensional model, we can use the following 

equations for the latitude and longitude solution without iterations ([5] Koordinaten 

Transformation): 
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2.2 Strap down navigation equations 

For using Newton’s laws we have to derive the acceleration with respect to the 

inertial frame. Since the earth is rotating, we have to consider the Coriolis theorem. 

Thus the velocity with respect to the inertial frame is the velocity with respect to the 

earth centered earth fixed frame, which is the ground speed, plus the Coriolis term, 

see Eq. (2.14). 

 ( ) ( ) ( ) ( ) ( )RIEERIRR

I

dt

d
rωvvr
rrrrr

×+==







 (2.14) 

Where “R” is the point of reference of the vehicle, ( )Rr
r

 is the position vector, ( )ERv
r

is the velocity with respect to the ECEF frame and ( )IE
ω
r

 is the earth rotation. The 

next step is to derive the velocity again with respect to the inertial frame to achieve 

the acceleration, see Eq. (2.15). 
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The earth rotation is considered to be constant, thus ( ) 0=
I

IE
ω&
r

. To derive the 

equations with respect to the NED frame we have to include another term 

considering the Coriolis acceleration, Eq. (2.16). 

 ( ) ( ) ( ) ( )EREOEOREER vωvv
rr&r&r ×+=  (2.16) 

This results in Eq. (2.17):  

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )[ ]RIEIEEREOIEEORIIR rωωvωωvv
rrrrrr&r&r ××+×+⋅+= 2  (2.17) 

Now we can use Newton’s first and second law, the fundamentals of the inertial 

navigation, see Eq. (2.18): 

 
( )vF

rr
m

dt

d
=  (2.18) 

The mass of the vehicle is assumed to be constant while moving and the external 

forces acting on the vehicle are the gravitation force and the specific force measured 

by the IMU.  
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rr
&r +=+=

mm
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 (2.19) 

Including Eq. (2.17) into Eq. (2.19) yields Eq. (2.20): 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )[ ]RIEIEEREOIEEOR rωωgvωωfv
rrrrrrrr

&r ××−+×+⋅−= 2  (2.20) 

The final velocity propagation equation in the NED frame is given by Eq. (2.21): 
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The vectors in Eq. (2.21) are:  

 

The acceleration of the vehicle with respect to the NED frame… ( )EO

O

Rv&
r

 

The velocity in north, east and down components………………. ( )
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The position in the ECEF frame with Cartesian coordinates…… ( )
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The specific force vector in the B frame………………………… ( )
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The gravitation vector in the NED frame………………………… ( )
O

g
r

 

 

The position equations in the NED frame considering the WGS 84 definition is given 

by Eq. (2.22): 
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u, v and w  are again the north, east and down velocities. While µN  and µM  are 

the meridian and transverse radius of curvature depending on the latitude.  

 

Furthermore the attitude propagation equations are dependent on the gyroscope 

measurements. The gyroscopes are measuring the angular velocities of the body 

frame axes with respect to the inertial system. To get the angular velocities with 

respect to the NED frame we have to subtract the earth rotation and the transport 

rate of the measurement, see Eq. (2.23): 
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Then we can use the following attitude equations (2.24) to calculate the propagation 

of the Euler angles: 
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There are more options to describe the attitude of a vehicle. The Quaternion 

representation for example uses four variables to specify the attitude of a vehicle and 

avoids the singularity problems of the Euler description. In this work we use the Euler 

representation for a better comprehension. 

 

For our application, using the integrated navigation system in a car, we can make 

some simplifications to the inertial navigation equations to reduce the computational 

effort. The Coriolis term depends on the velocity of the car. Since the velocity of a car 

is much smaller than for example an aircraft or a missile we can neglect the Coriolis 

term and we obtain Eq. (2.25): 
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The gravitation and the centrifugal acceleration are often combined to the local 

gravity vector lg
r

, see Eq. (2.26) ([21] Titterton/Weston). In our application we can 

use a constant value for the gravity, because the vehicle is traveling only small 

distances. 

 { ( ) ( ) ( )[ ]
444 3444 21
rrrrr

.acc
lcentrifuga

RIEIE

ngravitatio

l rωωgg ××−=
 (2.26) 

A closed equation, called Somigliana’s formula, is used to calculate the local gravity 

with latitude correction ([3] WGS 84, [7] Featherstone/Dentith). It uses the gravitation 

at the equator and at the pole. After a transformation for numerical purposes it yields 

Eq. (2.27): 

 
µ

µ
γγ

22 sin1

sin1

e

k
a

−

+
=

 (2.27) 

The constant numerical values of the Geodetic Reference System 1980 (GRS 80) 

are:  

Normal gravity at the equator:  2
57713267809

s

m
    .γa =  

Normal gravity at the equator:  2
53681868329

s

m
       .γb =  

Square of the first eccentricity:  9002238069400602     .e =  

Normal gravity constant:   35385193100101    .
a

b
k

a

b =−
⋅

⋅
=

γ

γ
 

We could also use an altitude depending gravity model. But for our application we 

are neglecting the altitude in the calculation of the gravity, because it doesn’t change 

significantly in the application area. 
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After including the simplifications the velocity equations are given by Eq. (2.28): 
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Besides the simplification of the coordinate transformation due to constant values for 

the meridian and transverse radius of curvature, µN  and µM , we can also assume 

that the transport rate Eq. (2.29) depending on the velocity of the car is very small 

and can be neglected. 
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The earth rotation is very small in comparison to the measurement errors of the low-

cost gyros, we are using. Thus we can neglect it as well. Hence the measured turn 

rates are directly the angular velocities of the B frame with respect to the NED frame 

and the attitude propagation depends only on the prior attitude and current 

measurement of the gyros. What we are losing is the so called Schuler damping. It 

can bound the error of the INS. An error in the attitude for example causes incorrect 

calculation of the acceleration and therefore leads to an error in the velocity. The 

velocity is then used to calculate the transport rate and with the transport rate it is 

feed back to the attitude propagation ([19] Sukkarieh, [22] Wagner). Finally the 

bounded position error is only useful, if the bias of the sensors is small enough, like it 

is of laser gyros in aircrafts for example, but not with the bias of our low-cost MEMS 

gyros. 
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3 Inertial Sensor Characteristics 

In this section we are describing the output signal of the inertial sensors and what we 

have to do for using it as input of the INS and later the Kalman Filter to estimate the 

errors. Also the alignment and calibration of the IMU is described. 

 

3.1 Measurement Noise 

Figure 3.1 and Figure 3.4 show some raw data of the inertial sensors to get an 

impression of the noisy signals we are getting. To achieve better results and for 

reducing the computational effort a simple kind of low pass filter is implemented, the 

so-called over-sampling. Hence the mean over ten readings is computed, see Figure 

3.2 and Figure 3.5. Our navigation equations are then calculated only ten times a 

second instead of hundred times a second, by using a 100 Hz sampling frequency of 

the IMU. 

 

Figure 3.1: x-axis accelerometer measurement of 60s 



3 Inertial Sensor Characteristics 

 

30 
 

 

Figure 3.2: Mean x-axis acceleration measurement of 60s 

 

Figure 3.3: x-axis acceleration measurement of 60s (moving average) 

If we want to keep the calculation frequency at the same level as the sampling 

frequency, we can use a type of finite impulse response filter, in statistics called a 

moving average. The moving average is obtained by calculating the mean over the 

last ten samplings, see Eq. (3.1): 
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n

sss
AverageMoving nNNN −− +++

=
L1

 (3.1) 

Where N  is the current sampling and n  is the number of regarded samplings in the 

past, in our example ten, see Figure 3.3 and Figure 3.6.  

 

Figure 3.4: Yaw-gyro measurement of 60s 

 

Figure 3.5: Mean yaw-gyro measurement of 60s 
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Figure 3.6: Yaw-gyro measurement of 60s (moving average) 

The sensor measurement ( xxf ω~,
~

) includes the specific forces and some sensor 

error factors. It can be modeled by the following sensor error equations ([19] 

Sukkarieh, [21] Titterton). Eq. (3.2) is the linear accelerometer error compensation 

equation. 

 η++++= zzyyxxx fmfmfsbf
~

 (3.2) 

And Eq. (3.3) is the gyroscope error compensation equation. 

 ηωωωω +++++= zzyyxxgx mmsfbb
r

~
 (3.3) 

Including the following coefficients: 

Residual bias……………………... 

g-dependent bias………………… 

Specific forces…………………… 

 Turn rates…………………………. 

 Scale factor term………………… 

 Cross-coupling coefficients……. 

 Random noise…………………….  η

ω

zy

x

x

x

g
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b
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The bias is the gap between the physical acceleration input and the measured 

accelerometer output and it is defined by the IEEE standards ([12] IEEE Standard) 

as: 

“The average over a specified time of accelerometer output measured at specified 

operating conditions that has no correlation with input acceleration or rotation. Bias is 

expressed in [m/s², g].” 

Figure 3.7 shows the input-output characteristic of a gyroscope. It gives an example 

of the scale factor hysteresis and the bias. 

 

Figure 3.7: Scale factor characteristics of a gyro ([21] Titterton/Weston) 

Except of the random noise, all other coefficients of the error equations can be 

validated through the technical datasheets of the manufacturer or by additional 

calibration tests. There are some more aspects, which can be included, if there is 

additional information available, like temperature influence and drift coefficients, 

which describe the variation with time ([4] Dorobantu). The cross-coupling 

coefficients specify the mounting and misalignment of the inertial sensors, but are not 

given by the manufacturer, as well as the g-dependent bias. They are also difficult to 

determine experimentally for us. Thus we are only considering the scale factor and 

bias estimation with the Kalman Filter described in Chapter 4. 

We are getting the position, velocity and attitude error associated with the sensor 

errors by integrating Eq. (3.2) and Eq. (3.3). Regarding only the predominant error 

sources of low accurate inertial sensors, in fact the bias and random noise, we obtain  
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 ∫+⋅+Ψ=Ψ dttb ηω  (3.6) 

The bias is the main source of error. It causes an error in velocity and attitude linearly 

with time and in position quadratically with time, see Eq. (3.4) to Eq. (3.6). But 

considering that the error in the attitude leads to a misalignment of the accelerometer 

axes and therefore the position error increases with the cube of time ([19] Sukkarieh). 

Hence we can see that very accurate gyros are necessary for inertial navigation.  

The second important source of the error is the random noise, which can be treated 

as white Gaussian noise. The mean of that random noise is zero, Eq. (3.7), but at 

each time the error increases in a random direction, also called random walk. 

 0)]([])([)]([
00

=== ∫∫ uuEuuEtxE

tt

δηδη  (3.7) 

Hence the random walk can cause an unbounded error without any external 

correction ([19] Sukkarieh). 

 

3.2 Sensor Calibration and Alignment 

The firmware of the IMU returns only ADC-values. Thus we have to find out first the 

offset values for zero-g of the linear accelerometers and the offset values for the 

three gyros. The accelerometer offset is determined by the midpoint of a positive one 

g and negative one g measurement with the IMU in a horizontal position for each 

axis. The offset values of the gyros are given by a measurement in a stationary state. 

The calibration of the linear accelerometers varies for each sensitive mode and the 

measurement values for that are listed in the appendix A.1. 

Before we can use the IMU for navigation we have to determine the initial alignment. 

If we measure the accelerations of the car stationary we can use the gravity force to 
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obtain the pitch and bank angle ([19] Sukkarieh). Without any acceleration of the car 

we can resolve the velocity equation (2.28) to obtain Eq. (3.8): 
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This yields Eq. (3.9) to Eq. (3.11). 

 Θ= singf x  (3.9) 

 ΦΘ−= sincosgf y  (3.10) 

 ΦΘ−= coscosgf z  (3.11) 

Resolving Eq. (3.9) yields the pitch angle Θ and substituting this into Eq. (3.10) or 

Eq. (3.11) yields the bank angle Φ . 

The initial position (longitude, latitude and altitude) is provided by the GPS receiver. 

We also have to use the heading information of the GPS receiver. To improve the 

initial alignment the use of a compass sensor is necessary. Also tilt sensors to obtain 

the pitch and bank angle can improve the alignment, since the low-cost sensors are 

not very accurate. The in-car calibration of the linear accelerometer to determine the 

initial bias is only possible after the exact alignment of the attitude. 
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4 Integrated Navigation System 

Current state-of-the-art car navigation systems use GPS as source for the position 

information. It is very convenient, because no further information about the car is 

necessary and thus it is easy to install. But there are many other sources we can use 

to develop an improved navigation system ([16] Skog/Händel 2007). Map matching is 

an option for example to match the current measured position with existing roads. 

Integration of the vehicle dynamic into the navigation system is another alternative, 

as well as for example integrating information of cameras, radar or laser scanners, 

see Figure 4.1.  

 

Figure 4.1: Navigation Information Sources 

The option we have chosen is to measure the vehicle motion with accelerometers 

and gyroscopes to design an Inertial Navigation System (INS). Then we use a GPS-

Receiver to aid the INS. If more than one information source is used, it is often called 

an Integrated Navigation System. The disadvantages of integrating more information 

sources are a higher complexity of the system, more effort to integrate the sensors in 

the vehicle and synchronization of the data, since measurements occur at different 

times. In our case the INS and GPS have redundant information. That means both 

return the vehicle’s position. The goal is to enhance the accuracy of the complete 

system and to have position information even if there is no GPS signal available for a 

short period of time. The Advantage of the INS is that it is independent from any 

other source outside the vehicle. If the GPS-Receiver looses the satellite signal by 
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driving through a tunnel or because of high skyscrapers in big cities, it stops giving 

the user information. But the INS still works. On the other hand, the INS needs the 

stability of the GPS because of the low sensor accuracy after a longer period of time, 

since we use low-cost MEMS accelerometer and gyro sensors. 

If we use more than one information source, no matter which, the challenge is to 

combine them for an optimal solution. There are different options how to handle the 

sensor data fusion, for example with fuzzy logic, neural networks, stochastic 

procedures or a combination of the different methods ([24] Wang/Gao) to upgrade 

low-level sensor data to beneficial user information. 

The most popular option is to use a Kalman Filter as it is described in this section. 

The Kalman Filter is an effective tool to estimate the state of a linear system with 

noisy measurement. It is a recursive filter, which minimizes the mean of the squared 

error. Rudolf E. Kalman has developed it in 1960 ([25] Welch/Bishop). Figure 4.2 

demonstrates the principle information flow of an integrated navigation system ([15] 

Skog/Händel 2005). 

 

Figure 4.2: Integrated Navigation System – information flow ([16] Skog/Händel) 

It shows the inertial sensor input, the aiding information (GPS input) and their 

information flow through the navigation equations and the Kalman Filter to achieve 

an optimal navigation solution. 
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4.1 Random Signals 

First we have to describe our measurement noise mathematically, so that we can 

handle it later in the Kalman Filter. As already mentioned in chapter 3.1, our inertial 

sensor measurement is very noisy, even if the car is stationary and the IMU is not 

moving, see Figure 4.3. 

 

Figure 4.3: Stationary measurement of accelerometer 

The measurement of the GPS receiver is also noisy, because of the mentioned error 

sources in chapter 1.4. Hence we have to start with the probability theory for 

describing our measurement noise mathematically. 

The expected value of a random variable X
 
is the mean or average over a large 

number of trials or measurements. It is given for the discrete case by Eq. (4.1): 

 ∑
=

=
n

i

ii xpXE
1

)(  (4.1) 

Where ix  occurs with the corresponding probability ip . The variance of X  is what 

we expect that the random variable vary from its mean or expectation, Eq. (4.2). 

 [ ]22 ))(( XEXEVar X −== σ  (4.2) 

The standard deviation of a random variable is the square root of its variance, see 

Eq. (4.3): 
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 Var X=σ  (4.3) 

It is a normal or Gaussian random variable, if the probability density function is given 

by Eq. (4.4), also called the Laplace distribution: 
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Where Xm  is the mean of the random variable X . The integration of the probability 

density function yields the normal distribution function, Eq. (4.5), both shown in 

Figure 4.4. 
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Figure 4.4: (a) Probability density function, 

            (b) Normal distribution function ([2] Brown/Hwang) 

An often used, short notation of a random variable, with the mean Xm  and the 

variance of 2σ  is given by (4.6): 

 ),(~ 2σXmX  (4.6) 
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Regarding the correlation of different random variables we can say, if multiple 

random variables are statistically independent, then they are uncorrelated. Hence the 

expectation of their product is the product of their particular expectation, Eq. (4.7). 

 )()()( YEXEXYE =  (4.7) 

However the correlation of an n-element random variable X  and an m-element 

random variable Y  is given by Eq. (4.8), with their covariance in Eq. (4.9): 
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Considering Eq. (4.8) and Eq. (4.9) the autocovariance of an n-element random 

variable is defined by Eq. (4.10): 
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Now we look at random processes. A random variable )(tX  is called white noise, if 

)( 1tX  at time 1t  is independent from )( 2tX  at any other time 2t . This is the case 

when the random process is stationary and its spectral density function is constant, 

which is defined as the Fourier transform of the autocorrelation function. Additional 

information can be found in the references ([2] Brown/Hwang, [14] Simon). 

 

4.2 Fundamentals of Kalman Filtering 

The Kalman Filter is the optimal linear filter, if the process noise and measurement 

noise are zero-mean, uncorrelated and white. It is a recursive filter because after 

each time update (Prediction) and measurement update (Correction) the process is 

repeated, as we can see in Figure 4.5.  



4 Integrated Navigation System 

 

41 
 

 

Figure 4.5: The recursive discrete Kalman Filter cycle ([25] Welch/Bishop) 

The filter is based on the linear state space description, which is given by Eq. (4.11) 

and Eq. (4.12) in a discrete form: 

 11111 −−−−− ++= kkkkkk wuBxAx  (4.11) 

 kkkk vxCy +=  (4.12) 

Where kw  is the process noise, in our application the noise of the INS, and kv  is the 

measurement noise of the GPS receiver, both zero-mean, white and uncorrelated, 

with the covariance matrices kQ  and kR . 

 ( )kk Q0w ,~  (4.13) 

 ( )kk R0v ,~  (4.14) 

Now we have to distinguish between a priori estimate 
−
kx̂  and a posteriori estimate 

+
kx̂  

([2] Brown/Hwang, [14] Simon and [25] Welch/Bishop). It is called a priori estimate at 

the time k, after the time update but before the measurement is taken into account, 

while the posteriori estimate at the time k is after the measurement. The covariance 

kP of the estimated error is given by Eq. (4.15): 

 ])ˆ)(ˆ[( T

kkkkk xxxxEP −−=  (4.15) 

In Figure 4.6 a timeline is shown for the time update and measurement update. 
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Figure 4.6: Timeline showing a priori and a posteriori state estimate  

    and estimation error covariances ([14] Simon) 

Then the time update equations Eq. (4.16) and Eq. (4.17) are: 

 1111
ˆˆ

−−
+

−−
− += kkkkk uBxAx  (4.16) 

 1111 −−
+
−−

− += k

T

kkkk QAPAP  (4.17) 

At the time a GPS measurement occurs, we have to calculate the so called Kalman 

gain kK , which weights the difference between the measurement and the priori state 

estimation )ˆ( −− kk xCy , often called innovation or residual. Then we can update the 

estimated state and calculate the posteriori error covariance. Eq. (4.18) up to Eq. 

(4.20) are the so called measurement update equations: 

 
1)( −−− += RCCPCPK T

k

T

kk  (4.18) 

 )ˆ(ˆˆ −−+ −+= kkkkk xCyKxx  (4.19) 

 
−+ −= kkk PCKIP )(  (4.20) 

The K-gain is dependent on the measurement noise covariance R  and the 

estimated error covariance P . If we have a closer look at Eq. (4.18) and rewrite it, 

we obtain: 

 
RCCP

CP
K

+
=

−

−

T

k

T

k
k  (4.21) 

In Eq. (4.21) we can see, if the measurement noise covariance R  becomes smaller, 

the K-gain weights the residual more. And if the error covariance P  becomes 

smaller the K-gain weights the residual less heavily ([25] Welch/Bishop). There exist 
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several different algebraic forms of the Kalman Filter equations. Some of them are 

more robust, but at the cost of computational effort.  

 

4.3 Linearized Kalman Filter 

Figure 4.7 shows the information flow of the integrated navigation system with a 

linearized Kalman Filter and a bias feedback. 

 

Figure 4.7: Linearized Kalman Filter information flow 

The linear acceleration and angular velocity of the IMU sensors are feed into the INS 

to calculate the position, velocity and attitude of the vehicle. The difference of the 

GPS position and the inertial measured position is given to the Kalman Filter to 

estimate the position-, velocity-, attitude- errors and the bias of the inertial sensors. 

Finally the errors are used to correct the navigation output and the inertial sensors to 

obtain better results of the INS. 

The Kalman Filter is the optimal state estimator for a linear system. Hence we have 

to linearize our nonlinear navigation equations. First we start with a nonlinear system, 

Eq. (4.22) and Eq. (4.23). 

 1111 ),( −−−− += kkkkk wuxfx  (4.22) 

 kkk vxhy += )(  (4.23) 

Where kw  and  kv  are again the process and measurement noise. To obtain a 

linear system, which approximates our nonlinear system, we use the Taylor series 

expansion around a nominal operating point x, given by Eq. (4.24): 
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Where the deviation of the nominal point is defined by Eq. (4.25): 

 kkk xxx −=∆  (4.25) 

For our Kalman Filter we consider only the linear terms. Thus we have to calculate 

the partial derivatives, the Jacobian matrix of the continuous nonlinear system, Eq. 

(4.26), since our state vector is an n-element vector. 
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After discretizing the continuous system we obtain the state transition matrix kA  by 

Eq. (4.27): 

 ttte
t

k ∆+≈+∆+∆+== ∆ FIFFIA F K2)(
!2

1
 (4.27) 

There we also approximate it with only the linear terms of the Taylor series 

expansion. And t∆  is the time step of updating the navigation equations, assuming 

that during the sampling intervals the signal of the inertial sensors is constant. 

Furthermore the observation matrix is given by Eq. (4.28): 

 )(xC hk
′=  (4.28) 

The Kalman filter equations are then obtained by the following set of equations 

separated in time update (4.29) and measurement update (4.30) equations: 
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Finally we have to add the estimated deviation to the nominal trajectory, which is in 

our case the solution of the INS, to obtain the corrected navigation output with Eq. 

(4.31): 

 kkk xxx ˆˆ ∆+=  (4.31) 

Since the INS solution is diverging, because of the drift of the inertial sensors, we 

include the bias of the acceleration sensors into our state vector to correct the 

acceleration input and improve so the INS.  

Example: 

For a better comprehension an example is given here for a two dimensional 

navigation system. The state vector (4.32) consists of the position, velocity, heading 

and the acceleration biases: 

 [ ]T
brbybxvuyx ψ=x   (4.32) 

The inputs are the accelerometer and gyro signals of the IMU (4.33): 

 [ ]T
rfyfx=u  (4.33) 

Earth rotation and transport rate are neglected in this example. The observations are 

the GPS measurements in Cartesian coordinates (4.34): 

 [ ]T
yx=y  (4.34) 

The measurement noise covariance matrix is given by the diagonal matrix of the GPS 

position variance (4.35): 

 [ ]22

pypxdiag σσ=R  (4.35) 

And the process noise covariance includes the variance of the acceleration on the 

velocity update (4.36): 



4 Integrated Navigation System 

 

46 
 

 [ ]00000 2

_

2

_

2

_ gyroraccyaccxdiag σσσ=Q  (4.36) 

The nonlinear navigation equations are given by (4.37): 
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Hence our INS solution, Eq. (4.38), is our nominal trajectory. A simple rectangular 

integration is used: 

 tfkk ∆⋅+= − ),(1 uxxx  (4.38) 

Starting with the initial state 0x . The observation matrix is given by Eq. (4.39), using 

Eq. (4.28): 

 







=

00000010

00000001
kC  (4.39) 

Now we have to calculate the discrete state transition matrix (4.40) to update the 

Kalman equations in time. 
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(4.40) 

Finally we can calculate the Kalman Filter equations from (4.30) to obtain the 

deviation of the nominal trajectory, which we can use to correct the navigation output. 

With the initial values given by 0x̂∆  and 0P .The estimated biases are feed back to 

correct the IMU input signals. 

The linearized Kalman Filter works very well as long as the nominal trajectory goes 

not too far away from the true state, which would be the case without bias correction, 

because of the drift of the inertial solution. 
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4.4 Extended Kalman Filter 

The information flow of the integrated navigation system with an extended Kalman 

Filter is shown in Figure 4.8. 

 

Figure 4.8: Extended Kalman Filter information flow 

The main difference to the linearized Kalman Filter is that the extended Kalman Filter 

estimates directly the true state and not the deviation of the nominal trajectory. The 

estimated state is then fed back into the INS to process the nominal trajectory ahead 

which is then recursively estimated by the Kalman Filter. Thus the nominal trajectory 

is the estimated state. 

The Kalman Filter equations are then modified to be executed as in (4.41): 

 

−+

−−+

−−−

−−
+
−−

−

−−−
−

−=

−+=

+=

+=

=

kkkk

kkkkkk

k

T

kkk

T

kkk

k

T

kkkk

kkkk

PCKIP

xCyKxx

RCPCCPK

QAPAP

uxfx

)(

)ˆ(ˆˆ

)(

_______________________

),ˆ(ˆ

1

1111

111

 (4.41) 

 

 



5 Results 

 

49 
 

5 Results 

This chapter shows the results of the INS, the linearized Kalman Filter and the 

extended Kalman Filter. Several test drives have been done with the REV Eco of the 

Renewable Energy project. For comparing the different performances we use the 

streets around the UWA campus shown in Figure 5.1 with the GPS Visualizer2: 

 

Figure 5.1: GPS track around the UWA campus 

 

5.1 GPS-aided Inertial Navigation System 

Only the two dimensional example of chapter 4.3 is taken into account. Figure 5.2 

shows the stand-alone result of the INS in comparison to the GPS measurement. The 

GPS measurement is very accurate and close to the real track, while the INS solution 

is drifting far away, because of low accurate sensors and their bias.  

                                            
2
 www.gpsvisualizer.com 
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Figure 5.2: INS solution in comparison to the GPS measurement 

Comparing the results of the linearized Kalman Filter (LKF) and the extended Kalman 

Filter (EKF) we used the same process noise covariance matrix Q and measurement 

noise covariance matrix R. In Figure 5.3 to Figure 5.6 the results are shown with a 

measurement update every second and every five seconds only.  

Figure 5.3: LKF solution (update 1sec) Figure 5.4: EKF solution (update 1sec) 

 

If there is a GPS signal available every second to update the INS, both filter versions 

work very well. Even if we use the measurement only every five seconds, we can see 
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no recognizable difference to decide which filter version is better. In total the results 

are as expected worse than with an update every second. Only at some points it 

looks like the EKF version works better than the LKF version. 

 

Figure 5.5: LKF simulated (update every 5sec) 

 

Figure 5.6: EKF simulated (update every 5sec) 
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5.2 Inertial Navigation during Loss of GPS Signals 

Now a loss of the measurement signal over ten seconds and over twenty seconds is 

simulated. The next four graphs (Figure 5.7 to Figure 5.10) show that a loss of the 

GPS signal for a period of ten seconds is compensated very well, a little bit better 

with the LKF version. 

 
Figure 5.7: LKF signal loss of 10sec 

 
Figure 5.8: EKF signal loss of 10sec 

 

Figure 5.9: LKF signal loss of 20sec Figure 5.10: EKF signal loss of 20sec 
 

While a loss of the GPS signal over twenty seconds yields already bad results. It also 

depends on how good the filter worked before the updating signal is lost. If the signal 

is lost for example while the car is in a stop position in front of a traffic light the INS 

position information is drifting away, see Figure 5.11. It is caused of misalignments of 

the IMU in the car or because of the simplification of regarding only a two-
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dimensional model, which does not take into account that there can be a remaining 

acceleration measurement in x- or y- direction due to the gravity, when the vehicle is 

not in a complete horizontal attitude. And without measurement update it results into 

a position error. Hence in this case some additional information has to be included for 

recognizing when the car is not moving.  

 

Figure 5.11: GPS signal loss of 20sec while car is not moving 
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5.3 Estimated States and Bias 

Figure 5.12 demonstrates that the states of the LKF solution and the EKF solution do 

not differ very much from each other. 

 

Figure 5.12: Comparison of the LKF and EKF solution 

The position and velocity curves are close together. Only the heading and the linear 

acceleration biases differ a little bit. Especially the acceleration bias of the LKF in y-

direction is getting larger until the end of the test measurement. A possible cause of 

this could be that the nominal trajectory, thus the INS solution, differs too much from 

the real trajectory. Also the estimated error state of the LKF could then underlie a 

boundless growth. This is also reflected in the heading solution of the LKF in 

comparison to the EKF. After the sampling >3000 it differs more and more from the 

EKF and GPS heading.  

In Figure 5.13 the estimated heading of the two filter versions is compared to the 

heading information of the GPS receiver (the heading angle is in [rad] and between 

πψ 20 << ). We can see that the estimated heading is close to the measured 

heading of the GPS. But while the vehicle is not moving the heading information is 

varying randomly (between samples: 2300-3000 and samples 3300-3800). Hence we 

can only use the GPS heading information for the measurement update if we know 

when the vehicle is in a stop position. 
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Figure 5.13: Comparison of EKF, LKF and GPS heading 

Figure 5.14 shows that after a certain start-up time the error covariance of the matrix 

P of both filters converge to a fixed level. If there is a loss of the updating 

measurement signal the uncertainty grows and the trace of the error covariance rises 

as shown in Figure 5.15 (the peak at sample 1600). It returns to a constant level if 

measurement updates are again taken into account. 

          Figure 5.14: Trace Covariance P Figure 5.15: Trace Covariance P (No Signal 
10sec) 
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5.4 In-Car Visualization

For using the integrated navigation system in one of

we implemented a graphical user interface. Openstreetmap

maps. After converting the maps 

(OSM_Test_binary.c) is able to show the c

filled rectangular at the map on the Eye

Figure 

Since the EyeBot M6 screen is not 

implemented that the program is automatically shifting 

next. Some of the RoBIOS library functions for drawing on the screen are very slow. 

Hence the screen is refreshed only after each map shifting. For covering the desired 

area one has to set up an appropriate database of maps. 

 

 

 

                                            
3
 www.openstreetmap.org  
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Visualization 

integrated navigation system in one of the renewable energy vehicles 

we implemented a graphical user interface. Openstreetmap3 provides open source 

maps. After converting the maps into binary format the testprogram

s able to show the current position of the vehicle in form of a 

rectangular at the map on the EyeBot M6 screen, see Figure 5

Figure 5.16: Screenshot of the EyeBot M6 

M6 screen is not very large for drawing maps (480x270

the program is automatically shifting from one map section to the 

Some of the RoBIOS library functions for drawing on the screen are very slow. 

Hence the screen is refreshed only after each map shifting. For covering the desired 

appropriate database of maps.  

    

renewable energy vehicles 

provides open source 

to binary format the testprogram 

urrent position of the vehicle in form of a 

5.16. 

 

480x270 pixel), we 

from one map section to the 

Some of the RoBIOS library functions for drawing on the screen are very slow. 

Hence the screen is refreshed only after each map shifting. For covering the desired 
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6 Conclusion 

For the development of an integrated navigation system a linearized and extended 

version of the Kalman Filter have been derived together with the strap down 

navigation equations.  We installed the necessary hardware, which means the inertial 

measurement unit for the INS, the GPS receiver for additional position information 

and the EyeBot M6 to read out the sensor signals and to calculate the equations.  

Additional sensors could be included to improve the results. A barometer would be 

very helpful as additional altitude information for the three-dimensional navigation, 

since the altitude information of the GPS receiver is not very accurate and the z-

accelerometer can get quite disturbed by pot-holes for example. For a better 

initialization a compass sensor is necessary for the heading information and tilt 

sensors could be used for initializing the pitch and bank angle instead of using the 

gravity ([19] Sukkarieh). 

Besides of more additional sensors, other information sources could be integrated for 

a better navigation solution like map information or a vehicle dynamic model ([16] 

Skog/Händel). The dynamic constraints of the vehicle can be used to specify the 

inertial equations ([14] Simon, [19] Sukkarieh). A fuzzy controller could be 

implemented to identify the vehicle dynamics ([24] Wang/Gao]), instead of using 

wheel sensors to detect if the car is moving or not.  

Finally, the results show that our low-cost inertial sensors can be used for the 

navigation challenge to bridge a gap for short periods of losing aiding information like 

GPS. The Kalman filter plays an important role in the fusion of the sensor data. It is a 

perfect tool to handle the noisy measurement of the low-cost sensors in our 

application. 
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Appendix 

A.1 IMU Settings 

The IMU is mounted in a Box and it is installed with the EyeBot M6 behind the center 

of the dashboard. For powering the IMU, a regulated 5 V motor output is used. After 

booting the EyeBot M6 we have to change the menu settings of the IMU by software. 

Changes, provided by the IMU firmware, which can be made are: choosing channels, 

output mode (ASCII or binary), auto run mode, accelerometer sensitivity mode (1.5g, 

2g, 4g, 6g) and output frequency, see Figure A.1.1. 

 

Figure A.1.1: IMU Setup Menu 

The communication between the IMU and the EyeBot M6 runs with the following 

settings for the serial port: 

Baud Rate 115200 
Data Bit 8 
Parity None 
Stop Bit 1 
Flow Control None 

Table A.1.1: IMU serial connection settings 

Figure A.1.2 gives an example of the IMU sensor reading sent over the serial port in 

ASCII-code. It starts with an identifier “A”, followed by a counter and the six sensor 

channels. Each sampling ends with the identifier “Z”. 
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Figure A.1.2: IMU reading example in ASCII-code 

 

A.2 GPS-Receiver Settings 

After installing the USB to serial interface driver we can start a serial connection with 

the following settings, as shown in Table: 

Baud Rate 4800 
Data Bit 8 
Parity None 
Stop Bit 1 
Flow Control None 

Table A.2.1: GPS receiver serial connection settings 

The GPS receiver returns ASCII-Code with the “NMEA 0183 Standard”, which 

defines the electrical interface and data protocol for communications. The general 

sentence format is explained in ([13] NMEA Standard) and an example of the 

sentences is given by: 

$GPGGA,080002.000,3158.7662,S,11548.9836,E,2,08,1.1,22.8,M,-29.4,M,0.8,0000*7B 
$GPGSA,A,3,21,16,29,18,06,24,22,03,,,,,2.1,1.1,1.8*3D 
$GPRMC,080002.000,A,3158.7662,S,11548.9836,E,0.08,209.47,040509,,*1B 
$GPGGA,080003.000,3158.7662,S,11548.9836,E,2,08,1.1,22.8,M,-29.4,M,1.8,0000*7B 
$GPGSA,A,3,21,16,29,18,06,24,22,03,,,,,2.1,1.1,1.8*3D 
$GPRMC,080003.000,A,3158.7662,S,11548.9836,E,0.05,215.42,040509,,*1F 

 

Each string starts with the identifier “$” followed by the talker identifier, in our case 

“GP” for GPS and the sentence identifier, here “GGA”, “GSA” and “RMC”. For a 

detailed list of which information is included in which sentence, see the appendix A.3. 
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A.3 NMEA-0183 Standard 

The National Marine Electronics Association (NMEA) protocol was first released in 

1983. It is a standard for the electrical interface and data protocol for communications 

between marine instrumentation.  

The general format is that all data is transmitted in ASCII – sentences. Each 

sentence starts with a “$” symbol followed by the talker identifier, in our case “GP”. 

The next three characters are the sentence identifier and after that up to 80 

characters with the data delimited by commas. For more information see reference 

[13]. The used sentence identifiers are: 

 

GGA  Global Positioning System Fix Data. Time, Position and fix related data 
for a GPS receiver 
 
             1                 2      3  4           5 6 7   8   9  10 11 12 13 14     15 
              |                  |       |  |             |  |  |    |    |    |    |    |   |     |        | 
$--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh 
 
1) Time (UTC) 
2) Latitude 
3) N or S (North or South) 
4) Longitude 
5) E or W (East or West) 
6) GPS Quality Indicator, 

0 - fix not available, 
1 - GPS fix, 
2 - Differential GPS fix 

7) Number of satellites in view, 00 - 12 
8) Horizontal Dilution of precision 
9) Antenna Altitude above/below mean-sea-level (geoid) 
10) Units of antenna altitude, meters 
11) Geoidal separation, the difference between the WGS-84 earth 

ellipsoid and mean-sea-level (geoid), "-" means mean-sea-level below 
ellipsoid 

12) Units of geoidal separation, meters 
13) Age of differential GPS data, time in seconds since last SC104 

type 1 or 9 update, null field when DGPS is not used 
14) Differential reference station ID, 0000-1023 
15) Checksum 
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RMC  Recommended Minimum Navigation Information 
 

             1                  2  3    4 5             6 7    8   9     10 11 12 
              |                   |   |     |  |              |  |     |    |        |    |   | 
$--RMC,hhmmss.ss,A,llll.ll,a,yyyyy.yy,a,x.x,x.x,xxxx,x.x,a*hh 
 
1) Time (UTC) 
2) Status, V = Navigation receiver warning 
3) Latitude 
4) N or S 
5) Longitude 
6) E or W 
7) Speed over ground, knots 
8) Track made good, degrees true 
9) Date, ddmmyy 
10) Magnetic Variation, degrees 
11) E or W 
12) Checksum 

 

 

 

A.4 Inertial Sensor Calibration 

To calibrate the accelerometers one has to turn the IMU perpendicular to the earth`s 

surface in both directions which each axis. The maximum/minimum value returns the 

gravity force. And the midpoint is the zero-g value. The Atomic 6DOF IMU has four 

different sensitivity modes for 1.5g, 2g, 4g and 6g. The IMU has a different calibration 

for each mode. 

Measurements of the 3-Axes Accelerometer (MMA7260Q): 

Accelerometer, 1.5g-mode 

axes min max 
x-axis 244 748 
y-axis 231 739 
z-axis 277 777 
Table A.4.1: Calibration, Accelerometer, 1.5g-mode 

Accelerometer, 2g-mode 

axes min max 
x-axis 307 686 
y-axis 298 680 
z-axis 333 709 
Table A.4.2: Calibration, Accelerometer, 2g-mode 
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Accelerometer, 4g-mode 
axes min max 

x-axis 403 593 
y-axis 399 591 
z-axis 418 607 
Table A.4.3: Calibration, Accelerometer, 4g-mode 

Accelerometer, 6g-mode 
axes min max 

x-axis 435 562 
y-axis 433 560 
z-axis 446 572 
Table A.4.4: Calibration, Accelerometer, 6g-mode 

With the gyroscopes (LISY300AL) one can measure the offset under zero movement. 

The angular rate per ADC-count is 0.977°/tick, see the datasheet. There was no 

possibility to test the IMU under a constant angular rate to proof the resolution. The 

IMU needs a minimum voltage of 3.4 V, otherwise the raw values of the gyros are 

incorrect. 

Gyros 
axes min max 

x-axis (roll) 520 522 
y-axis (nick) 502 503 
z-axis (yaw) 491 493 
Table A.4.5: Calibration, Gyros 

 

A.5 Implementation 

To save processing time we over-sample the IMU signal as already described in 

chapter 3.1. If we only reduce the IMU sampling frequency we would lose 

information, but so we can keep the sensor reading at a high frequency and calculate 

our navigation equations less often. On the other hand is this increasing the time step 

of the discrete Kalman filter state space model. But tests in Matlab and on the EyeBot 

M6 have shown that this is still acceptable. 

Since we have to calculate many trigonometric functions we can use lookup tables 

for sine and cosine functions and get the results after a linear interpolation, which is 

also saving processing time but at the cost of precision. At the same time we should 

also mention the computational round off error due to the limited representation of 

values in the computer arithmetic ([9] Grewal/Andrews). 
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To use the “math.h” library one has to include the “-lm” flag for the gccarm compiler. 

For some of the matrix manipulation a library called “matmath.h” is used from the 

www.media.mit.edu website which is referenced at ([14] Simon). Especially for the 

matrix inversion the Gauss-Jordan algorithm implementation is very useful. 

 

 

 

 

 

 

 


