
LEHRSTUHL F ÜR REALZE I T -COMPUTERSYSTEME

TECHNISCHE UNIVERS IT ÄT MÜNCHEN

UNIV. -PROF. DR. - ING. G. F ÄRBER

Design and Implementation of an
FPGA-based Stereo Vision System for the

EyeBot M6

Benedikt Dietrich

Diplomarbeit

Design and Implementation of an FPGA-based
Stereo Vision System for the EyeBot M6

Diplomarbeit

Supervised by the Institute for Real-Time Computer Systems
Technische Universität München

Prof. Dr.-Ing. Georg Färber

Executed Department of Electrical Engineering
University of Western Australia

Advisor: Dipl.–Ing. Martin Schäfer

Author: Benedikt Dietrich
Daudetstr 10a
81245 Munich

Submitted in February 2009

Acknowledgements

At first I would like to thank A/Prof. Dr. Thomas Bräunl for offering the opportunity to work
on this project and making the stay in Australia possible.

Many thanks to Prof. Dr. Färber and Dipl. Ing. Martin Schäfer who supported me in my
intention to do my diploma thesis abroad and helped me in my preparations of the proposal
to have the DAAD scholarship.

Without the financial help of the DAAD (German Academic Exchange Service) this semester
abroad would have not been possible. Therefore, I would like to thank for the great support.

I would like to thank Martin Geier and Azman M. Yusof for their support during the project
and the many discussions which brought up a lot of good ideas.

Many thanks to all who helped proof-reading this thesis in the end. Especially I would like to
thank Susi and Victoria who spent many hours on this task.

Finally, I would like thank my parents who supported me in all my plans and helped me pulling
through my intentions.

Perth, February 2009

Contents

List of Figures vii

List of Tables ix

List of Symbols xi

1 Introduction 1
1.1 Eyebot M6 . 1
1.2 Project Scope . 3
1.3 Thesis Outline . 4

2 Floating Point to Fixed Point Conversion 5
2.1 Basic Design Flow . 5
2.2 Fixed Point Representation . 7
2.3 Fixed Point Calculations . 9
2.4 Floating Point to Fixed Point Conversion 11
2.5 Automatic Floating Point to Fixed Point Conversion 13

3 Theory of Rectification 19
3.1 Parallel Stereo Camera Constellation . 19
3.2 Principle of central perspective . 21
3.3 Camera Distortion Model . 22
3.4 Stereo Rectification . 24
3.5 Determination of Look-Up Tables . 26
3.6 Calculation of the Rectified Image . 27

4 Rectification in Hardware 29
4.1 The Rectification System - Overview . 32
4.2 Coordinate Warper . 32

4.2.1 Calculation Unit . 33
4.2.2 Automatic Package Generation . 36
4.2.3 Coordinate Warper Control Unit 37

4.3 SRAM Fetch and Interpolation Unit . 40
4.3.1 Controller . 40
4.3.2 In-Stream Interpolation . 42

4.4 Summary . 43

v

Contents

5 The Harris Corner Detector 45
5.1 Disparity Calculation . 45
5.2 The Harris Corner Detector . 46
5.3 Thresholding . 50
5.4 Summary . 51

6 Harris in Hardware 53
6.1 Module Interface . 53
6.2 Mono Harris . 54

6.2.1 Convolution in Hardware . 55
6.2.2 The Window Function . 60
6.2.3 Calculating the Cornerness . 62
6.2.4 Thresholding . 62
6.2.5 Summary . 64

6.3 Stereo Harris . 65

7 Image Processing System 69
7.1 Hardware Based Image Processing . 69
7.2 Harris Integration . 72
7.3 Software based Image Processing . 74

7.3.1 Feature Matching . 74
7.3.2 Matching Cost Function . 75
7.3.3 Correlation Parameters . 76
7.3.4 Splitted Correlation . 77
7.3.5 Dense Disparity Mapping . 78

8 Conclusion 79

9 Future Work 81

A Rectification Toolbox 83

Bibliography 87

vi

List of Figures

1.1 EyeBot M6 - System Overview . 1
1.2 EyeBot M6 - Robot Platform . 3

2.1 Design Flow from MATLAB to a synthesizable Design 5
2.2 Modelsim embedded in Simulink and Stateflow 6
2.3 Binary Number Representation . 7
2.4 Fixed Point Number . 7
2.5 Example - Fixed Point Multiplication . 10
2.6 Example - Fixed Point Addition . 10
2.7 The Challenges of FPGA Design rated by Developers 12
2.8 Example for Divide and Conquer Steps; L=0 and H =32 16

3.1 Triangulation under idealized Circumstances 19
3.2 Maximum Depth Resolution, f = 4.9mm, T = 66mm, p = 9µm 20
3.3 Principle of Central Perspective . 21
3.4 Camera Distortion . 23
3.5 Epipolar Geometry . 24
3.6 Bilinear Interpolation . 28

4.1 Remaining Error after Rectification with regressed Polynomials 31
4.2 Overview of Rectification System . 32
4.3 Coordinate Warper Overview . 32
4.4 Implementation of Polynomial of third Degree 33
4.5 Fully pipelined Coordinate Calculation . 35
4.6 Correction with quantized polynomial of third degree 37
4.7 FSM inside the Coordinate Warper . 38
4.8 Comparison of Single and Double Buffering the Calculation Output 39
4.9 Fetch and Interpolation Unit Overview . 40
4.10 FSM of Fetch and Interpolation Unit . 41
4.11 Interpolation Unit . 42
4.12 Images before and after the Rectification 44

5.1 Examples for Wall, Edge and Corner [28] 47
5.2 Harris Equicornerness Lines . 49
5.3 Harris Results with Global Thresholding 50
5.4 Harris Results with Pre-Thresholding . 51

6.1 Modules of the Harris Corner Detector . 53

vii

List of Figures

6.2 Interface of the Image Processing Modules 53
6.3 Image Stream Signal Timing . 54
6.4 Convolution module overview . 55
6.5 Sobel Kernel . 55
6.6 Implementation of an inseparable 3× 3 Filter 56
6.7 Implementation of a separable 3× 3 Filter 57
6.8 Line Delay Module . 58
6.9 Movement of the Window inside the Image 59
6.10 Window Function . 60
6.11 Cornerness Calculation . 62
6.12 Thresholding Overview . 63
6.13 Separated Non-Maximum Suppression . 64
6.14 Stereo Convolution with shared Line Delays 65
6.15 Stereo Window Function . 66
6.16 Stereo Cornerness . 67

7.1 Image Processing System - Overview . 69
7.2 Image Processing System . 70
7.3 Camera Signal Timing . 70
7.4 Benithaler Testpattern . 73
7.5 Evaluation of correlation Parameters . 76
7.6 Splitted Correlation Windows [15] . 77

viii

List of Tables

2.1 Examples for the used Fixed Point Notation 8
2.2 Resulting Bit Width of Basic Mathematical Operations 9
2.3 Theoretical Input and Output Widths of the Harris Detector Modules . . . 9

4.1 Evaluation of regression polynomials . 31
4.2 Resource Consumption of four Calculation Units 34
4.3 Encoding of the select coord signal . 36
4.4 Resource Consumption of the Rectification Unit 43

5.1 Software Performance of the Harris Corner Detector 51

6.1 Resource Consumption of separated and unseparated Convolution 57
6.2 Resource Consumption of separated and unseparated Non-Maximum Sup-

pression . 64
6.3 Mono Harris Resource Consumption . 65
6.4 Stereo Harris Resource Consumption . 67

7.1 Performance of OpenCV in Comparison to C Implementations 74

A.1 Functions of the Rectification Toolbox . 84
A.2 Quantizer Settings produced with Rectification Toolbox 85

ix

List of Tables

x

List of Symbols

BGA Ball Grid Array
CPU Central processing unit
EOL End of Line
EOF End of Frame
FIFO First In First Out Memory
FPGA Field-Programmable Gate Array
FPU Floating Point Unit
FSM Finite State Machine
I2C Inter-Integrated Circuit
LCD Liquid crystal display
LSB Least Significant Bit
LUT Look-Up-Table
MSB Most Significant Bit
NCC Normalized Cross-Correlation
PAR Place and Route
PCB Printed Circuit Board
PWM Pulse-Width Modulation
RCS Lehrstuhl für Realzeit-Computersysteme
SAD Sum of Absolute Differences
SLAM Simultaneous Localization and Mapping
SDRAM Synchronous Dynamic Random Access Memory
SRAM Static Random Access Memory
SSD Sum of Squared Differences
USB Universal Serial Bus
UWA University of Western Australia
VHSIC Very-High-Speed Integrated Circuits
VHDL VHSIC Hardware Description Language
VLIO Variable Latency Input/Output

xi

List of Symbols

xii

Abstract

The goal of this thesis is the design and implementation of an FPGA based stereo vision system
on the EyeBot M6. The research platform named EyeBot M6 as the successor of M4 is built
to allow the realization of stereo vision tasks for small robots. Stereo vision uses two cameras
separated by distance and a process called triangulation to determine the depth information of
the environment. Triangulation requires the knowledge where a point of the left camera image
can be found inside the right image. The search space of the problem is huge and therefore a
lot of computational power is required. However, the CPU of the EyeBot M6 is meant to deal
later on with higher computer vision and control tasks only. Therefore, the main challenge of
this thesis will be the implementation of such a stereo vision system on the fairly small FPGA
of the EyeBot M6, a Spartan 3E 500. Due to the given limited resources high optimization
and resource sharing will be necessary to fit major parts of the image processing for stereo
vision into the FPGA. Two processing steps have been developed during this thesis.
With the help of rectification it is possible to reduce the search space for correlating points
inside the pictures from 2D to 1D. This process removes distortion and alignment errors of
the cameras that are directly connected to the FPGA. Due to the fact that the alignment is
not fixed and depends on the application area of the EyeBot a fully automated toolbox has
been developed which guarantees the synthesis of an optimized rectification unit at the end.
Due to the lack of memory and therefore the missing possibility to store look up tables, the
rectification itself is achieved with polynomials of third degree. These polynomials regress the
undistortion and rectification functions gained with the help of a stereo camera calibration.
Based on the results of the polynomials an address is calculated and passed to an SRAM con-
troller. This controller returns four pixels for every coordinate pair which are then interpolated
in stream to form rectified images.
A further reduction of the search space can be achieved with a feature based approach. The
Harris Corner Detector returns a list of features with a high uniqueness for both images which
then can be correlated. The quantity of depth information is highly reduced by this approach,
but the calculation of a dense disparity map had to be dropped because of the given limited
resources. The Harris has been implemented for the mono case first to later merge two Mono
Harris to a Stereo Harris Corner Detector by sharing resources whereever possible.
The thesis closes with the description of the resulting hardware system and utilized software
approach to finally match the features and therefore gain the depth information of the envi-
ronment.

xiii

xiv

1 Introduction

Computer vision is the science and technology to learn machines to see. Huge progress
has been achieved by theoretical research of the last decades. More and more complex
algorithms have been developed to allow accurate realizations of tasks like stereo vision,
object tracking or face recognition. The theoretical research is only one part which has
to be solved. Because of the computational complexity of the algorithms powerful CPUs
are required to achieve acceptable performance. However, to allow the appliance of such
algorithms in every-days life the algorithms have to be real-time capable on affordable em-
bedded systems with a low power consumption. The research of the last years has shown
that many of the low level image pre-processing and processing parts which consume most
of the CPU time can be highly efficient implemented in hardware. In the field of research
FPGAs entered the world of computer vision to be utilized as hardware-accelerators for
economical CPUs.
This thesis is based on the EyeBot M6 platform which is equipped with a FPGA as well.
This platform has been designed at the Department of Electrical Engineering at the Uni-
versity of Western Australia. At first the EyeBot M6 is described to explain afterwards
the goal of this thesis in section 1.2.

1.1 Eyebot M6

PXA255

LCD

Ethernet

Controller

USB Host

Controller

ADC

(UCB1400)

SDRAM

I2C

Touchscreen

Xilinx

Spartan 3E 500

AC97

GUMSTIX

UART

Bluetooth

Shared Bus

SRAM

Figure 1.1: EyeBot M6 - System Overview

1

1 Introduction

The heart of the EyeBot M6 is a PXA-255 running at 400MHz. To avoid BGA compo-
nents a Gumstix Board [11] embedding the processor is used. This Gumstix Board is
equipped with 64MB of SDRAM, 16MB of flash and a bluetooth module. The board is
interconnected with the other components of the EyeBot M6 with help of an asynchronous
bus interface called Variable Latency I/O (VLIO) as it can be seen in figure 1.1.
To free up the CPU from image processing tasks a Xilinx Spartan 3E 500 [32] has been
utilized which is connected via the same VLIO interface to the Gumstix. The Spartan 3E
comes with

� 9312 LUTs

� 20 block RAMs

� 20 Multipliers 18x18

� 158 I/O pins

As many as possible of the necessary image processing parts should be implemented within
the Spartan. Therefore the Spartan is directly connected to two color cameras named
OV6630 from OmniVision [26]. The cameras have a maximum resolution of 352 × 288
and deliver pictures with a maximum frame rate of 50 fps. They will be operated in the
8bit mode for this thesis and so with a clock rate of 18 MHz. For the image processing
implemented during this thesis the YUV mode of the cameras has been chosen. All of
the algorithms are based on grayscale images and by using the YUV mode the Y part of
the incoming data can be directly used.
In general images, which are in our case of the size 99 kbytes (grayscale), are not stored
inside the FPGA to avoid wasting precious block RAM. Therefore a common soultion
is to connect external memory to the FPGA. For the EyeBot this is an SRAM with 18
Mbit which is connected directly to the FPGA and can be interfaced with 100 MHz.
With memory of 18 Mbit it is possible to store 10 frames of full color inside the SRAM.
Additionally the following components can be connected to the FPGA

� 14 servos

� 4 motors controlled by a FPGA generated PWM

� 4 encoders for a motor feedback

� 6 position sensing devices

At the time I started developing on the EyeBot M6 the interface between FPGA and
CPU, Camera and SRAM was figured out to be unstable. Martin Geier worked on this
problem for his thesis [10] and developed a framework for my image processing algorithms.
The resulting interface between the FPGA and the CPU achieved a transfer rate of
approximately 25 Mbyte/s which is equivalent to 247 fps, but without any processing of
the CPU. Due to the fact that all components share one bus this number is drastically
reduced in reality. Beside the already mentioned components the EyeBot M6 comes with

� AC97 audio and touchscreen controller

2

1.2 Project Scope

� LCD touchscreen

� USB Host Controller

� Ethernet Controller

� Infrared Sensor

A full linux operating system of the version 2.6.17 is running on the EyeBot M6. A
program called M6 Main is used as a monitor program including a file browser which
allows the user e.g. to start his programs directly from the touchscreen or request the
status of the system. This program however was not used for the performance evaluations
done in chapter 7 because it is still under development. The status of the touchscreen for
example is at the moment requested by simple polling and therefore highly decreases the
performance.

1.2 Project Scope

Figure 1.2: EyeBot M6 - Robot Platform

The primary goal of this thesis is the design and implementation of a stereo vision system
on the EyeBot M6. The solution has to be suitable for the navigation of the robot shown
in picture 1.2. Furthermore it has to be analyzed if the EyeBot with the current stereo
rig constellation can be used for basic control tasks in the automotive area as well.
To achieve distance measurements in real-time the FPGA has to be utilized to free the
CPU from time consuming image pre-processing tasks as e.g. the rectification of images.
Appropriate algorithms have to be found and their suitability for the EyeBot M6 have to
be evaluated. The main challenge will be the implementation of as much image processing
tasks as possible with the given limited resources of the Spartan 3E. Especially the small

3

1 Introduction

amount of block RAM, a single SRAM and the small number of multipliers force the design
to be highly optimized and limit the choice of possible algorithms. Additionally a high
portability, modularity and reusability has to be guaranteed to ease further development
on the EyeBot M6.

1.3 Thesis Outline

Chapter 2 explains how basic calculations can be implemented inside the FPGA. Due
to a missing FPU a transformation from the common floating point representation to a
fixed point representation has to be performed.

Chapter 3 describes the given stereo rig and the basic theory necessary to gain depth
information from the given camera setup. Furthermore errors naturally produced by
lens distortions and misalignment of the cameras are discussed and a solution for the
rectification is presented.

Chapter 4 deals with the hardware implementation of the rectification process and the
efforts which have been made to keep the resulting FPGA footprint as small as possible.

Chapter 5 introduces an additional pre-processing to reduce the later on necessary CPU
time for determining a depth map out of the rectified pictures. With the help of the
Harris Corner Detector features inside the pictures are located to reduce the search space.
In this chapter the theoretical background of the approach is given.

Chapter 6 documents the implementation details of the Harris Corner Detector inside
the FPGA. At the end of the chapter the described hardware design is merged to a Stereo
Harris Corner Detector in order to share resources whereever possible.

Chapter 7 finally joins the together developed systems together. It is described how all
developed hardware modules are combined to a hardware image processing unit and how
then a so called disparity map is gained inside the CPU with the pre-processed data from
the hardware image processing unit.

Chapter 8 summarizes the work done within this thesis to lead over to recommendations
for Future Work in Chapter 9.

4

2 Floating Point to Fixed Point
Conversion

2.1 Basic Design Flow

MATLAB

(floating point)

SIMULINK

(floating point)

Modelsim

VHDL

Simulation

redesign

Design

MATLAB

(fixed point)

redesign

redesign

redesign

redesign Evaluate Algorithm

Hierachical Structuring

Floating to Fixed Point

Conversion

VHDL Coding

Xilinx ISE

Synthesize

Figure 2.1: Design Flow from MATLAB to a synthesizable Design

Task of this thesis is as already mentioned the development of a stereo vision system
on the EyeBot M6. The processing of the images should be done in hardware as far as
possible to save precious CPU time. However, the complexity of the necessary algorithms
for image preprocessing demands deep understanding and a lot of planning before the
step from the simulation environment into the hardware design can be done. To avoid
time-consuming redesigns due to errors in the early stage of designing, the algorithms
have been developed according to the design flow in figure 2.1.

5

2 Floating Point to Fixed Point Conversion

clk

IN OUT

Modelsim

VHDL-Module

Simulink & Stateflow

eol

eof

data

val

clk

eol

eof

data

val

Figure 2.2: Modelsim embedded in Simulink and Stateflow

The basic development and evaluation of algorithms, which have been taken in consider-
ation for this thesis, has been done in MATLAB [1]. Once an algorithm proved function-
ality the step towards a hierarchical model has been achieved with the development of a
Simulink model. Simulink was chosen because it offers the possibility to design a system
in the same hierarchical way as the resulting hardware. Early design errors can be avoided
by simulating the built hierarchy and verifying ports and necessary signals between mod-
ules. Simulink furthermore offers the possibility to create a link to a VHDL-Simulator
called Modelsim [2]. This simulator has been used to validate all later on programmed
VHDL-modules. The connection between Simulink and Modelsim has been evaluated,
with good results. With this interface it is possible to replace modules inside Simulink
by real VHDL code, feed necessary data into Modelsim and read back the results. If post
place and route (PAR) simulation has been performed the same results are gained as they
would be produced later on in the real hardware. The main advantage of this procedure is
to save time which otherwise would have to be spent on the development of test benches.
The simulation results of Modelsim can be directly compared in Simulink with the data
produced by the Simulink-modules. Figure 2.2 illustrates how Modelsim is embedded in
Simulink and shows the resulting data flow. However, with a growing complexity of the
modules these simulations become extremely slow and debugging of the modules requires
high patience. Especially the introduction of line delays inside the models (see section
6.2.1) and the creation of the image stream signals as described in section 6.1 with the
help of Simulink Stateflow decreased the benefits of this procedure a lot due to high sim-
ulation times. For that reason this method has been dropped and Modelsim on its own
was used for simulating the VHDL-modules. Simulink was then mainly used for creating
concepts and testing the models in respect to functionality and structuring.
Once a working design has been developed with the help of MATLAB and Simulink the
next step is the floating to fixed point conversion. Simulink calculates, if not specified,
based on floating point accuracy what is not possible inside our FPGA. Before a hardware
description can be programmed all floating point calculations have to be transformed to a
fixed point representation. For this transformation step the basic design flow has been ex-

6

2.2 Fixed Point Representation

tended with additional steps. First of all the developed hierarchy gained by modelling the
system in Simulink is mapped back into MATLAB where bit-true fixed point calculations
can be simulated much faster than in Simulink. Within MATLAB the transformation
to a fixed point design is done according to section 2.5. As soon as all calculations are
transformed it is easy to extend the existing floating point Simulink model in a way that
the found fixed point settings are used. This step is only done for further verification
before the actual VHDL code is programmed within Modelsim. After the VHDL code is
verified in Modelsim the hardware is synthesized and again simulated in Modelsim with
a post place & route simulation before the bitstream finally is loaded into the FPGA.
Before we now step into the implemented vision algorithms we first need to understand
how calculations are done inside a FPGA. Thus the fixed point representation is in-
troduced and the process of transforming floating to fixed point and it’s challenges are
described in the next sections.

2.2 Fixed Point Representation

First of all the concept of fixed point numbers will be described briefly by taking a look
at a binary number B of length n.

1wlb 2wlb 3b
2b 1b 0bB

MSB LSB

Figure 2.3: Binary Number Representation

bwl−1 is called the most significant bit (MSB) and b0 the least significant bit (LSB) and
wl is defined as word length. B can represent an integer number in the range of 0 to
2wl − 1 if unsigned or for a signed number from −2wl−1 to 2wl−1 − 1. A signed number
uses the MSB as sign bit and is represented in two’s complement. However, for many of
the calculations the resolution given with the integer representation is not sufficient. We
need fractional parts of numbers. A common way is setting a fixed point within B.

1wlb 2wlb 3b
2b 1b 0bB

word length

fraction length

Figure 2.4: Fixed Point Number

For this example the fraction length fl is four so the binary point is four bits left of the
LSB and the resulting resolution of the fractional number is 2−4. To get back from a fixed

7

2 Floating Point to Fixed Point Conversion

point representation to a real world value we use the equation x = (B)10 · 2−fl.
The fraction length can be both, positive and negative. If the fraction length fl is positive
the fraction point is shifted to the left of the LSB. The resolution is increased but the
range becomes smaller. Whereas if the fraction length is negative the point is shifted to
the right hand side of the LSB what results in a bigger representable range but a decreased
resolution. There are different ways to describe a fixed-point number e.g. with a signed
attribute s, a word length wl and a fraction length fl. Another possibility is to use the
integer word length iwl instead of the word length. Throughout this thesis the following
notation will be used:

� ufix defines an unsigned fixed point number. Therefore all bits are used to represent
a number

� sfix is a signed fixed point number. The MSB is used as sign bit and the rest of
the bits for representing the number in two’s complement

� The suffix [wl,fl] describes a number with word length wl as total number of bits
and a fraction length of fl

This notation is adopted from MATLAB and is widespread. Table 2.1 gives some examples
of the representation, their minima and maxima and the resulting resolution. The first
two representations describe the normal unsigned and signed integers. The third example
describes a fixed point number with a resolution of 2−5 and the fixed point 5 positions
left of the LSB. The fourth number’s fixed point is shifted to the right hence the range is
increased but precision is lost. The last example points out that the fraction length can
as well be bigger than the word length.

representation min max resolution
ufix[12,0] 0 212 − 1 1
sfix[10,0] −210−1 210−1 − 1 1
ufix[5,5] 0 0.9688 2−5

sfix[10,-5] −16384 16352 32
ufix[10,15] 0 0.0312 3.0518 · 10−05

Table 2.1: Examples for the used Fixed Point Notation

A fixed point number has a fixed range. This range is given by

Bsigned ∈
[
−2wl−fl−1; 2wl−fl−1 − 2fl

]
Bunsigned ∈

[
0; 2wl−fl − 2fl

]
To avoid overflows and underflows during calculations it is important to understand how
the ranges are changed by mathematical operations.

8

2.3 Fixed Point Calculations

2.3 Fixed Point Calculations

Let us assume that we stick to the simple binary number representation with a fraction
length of zero and have a look at mathematical operations. The common operations are
multiplications and additions of two binary numbers. The following table points out how
these operations change the theoretical number of bits needed to represent the results
depending on the incoming size and type of the two binary numbers which are here
however assumed to be the equal.

type operation result
ufix[n,0] + n+ 1
sfix[n,0] + n+ 1
ufix[n,0] ∗ 2n
sfix[n,0] ∗ 2n− 1

Table 2.2: Resulting Bit Width of Basic Mathematical Operations

The impact of this table on our calculations is easier to understand with help of an
exemplification, the Harris Corner Detector as described in chapter 5. The theoretical bit
width needed to represent the results are listed in table 2.3.

System input[bit] output[bit]

Camera ∞ 8
Sobel 8 11
Window 11 26
Cornerness 26 52

Table 2.3: Theoretical Input and Output Widths of the Harris Detector Modules

It is fairly obvious that if we keep full precision first of all the hardware implementation
will be limited very fast by the available FPGA resources and additionally long logical
paths are created and consequently the maximum clock rate of our design is reduced
drastically. Therefore we need to reduce the bit width of our calculations and use only
the bit width needed to gain the necessary accuracy of the final output. In order to
reduce the bit width for the given Harris the decimal point has to be shifted to the right
for representing bigger numbers or to the left for the representation of small numbers as
used by the rectification unit (see chapter 4). If we know in which range the values will
move we can crop the bit positions we do not use. The resulting representation is the
already described fixed point representation. In order to calculate with these numbers
it is essential to take care about the position of the fixed point. A multiplication of two
fixed point numbers ufix[wl1,fl1]and ufix[wl2,fl2]results in a number with a shifted
fixed point and increased word length ufix[wl1+wl2,fl1+fl2].

9

2 Floating Point to Fixed Point Conversion

1 0 1 1 0 1 1*

ufix[4,2] ufix[3,1]

0 1 0 0 0 0 1

ufix[4+3,1+2] = ufix[7,3]

=
2.75 1.5 4.125

Figure 2.5: Example - Fixed Point Multiplication

The input numbers of the multiplication have to be of the same kind, signed or unsigned.
If one of the numbers is of the type signed the other number has to be transformed before
the multiplication is executed.
For adding two fixed points numbers they both have to be not only of the same type but
also of the same fraction length. To keep the precision of the given numbers the number
with the smaller fraction length has to be shifted to the left. Before doing so the word
length has to be increased by the number of necessary shifts to ensure that no bits are lost.

1 0 1 1 0 1 1+
ufix[4,2] ufix[3,1]

= 2.75

1.5

1 0 1 1

ufix[4,2]

0 1 1

ufix[4,2]

0+

0 0 0 1

ufix[5,2]

1 4.25

Figure 2.6: Example - Fixed Point Addition

Fixed point calculations as described are not yet part of the VHDL standard. To avoid
reflecting the movement of the fixed point and necessary extensions of word length before
shifting etc. for every addition and multiplication a fixed point package has been pro-
grammed in VHDL in the course of this thesis. This package is based on the numeric.std
library and therefore uses the types signed and unsigned. As parameter values of the
implemented arithmetical functions the input signals of the operation and their fraction
length and the fraction length of the result are passed on to the functions. For every
combination of signed and unsigned input and output types the according functions have
been written. The functions of different input types, but same operation, are overloaded
inside the package and thus have all the same name. This makes it much easier to pro-
gram and is furthermore needed for the automatic package creation of the rectification
unit (see section 4.2.2). In the following you can see an example function for the addition
of a signed and unsigned number.

f unc t i on plus_fp (L : signed ; L_FL : integer ; R : unsigned ; R_FL : integer ; ←↩
result_WL : integer ; result_FL : integer) −− unsigned = s igned + unsigned
return unsigned i s
constant L_WL : integer := L ' LENGTH ;
constant R_WL : integer := R ' LENGTH ;
constant tmp_FL : integer := maximum (L_FL , R_FL) ; −− temporary r e s u l t

10

2.4 Floating Point to Fixed Point Conversion

constant L_t_WL : integer := L_WL + tmp_FL − L_FL + OVERFLOW_BIT ; −− WL fo r ←↩
temporary l e f t

constant R_t_WL : integer := R_WL + tmp_FL − R_FL + OVERFLOW_BIT + SIGNED_BIT ; ←↩
−− . . .

constant tmp_WL : integer := maximum (L_t_WL , R_t_WL) ; −− WL fo r temporary r e s u l t
v a r i ab l e L_t : signed (L_t_WL−1 downto 0) := signed (shift_left (resize (L , L_t_WL) ,←↩

tmp_FL − L_FL)) ;
v a r i ab l e R_t : signed (R_t_WL−1 downto 0) := signed (shift_left (resize (R , R_t_WL) ,←↩

tmp_FL − R_FL)) ;
v a r i ab l e tmp : signed (tmp_WL−1 downto 0) ;
v a r i ab l e result : unsigned (result_WL−1 downto 0) ; −− r e s u l t

begin
tmp := L_t + R_t ;
i f tmp_FL >= result_FL then

result := resize (unsigned (shift_right (tmp , tmp_FL − result_FL)) , result_WL) ;
e l s e

result := resize (unsigned (shift_left (resize (tmp , tmp_WL + result_FL−tmp_FL) ,←↩
result_FL − tmp_FL)) , result_WL) ;

end i f ;
r e turn result ;

end func t i on plus_fp ;

The inputs are transformed as described above. First the word length is increased by the
necessary amount of bits. Be aware that the numeric.std addition returns a number of
word length MAX(L,R) and therefore does not care about overflow. This is the reason
why the OVERFLOW BIT is added to both the temporary word length L t WL and
R t WL. Furthermore the unsigned number needs an additional SIGNED BIT before the
transformation to signed can be performed without loss. After both numbers have been
transformed they can be simply added. The temporary result is shifted and resized to
achieve the defined return WL before it is finally returned. The usage of these functions
highly simplifies the source code and the programming with fixed point numbers.
Now that the basic arithmetics are defined the question is how the word and fraction
length have to be chosen in order to keep a defined accuracy and using minimum bit width
at the same time. This problem is known as Floating Point to Fixed Point Conversion
(FFC).

2.4 Floating Point to Fixed Point Conversion

Image processing algorithms are in general first developed with the help of tools like
MATLAB or OpenCV [3]. At the very beginning the algorithms are based on floating
point precision to make the design as easy as possible. Once the floating point algorithm
is specified and satisfies the expectations of the developer it is necessary to transform the
calculations to fixed point representation. There are two different approaches to perform
this transformation:

� The analytical approach is based on examining the behavior of the calculations
like described in section 2.3. This method is mainly applied to LTI systems as digital
filters or FFT [20]. However, with a rising complexity of the system or the influence
of noise the facility of this method is limited fast.

11

2 Floating Point to Fixed Point Conversion

� The bit-true simulation makes it possible to collect statistical data of the system.
The data of each quantization node is logged and the dynamic ranges of signals can
be determined. These simulation results help the developer to find a solution of the
FFC problem.

Figure 2.7: The Challenges of FPGA Design rated by Developers

Depending on the complexity but irrespective of which approach is chosen the transfor-
mation process consumes a lot of time. If done manually research has shown that up to
50% of the development time can be spent on solving this problem [30]. Figure 2.7 shows
the results of a survey conducted by AccelChip Inc. [4] (now owned by Xilinx) about the
difficulties of a FPGA Design. 53% identified the floating to fixed-point conversion as
the most difficult part. The high complexity is not only caused by the actual algorithm’s
complexity, but is as well defined by the high dimensionality of the design space. The
final goals of the optimization process can be accuracy, chip space, memory size, power
consumption or for example the throughput of the resulting system. Furthermore the
error produced by quantization is of nonlinear nature and highly depends on the stimuli
and thus the evaluation of the design space can hardly be done without extensive simu-
lation [7].
These simulations run as bit-true simulations meaning that the same behavior of binary
calculations as found in the target system have to be modeled. There are fixed point bit-
true simulation libraries for C++ available [18, 19] which come along with a performance
reduction of one or two magnitudes [7] compared to a pure floating point program. MAT-
LAB in combination with the Fixed-Point Toolbox offers as well the possibility to support
the developer during the fixed-point transformation. It is possible to specify quantizers,
calculate with fi-math objects (fixed point arithmetic objects), log data, recognize over-
flows or visualize data histograms of the used bit width. The big disadvantage coming
with MATLAB is the low simulation speed. Compared to a C++ implementation it can
amount to a factor of 1000. However, the effort of reprogramming all the MATLAB code
in C++ was considered as too time-consuming. There are commercial solutions to help
avoiding the reprogramming of the MATLAB code by directly creating C++ fixed-point
programs out of the MATLAB m-files. One popular tool is AccelDSP Synthesis [4]. For

12

2.5 Automatic Floating Point to Fixed Point Conversion

this thesis unfortunately none of these programs was available and another solution had
to be found.
For the Harris Corner Detector, as described in chapter 5, a mixture of the analytical
and bit-true simulation approach has been used. Based on statistics and experiments a
working quantization was found which had an acceptable resource consumption.
The rectification of pictures as described in chapter 3 requires the computation of four
polynomials of third degree in hardware, each including 9 multiplications and 10 addi-
tions which have to be quantized. With the increasing complexity of the system as the
calculation of these polynomials it becomes more and more difficult and time-consuming
to do the floating point to fixed point conversion by hand and based on mere statistics.
The coefficients of the third degree polynomials are the results of a stereo camera cali-
bration and a following regression. Because of this it can happen that these coefficients
change due to a rearrangement of the cameras or a modified focus. The impact of these
changes on our coefficients is hard to predict because a calibration takes a long time.
Additionally these changes will not alter the coefficients linearly. The complexity of this
problem is increased even more by the highly non-linear behavior of the quantization error
produced by the quantization of the coefficients and the calculation steps themselves.
To avoid a time-consuming reconversion in the case of camera rearrangements one pos-
sibility is to enlarge the used bit width for the calculations in a way that we definitely
keep the a defined precision. However, enlarging the used bit width because of changes
which might be applied is not an appropriate solution for the used FPGA. The resulting
coordinate warper would consume way too many resources. Consequently for each camera
constellation an optimized fixed point model would have to be derived and programmed
in VHDL. To avoid this huge effort a fully automated algorithm, partially based on [27],
has been developed.

2.5 Automatic Floating Point to Fixed Point Conversion

With the help of the developed automated FFC algorithm described in the following it is
possible to generate an optimized fixed-point quantizer setting directly out of the results
of a camera calibration (see section 3.5). Furthermore a VHDL-package is automatically
generated which then can be included in the VHDL project before a new optimized
rectifier is synthesized. In the following the concept of this algorithm will be presented
after the introduction of the MATLAB functions used by the algorithm.

The MATLAB Fixed-Point Toolbox [1] comes with a function called quantizer() which
returns a handle to a quantizer of the specified type. A quantization then is executed
with the call of the function quantize() with the quantizer handle and the value which
has to be quantized as parameters. As a result we get e.g. a_q which is returned as a
floating point number. However, this floating point number can be represented with a
fixed-point number of the given quantizer settings e.g. of the type sfix[12,2].

13

2 Floating Point to Fixed Point Conversion

% Example code f o r usage o f quan t i z e r s in MATLAB
a = 12 . 4 3 ;
q = quantizer (' f i x e d ' , ' f l o o r ' , 'wrap ' , [12 2]) ;
a_q = quantize (q , a) ;

After the quantization the quantizer object enables the user to access statistics about
minimum, maximum or for example occurred overflows during all appeared quantizations
with this object. Common attributes of a quantizer object are ’fixed’ for a signed or
’ufixed’ for an unsigned fixed-point quantization. ’floor’ or for example ’ceil’ describe the
rounding method used by the quantizer. To avoid increasing complexity of the resulting
hardware simple truncation was used throughout this thesis what corresponds to the ’floor’
rounding method. Additionally you can select an overflow mode and choose between
’wrap’ or e.g. ’saturation’. Again the mode with the smallest overhead was used which is
’wrap’.

The developed floating point code e.g. the calculation of a polynomial of third degree
is now reprogrammed in MATLAB based on the described quantizer functions. The
transformed floating point function additionally gets a vector of quantizer handlers as
parameter value. Based on these quantizers the calculation is performed and a fixed
point results returned at the end. The transformation of the source code from a floating
point design to a fixed-point design is done within two steps as described by Sanghamitra
[27].

With the first step called levelization all calculations are transformed into single step
per line calculations. For example

a (1 : 1 00) = b (1 : 1 00) .* c (1 : 1 00) + d (1 : 1 00) ;

becomes after levelization

b = in_1 ;
c = in_2 ;
temp = b (1 : 1 00) .* c (1 : 1 00) ;
a = temp + d (1 : 1 00) ;

With the levelization we gain a function which still calculates with floating point precision.
We need to introduce a quantizer for every extension, input vector and all fixed parameters
to ensure that all calculations can be represented as fixed-point numbers and thus our
result will be bit-true. Therefore we now need a quantizer for every line of our levelized
code.

b = quantize (q_1 , in_1) ;
c = quantize (q_2 , in_2) ;
temp = quantize (q_3 , b .* c) ;
a = quantize (q_4 , temp + d) ;

14

2.5 Automatic Floating Point to Fixed Point Conversion

The next step described by Sanghamitra [27] called scalarization is not needed for my
design because no internal functions of MATLAB as sum() for vectorized data are used.

Below the final levelized and quantized matlab code used for calculating the polynomials is
listed. Altogether there are 26 quantizers (the 16 listed below and 10 for the coefficients)
whose parameters have to be determined. Figure 4.4 visualizes how this equation has
been modeled in Simulink and later on in hardware with the 26 quantizers.

f unc t i on [mapping] = calc_fixpoint (p , quant , data)
. . .

% stage 1
product1 = quantize (quant (11) , p (8) .* Y) ;
product2 = quantize (quant (12) , p (10) .* X) ;
product3 = quantize (quant (13) , p (7) .* X) ;
product4 = quantize (quant (14) , p (9) .* Y) ;
% stage 2
sum1 = quantize (quant (20) , p (5)+product1+product2) ;
sum2 = quantize (quant (21) , p (4)+product3+product4) ;
% stage 3
product5 = quantize (quant (15) , sum1 .* Y) ;
product6 = quantize (quant (16) , p (6) .* X) ;
product7 = quantize (quant (17) , sum2 .* X) ;
% stage 4
sum3 = quantize (quant (22) , product5 + p (3) + product6) ;
sum4 = quantize (quant (23) , product7 + p (2)) ;
% stage 5
product8 = quantize (quant (18) , sum3 .* Y) ;
product9 = quantize (quant (19) , sum4 .* X) ;
% output s tage
sum5 = quantize (quant (24) , p (1) + product8 + product9) ;

This function now can be called with a vector q of 26 quantizers and the data-points
as parameter values. Bit-true values are then returned based on the quantizers defined
in q. Now we have two versions of functions, the original floating point based function
and the function based on fixed point accuracy. The next step is to determine quantizer
settings so that the error between the floating and fixed point based function stays within
a specified range while using a minimal bit width for the calculations. The automated
determination of the quantizer settings is performed within three steps.

Calculation of value ranges determines the theoretical ranges of the calculation results
and consequently uses the floating point function to ensure highest precision. With the
function calc_ranges() we determine minima and maxima of our levelized calculation.
Based on these results a vector of quantizers (for each calculation step, parameter, etc.
one quantizer) is constructed. Important for this step is to gain quantizers which have
the worst case accuracy but will not permit any overflow.

[mins maxs] = calc_ranges (polynomial , points , direction) ; % with a l l po in t s ! !
quantizer_settings = { ' f l o o r ' , 'wrap ' } ;

f o r j = 1:26
max_val = max(abs (maxs (j)) , abs (mins (j))) ;
y = −1 * l og2 (max_val) ;
i f mins (j) < 0 % check i f s i gned or unsigned needed

q (j) = quantizer (' f i x e d ' , quantizer_settings { :} , [1+1 c e i l (y)]) ;
e l s e

15

2 Floating Point to Fixed Point Conversion

q (j) = quantizer (' u f i x ed ' , quantizer_settings { :} , [1 c e i l (y)]) ;
end

end

To gain the worst case quantization we set the word length to 1 (or 2 if signed) and the
fraction length to d−log2(maxval)e. The negative sign in front of the logarithm is needed
because we use the fraction and not the exponential representation. After this step we
have a list of quantizers which now can be used to call our levelized and quantized code
and get back a fixed-point result based on this list of quantizers.
The current settings of the quantizers will produce the highest error but prevent the cal-
culations from overflow. In order to judge the quality of our fixed point based calculations
we need a metric which allows us to compare the fixed point with the floating point re-
sults. A popular error metric is the so called signal to quantization noise ratio (SQNR).
However, for the quantization of the polynomials a more descriptive measure was used,
the mean square distance in subpixels between floating point and fixed point mapping
results. The function calc_error() gets as parameter values the floating point and fixed
point results and returns the mean square error. If another error measure is wished it can
easily be replaced inside this function.

As already mentioned, with the quantizer settings resulting from the calculation of value
ranges we will definitely exceed every defined maximum error constraint but will not
permit overflows. In the next step called coarse quantization we will increase the bit
width of all quantizers by the same amount of bits until the maximum error conditions
are met. With the used notation for the quantizers it is easy to increase their precision
and to avoid overflows at the same time. By increasing both the word and fraction length
by the same number of bits we keep the representable maximum value of the number and
simultaneously increase the accuracy. A quantizer q0 saved in q with the characterization
[wl_0,fl_0] is therefore changed to [wl_0+p,fl_0+p]. The parameter p is added to
all quantizers q0, ..., qn and the resulting error is calculated with the new settings. The
necessary minimum p is determined by a divide and conquer approach to reduce the
execution time of our algorithm.

L=0 H=32M=16

max0 EEmax0 EE

L=0 H=16M=8

L=8 H=16M=12L=0 H=8M=4

L=16 H=32M=24

L=24 H=32M=28L=16 H=24M=20

max1 EE max1 EE max1 EEmax1 EE

Figure 2.8: Example for Divide and Conquer Steps; L=0 and H =32

Figure 2.8 shows the first three steps of the divide and conquer algorithm. We define
the range in which p is allowed to move as p ∈ [L0, H0]. At the beginning M0 is set to

16

2.5 Automatic Floating Point to Fixed Point Conversion

d1
2
(H0 + L0)e. The functions with floating and fixed point accuracy are then executed

with a p = M0. Afterwards the error of the fixed point result is determined with the
help of the calc_error() function. If the resulting error E0 is bigger than the maximum
error Emax, defined by the user, the current p is too small and L1 for the next iteration
is set to M0, while H1 is H0. If the resulting error is smaller than Emax, H1 is set to M0

and L1 to L0. Now M1 is calculated the same way as above with the new L1 and H1

and the procedure is repeated again. This is done iteratively until the difference between
Hn and Ln is one. If the produced error is still bigger than the defined maximum error
and Mn+1 is constantly H0 the constraint can not be met with a maximum bit width of
H0 and the algorithm failed. Otherwise we found a minimum p which guarantees us that
the maximum error is no longer violated. As described this p is applied to all quantizers
which results in a large overhead of calculation accuracy because not all quantizers need
to be that accurate.

The fine tuning solves this problem by changing the settings of the quantizers individ-
ually and searching for an optimized setting. Due to the high simulation time of the bit
true simulation a simple Greedy algorithm was used for optimization which can be easily
exchanged if a better optimization is desired.
The Greedy algorithm reduces the quantizers’ accuracy since we already meet our maxi-
mum error constraint after the coarse optimization. To reduce the accuracy the setting of
an individual quantizer pj given with [wl,fl] is changed to [wl-1,fl-1]. The floating
and fixed point function is then called with a quantizer vector (q0, ..., qj − 1, ..., qn) and
the error ej is determined. This is done for every quantizer on its own and an error vector
E is created

E =

e(q0 − 1, q1, q2, ..., qn)
e(q0, q1 − 1, q2, ..., qn)

...
e(q0, q1, q2, ..., qn − 1)

The element k with the smallest entry and therefore with the smallest increase of error
compared to the error produced with the setting (q0, q1, . . . , qn) is picked. The quantizers’
settings used for the next iteration are set to (q0, q1, . . . , qk−1, . . . , qn). This again is done
iteratively until the defined maximum error is no longer met. Our optimized quantizer
settings are then the one from the step before, where the error constraint was just not
violated.
The problem of Greedy is that it does not reconsider decisions made in the past and
so ends up in a local minimum with a high probability. The decisions are only based
on the results of the current step. Sanghamitra proposed his own algorithm [27] which
however requires with higher simulation times without producing better results compared
to Greedy. Therefore I retained the Greedy algorithm whose results turned out to be
sufficient for my purposes.

Now that it is known how calculations are realized inside the FPGA and how to deter-
mine the fixed point representations the first and very important pre-processing step, the
rectification, will be described. At first the theoretical background will be presented in
the following chapter.

17

2 Floating Point to Fixed Point Conversion

18

3 Theory of Rectification

To understand why rectification is necessary the given stereo rig constellation of the
EyeBot M6 will be presented in an idealized form. This model will be extended during
this chapter to get step by step closer to reality.

3.1 Parallel Stereo Camera Constellation

Figure 3.1: Triangulation under idealized Circumstances

The EyeBot M6 platform was designed to mount two cameras directly on the PCB. The
resulting constellation is called a frontal parallel camera constellation and is shown in
an idealized form in figure 3.1. With two cameras it is possible to determine depth
information of the environment. In order to gain this information, images from both
cameras have to be processed and correlating points have to be found (see section 7.3).
Once a point of the left picture can be spatialized to a point in the right picture the
depth can be easily derived with the theorem on intersecting lines applied on the given
geometry in figure 3.1. Neglecting distortion and assuming perfectly row aligned cameras
the points will lie in the same image line and the equation for the depth Z results in

Z =
f · T
x′l − x′r

.

19

3 Theory of Rectification

x′l − x′r is also known as disparity d. According to this formula and due to the fact that
pixels of our camera have a finite size the quality of depth information depends on the
distance of the object. The closer the object is to the camera the better the resolution of
depth. The depth resolution is given with the formula

∆Z ≈ pZ2

fT
, with the pixelsize p =

chipsize

resolution
(both in x-direction)[5].

Figure 3.2 visualizes the behavior of ∆Z depending on Z and with the current setup of
the EyeBot M6 stereo rig (f = 4.9mm, T = 66mm, p = 9µm). Concluding from this
figure one of the goals, the usage of the EyeBot M6 with the current camera constellation
inside a car, has to be dismissed. The planned vehicle tracking does not make sense
with a maximum depth resolution of more than 2.5m at a distance of 10m because the
occurring distances within traffic will be even higher and therefore the resolution worse.
To improve the resolution the basis width T has to be increased and calculations based on
subpixel accuracy have to be done. For the second task planned, the usage of the EyeBot
M6 for robot tasks as e.g. the RoboCup, the objects will move inside a shorter range
and thus the resulting resolution will be much higher what will allow appropriate naviga-
tion of the EyeBot in his environment based on computed disparity maps (see chapter 7.3).

Figure 3.2: Maximum Depth Resolution, f = 4.9mm, T = 66mm, p = 9µm

However, the environment is not mapped onto our image plane one by one as assumed
above. Every camera has its own typical distortion because of inaccuracy regarding the
lens or e.g. the chip placement. This distortion has to be compensated in order to
determine reliable disparity and depth information. In order to understand the process
of undistortion, first of all the principle of central perspective will be explained in brief to
extend this model later on with the distortion model used for this thesis.

20

3.2 Principle of central perspective

3.2 Principle of central perspective

Figure 3.3: Principle of Central Perspective

The principle of central projection describes how under idealized circumstances a 3D point
X0 given in homogeneous world coordinates can be described in camera coordinates and
finally projected onto our image plane. The constellation as given in figure 3.3 defines
three coordinate systems. First of all the world coordinates can be freely chosen. Usually
for single camera calibration the origin will be located in a corner of a chessboard used for
the calibration. The x and y axes are then aligned with the chessboard edges while the z
axis is orthogonal to the board. The second coordinate system is the one of the camera.
The origin of this system is called the perspective center and is marked in figure 3.3 as Oc.
The transformation from world to camera coordinates is defined by three rotations given
with matrix R and a translation vector T thus a point X0 given in world coordinates can
be expressed in camera coordinates with

Xc =

Xc

Yc
Zc
1

 =

[
R T
0 1

]
·

X0

Y0

Z0

1

The third coordinate system is the resulting image plane. As shown in figure 3.3 a point
X0 given in world coordinates is projected on xn in the image plane and is located on the
ray from X0 through the perspective center Oc. xn is described in homogen coordinates
by the following equation

21

3 Theory of Rectification

xn =

 xn
yn
1

 =
f

Zc
·

 Xc

Yc
Zc

 =
1

Zc
·

 f 0 0
0 f 0
0 0 1

︸ ︷︷ ︸

Kf

·

 1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

Π0

Xc

Yc
Zc
1

 (3.1)

=
1

Zc
·Kf ·Π0 ·Xc (3.2)

with the focal length f . The matrix Kf is now extended with the intrinsic parameters of
our camera to get from the normalized coordinates xn to the real pixel coordinates xp.

Ks =

 fsx sθ ox
0 fsy oy
0 0 1

For most cameras the pixels will never be of square size thus the focal length f needs to
be scaled by sx and sy. Furthermore the principle point will never be the middle of the
captured image. Due to manufacturing errors the point will allways be slightly shifted
and we need ox and oy to describe this shift in relation to the optical axes. sθ is called
the skew factor which describes the angle between x and y of the sensor. Indeed, for most
cameras this factor can be neglected and is set to zero. Summarizing a 3D point X0 in
world coordinates is mapped to a point in pixel coordinates xp by following equation:

λ · xp = Ks ·Π0 ·
[

R T
0 1

]
·

X0

Y0

Z0

1

3.3 Camera Distortion Model

The idealized model as described above needs to be extended to get one step closer to
reality. Due to manufacturing errors there will always appear distortions caused by the
lens and a misalignment between lens and camera chip. These distortions happen before
the light ray hits the chip and consequently affect the normalized coordinates xn. Slama
[29] introduced a model which is used most of the times. xp describes the location of
a pixel in the received and distorted image whereas xd is the corrected pixel location.
According to Slama the corrected pixel location xd results in

xd = xrad + xtan

where xrad describes the radial distortion

22

3.3 Camera Distortion Model

xrad =

[
xr
yr

]
= (1 + k1r

2 + k2r
4 + k5r

6) · xn

with r2 = xn
2 + yn

2 and xtan describing the occurring tangential distortion

xtan =

[
xt
yt

]
=

[
2k3xnyn + k4(r

2 + 2x2
n)

k3(r
2 + 2y2

n) + 2k4xnyn

]
produced by the lens.

(a) Radial Distortion (b) Tangential Distortion

Figure 3.4: Camera Distortion

Figure 3.4 visualizes the influence of distortion. The arrows point in the direction of the
occurring distortions while the length of the arrows resembles the degree of displacement.
The o inside the figures marks the principle point given by the cameras while the x shows
where the point should be. The main error is produced by the radial distortion. In the
paper of Heikkila [14] an algorithm is presented to determine the intrinsic and extrinsic
camera parameters including the described distortion coefficients. Once we know the
distortion parameters it is possible to undistort the received images. In summary this
method allows to undistort each camera on its own.
Our total stereo constellation however is still defective. In section 3.1 we claimed that
the cameras are perfectly row aligned what will never be the case therefore a stereo
rectification needs to be applied.

23

3 Theory of Rectification

3.4 Stereo Rectification

Stereo rectification is the process of remapping images according to the constellation of
the cameras to each other in a way that the resulting images are row aligned. In the
end we want the points in the left picture of one row to be in the same row of the right
picture. This has to be the case to be able to find correlating pixels in real time. Without
row alignment the search for a pixel from the left image inside the right image would be
a 2D search and consequently consume a lot of time. If we reduce the search space to 1D
a lot of calculations can be avoided. To understand where a pixel of the left image can
actually appear in the right image the epipolar geometry will now be introduced.

Figure 3.5: Epipolar Geometry

A point X is projected on two image planes Ileft and Iright as shown in figure 3.5. All
points on the ray from Ol to X are projected on the same point xl. This ray appears in the
image plane of the right hand side as line because the cameras are not aligned perfectly or
for example a slight angle between the cameras was chosen to increase the common field
of view. The projection of this image ray in the right picture is defined by two points, one
is of course the projection of X, which is xr, and the second point is er, called epipole.
The position of this epipole is only defined by the stereo rig constellation and results as
interception point between the connection of the two centers of projection and the image
planes. The line from the projected point xr through the epipole er is called epipolar line
lr. This line can be calculated out of the stereo rig and the projected point xl on the left
image. Once we know the epipolar line for the right image we have reduced the search
space for the matching point xr from 2D to 1D as we know that this point must lie on
the epipolar line. But not only a reduction of the search space is achieved by calculating
the epipolar line. The probability of wrong matches is decreased as well, because there

24

3.4 Stereo Rectification

are less possibilities for matching points.
The computation of the epipolar line is simple once we have calibrated the stereo rig
and determined the so called fundamental matrix F. The calculation of the fundamental
matrix can be done e.g. with the eight-point algorithm which will not be explained here.
The interested reader however can go into details with [23] and [13]. For the fundamental
matrix F following equation can be formulated

xr
TFxl = 0

With this equation the resulting epipolar line lr of the format [a, b, c] and the linear
equation in of the form ax+ by + c = 0 is

lr = Fxl

Now that we know where to search for our corresponding point we still have another
problem. The search along a line which is probably not horizontally orientated within our
image is not easy to solve. We would first have to calculate for every pixel xl the line lr
with the equation above. Then we would have to calculate the possible (x, y) coordinates
with the resulting linear equation and at the end use interpolation for calculating the
similarity between xl and the points on lr.
The idea is to transform the pictures in a way that the epipolar lines are horizontally
oriented within the image and thus perfectly row aligned. This simplifies the search for
matching pixels. We anyway have to transform the pictures because of the distortion
effects described in section 3.3 so it should be possible to merge these transformations to
one rectification step at the end.
In order to get horizontal epipolar lines we have to find a transformation for each image
plane which maps the epipoles to infinity. The relationship between the two perspective
centers Ol and Or is given by a rotation matrix R and a translation vector T as shown in
figure 3.51). First of all the image planes have to have the same orientation so we rotate
both images slightly instead of rotating one image plane by the full angles given in R
in order to minimize the reprojection error. We split up the rotation matrix R into two
rotation matrixes rl and rr. The new translation vector will result in t = rrT. Now the
image planes are coplanar meaning that the epipoles are mapped to infinity. However,
the images are still not row aligned.
The rotation matrix Rrect which aligns the rows is a rotation matrix about the z axis

Rrect =

 v1
T

v2
T

v3
T

1) Be aware that these transformations are not the same as in the section 3.2 about the principle of central

perspective. However, the R and T given here can be derived from the extrinsic parameters of each
camera Rl,Tl and Rr,Tr with R = Rr(Rl)T and T = Tr −RTl

25

3 Theory of Rectification

with

v1 =
rrT

‖ rrT ‖
(3.3)

v2 =
1√

Tx
2 + Ty

2

 −TyTx
0

 (3.4)

v3 = v1× v2 (3.5)

The rotations which have to be applied to the views then result in RL = Rrectrl and
RR = Rrectrr. After the rotations have been applied on both images the new rotation
matrix R results in the identity matrix I3×3 and the translatoric vector T is changed to
TRR.
Now the new camera matrix of the final rectified pictures has to be derived in a way
that the rectified images contain as much information of the distorted images as possible.
First of all a common vertical focus length has to be found. To get maximum information
the minimal focus length of fy left and fy right is chosen. The principal points have to
be calculated again with the new common focal length. The common principal point is
then set to be the mean value between both principal points. With the resulting camera
matrix Krect and the derived necessary transformations it is now possible to determine
two look-up tables (one for each camera) which allow us to perform all the described
transformations within one step.

3.5 Determination of Look-Up Tables

First of the cameras have to be calibrated to determine the parameters of the described
model. The algorithm for determining the camera parameters according to Heikkila [14]
and Bouguet’s algorithm for stereo rectification are both embedded in the Camera Cal-
ibration Toolbox [6] for MATLAB. This toolbox was used for the thesis to calibrate the
stereo camera system. The input of the toolbox are pictures of a chessboard taken with
both cameras at the same time. A chessboard pattern is presented to the cameras in
different angles in order to get various 3D points. For a couple of positions picture pairs
are taken of the chessboard placed in the world. After an efficient amount of pictures
has been recorded the user has to tell the toolbox the size of the squares and mark the
outer squares in each picture in the same order. It is recommended to take more than
20 pictures to have enough input for the following optimization process which calculates
the camera parameters. To perform a stereo calibration you first have to calibrate each
camera on its own. The resulting files are then used as an input for the stereo calibra-
tion. A lot of information and tutorials about the calibration process can be found on the
homepage of the Camera Calibration Toolbox [6].

Based on these results it is now possible to derive a look-up table which takes care of both,
the distortion and the stereo rectification. To create an undistorted picture we need to

26

3.6 Calculation of the Rectified Image

know which coordinate of the rectified picture belongs to which coordinate in the received
distorted picture. There are two directions we can go to calculate such a mapping.
If we calculate a mapping starting from integer coordinates inside the received distorted
image and calculate the corresponding coordinates inside the rectified picture Irect we will
get floating point coordinates for Irect as a result and will end up with a lot of holes inside
the rectified image, because we probably do not hit every location.
If we, however, do it the other way round and calculate for every integer coordinate of
Irect a source coordinate we get floating point coordinates as well, but now we can simply
interpolate the resulting pixel out of the pixel values of the distorted image. In order to
calculate this mapping we need to go backwards.
Assume pl is a point in our left destination picture (undistorted). The first thing we
have to do is undoing the projection. This is achieved by multiplying pl with the inverse
of Krect and setting the third coordinate to one. After this step the rotation has to be
reversed thus a multiplication from the left with RL

T has to be applied. In the next step
the distortion model is applied and finally the result is projected again with the original
Ks left. The following code shows how the rectification lookup table is gained in Matlab.

%% Calcu la te mapping l e f t
% c r ea t e p i x e l c oo rd ina t e s
[mx , my] = meshgrid (0 : nx/ f l o o r (nx) : (nx−1) , 0 : ny/ny : (ny−1)) ;
[nnx , nny]= s i z e (mx) ;
px=reshape (mx ' , nnx*nny , 1) ;
py=reshape (my ' , nnx*nny , 1) ;
%undo p r o j e c t i o n
rays = inv (KK_left_new) * [(px − 1) ' ; (py − 1) ' ; ones (1 , l ength (px))] ;
% Rotation : (or a f f i n e t rans fo rmat ion) :
rays2 = R_L ' * rays ;
x = [rays2 (1 , :) . / rays2 (3 , :) ; rays2 (2 , :) . / rays2 (3 , :)] ;
%d i s t o r t
xd=apply_distortion (x , kc_left) ;
%p ro j e c t
px2=fc_left (1) *(xd (1 , :) + alpha_c_left*xd (2 , :)) + cc_left (1) ;
py2=fc_left (2) *xd (2 , :) + cc_left (2) ;

mapping_left = [px py px2 ' py2 '] ;

3.6 Calculation of the Rectified Image

As already mentioned the coordinates of the lookup table are most likely no integer val-
ues, so interpolation has to be used in order to calculate the pixel values. The most
common way is to use bilinear interpolation in order to keep the complexity of the re-
sulting algorithm low. For the bilinear interpolation we need four pixels surrounding our
floating point position as shown in figure 3.6. The resulting pixel intensity then can be
approximated with

Irect(xdest, ydest) =
[

1− dx dx
] [I (xsrc, ysrc) I (xsrc, ysrc + 1)

I (xsrc + 1, ysrc) I (xsrc + 1, ysrc + 1)

] [
1− dy
dy

]

27

3 Theory of Rectification

I(x,y) I(x+1,y)

I(x+1,y+1)I(x,y+1)

x

y

dx 1 - dx

dy

1 - dy

I(x+dx,y+dy)

Figure 3.6: Bilinear Interpolation

A software solution based on lookup tables which have been exported from MATLAB
achieved 18.9 fps on the EyeBot M6. This rate however does not contain capturing the
stereo frames. It is the mere transformation of images stored inside the RAM without any
communication between the CPU and the FPGA. As the rectification has to be the first
step of image processing it has to be done in hardware. The hardware implementation of
the rectification is described in the following.

28

4 Rectification in Hardware

A common way of implementing rectification in hardware is the usage of the LUTs as in
the software approach. The calibration is once done offline and the resulting two LUTs -
one for each camera - are loaded into the FPGA.
In [31] the unrectified image comes in a stream from the camera and is at first stored
to a DRAM. The LUTs are placed inside a second DRAM to avoid the creation of a
bottleneck. A counter steps trough all coordinates of the destination image and loads the
corresponding source coordinates from the LUT. These coordinates have an integer and
a fractional part in order to perform a bilinear interpolation. For every source coordinate
four pixels of the source image are loaded from the DRAM. After interpolating these four
pixels the resulting pixel of the rectified image is stored into the DRAM again.
Unfortunately it is not possible to implement this design on the EyeBot M6 in an efficient
way. Above all we will run out of memory to save the LUTs. The size of the four LUTs,
for each coordinate x and y of each side one LUT, is given by 4 ∗ width ∗ height ∗ wl bit
resulting in 693 kbyte if we use ufix[14,5] for the representation of the coordinates with
fraction part. The Spartan 3E comes with 20 block RAMs each with a size of 18 kbit.
Consequently, with all available block RAM it is only possible to store 50% of our LUTs.
Another option is to use the SRAM for both, saving two raw pictures, two rectified
pictures and the two LUTs. The necessary amount of memory then would sum up to
1485 kbyte. The SRAM used in our design comes with 2197 kbyte of memory, however,
the memory has to be segmented. The word width of the SRAM is 18 bit but one color
pixel has only 16 bit. By ignoring 2 bits or for example using them as parity bits we
already loose 244 kbytes of our SRAM. Still there would be 467 kbyte left for additional
data as for example the feature points of the Harris Detector (see chapter 5). Beside the
shortage of memory the SRAM will be the design’s bottleneck regarding transfer speed.
We already have five devices requesting data from or writting to the SRAM. The cameras
have to write the raw images to the SRAM. When the pictures have been written four
pixels for every undistorted pixel need to be loaded in order to perform the interpolation.
The rectified images need to be written again into the SRAM to make them available
for the CPU. The feature coordinates resulting from the Harris Corner Detector have to
be saved as well. Finally the rectified pictures together with the feature list need to be
read from the CPU. Because of this huge amount of traffic and the shortage of memory
it should be avoided to additionally store the four LUTs inside the SRAM and read them
continuously.
Another option presented in [17] is to reduce the traffic by not saving the images to the
SRAM and instead processing them directly in stream. For this at least n lines have to
be buffered with the internal block RAM where n equals the biggest y-offset between a

29

4 Rectification in Hardware

coordinate at the left and the right side of the image. For the current setup of the cameras
n equals 20 lines what would exactly fit into the available block RAM but only for one
camera. Moreover a lot of block RAM will be necessary for the later processing of the
rectified images so this is again not an option for the EyeBot M6.
To avoid the storage of the LUTs a further alternative has been considered. Without a
LUT the coordinates have to be calculated what is time consuming. However, the time
needed for the calculation of the next coordinates can be used to load meanwhile the four
pixels from the SRAM and interpolate the rectified pixel. If the calculation is fast enough
no time is lost at all and there is no need for additional SRAM-accesses for loading
the coordinates as in [31]. One drawback with this approach is that the calculations
done inside the Rectification Toolbox (see appendix A) to gain the mappings are far too
complex to realize them inside the FPGA. As described in section 3.3 polynomials of the
sixth degree are evaluated inside the distortion model. In addition a normalization of the
coordinates is needed which comes hand in hand with implementing a fixed-point division
inside the FPGA. To avoid the complexity of these calculations I analyzed the possibilities
to use a 2D regression polynomial to approximate the produced mappings.
Based on the MATLAB regression function, 2D polynomials of second, third and fourth
degree have been evaluated. For both coordinates x and y and for each side a polynomial
is regressed (here a polynomial of third degree):

xsrc = p1 + p2x+ p3y + p4x
2 + p5y

2 + p6xy + p7x
3 + p8y

3 + p9x
2y + p10xy

2 (4.1)

ysrc = q1 + q2x+ q3y + q4x
2 + q5y

2 + q6xy + q7x
3 + q8y

3 + q9x
2y + q10xy

2

In order to judge about the quality of the regressed polynomials we need to measure the
error produced by the approximation. As an error measure the mean distance in x, y
and the spatial distance r between the real mapping given by the developed Rectification
Toolbox and the mapping resulting from the regressed polynomials are used. Additionally
the difference between the mappings has been visualized similar to figure 3.4 to locate
the errors. The arrows in such a figure resemble the deviation in 2D. The length of the
vector is proportional to the distance. Furthermore the figures are separated with the
help of contours to be able to localize the error easier. For basic visual inspection the
mappings were finally applied to the images.
As it can be concluded from table 4.1 and figure 4.1(b) a polynomial of second degree is
definitely not good enough to regress the rectification formula. The radial error is still
not compressed and can be observed by simply looking at resulting ”rectified” pictures.
In addition it can be concluded from the results that polynomials of third and fourth
degree produce good results. Only at the corners we find a projection error bigger than
one pixel. Not the whole rectified image can be used for that reason, but the lost area is
still within acceptable range. The increase of complexity by implementing a polynomial
of fourth degree instead of third degree in hardware is not justified by the small difference
of the produced error.

30

type of polynomial
residuals mean var

x y r x y r x y r

none 12.90 20.32 25.83 5.97 9.03 11.22 22.78 55.14 47.85
O(p(x,y)) = 2 8.14 9.61 14.10 1.90 1.72 2.77 5.54 4.94 2.79
O(p(x,y)) = 3 1.40 3.51 5.22 0.25 0.22 0.36 0.11 0.09 0.08
O(p(x,y)) = 4 1.81 1.76 2.48 0.18 0.16 0.25 0.05 0.04 0.03

Table 4.1: Evaluation of regression polynomials

(a) No Correction (b) Correction with polynomial of second degree

(c) Correction with polynomial of third degree (d) Correction with polynomial of fourth degree

Figure 4.1: Remaining Error after Rectification with regressed Polynomials

Concluding from these results polynomials of third degree will be used to calculate the
source coordinates within the FPGA. A function for the regression of the polynomials
became therefore part of the Rectification Toolbox. Now the discrete hardware imple-
mentation of the rectification system will be described. First of all an overview is presented
in order to go more and more into the implementation details afterwards.

31

4 Rectification in Hardware

4.1 The Rectification System - Overview

Image Stream

GeneratorCoordinate

Warper

SRAM-Controller

X_L,Y_L,X_R,Y_R

a
d

d
re

s
s
_

x

d
a

ta

read_ack

coord_valid

d
a

ta
_

v
a

lid

a
d

re
s
s
_
v
a

lid

In-Stream

Interpolation
a

d
d

re
s
s
_

y

out_of_range_L

out_of_range_R

N
L

R
_

c
a

m

dx

Controller

(FSM)

cnt
dy

NLR_cam

data_valid

pixel

Fetch and Interpolation Unit

data_out

eol_out

eof_out

data_valid_out

Rectification

Unit

s
ta

rt

c
lk

rst rst rst

rs
t

cam_select_out

Figure 4.2: Overview of Rectification System

Figure 4.2 gives an overview of the developed rectification system. It can be divided into
three subsystems: the coordinate warper, the fetch and interpolation unit and the image
stream generator. A start signal notifies the rectification unit that two whole images were
saved inside the SRAM and a new rectification cycle can be started again. The coordinate
warper is the functional heart of the system.

4.2 Coordinate Warper

coord_valid

out_of_range

out_of_range_R

coord_out

select_coord

Y_R

X_R

Y_L

Y_R

X_R

Y_L

X_LX_L

R1 R2

oorR

oorL

counter

select_coord

x

y

Controller

(FSM) out_of_range_L

X_L,Y_L,X_R,Y_R

read_ack

Coordinate Warper

Calculation Unit

oorR

oorL

Figure 4.3: Coordinate Warper Overview

The coordinate warper consists of a calculation unit which computes four polynomials
and a control unit (see figure 4.3). In order to understand how the data flow has to be
controlled by the control unit we first have a look into the calculation unit and how the
coordinates are generated there.

32

4.2 Coordinate Warper

4.2.1 Calculation Unit

Inside the calculation unit four polynomials of third degree have to be evaluated. If such
a polynomial calculation is implemented straight forward 20 multipliers and 9 adders
are necessary for each polynomial. By rewriting the polynomial equation the number of
multipliers can be reduced to 9 each.

xsrc = p1 + y(p3 + p6x+ y(p5 + p8y + p10x) + x(p2 + x(p4 + p7x+ p9y))

Figure 4.4 shows this equation implemented in Simulink.

x

x

+

+

+

x

x

+

+

+

1p

2p

3p

4p

6p

7p

8p

10p

9p

5p

+

+

+

+

+

x

x

x

+

+

+

x

x

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q5

Q8

Q10

Q4

Q7

Q9

Q3

Q6

Q2

Q1

Q24

Q22

Q23

Q20

Q21

X

Y

out

Figure 4.4: Implementation of Polynomial of third Degree

As described in chapter 2 a floating point representation cannot be used inside the FPGA
and the data needs to be converted to the fixed point representation by quantization. The
positions where quantization has to happen inside the FPGA are marked with red squares
and numbered in figure 4.4. Altogether there are 24 positions plus 2 quantizers for the
incoming coordinates x and y what is, combined with the highly non-linear behavior of
the quantization error, definitely too much to be solved by hand. This is the reason why
the FFC of the coordinate warper has been automated as described in section 2.5. For
the polynomials left-X, left-Y, right-X and right-Y the automated floating to fixed point
conversion produced the quantizer settings listed in table A.2.

Once the FFC is done the calculations can be coded. However, the calculation is too
complex for being done within one clock cycle inside the FPGA. The logical paths would

33

4 Rectification in Hardware

be much too long and thus the maximum frequency would drop drastically. So first of
all we have to figure out how many register stages we are allowed to place inside the
calculation unit in order to reduce the logical paths but meanwhile keep the maximum
throughput of the rectification. This maximum possible throughput is limited by the
speed of the SRAM. For two coordinate pairs (xl, yl), (xr, yr) we have to fetch eight pixels
from the SRAM, because we need four source pixels to interpolate one destination pixel
for each side. For each pixel we will need one clock cycle at best if no other device is
communicating with the SRAM. Thus we will have at least eight clock cycles of time
until two valid coordinate pairs have to be available at the output if we do not want
to slow down the whole system with the calculations. If we place a register after each
arithmetic operation inside the four polynomial solvers we would get six stages in each,
which does not violate our maximum time of eight clock cycles. The implementation of
one calculation unit with six registers in between returned a maximum clock rate above
the 100 MHz which is as well the theoretical maximum SRAM rate. So this seems to be
an appropriate solution.
However, things change if we implement the necessary four polynomial calculators. Due
to the fact that we only have 20 hardware multipliers available inside the Spartan 3E the
synthesize tool implements the multipliers with our available resources. Thus the con-
sumption of resources increases rapidly as shown in table 4.2. Furthermore the maximum
speed drops to 67.7 MHz because the generated multipliers are much slower than the
hardware multipliers. Therefore the design has to be reconsidered.

Resource used out of percent
Number of Slices 2083 4656 44
Number of Slice FFs 1218 9312 13
Number of Multipliers 20 20 100
Max Frequency 67.751MHz

Table 4.2: Resource Consumption of four Calculation Units

At that point we get four coordinates after every six clock cycles. During the six clock
cycles no valuable data lies at the output of our four calculation units. The idea is now
to merge the units into one by fully pipelining the signals. With a pipelined design
we can get a valid coordinate every clock cycle once the pipeline is filled, so after four
clock cycles a full set of coordinates would be available. Although this sounds promising
another problem occurs. The calculations are optimized with the FFC to use the small-
est possible bit width for the calculations in order to minimize resource consumptions.
This optimization is done for each polynomial itself. As you can tell from table A.2 the
resulting bit representations are definitely not the same. The idea is now to merge all
four quantizers by determining the minimum common bit width and largest necessary
fraction length for each quantizer. For this process the Rectification Toolbox has been
extended with the function merge_quantizers() which gets any number of quantizer
lists and returns a single list with common minimum quantizer settings. The output
of this function, the merged quantizer settings of our four calculation units, is as well

34

4.2 Coordinate Warper

listed in table A.2. The increase of the bit width is still in an acceptable range because
the inputs of the multipliers are still below 18 bit what is the maximum input width
of the hardware multipliers of the Spartan 3E. Otherwise Xilinx ISE would connect two
multipliers in a row resulting in a decreased maximum clock rate again. Based on this
thoughts a fully pipelined and merged calculation unit was developed.

x

x

+

+

+

x

x

+

+

+

1p

2p

3p

4p

6p

7p

10p

9p

5p

+

+

+

+

+

x

x

X

Y

data

select_coord

S

t

a

g

e

2

S

t

a

g

e

1

S

t

a

g

e

3

S

t

a

g

e

4

S

t

a

g

e

5

S

t

a

g

e

6

S

t

a

g

e

7

8p

x

x

x

+

+

+

>

out_of_range

select_coord

Figure 4.5: Fully pipelined Coordinate Calculation

Figure 4.5 shows the resulting merged calculation unit and the introduced registers. There
are several signals which have to be pipelined and additionally created if we want to merge
the four calculation units to form one. The signals which need to be pipelined are the
inputs x, y and select coord and the results of the calculation steps. Additionally we need
multiplexers in every stage where coefficients are involved into an operation because they
obviously differ from polynomial to polynomial.
To control these multiplexers the signal select coord has been introduced telling every
stage which of the four polynomials it is actually calculating at the moment. This signal
is output with the polynomial result after it has gone through the pipeline and is encoded
as shown in table 4.3. A global enable can furthermore freeze the whole pipeline if set to
low and so stop the coordinate output. This is necessary if the SRAM fetches are delayed
and the coordinates cannot be read fast enough.
At the output of the calculation unit and before the coordinate is reduced to the necessary
accuracy for the interpolation a comparison is necessary to detect whether the coordinate
lies within the image or not. This is important to be done at this point because the
values could be falsified due to quantization. There are two comparisons which have
to be done. The first one checks if the coordinate is positive. The second comparator
checks if the coordinate is still within the image range. A multiplexer switches the in-

35

4 Rectification in Hardware

put for the comparator between IMG WIDTH-2 and IMG HEIGHT-2 controlled by the
select coord signal. Two has to be subtracted because first of all the coordinates have
the range [0;IMG WIDTH-1] or [0;IMG HEIGHT-1] and furthermore we need to be able
to load the pixel of the current location and the position + 1 in order to perform the
interpolation. If the coordinate lies within the image the output signal out of range is set
to zero respectively to one. The validity of the coordinate is certified with the third bit
of the select coord signal.

enable LR XY coordinate
0 0 0 -
1 0 0 left X
1 0 1 left Y
1 1 0 right X
1 1 1 right Y

Table 4.3: Encoding of the select coord signal

4.2.2 Automatic Package Generation

Due to the fact that we automatically determine the quantizer settings it would be helpful
if we did not have to reprogram the calculation unit every time the camera arrangement is
changed. For the reprogramming the user would have to go deep into the calculation code
in order to make the changes and adopt the polynomials for the new configuration. To
avoid this a MATLAB function create_stereo_cam_package() has been written which
automatically creates a VHDL package out of the determined quantizer settings. Inside
this package subtypes and constants are defined for every quantizer. Additionally we need
the information about fraction and word length saved as a constant.

. . .
−− q 18=s f i x [1 7 , 7]
constant q_18_wl : integer := 17 ;
constant q_18_fl : integer := 7 ;
subtype type_q_18 i s signed (16 downto 0) ; −− s f i x [1 7 , 7]
. . .

Inside the calculation unit the resulting signals of the calculation steps are based on these
subtypes. In order to calculate with these signals the programmed fixed point library is
used. The constants q x wl and q x fl are then used as parameter values.

. . .
s i g n a l q_18 : type_q_18 ;
. . .
q_18 <= mul_fp (q_22 , q_22_fl , q_26_delay4 , q_26_fl , q_18_wl , q_18_fl) ;
. . .

36

4.2 Coordinate Warper

Because functions are overloaded and exist for every combination of signed and unsigned
the user does not have to care about the function calls anymore. The synthesize tool
selects the matching function automatically and resolves the types without creating any
overhead. Additionally the package includes the coefficient settings for every combination
X left, Y left, X right and Y right defined as constants.

−− Co e f f i c i e n t s LEFT X
constant q_1_L_X_val : type_q_1 := ”11101110011” ; −− s f i x [1 1 , 7]
constant q_2_L_X_val : type_q_2 := ”0101110101111010” ; −− s f i x [1 6 , 1 5]
. . .

With this package and the fixed point package including all necessary functions it
is possible to change the whole polynomial calculations without any deeper under-
standing of the code. The only thing which has to be done is to call the function
create_stereo_cam_package() in MATLAB with the quantizer settings and include
the generated VHDL package in the calculation unit with one single line of code.

use work . stereo_calibration_pkg . a l l ;

Figure 4.6: Correction with quantized polynomial of third degree

The still remaining error as already plotted for floating point accuracy in figure 4.1(c)
is now plotted in figure 4.6 including the additional quantization error. As you can
conclude from the small difference the automated FFC of the Rectification Toolbox did
a good job. For this pipelined and highly adaptable calculation unit a control unit has
been programmed which will be described next.

4.2.3 Coordinate Warper Control Unit

In order to put the calculation unit into operation we first need to generate the input
signals. There are two counters running for the x and y values representing the position

37

4 Rectification in Hardware

empty

R1full='0'; R2full='0'

enable='1'

r2full

R1full='0'; R2full='1'

enable='1'

r12full

R1full='1'; R2full='1'

enable='0'

select_coord_out=111

[copy R1->R2]

select_coord_out=111 &

read_ack='0'

select_coord_out=111 &

read_ack='1'

[copy R1->R2]

select_coord_out /=111 &

read_ack='1'

read_ack='1'

[copy R1->R2]

Figure 4.7: FSM inside the Coordinate Warper

in our rectified image. The x value is two bits wider than the necessary nine bit (for an
image width of 352 pixel). The lower two bits are used for the select coord signal described
above. The x-counter is increased with every clock cycle but only if the pipeline is enabled.
y is incremented if the upper nine bits of x representing the pixel location are equal to
the defined IMG WIDTH.
At the output of the calculation unit the calculated coordinates are multiplexed into the
according registers (see figure 4.3). This multiplexing is controlled by the select coord out
signal which also notifies if the coordinate is valid. The out of range signal has to be
multiplexed as well but is divided only into left or right frame. Once all four registers
X-L, Y-L, X-R, Y-R are filled with valid data the attached SRAM fetch and interpolation
unit (FAI) is notified with the signal coord valid. As soon as the coordinates are read the
FAI pulls the read ack signal high for one clock cycle in order to notify the coordinate
warper that the output registers are available again for writing. The FAI starts now to
process these two coordinates and interpolates two pixels, one for the left and the other
one for the right coordinate. Meanwhile the Coordinate Warper already calculates new
coordinates and hopefully finishes before the FAI can request new ones.
Our pipeline is theoretically capable of producing one valid coordinate part every clock
cycle. Thus a valid set of coordinate pairs (Pl, Pr) can be calculated every four clock
cycles. Yet, in the timing diagram in figure 4.8 it can be recognized that with a simple
one-register output buffer the enable signal for the calculation unit has to be pulled to
low as soon as a valid set of (Pl, Pr) is inside the output register. We definitely cannot
rely on the FAI to be able to request coordinates as soon as they are available because
the FAI unit highly depends on SRAM request times.
We have to ensure that the data in the registers is not overwritten so we have to disable
the pipeline. This disabling of the calculation unit results in a pipeline stall of two clock
cycles if the coordinates are read with maximum available speed. To be able to make use

38

4.2 Coordinate Warper

of the pipeline’s maximum speed double buffering has been introduced. Valid data is read
from the second level of registers R2 while the pipeline is allowed to write into the first
level R1. With this double buffering technique the pipeline enable signal can stay high
and it is possible for the FAI to read coordinate pairs every four clock cycles as you can
see in figure 4.8.

coord_valid/R2full

read_ack

enable cu

coord_valid/R2full

read_ack

enable cu

clk

Single output buffer

Double output buffer

Figure 4.8: Comparison of Single and Double Buffering the Calculation Output

To control the output flow and the double buffering the state machine shown in figure
4.7 has been developed. There are three different states representing the filling status
of the double buffer registers R1 and R2. The status is saved in the signals r1full and
r2full. If r2full is high valid data is available, consequently this signal represents as well
the coord valid signal. If r1full and r2full are both high the double buffer is completely
filled and no further data must be output by the calculation unit. Therefore the negated
r1full signal resembles the pipeline enable signal.
The filling status of the coordinate registers is captured with the help of the se-
lect coord out signal. If this signal equals binary 111 we know that the coordinate
Y-R, which is the last of the four, lies at the output and the register level one is com-
pletely filled. Thus the data can be copied to R2 and coord valid switches to high. This,
however, can only happen if we are in the state empty or R2full and receive a read ack at
the same time. In both cases we will end up in the state R2full. If R2 is already full and
read ack is low the data has to stay in R1 and the pipeline is disabled until we receive a
read ack from the SRAM Fetch and Interpolation Unit. With an incoming read ack the
data of R1 is copied to R2 and the pipeline can be enabled again.

39

4 Rectification in Hardware

4.3 SRAM Fetch and Interpolation Unit

X_L,Y_L,X_R,Y_R

a
d

d
re

s
s
_

x

d
a

ta

read_ack

coord_valid

d
a

ta
_

v
a

lid

a
d

re
s
s
_

v
a

lid

a
d

d
re

s
s
_

y

out_of_range_L

out_of_range_R

N
L

R
_

c
a

m

SRAM Fetch and

Interpolation Unit

Counter

cnt

rst_calc
cnt

In-Stream

Interpolation
dx

dy
Controller

(FSM)

data_valid_out

NLR_out
start_rectification

data_valid_out

NLR_out

data_out

to SRAM from SRAM

Figure 4.9: Fetch and Interpolation Unit Overview

The SRAM Fetch and Interpolation Unit (FAI) is the heart of the Rectification System.
It reads the coordinates from the Coordinate Warper, requests if necessary four pixels for
each coordinate Pl and Pr from the SRAM and interpolates the received pixels. Figure
4.10 shows the state machine controlling the whole system.

4.3.1 Controller

When the system starts up it waits until it receives a start rectification signal. This signal
indicates e.g. the fact that two images which can be rectified are inside the SRAM and
therefore causes the FAI to start working. First of all we need to wait for valid coordinates
from the Coordinate Warper which are signaled with the coord valid signal. Once the
signal is high the values are stored in registers, a read ack is sent and the fetching of the
necessary pixels from the SRAM is initiated.

40

4.3 SRAM Fetch and Interpolation Unit

 Process Left/Right Side

wait for

coord_valid

Process Left

Side
Process Right

Side

wait for start

rectification

start

rectification = '1'

coord_valid='1'

& last_coord='0'

coord_valid='0'

& last_coord='0'
requested

blank

request
cnt=4

oor='1'

oor='0'

oor = out_of_range

last_coord='1'

coord_valid = '1'

Figure 4.10: FSM of Fetch and Interpolation Unit

In order to calculate one new pixel four pixels have to be loaded from the SRAM and
interpolated but only if the four pixels are all inside the image so the out of range signal is
low. In the request state (left or right) of the FSM as shown in figure 4.10 the coordinate
(x, y) and a the signal LR cam representing the selection left or right are transfered to
the SRAM controller with a high address valid signal. Additionally the counter which is
responsible for counting the incoming pixels from the SRAM is set to zero. The SRAM
sends four pixels with the coordinates (x, y), (x + 1, y), (x, y + 1) and (x + 1, y + 1) to
the FAI as soon as possible. Valid incoming data is signaled by a high SRAM data valid
signal which is as well used to increase our counter. Once the counter value has reached
four we know that all necessary pixels for the current coordinate are received from the
SRAM and we can request the next pixels.
If the out of range signal is high no pixels need to be requested and a black pixel is
output. When pixels of the left and right side are calculated for the current coordinate
the next state depends on the coord valid signal. If it is high already the state machine
reads immediately the coordinates, sets read ack to high and jumps directly into the
process left side state. If coord valid is still low the rectification system has to wait for
the next valid coordinate.
The incoming pixels have to be interpolated as already mentioned before the data valid out
signal of the FAI unit can be set. This is done directly inside the pixel stream coming
from the SRAM after a coordinate has been requested. Therefore the SRAM Controller
will be programmed in a way that it sends the four pixels directly in a row [10].

41

4 Rectification in Hardware

4.3.2 In-Stream Interpolation

For bilinear interpolation as explained in chapter 3.6 we need to calculate the following
equation.

Irect(xdest, ydest) = dxdyI (xsrc + 1, ysrc + 1)

+ dx(1− dy)I (xsrc, ysrc + 1)

+ dx(1− dy)I (xsrc + 1, ysrc)

+ (1− dx)(1− dy)I (xsrc, ysrc)

M

U

X

3

dx

dy

M

U

X

2

M

U

X

1

M

U

X

4

X

1 - dx

1 - dy

-

+

mul

out X

result

1

cnt(0) cnt(0)

cnt(1)

cnt(0)

0

1

1

0

1

0

1

0

Interpolation Unit

Weights:

cnt='00': mul_out = dx dy

cnt='01': mul_out = dx (1-dy)

cnt='10': mul_out = (1-dx) dy

cnt='11': mul_out = (1-dx) (1-dy)

+ +

Weighting Unit

cnt

pixel_in

pixel_out

Figure 4.11: Interpolation Unit

In order to interpolate now we first need to calculate the weighting factors out of the
fraction part (dx,dy) of the current coordinate. The weighting factors we need are dxdy,
dx(1 − dy), dy(1 − dy) and (1 − dx)(1 − dy). The factors are calculated in hardware
one after the other to use as few resources as possible (see figure 4.11). There are four
multiplexers which are controlled by the actual pixel count. Multiplexer 3 and 4 take
care that the (1 − dx) and (1 − dy) terms are calculated successively and put into the
corresponding registers. Multiplexer 1 and 2 select from the registers to generate the right
input for the multiplier. The order of incoming pixels is chosen in a way that the pixel
P (xsrc + 1, ysrc + 1) is send at first by the SRAM because this one needs to be multiplied
with dxdy which can be calculated within one clock cycle (the first one). The order of

42

4.4 Summary

the following pixels has to be the same as shown in figure 4.11.
The output of the weighting unit has to be registered because otherwise the calculation
paths would get too long and the maximum frequency would drop again. To be able
to multiply the registered and thus delayed weighting coefficients with the corresponding
pixel the incoming pixels are delayed as well. These registers only produce latency and
no loss in time.
The registered pixels and coefficients are then put into a multiply and accumulate unit
where the pixel values are weighted by multiplying with the corresponding weighting
factor. Afterwards the weighted pixels are accumulated. Once all four pixels are summed
the value stored in the output register contains our valid interpolated pixel. After the
fourth pixel has been received the interpolation unit needs two additional clock cycles
because of the delays in between. Therefore the signals NLR data out and data valid out
controlled by the FSM need to be delayed as well. The multiply and accumulate unit is
reset by the described FSM after the data has been sent to the Image Stream Converter.
The Image Stream Converter is a simple module that creates with the help of counters a
so called Image Stream. The usage and details about the Image Stream will be described
in section 6.1.

4.4 Summary

The fact that a rectification inside a Spartan 3E is highly limited by the available mem-
ory, multipliers and LUTs of the FPGA made it necessary to share available resources
whereever possible if any further image processing has to be done after the rectification
inside the FPGA. The described rectifier is the result of economical programming and fi-
nally allocates just a fraction of the primarily estimated resources. The total consumption
can be seen in table 4.4. The resource consumption regarding used LUTs is the result of
the Post PAR (Place & Route) which gives the resource consumption sorted by modules.

Unit MUL in % LUTs in %

Calculation Unit 9 45 262 2.81
Coordinate Warper 0 0 99 1.06
FAI 2 10 23 0.25
Total 11 55 384 4.12

Table 4.4: Resource Consumption of the Rectification Unit

In comparison the design of [17] would allocate already 17.9 % of LUTs and 100% of block
RAM for a single camera in stream rectification on our Spartan 3E. A similar amount of
occupied LUTs would result out of the implementation presented in [31]. A performance
measurement of the given system unfortunately can not be presented at this point because
the SRAM interface was not ready to use when this thesis was handed over. Therefore a
Stereo Bitmap Package has been written which allows to load bitmaps into Modelsim and
use these as input of the rectification algorithm. A simple model of the SRAM Controller

43

4 Rectification in Hardware

has been designed which simulates random delays resembling the time until the rectifi-
cation unit wins the arbitration. As already mentioned, five devices have to access the
SRAM thus an arbitration unit has been planned in the thesis of [10] which guarantees
the candidate with highest priority access to the SRAM. A detailed description of a frame
rate estimation is given in chapter 7.
Figure 4.12 presents rectified images in comparison to the unrectified versions. The dis-
tortion can be seen especially at the disformation of the chessboard close to the corner
which is compensated in the rectified picture. To visualize the misalignment and its com-
pensation red horizontal lines are inserted into the images. It is easy to recognize in the
rectified images that they are row aligned and ready for further image processing.

(a) Original Image from the Left Camera (b) Original Image from the Right Camera

(c) Rectified Image from the Left Camera (d) Rectified Image from the Right Camera

Figure 4.12: Images before and after the Rectification

44

5 The Harris Corner Detector

5.1 Disparity Calculation

Once our images are rectified we need to figure out which pixel p of one image belongs
to pixel p′ in the other image in order to calculate the depth of this point. Due to
rectification we already know that the corresponding pixel p′ has to be in the same row.
To calculate the world coordinates of p we need to determine the disparity between p
and p′ (see chapter 3) thus we have to locate the pixel p′ inside the row. Once we have
determined the disparity in pixels we can create a so called disparity map from which
we can conclude the world coordinates of the mapped pixels. According to [21] we can
distinguish two kinds of disparity maps:

� Dense disparity maps result out of an area-based algorithm

� Sparse disparity maps as a result of a feature based algorithm

A dense disparity map can be obtained by area-based algorithms. According to the
ordering constraint we can assume that the neighborhood of a pixel is constant over time
and space. Therefore a window W around our point p is taken and the pixel intensities
(grayscale or rgb) are correlated with a window W ′ placed in the second image (in the
same row in case of rectified images). The ordering constraint tells us now that we will
get the highest correlation if window W ′ is placed above the correlating point p′. Thus we
have to move the window W ′ and determine the correlation between W and W ′ for every
position in the row in order to find the position with the highest correlation. Possible
correlation functions will be discussed in section 7.3. The problem of this algorithm is
quite obvious: it will consume a lot of CPU time depending on the image size, the search
radius, the correlation function and especially on the amount of points which have to be
found in the second picture. This kind of brute force approach of course can be improved
e.g. by dynamic programming, but the computation will still consume too much time as
shown in chapter 7.
A hardware accelerated dense disparty map calculation requires much more resources
than available inside the FPGA. The system presented in [9] allocates three times the
amount of the logic cells we have in our Spartan 3E. Additionally the amount of block
RAM exceeds the available 20 by more than 100 percent. Concluding from this and other
available papers [24] the idea of implementing a dense disparity system on the Spartan
3E has been dropped and another solution has been considered.
A good way to improve the area-based method is the reduction of search space by gaining
knowledge about the two pictures. One method to drastically reduce the search space is

45

5 The Harris Corner Detector

to find features in both images and try to match only those features. This feature based
method will result in a sparse disparity map meaning that we only can determine the
world coordinates for the correlated features. This might appear to be a big drawback.
However, if we have a look at the available resources of our EyeBot M6 as described in
chapter 1.1 and done estimations, it is obvious that we have to accept a compromise.

A feature is defined as a distinctive point in an image which is likely to be found in the
other image. At this point the question arises what such a feature might look like. Imagine
two pictures of the same scene lying in front of you and your task is to pick points in one
picture which you can easily recognize in the other one. You probably will not choose a
wall or another plane area because there is no possibility to tell where a specific point
on the wall of one picture can be found in the other picture. There will be the nearly
the same problem if you choose a point on an edge to find in the second image. You will
recognize the edge itself in the other picture but you will not be able to tell where exactly
on this edge the point you picked in the first image is located. With regularly repeated
patterns you will end up with the same problem. These difficulties are known as white
wall and aperture problem.
The solution is quite simple: you have to pick a corner with unique properties which
you can describe and compare with other found corners of the second image and finally
match them because of their unique description or area-based correlation results. There
are plenty of algorithms for corner detection, varying in complexity and quality. Based
on evaluation results of the paper [8] the Harris Corner Detector [12] (as well known as
Plessy Point Detector) which is one of the most popular algorithms for corner detection
has been chosen. Following reasons speak for the Harris Corner Detector [16]:

� The operator is simple and suitable for automatic feature detection.

� The detected points are well proportioned and valid.

� The quantity of detected points can be determined by the users according to their
requirements.

� The detected points are invariant to scale and rotation, and the operator is stable.

However, the main disadvantage of the algorithm is that the accuracy can only reach one
pixel. In the following the Harris Corner Detector will be explained to afterwards step
into the details of the hardware implementation of this algorithm.

5.2 The Harris Corner Detector

The Harris Corner Detector is based on the thoughts of Movarec [25] which are explained
briefly. Movarec starts with a window centered at the pixel p(x, y) and moves this window
in the neighborhood of p. The changes are measured with the help of the auto-correlation
function

46

5.2 The Harris Corner Detector

f(x, y) =
∑

xk,yk∈W

(
I(xk, yk)− I(xk + ∆x, yk + ∆y

)2

(5.1)

where (xk, yk) are points within the window W centered at point p(x, y). Movarec claims
that the changes behave the following way:

� Small changes will appear in all directions for a constant intensity in the neighbor-
hood, representing e.g. a wall, floor etc. (1)

� Small changes in only one direction can be found for an edge whereas the direction
of nearly no changes resembles the direction of the edge (2)

� Big changes in all directions will be observed for a corner (3)

Graphic 5.1 illustrates these three cases.

1
2

3

1) Wall

2) Edge

3) Corner

Figure 5.1: Examples for Wall, Edge and Corner [28]

This algorithm is computationally intensive because the window must be moved in all
directions, and for every move the changes have to be calculated. To avoid the integration
over shifts in all directions Harris introduced the auto-correlation matrix, which is derived
from equation 5.1 in the following way:

47

5 The Harris Corner Detector

Using the Taylor expansion I(xk + ∆x, yk + ∆y) can be rewritten as

I(xk + ∆x, yk + ∆y) ≈ I(xk, yk) +
(
Ix(xk, yk) Iy(xk, yk)

)(∆x

∆y

)
, (5.2)

where Ix and Iy are the derivatives of the image in the corresponding directions. If we
now combine 5.1 and 5.2 we obtain

f(x, y) =
∑

xk,yk∈W

(
−
(
Ix(xk, yk) Iy(xk, yk)

)(∆x

∆y

))2

=
(

∆x ∆y
)

∑
xk,yk∈W

I2
x

∑
xk,yk∈W

IyIy∑
xk,yk∈W

IxIy
∑

xk,yk∈W

I2
y

(∆x
∆y

)

=
(

∆x ∆y
)

G′(x, y)
(∆x

∆y

)
,

where G′(x, y) is the auto-correlation matrix. To reduce the localization error of the
corner Harris furthermore recommended the usage of a Gaussian window instead of simply
summing the values within the window W . That results in the weighted auto-correlation
matrix

G(x, y) =

∑

xk,yk∈W

wkI
2
x

∑
xk,yk∈W

wkIyIy∑
xk,yk∈W

wkIxIy
∑

xk,yk∈W

wkI
2
y

The eigenvalues λ1 and λ2 of this matrix describe the changes inside our window similar
to the moving window of Movarec:

� Small eigenvalues of G(x, y) correspond with little changes in all directions and
consequently with a plain texture. (1)

� One big eigenvalue tells us that we found an edge within the window. (2)

� A corner is described by two big eigenvalues. (3)

According to these assumptions the eigenvalue space can be ideally divided into a flat,
edge and corner area as shown in figure 5.2(a). However, the direct calculation of the
eigenvalues λ1 and λ2 is computationally intensive and therefore Harris used the following
formula to derive the so-called cornerness

48

5.2 The Harris Corner Detector

(a) Ideal Division of the Cornerness Space; k =
0.18

(b) Division of the Cornerness Space by Thresh-
olding; k = 0.08

Figure 5.2: Harris Equicornerness Lines

c(x, y) = Det(G(x, y))− k · trace2(G(x, y))

= λ1λ2 − k ·
(
λ1 + λ2

)2

= λ1λ2

(
1− 2k

)
− k
(
λ1

2 + λ2
2
) (5.3)

The Harris Cornerness c(x, y) is plotted in figure 5.2(b) with the resulting equicornerness
lines in the shape of parabolics. These lines approximate the ideal division of the eigen-
value space (marked areas).
The shape of the equicornerness lines can be changed with the parameter k in equation
5.3. The first term of the cornerness equation which is the product of the eigenvalues,
is big if both eigenvalues are of medium magnitude or if one of the eigenvalues is really
big. That will be the case if the window is above an edge. To avoid now that this case is
declared as a corner the squares of the eigenvalues, each weighted by k, are subtracted.
This ensures that a single but very large eigenvalue is not detected as a corner though it
is an edge. The bigger the k the more the eigenvalues have to be of the same range and
the less edges will be rated as corners. The influence of k on our equicornerness lines can
as well be observed in figures 5.2(a) and 5.2(b). The bigger k is the more the parabolics
get squeezed. To determine now if the cornerness of a point inside our picture is actually
a corner or not we need to apply a threshold.

49

5 The Harris Corner Detector

5.3 Thresholding

(a) Non-Maximum Suppression of Size 1× 1 (b) Non-Maximum Suppression of Size 5× 5

Figure 5.3: Harris Results with Global Thresholding

Thresholding the cornerness at the end of the algorithm corresponds to the selection of
one of the equicornerness lines to divide the area into a corner and non-corner space (see
figure 5.2(b)). A bigger threshold requires bigger eigenvalues and therefore bigger changes
within our window. Figure 5.3(a) shows the result of simple thresholding. You can see
that this thresholding method will give us a lot of feature-points for a single corner be-
cause there are always a lot of pixels with a high cornerness arranged around the actual
corner. This makes it hard to exactly localize the corner.
The solution considered most of the times is a non-maximum suppression after the corner-
ness calculation. To perform such a suppression a window of a specific size is moved over
the picture. If the center value of the window is the maximum within the whole window
the filter response is exactly this value. Otherwise the filter response will be zero. As a
result only the location with the highest cornerness value within the window which will
correspond best to the real corner location will survive the filtering process. A common
size of the filter is 3×3 or 5×5. After filtering the remaining local maxima are compared
to a threshold and the location is marked as a feature or not. The results of a 5 × 5
non-maximum suppression can be seen in figure 5.4(a).
We will choose our threshold in a way that we get a specific amount of features for every

picture. The problem with the application of a global threshold is the fact that features
will not be distributed smoothly over the picture. If you have a look at figure 5.3(a) you
will recognize that with a global threshold we get a lot of features around the chessboard
and the person’s trousers on the right side but the other areas are lacking of features.
That is because we adapt our threshold to limit the total amount of features and thus
only the strongest features will survive. In order to get smoothly distributed features we
split up the thresholding process by dividing the image into blocks and thresholding each
block on its own. By doing so we can guarantee that we find a certain number of features
for every block. Figure 5.4(b) visualizes the result of this segmented threshold process.

50

5.4 Summary

(a) Pre-Thresholding 1× 1, Non-Maximum Sup-
pression 5× 5

(b) Pre-Thresholding 4× 4, Non-Maximum Sup-
pression 5× 5

Figure 5.4: Harris Results with Pre-Thresholding

5.4 Summary

In summary we need to perform the following steps for Harris Corner Detection:

� Differentiate the input image in direction x and y

� Calculate the Gaussian window over the neighborhood of the current pixel

� Calculate the cornerness according to equation 5.3

� Apply non-maximum suppression

� Segmentate and threshold the data

As a result we will get a set of features for each camera which can be matched in order
to determine the disparities.

Function EyeBot M6 [fps]

Sobel Unseparated 48.45
Sobel Separated 55.6
Window 5x5 26.3
Window Separated 48.7
Cornerness Calculation 58.9
Non-Maximum Suppression 3x3 56.47
Non-Maximum Suppression 5x5 29.37
Harris with NM 5x5 7.37

Table 5.1: Software Performance of the Harris Corner Detector

51

5 The Harris Corner Detector

The Harris Corner Detection has been implemented in software on the EyeBot M6. The
resulting frame rates of the single processes and of the whole Harris are listed in table
5.1. It is conspicuous that the separation of the Sobel does not have the expected effect
of approximately doubling the frame rate as it can be observed for the window function.
One guess is that the maximum frame rate is limited by the speed of the SDRAM accesses
which are necessary to load the image data. The maximum achieved frame rate resulted
in 7.39 fps for a Harris with 5 × 5 non-maximum suppression. This frame rate however
does not include the transfer of the rectified pictures from the FPGA into the SDRAM of
the CPU which would be necessary. The achieved frame rates of course can be increased
a lot by optimized programming but a high amount of CPU time will still be spent for
the image processing. Therefore the Harris Detector has been implemented in hardware.
The implementation details are described in the following chapter.

52

6 Harris in Hardware

I

Harris Corner Detector

xI

yII
Wyx

y

Wyx

yx

Wyx

yx

Wyx

x

I

II

II

I

,

2

,

,

,

2

G
)()(2 GtracekGDet

Derive Window Cornerness Threshold

c

Figure 6.1: Modules of the Harris Corner Detector

Figure 6.1 gives an overview of the implemented Harris Detector. The system is divided
into four subsystems according to the steps described in chapter 5. During my whole
project one important aspect was to achieve a high portability and reusability. Three of
the four modules (sobel, windowing and the non-maximum suppression) are basic image
operations and are therefore widely in use. The reusability of the developed entities is
seen to be very important for further research. Therefore a global interface and protocol
has been developed which connects all of the modules shown above with each other.

6.1 Module Interface

data_out[M..0]

eol_out

eof_out

data_valid_out

data_in[N..0]

eol_in

eof_in

data_valid_in

Image

Processing

Module

In Out

Figure 6.2: Interface of the Image Processing Modules

Four signals are used to control the flow between modules and are used for both, the input
and the output of the modules: data, data valid, end of line and end of frame (see figure
6.2). All signals are defined as active high and are reckoned to be valid at the rising edge

53

6 Harris in Hardware

of clock. First and most important of all the data signal. Its width varies depending on
the operation which has to be performed. The data at the input and output respectively
is valid when the data valid signal is high. A low data valid at the input of a module
notifies the module that the data and the other signals are not valid.
There are two signals which describe the current location inside the image. The end of line
signal (eol) which is sent with the last data word of an image line notifies that with the
next word a new line is started. The end of frame signal (eof) which goes high with the
last data word of the frame notifies the module that the next incoming pixel will be of
the next frame. The end of frame and end of line signal both have to be high at the
same time as shown in the timing diagram 6.3. In order to initiate a reset and bring
the modules into a defined state after the start-up of the FPGA a valid and high eof in
combination with a low eol has to be sent. Once the reset signal is detected it is forwarded
immediately to the following modules to guarantee that all modules are initialized before
the first valid data arrives. This protocol will be referred to in the following as image
stream.

clk

data_valid

eol

eof

data

XX 00 351 XX 00 01 02 351 00 01 02 03 XX 04 05

Figure 6.3: Image Stream Signal Timing

Now that the interface of our modules is defined we will have a look at the modules
themselves. The description of the implemented Harris Corner Detector is split in two
parts. The first part describes the mono camera case whereas the second part describes
how resources can be saved by merging two mono Harris modules to a stereo Harris.

6.2 Mono Harris

The first subsystem of our Harris Detector performs the derivation of the image data.
This derivation is calculated with a 2D convolution as described in the following.

54

6.2 Mono Harris

6.2.1 Convolution in Hardware

Control Unit

clk

eol_in

eof_in

data_in

data_valid_in

+

eol_out

eof_out

data_out

data_valid_out

Convolution Module

+

Arithmetical Unit

Figure 6.4: Convolution module overview

A 2D-convolution of an image I with a filter kernel h is described with the following
formula:

I ′(x, y) = I(x, y) ∗ h(x, y) =
M−1∑
m=0

N−1∑
n=0

I(m,n)h(x−m, y − n),

where M × N describes the size of the kernel. A typical kernel is the Sobel kernel as
shown in figure 6.5.

1 0 -1

-202

-101

1

2

1

-101*=

(a) Separated Sobel in x Direction

1 2 1

000

-1-2-1

1

0

-1

121*=

(b) Separated Sobel in y Direction

Figure 6.5: Sobel Kernel

With this kernel the necessary derivation of I in x or y direction are calculated resulting
in Ix and Iy. The 2D convolution is of the complexity O(M ∗ N) per pixel in regard to
multiplications and additions thus the calculation in software is quite time consuming. In
hardware however the convolution can be performed in stream and parallel as described
in the following.

55

6 Harris in Hardware

Arithmetical Unit

For the derivative of I and therefore the calculation of a pixel Ix(x, y) resulting out of
the convolution with a Sobel kernel (see figure 6.5) nine values of the image are needed
which lie all inside the 3× 3 window centered at the position (x, y). To gain these pixels
at the same time, the incoming pixels need to be delayed. Figure 6.6 illustrates how the
convolution can be performed within our image stream.
However, many important image filtering kernels as the Sobel are separable. For these

Inseparable Convolution 3x3

11h 12h 13h

21h 22h 23h

31h 32h
33h

x x x

x x x

xx x

Line Delay

Line Delay

12a 13a

21a 22a 23a

31a 32a 33a

11a

Figure 6.6: Implementation of an inseparable 3× 3 Filter

kernels formula 6.2.1 can be rewritten the following way.

I ′(x, y) = I(x, y) ∗ h(x, y) (6.1)

= I(x, y) ∗ f(x, y) ∗ g(x, y) (6.2)

=
M−1∑
m=0

(
N−1∑
n=0

I(x− n, y −m) · f(n)

)
· g(m) (6.3)

By doing so the complexity can be decreased from O(M ∗N) to O(M+N) per pixel. The
used Sobel and the later on implemented Gaussian window function are both separable
and therefore implemented as in figure 6.7.

56

6.2 Mono Harris

Separable Convolution 3x3

x

x

xLine Delay

Line Delay

x x x

1f

2f

3f 1g 2g
3g

Figure 6.7: Implementation of a separable 3× 3 Filter

One can tell the advantage of using separable filters directly from the figures. Table 6.1
depicts the decrease of resources needed in numbers for implemented kernels. It has to be
noted that these figures include all the control logic for border treatment and producing
the control signals as well (see section 6.2.1).

Module LUTs (Unseparated) LUTs (Separated)

Sobel 314 259
Window 1241 843

Table 6.1: Resource Consumption of separated and unseparated Convolution

Based on the implementation as shown in figure 6.7 the operation mode is explained in
the following.
A line delay delays the pixels for a whole line of the image, whereas the registers delay
the pixel just by one time step. The incoming pixels are shifted into the first line delay
one by one. As soon as the first one is full the output is enabled and the next line
delay is filled. At every entry point of the line delays and at the output of the last line
delay multipliers are connected. The current incoming pixel, the pixel which is delayed
by one line and the pixel which is delayed by two lines (for a kernel size of 3 × 3) are
then multiplied with the appropriate coefficients of the 1D kernel f and are afterwards
accumulated. This construct so far calculates the inner sum of equation 6.3. In order
to calculate the outer sum the values are registered after the first accumulation and one
by one shifted with every new incoming pixel. The registered values are then multiplied
with the coefficients of kernel g and are finally summed up to the result of the convolution.

57

6 Harris in Hardware

Line Delays

clk

rst

data_valid_in

data_in
data_out

enable_next

line_size

Line Delay

rst

wr_en

>

rd_en
data_counter

dout
din

FIFO

Figure 6.8: Line Delay Module

The line delays have been realized with the internal block RAM of the FPGA. One block
RAM is of the size 18K which can only be divided in a specific way. With a image
resolution of 352× 288 the resulting FIFO has to be at least of the size 352. The physical
depth of the FIFO can be only to the power of 2, therefore we need a depth of 512 words
for our block RAM. One word is consequently at most 36 bit wide and we will need for
each line delay one of the 20 block RAMs.
Xilinx ISE gives the user the possibility to automatically generate FIFOs which access
the block RAM with the FIFO-Generator. This FIFOs are the main-element of the line
delays. As you can see in figure 6.8, signal data valid is used for enabling the line delays
whereas the internal data-counter is used for enabling the data output and enabling the
next module. The filling status signals offered by the Xilinx FIFO Generator are not used
due to a strange reset and overflow behavior. Instead the internal counter is compared to
a fixed value, the line width. Once the line delay is full and additional data is coming in, it
acts like a shift register and the pixel which entered the FIFO at first leaves the line delay
with a high enable next signal. The FIFO is implemented as a First Word Fall Trough
FIFO meaning, that the data already lies at the output before the read signal rises at
the input of the FIFO. Without doing so we would have to introduce an additional delay
of one clock cycle. After an end of frame signal is received the data inside the FIFOs is
no longer needed because valid data can not be calculated anymore (see section 6.2.1).
Therefore the eof signal is used as a synchronous reset signal. It has to be noted that for
the generation of the FIFOs the FIFO Generator v4.4 was used after a bug in v4.3 was
found during my development, which does not allow to reset the First Word Fall Through
FIFOs completely.

58

6.2 Mono Harris

?? ? ?

?

?calculated received unknown

?? ? ?

(0,0)
(0,0)

(351,287)

Figure 6.9: Movement of the Window inside the Image

Border Treatment

A problem of the convolution is that valid data can only be produced if the filter window
lies above valid values as shown in figure 6.9. According to this graphic the data at the
output of our n × n convolution unit becomes valid after n − 1 lines and n pixels have
entered the unit. This however is only true if the filtering window does not touch the
borders of our image. There are three different possibilities of how to treat the borders
of an image.
One method which is often applied in software is to mirror the borders. With this method
it is possible to calculate values at the border of the image. However, the quality of these
values is doubtful and furthermore it does not seem to make sense to put additional effort
into performing these calculations. If you have a look at the given distortions of the
cameras you will recognize that the error is higher the closer we get to the borders of a
picture (see chapter 3). Because of this the mirror method of the borders was discarded.
Another possibility is to ignore the borders completely and crop the image. The
data valid signal would then have to switch to low at the borders which could be done
quite easily. Yet, one main aspect of the programmed modules is a high reusability and
portability. If the images are cropped for every convolution we would have to recalculate
the image coordinates at the end of the Harris Corner Detector. Additionally the seg-
mentation of the image for block based thresholding as described in section 3 will become
more difficult because the image size can vary depending on the kind and number of
filters used before.
The third way of treating the borders is to output the same image size as the incoming
one with random data at the borders. This results in a high portability and reusability
with a reasonably additional effort compared to the cropping. We will only need a counter
to set data valid high for the right amount of clock cycles after a eof has been received
and which works independently from the input control of the convolution unit. Thus we
have to add a control unit which generates the signals data valid, eol and eof as we need
them to the arithmetical unit as shown in figure 6.7. These outgoing image stream signals

59

6 Harris in Hardware

are created inside the control unit out of the incoming signals. Depending on the number
of the received incoming eols we will pass through a delayed version of this signal or
not. Furthermore we start outputting data signaled with a set data valid after a specific
amount of pixels has entered our arithmetical unit. This filling status is monitored by
the line delay enable next signals which notify that the line delay is full. For example
for a 3× 3 convolution we need to have output one line and one pixel of data before the
actual valid data at position (2, 2) is calculated and lies at the output. How the signals
are generated in detail is not further described here. The developed control unit can be
seen in figure 6.4.
The derivation of the image with a Sobel kernel (separable) and the window function are
both based on this convolution unit. The applied 3× 3 Sobel as shown in figure 6.5 can
be implemented without any multipliers because the kernel elements are either one or two
what results in simple shifting and adding of the data. The calculation of Ix and Iy can be
done with a single set of line delays. Only the calculation itself and the pixel delays after
the line delays have to be implemented twice because of the different kernels. In order to
keep the resource consumption small quantization was applied during the calculations.
Thus at the output of the Sobel unit we get values in the format sfix[9,-3].

6.2.2 The Window Function

2

xI

x

x

x
x x x

2f

3f

4f 2g 3g
4g

x
5f

x
1f

x x
5g

1g

2

xI

x

x

x
x x x

2f

3f

4f 2g 3g
4g

x
5f

x
1f

x x
5g

1g

9 12

ufix12E8

9 12

sfix9E3

ufix12E8

12

sfix12E9

36

2

xI
2

yI yx II

yI

xI

Line Delay

Line Delay

Line Delay

Line Delay

Window Function

sfix9E3

3 convolution units with shared line delays

2

xI

x x x

2f

3f

4f
2g 3g

4g

5f

1f

x x
5g

1g

x

x

x

x

x

pre-processing

Figure 6.10: Window Function

In the next step the autocorrelation matrix

G =

∑
x∈W

I2
x

∑
x∈W

IyIy∑
x∈W

IxIy
∑
x∈W

I2
y

 ∈ R2×2

60

6.2 Mono Harris

has to be calculated out of the results of Sobel. For calculating the sums at first a simple
summing convolution kernel was used. Later on a weighting of the elements has been
introduced to increase the corner location accuracy. The farer a pixel is away from the
center of the summing window the less influence it should have. The following kernel
gave, compared to a real gaussian, the best results.

1

128

1 2 4 2 1
2 4 8 4 2
4 8 16 8 4
2 4 8 4 2
1 2 4 2 1

 =
1

128

1
2
4
2
1

 · [1 2 4 2 1
]

(6.4)

A real gaussian was not used to save the remaining multipliers of the Spartan 3E. Due
to the fact that the coefficients are all of the power of 2 the design does not need much
more resources than the simple summing, because the multiplications can be performed
again by simply shifting the data.
Before we convolve we need to calculate the squares of the incoming data. To reduce
the number of multipliers the incoming data from the Sobel module is multiplied before
it enters the delays. After the calculation of I2

x, IxIy and I2
y this data is quantized.

The resulting data is theoretically 20 bit (+1bit for the sign of IxIY) wide. Due to the
quantization after the sobel to 9bit signed the resulting width of our multiplication is
reduced to 16bit (+1). Therefore, we would need 8 block RAMs to delay three 16bit
streams for a window of the size 5 × 5. Two results of the multiplications can be put
together into one block RAM and and the third result would occupy four block RAMs
on its own. Altogether we would then already need 10 out of 20 block RAMs just for
the calculation of the derivative and the windowing. One option would be to execute the
multiplication after delaying the data, but then we would need 5 ∗ 3 multipliers at the
output of the delay module, what is again definitely too much for our FPGA. By sticking
to the multiplication at the entry point of our delay module and reducing the data width
of the multiplier results to 2 × 12 bit unsigned data and 12 bit signed the data can be
packed into a 36bit word and put into one delay module together. This method seems to
be the better option than using 4 additional block RAMs or implementing 12 additional
multipliers. However, the loss of accuracy is the price we have to pay. The reduction has
been simulated in Simulink and the influence on the resulting feature locations was not
noticeable.
Because the pseudo Gaussian kernel 6.4 is separable the summing at the output of the
registers is implemented, according to figure 6.7, just with two more line delays and 16
additional registers. Before the delayed data is actually convolved it has to be unpacked
again. The resulting window function with the used bit width can be seen in figure 6.10.

61

6 Harris in Hardware

6.2.3 Calculating the Cornerness

Cornerness

2

xI

2

yI

yx II

k

),(yxc

2

yx II

22

yx II

222

yx II

Figure 6.11: Cornerness Calculation

After the calculation of the autocorrelation matrix we need to determine the cornerness
as described in chapter 5. The following equation has to be solved in hardware:

c(x, y) =
∑

xk,yk∈W

I2
x

∑
xk,yk∈W

I2
y −

(∑
xk,yk∈W

IyIy

)2

− k

(∑
xk,yk∈W

I2
x +

∑
xk,yk∈W

I2
y

)2

To keep the maximum path length of the hardware implementation short the calculation
was fully pipelined as shown in figure 6.11. The data paths are furthermore quantized
to ensure that the inputs of the multipliers do not exceed the maximum bit width of
our hardware multipliers which is 18bit. The picked quantizers are a result of bit-true
simulation in MATLAB and Simulink with various pictures. Based on histograms and
overflow logging the quantizers were changed manually until a good compromise between
accuracy and resource consumption was found. The automated floating to fixed point
conversion as described in chapter 2.5 has not been applied on this problem due to the
high simulation times. Additionally it turned out to be difficult to evaluate the quality of
the results. This feedback is however necessary for the automated quantization. Therefore
the bit widths were determined manually and the final cornerness result is of the type
sfix[20,-16].

6.2.4 Thresholding

The process of thresholding is separated in two steps, the pre-thresholding and the non-
maximum suppression as it can be seen in figure 6.12. The pre-thresholding compares

62

6.2 Mono Harris

Thresholding

Pre-Threshold

N x N

Thresholds[NxN]

Non-Maximum

Suppression

M x M

),(yxc feature stream

Figure 6.12: Thresholding Overview

the cornerness values to the appropriate thresholds stored in registers and acts as a pass-
through if the value is bigger or outputs zero if not. As described in section 5.3 a segmen-
tation of the image gives better results. Thus a segmentation of the image by 4× 4 with
a resulting block size of 88 × 72 has been implemented in hardware. The 16 thresholds
for the blocks can be written by the CPU using the peripheral bus [10] and thereby the
number of features can be regulated with a delay of one image. The implementation of
the segmented threshold unit has been solved straight forward with pixel and eol counters
controlling a huge multiplexer in order to switch between the different thresholds saved
inside registers.
After the pre-thresholding only the values which are bigger than the threshold are not
zero. As explained in section 5.3 a non-maximum suppression is now necessary to avoid
that more than one feature is returned for a corner. The pre-thresholded cornerness
stream is transformed to a binary feature stream with this unit telling whether the cur-
rent pixel is a feature or not. The easiest way to implement such a suppression is the use
of a convolution delay of an inseparable filter kernel as described in section 6.2.1. Instead
of the multipliers and accumulators we use comparators which compare the surrounding
cornerness values with the value of the center. If the center cornerness is the maximum
inside the window and is bigger than zero we have found a corner and our feature stream
output is set to one, otherwise to zero. However, this straight forward implementation
already needs 8 comparators with a width of 20 bit each for a 3 × 3 non-maximum sup-
pression.
The non-maximum suppression can be separated similar to the convolution kernels dis-
cussed above. The resulting implementation is shown in figure 6.13. After the data has
been delayed by the line delays the maximum value in y direction has to be determined.
This maximum value is then delayed with the information whether the maximum was the
center value or not. If the maximum is not the center value we already know that the
current filter answer and likewise our feature signal will be zero. If the center value is
the maximum in y direction we have to compare this value with the other maxima in x
direction as shown in figure 6.13. If the center value is as well the maximum in x direction
we found a local maximum inside our window and the feature signal is set to one. With
the separation of the non-maximum suppression we save resources as shown in table 6.2.

63

6 Harris in Hardware

Non-Maximum Suppression 3x3

Line Delay

Line Delay

MAX

>

> 0

>

feature stream

Figure 6.13: Separated Non-Maximum Suppression

Module LUTs (Unseparated) LUTs (Separated)

Non-Maximum 3x3 419 381
Non-Maximum 5x5 1011 706

Table 6.2: Resource Consumption of separated and unseparated Non-Maximum Suppres-
sion

6.2.5 Summary

The described implementation is capable of an in-stream Harris Corner Detection. The
maximum frequency given by the synthesize tool is 65 MHz no matter which kind of
non-maximum suppression is used at the end. All different combinations of the Harris
have been tested in hardware with a clock rate of 50 MHz and worked successfully. Due
to the fact that the CPU reads are too slow to get the data in stream from the FPGA
and there was no SRAM controller at the time when the testing was done the cameras
were neglected because there was no possibility to store the results of the Harris Corner
Detector. Instead two simple FIFOs were used to validate the design. One FIFO was
filled by the CPU with test images while the other one was emptied as soon as data was
available. The resource consumption of this design is given in table 6.3. Note that the
slice consumption also includes the interface structure built up for testing purpose but
can be neglected compared to the consumption caused by the Harris. The number of
block RAMs does not include the two IO FIFOs in order to avoid confusion.

As you can tell from table 6.3 the current design will in any case need seven of the twenty
available multipliers. If we now double the design in order to perform Stereo Harris Corner
Detection we will run out of multipliers because the rectification described in chapter 4
already allocates eleven multipliers. Additionally a lack of block RAMs will occur if we
want to be able to perform 3 × 3 or 5 × 5 non-maximum suppression in stereo. Two of
the twenty available block RAMs will be used to cross the clock domain between camera
and FPGA and additionally two block RAMs are needed to run burst transfers between
CPU and FPGA. Thus we will end up with 20 or 24 necessary block RAMs.

64

6.3 Stereo Harris

Module (Mono) LUTs block RAM MUL

Sobel 259 2 0
Window 843 4 3
Cornerness 132 0 5
Pre-Threshold 1x1 20 0 0
Pre-Threshold 4x4 197 0 0
Non-Maximum 1x1 7 0 0
Non-Maximum 3x3 381 2 0
Non-Maximum 5x5 706 4 0

Table 6.3: Mono Harris Resource Consumption

Yet, the rectification unit is not capable of outputting a pixel every clock whereas the
current Harris is programmed to be able to process pixels at full speed. The rectification
unit which can be clocked with 100MHz has to load four pixels out of the SRAM to
produce one pixel at the output. If we assume a delay of two clock cycles we will end up
with a break of at least 6 clock cycles at 100 MHz between two pixels at the input of the
Harris. The Harris Corner Detector will run at 50 MHz what results in at least 3 clock
cycles of time for every pixel. The idea is now to use the break of three clock cycles and
share resources inside the Harris. Based on these thoughts two of the above described
Harris Corner Detectors have been merged to a Stereo Harris.

6.3 Stereo Harris

N

Convolution with shared block RAM

data_valid_in

cam_select_in

Stereo Convolution

+

+

Control

Unit

2*N

data_valid

Serial/Parallel

Converter
+

+

Parallel/Serial

Converter

data_in M

data_valid_out

data_out

cam_select_out

data

2*M

Figure 6.14: Stereo Convolution with shared Line Delays

The interface of the modules as described in section 6.1 first of all had to be extended to
allow the module to distinguish from which side, left or right, the pixel is coming. The
resulting signal cam select in is defined to be low for a pixel from the left side and high if
the pixel is from the right side. All modules are extended with such an input and output.
The first element which is taken into consideration is the Sobel. The Sobel uses two
block RAMs for line delays but only 8 bit of the possible 36 bit word width are used
at the moment. The idea is now to delay the left and right pixels at the same time

65

6 Harris in Hardware

within one word. Due to the fact that the pixels arrive not at the same time a serial to
parallel converter was developed which delays the left pixel and outputs the left and right
pixel within one word as soon as the right pixel arrives. This double word then can be
delayed with the block RAM and will be separated at the output in order to perform the
Sobel calculations for each side. At the output of the Sobel the still parallel data stream
is transformed back into the serial format. The resulting stereo convolution module is
shown in figure 6.14.

9

9

2

xI

2

yI

yx II

yI

xI

Stereo Window Function

convolution left
stereo pre-processing

data_valid_in

cam_select_in

convolution right

+

+

Control

Unit

+

+

Control

Unit

Figure 6.15: Stereo Window Function

The next module is the window function. At the input of this function the incoming Ix
and Iy have to be multiplied to gain IxIy, I

2
x and I2

y . The original Mono Harris does
this within one clock cycle and consequently uses three multipliers. The idea is now to
use one multiplier for all three multiplications what will exactly take the available three
clock cycles between incoming pixels. The resulting stereo window function can be seen
in figure 6.15. The data valid in signal is delayed together with the other control signals
for the necessary clock cycles. Data valid in and its delayed signals are used to switch
the multiplexers at the in and output of the multiplier. Once all registers at the output
are filled the data is passed to one of the two convolution units depending on the delayed
cam select in signal. For the window function the block RAM cannot be shared due to
the fact that the full bit width of 36 bit is already used.

After the windowing the cornerness has to be calculated. The Mono Harris Corner De-
tector uses four multipliers to calculate the cornerness in stream. This number can be
reduced if we take into consideration that we have three clock cycles of time before the
next pixel enters the cornerness unit. The stereo cornerness as shown in figure 6.16 uses
only two multipliers instead of eight which would be necessary if we doubled the Mono
Harris.

66

6.3 Stereo Harris

Stereo Cornerness

2

xI

2

yI

yx II

),(yxc

k_L

k_R

-

+

-

Figure 6.16: Stereo Cornerness

At the end of our Harris thresholding has to be performed. The comparators of the
pre-thresholding units can be shared for the stereo case by simply switching between the
thresholds of the left and right side. The final non-maximum suppression is implemented
like the stereo Sobel with shared block RAM (see figure 6.14).

The final resource consumption of the Stereo Harris Corner Detector is listed in table 6.4.
Compared to the Mono Harris the logic consumption nearly doubled what seems to be no
improvement at all. However, the number of block RAMs used was reduced from 16 to 12
by sharing them in the modules Sobel and non-maximum suppression 3x3. The number
of used multipliers has been drastically reduced from 16 to 3 because of the fact that the
results do not have to be available after every clock cycle anymore. Consequently the
Stereo Harris fits into the FPGA together with the Rectification Unit.

Module (Stereo) LUTs block RAM MUL

Sobel 374 2 0
Window 1818 8 1
Cornerness 266 0 2
Pre-Thresholding 1x1 34 0 0
Pre-Thresholding 4x4 477 0 0
Non-Maximum 1x1 6 0 0
Non-Maximum 3x3 538 2 0

Table 6.4: Stereo Harris Resource Consumption

67

6 Harris in Hardware

68

7 Image Processing System

CPUFPGA

Camera L

Camera R

Rectification
Feature

Matching

Feature

Extraction

Figure 7.1: Image Processing System - Overview

In the following chapter the complete image processing system designed during this thesis
will be described. Figure 7.1 gives an overview of the system. The first three steps of the
image processing are done inside the FPGA. Two of the three processes, the rectification
and the Harris Detector, have already been described in the previous chapters. In the
following will be explained how the third step, the frame grabbing works and how these
three processes can be finally combined in hardware to form a complete system.

7.1 Hardware Based Image Processing

Now that all modules of the FPGA related image processing are described the structure
of the resulting complete system is defined. Figure 7.2 gives an overview of the image
processing system in hardware. With the help of this figure the data flow will be described
below. As already mentioned, the SRAM controller was not ready when this thesis has
been handed in. However, the controller has been planned and documented in [10] and
speed estimations can therefore be given. The numbers given in the following are based
on these estimations.
The cameras are each clocked with their own oscillator and therefore are not synchronous
to the FPGA clock. The clock domain crossing is achieved with the help of dual port
block RAMs. Before the data enters the FIFOs the signals of the camera are transformed

69

7 Image Processing System

FPGA

R

L

SRAM Controller

Rectification

5

5

5
5

2*20

9

9

12.5

Stereo Harris

Corner

Detection

100

Bus

Bridge

[Speed] = MWord
CPUSRAM

Image

Stream

Converter

Image

Stream

Converter

18

18

Figure 7.2: Image Processing System

PCLK

HREF

VSYN

DATA[7:0]

Y V Y YU YY U VY Y U Y V

2*352 PCLK

Figure 7.3: Camera Signal Timing

into the image stream format. The image stream format requires the creation of the sig-
nals data valid, end of line and end of frame which can be generated directly out of the
camera signals. Additionally the data format given by the cameras with 8bit 4:2:2 YUV
has to be aligned into 16bit words in order to use the bit width of the SRAM. Because
of this alignment of the incoming YUV data the camera speed of 18M is halved to 9
Mword/s. Without any counters and therefore with a small logic footprint the camera
signals as given in figure 7.3 are transformed into the image stream format (see chapter
6.1) by tricky combinations. The image stream is written to the SRAM via the given
SRAM bus. For further details about the bus and the SRAM controller see [10]. This

70

7.1 Hardware Based Image Processing

camera interface has been tested in combination with a huge FIFO to validate the func-
tionality. Some problems occurred during testing. The fact that this only happend at
high frequencies and the fact that the connection to the FPGA was heavily constraint to
force the synthesize tool to build paths as short as possible indicates electrical problems
on the PCB. Further investigations have to be done to get a stable camera interface.
Once the pictures from the left and right camera are stored inside the SRAM the rectifi-
cation unit can start working with the maximum possible 100 MHz. The stored Y-values
are now requested by the rectification unit alternating between the left and right picture.
For every request of four pixels a delay of at least 6 clock cycles is produced by the SRAM
controller. If the SRAM is running with 100 MHz the pixels are coming from the SRAM
with a maximum rate of 2 * 20 Mword/s. The four pixels are interpolated as described in
4.3.2. The output rate of the rectification unit is consequently one fourth of the incoming
data rate. This 2*5 Mword/s stream is stored into the SRAM again and is as well piped
into the Stereo Harris Module. These SRAM storing accesses will happen at the same
time as the rectification unit reads pixels from the SRAM. To avoid that the processes
block each other a buffer FIFO should be used. This buffer collects the rectified image
data and allows burst writes into the SRAM. This will avoid alternating write and read
accesses which would generate a congestion. The Harris has to be clocked with 50 MHz
and can only accept a pixel every third clock cycle because of the resource sharing de-
scribed in 6.3. This however is enough because the data is only coming every fifth clock
cycle in the 50 MHz domain. As described in chapter 5.3 the results of the Harris Corner
Detector depend on the set threshold(s) and a variable k. Depending on the used Harris
version a specific amount of registers is created which can be both read and written from
the CPU via the so called peripheral bus [10]. For a pre-thresholding of the size 4× 4 we
will need 34 registers, 2*4*4 for the thresholds of both images and additional two registers
to store kl and kr.
The feature list output at the end of the Harris is again stored into the SRAM. From
there they can be read by the CPU with a maximum speed of 12.5 Mword/s with the
help of a bus bridge (for more details see [10]).
Two different operating modes are possible for the design:

� If all processes described above run sequentially all processing times simply can be
summed. The time to transfer the images into the SRAM equals 11.26 ms. The
transfer is assumed to work in parallel because the rate of incoming data with 2*9
Mword/s is fairly small compared to the maximum SRAM rate of 100 Mword/s.
The read accesses of the rectification unit will work with a maximum rate of 2*20
Mword/s what results in a time of 20.28 ms. The write accesses from the rectification
unit output into the SRAM can be done at a speed of 100 Mword/s if the above
mentioned buffer is introduced. The transfer of the two pictures into the SRAM
will take 2.02 ms. The storing of the feature lists can be neglected because of the
small amount of data. The final transfer of the two rectified images and the feature
lists will take 16.22 ms at a speed of approximately 12.5 Mword/s. The resulting
frame rate of the whole image processing is given with 20.01 fps. This frame rate
does not include any overhead caused by arbitration times of the SRAM controller.

71

7 Image Processing System

� If double buffering is applied, meaning that every device has two areas inside the
SRAM where it can write to, it might be possible to improve the frame rate. In this
case none of the units has to pause and wait until the other units are finished as in the
first case. This will however create a bigger competition regarding SRAM accesses.
The consequences can not be estimated with implementation details available at the
time I handed in.

The Harris Corner Detector only needs a sequential image stream to output the desired
features whereas the rectification unit needs random accesses inside the image. These
random accesses and the fact that I did not have the possibility to store whole images
inside the FPGA made it impossible to test the rectification unit in hardware. Yet,
the functionality of the Harris Corner Detector has been verified with the creation of
sequential data in the form of an image stream. With the infrastructure developed in
[10] it was possible to interface the hardware from the CPU and test the Harris Corner
Detector.

7.2 Harris Integration

The Harris Corner Detector in hardware has been evaluated with a FIFO-based approach.
In order to transfer data into the FPGA a FIFO is connected to the burst bus [10]. Data
and the necessary control signals of the image stream are line by line written from the CPU
into this FIFO. After a specific number of lines is transfered the Harris starts outputting
data line by line as well. This output is stored into another FIFO together with the image
stream signals and can then be read by the CPU. The CPU reads have to happen after
every written line to avoid an overflow inside the outgoing FIFO. Additionally registers,
which are connected to the threshold and k inputs of the Harris, can be written by the
CPU over the peripheral bus (see [10]). With this HW/SW solution it was possible to
validate the functionality of the Mono and Stereo Harris.

The evaluation of the Harris Corner Detector regarding accuracy turned out to be difficult.
It is not possible to work with real images because an edge or corner is never a direct
change of pixel intensities and consequently the location of an edge or corner is hard
to determine. Additionally different algorithms with different parameters will return
different feature points and it is not possible to tell which features are the best. This
is the reason why pictures were artificially created as shown in figure 7.4. The possible
corner locations can now be measured by hand with subpixel accuracy and are then used
as reference x̂. The quality-measurement is based on the formula

σs =
1

N

N−1∑
i=0

‖x̂− x‖2

which is the mean square distance between the ideal position x̂ and the one measured.
The problem with the usage of artificial pictures is the fact that the parameter values k
and the threshold of the Harris Corner Detector have to be changed to values not used for

72

7.2 Harris Integration

Figure 7.4: Benithaler Testpattern

real images because the edges and corners in such artificial pictures are defined sharply
and the pixel intensities change immediately what is never the case in real images. The
results are not conclusive but can give an idea of the algorithm’s quality. By changing the
parameters it was possible that at the end all features of the image were detected with
maximum possible accuracy. The same results were achieved with the software solution.
This was seen as a prove that the Harris Corner Detector in hardware is working ac-
curately. The next step has been the testing of a software controlled adaptive thresholding.

As aforementioned the number of features found has to be limited to store them inside
a fixed space of the SRAM. To avoid that features of the lower right part of a picture
are discarded because of a lack of memory, the threshold(s) of the Harris Detector can
be changed adaptively. If too many features are found the threshold(s) are increased
and vice versa. The influence of the changed threshold(s) will affect the next frame and
reduce/increase the number of features assuming that the image is similar to the one
before. The validity of this assumption highly depends on the achieved framerate and the
appearing speed of object/robot movements. Therefore no information can be given at this
point how the adaptive thresholding will work in reality because the real framerate is not
known yet and the robot movements are hard to estimate. A software solution has been
programmed and tested which writes the threshold values to the FPGA and utilizes an
I-controller to adapt the threshold(s). Depending on the settings stable feature numbers
were gained after a few frames of the same picture. However, this I-control mechanism is
very basic and should be improved when the system is able to handle live feeds from the
cameras. The programmed HW/SW solution proved the functionality of the Harris and
the hardware interface but can not give any information about runtimes because the at
the end limiting component, the SRAM, is not involved in this design at all.

73

7 Image Processing System

Assuming that the hardware part is working the next logical step after the transfer of the
feature lists and the rectified images is the matching of the features in software in order
to get the desired depth informations of the environment.

7.3 Software based Image Processing

7.3.1 Feature Matching

To evaluate the quality of feature matching algorithms feature lists need to be created.
Hardly any differences between the results of the software and the above presented hard-
ware solution have been found and therefore the hardware solution has not been used for
further evaluations. Instead the results of the easy adaptable and platform independent
Harris in C were utilized.
Two interesting aspects have to be evaluated for the feature matching: speed and ac-
curacy. To judge about the accuracy of a match the true depth information is needed.
There exist a lot of test patterns which come together with disparity maps created by
universities. The probably most famous test data has been generated by the stereo vision
research group of the Middlebury College [28]. These test pictures were used for the fol-
lowing evaluations to gain comparable results at the end.
The possibility to use OpenCV [3] on the EyeBot M6 has been evaluated at first because
this vision library already comes with all algorithms we would need to match features in
software. However, the resulting performance of the OpenCV algorithms on the EyeBot
M6 was quite poor compared to pure C implementations. The low execution speed is
caused by the fact that OpenCV calculations are mostly based on floating point accu-
racy. The EyeBot M6 however does not have a floating point unit and consequently the
floating point operations have to be emulated. Table 7.1 gives a small overview about the
measured execution times of OpenCV algorithms. The ratio of approximately 30 between
the lab server named R2D2 (Intel Core2 Duo E8200, 2.66 GHz) and EyeBot M6 is still
quite good for the Sobel but as soon as floating point accuracy is used by OpenCV as
for the cvHarris this ratio is increased to approximately 230. This is the reason why the
matching algorithms have been programmed in C and OpenCV has only been used for
file I/O functionality during the evaluation process.

Function R2D2 [fps] EyeBot M6 [fps] ratio

C-Sobel 1807 54.6339 33.0747
cvSobel 2292 72.5 31.6
C-Harris 190 7.3690 25.7838
cvHarris 198 0.8522 232.2300
Convolution 32F 737 3.1523 233.8005

Table 7.1: Performance of OpenCV in Comparison to C Implementations

Before the programmed algorithms can be evaluated in regards of speed and accuracy

74

7.3 Software based Image Processing

metrics need to be defined which let us judge about the quality. Two measures, adapted
from [28], where used based on the given groundtruth data:

� The Root-Mean-Squared (RMS) Error between the computed disparity map dc and
the groundtruth map dg

R =

 1

N

∑
(x,y)

|dc(x, y)− dg(x, y)|2
 1

2

,

with N as the number of total pixels.

� The Percentage of bad matching pixels

1

N

∑
(x,y)

(|dc(x, y)− dg(x, y)| > σd),

where σd is the disparity in pixels the computed disparity dc has to differ from the
given groundtruth disparity dg to be counted as a bad pixel. The value σd was set
to one for all following evaluations.

An evaluation environment has been programmed in C++ in combination with OpenCV
to gather the necessary data. This environment embeds the matching algorithms pro-
grammend in C. The first function evaluated is the matching cost function.

7.3.2 Matching Cost Function

The easiest way to judge whether features are similar is the evaluation of the matching
cost function. Pixel intensities i and j within a window centered at the feature point
locations in both images are correlated. Depending on the result of the function the
decision is made if a matching pair has been found or not. There are a lot of matching
cost functions but the probably most popular three are

� Sum of Absolute Differences (SAD)

SAD =
∑
i,j∈W

|i− j|,

with a window W centered at the feature locations (xl, yl) and (xr, yr).

� Sum of Squared Differences (SSD)

SSD =
∑
i,j∈W

(i− j)2

� Normalized Cross Correlation (NCC)

NCC =
1

n− 1

∑
i,j∈W

(i− i)(j − j)
σiσj

,

75

7 Image Processing System

with i and j as the meanvalue of pixel intensities inside the windows. σi and σj as
the standard deviations.

(a) Variation of the Threshold (b) Variation of the Window Size

Figure 7.5: Evaluation of correlation Parameters

SAD and SSD have to be minimized whereas NCC needs to be maximized. The work
of [28] has shown that there is only a little difference between SAD and SSD regarding
accuracy of the results but SSD has a higher computational effort. Furthermore the much
higher complexity of a Normalized Cross Correlation does not justify the slightly better
results. In [15] the usage of a simple SAD is suggested for real-time systems due to low
calculation times and a comparable good performance. Based on the results presented in
both papers SAD was chosen as cost function for this thesis.

7.3.3 Correlation Parameters

The results of the feature correlation with a SAD cost function depend a lot on the
chosen window size and the threshold. First of all a good threshold has to be found
to guarantee that only features with a high similarity are matched but at the same
time corresponding features are not discarded due to e.g. a slight variance in bright-
ness. The threshold tmax has to be chosen in dependence on the window size like
tmax = window width ∗ window height ∗ tmax, with a constant factor tmax. Figure 7.5(a)
plots the behavior of the quality of matches depending on the value tmax. The higher
the constant tmax the more features are found but at the same time the number of bad
matches is increased as well. The best ratio between the total number of matches and
the number of bad matches has been achieved with a tmax in the range of [9, 13] for the
test patterns. This range varies only slightly from image to image and therefore a fixed
tmax with a value of 11 was chosen for the evaluation of the window size.
The size of the window highly influences the calculation time. Figure 7.5(b) shows how

76

7.3 Software based Image Processing

the number of bad pixels can be decreased with a bigger window size and how the frame
rate is affected by the raising computational effort. The bad pixel count is only decreased
to a specific point. Due to the fact that we have chosen corners as features, many of these
corners will lie on edges of objects and therefore at places where disparity discontinuities
will appear. This also includes that the background of the object is more likely to be
different between the left and right image. If we now increase our window more and
more of neighbor pixels will be considered inside the SAD cost function. These neighbor
pixels can be either part of the object or of the background. If the corner is directly at
the edge of an object the ratio between background and foreground pixels will be nearly
the same. Therefore the decision can be easily falsified because back and foreground
compensate each other and a small noise can consequently have a big influence. Most
of the times it happens that a true match is discarded because of different backgrounds.
This is the reason why the enlargement of the window improves the matching quality
only to a specific point. The speed however is increased continuously and therefore a
window size of 7 or 9 seems to be appropriate for the EyeBot M6. These results are only
based on the test patterns. Further evaluation is necessary when the EyeBot is operated
in its real environment.

7.3.4 Splitted Correlation

Figure 7.6: Splitted Correlation Windows [15]

A different approach for dealing with the described problem has been developed by
Hirschmüller [15]. This approach splits the correlation window into smaller parts as
shown in figure 7.6. For every small window the SAD is calculated between left and right
image. The resulting correlation values are named as shown in the figure with C0, C1, etc.
Hirschüller now suggests to take only the best correlation values in consideration. The
resulting total correlation value for the five window approach in figure 7.6 will therefore
result in

C = C0 + C2 + C4.

The center value C0 always has to be part of the summation. This selective correlation
helps to use only the windows which are really part of the object but not of the back-

77

7 Image Processing System

ground which is likely to be different. The solution has been programmed and evaluated
in C. The best results have been achieved with a window size of 5× 7 and a constellation
of eight windows surrounding a center window. The number of good matches has been in-
creased by 19.3 % in average while the number of bad matches stayed the same. However,
the algorithm consumes more time than the single window approach of section 7.3.3. The
resulting correlation values have to be sorted and the best ones have to be accumulated.
The sorting is done with the help of the quicksort algorithm. A more computational
intense task than the sorting is the additional area which has to be correlated. The nine
window constellation achieved 31 fps in average on the EyeBot M6. This frame rate can
vary a lot between the test pictures because it depends on how many features are found
in the same line and have to be correlated with each other. Precise time values are not
given in this case because they highly depend on the final settings which again have to
be optimized for the environment the EyeBot M6 will be operated in.

7.3.5 Dense Disparity Mapping

In comparison to the solution which has been implemented for this thesis a dense disparity
algorithm tries to gain the depth information for all points inside the image. The stereo
vision research group of the Middlebury College [28] evaluated algorithms which produce
dense disparity maps. They offer C++ code for testing and evaluation purposes of the
different algorithms. This C++ code has been compiled for the EyeBot M6, too. The
correlation with SAD and a 9×9 window takes 5.1 s for the famous tsubuka picture. With
optimized programming it might be possible to achieve more than one frame per second
on the EyeBot M6 but the calculation of dense disparity maps in real-time seems to be
hardly possible. Additionally the accuracy of the resulting dense disparity maps in general
have higher bad pixel counts than the above presented algorithms. The pure matching
solution achieved in comparison depending on the complexity 30 to 600 frames per second.
The given rates are, without image transfers and any other control tasks, later on needed
on the EyeBot. The pre-processing which has the highest computational effort, the edge
detection and rectification, has been implemented in hardware and works independently
from the CPU, whereas the dense disparity mapping hardly can be implemented on the
given FPGA. Therefore the calculation of a sparse disparity map can be seen as the best
solution for the EyeBot M6.

78

8 Conclusion

This thesis has shown that even a small FPGA as the Spartan 3E 500 has sufficient
resources for general image processing applications. The basic step which has to be done
before any stereo vision processing makes sense is the rectification. The stereo rectifica-
tion and image undistortion have been combined to one mapping process. This mapping
is approximated by 2D polynomials which have to be evaluated inside the FPGA. The
appropriate polynomials are regressed fully automated in MATLAB for every kind of
camera setting. As soon as the stereo camera calibration as described in [6] has been
performed, the resulting calibration file has just to be loaded into the developed Rectifi-
cation Toolbox and a optimized VHDL package will be generated which only has to be
included into the project. The synthesize tool will create a rectification unit according to
the information provided in this package. The user does not have to do any VHDL coding
in order to gain a fully functional and optimized rectification unit. The rectification unit
allocates only 5 % of the FPGA.
To keep the high adaptability provided by the rectification unit a interface for the fol-
lowing image processing modules has been developed. This image stream format ensures
a high reusability of the programmed modules because they can be easily interconnected
with each other.
In order to gain the stereo information out of the given stereo rig a Harris Corner Detector
has been implemented to reduce the search space from 1D given by the rectification to
approximately 500 points. This solution has been chosen because the calculation of a
dense disparity map does not fit into our FPGA and the software solution is way too slow.
The implemented Mono Harris is capable of processing images at the full camera speed of
60 fps. However, two of the Mono Harris Detectors did not fit inside the FPGA. There-
fore two Mono Harris have been merged to a Stereo Harris to share resources whereever
possible. The optimized Stereo Harris operates at reduced rates which are adapted to
the maximum speed given by the rectification. A optimization made it possible that the
Harris Corner Detection can be performed for the stereo constellation without running
out of block RAM and multipliers inside the FPGA.
It was not possible to present a complete system in the previous chapter. The described
rectification unit requires the images to be stored in the SRAM. However, SRAM accesses
were not possible at the time this thesis has been handed in. With a working SRAM and
the controller which has already been planned and presented in [10] the developed hard-
ware units can be combined as described in chapter 7. The software which is necessary
to find matching features has already been implemented.

79

8 Conclusion

80

9 Future Work

The first problem which has to be solved is the interface between FPGA and SRAM.
Once the communication works reliable an SRAM Controller has to be programmed [10].
For the described units priorities have to be allocated and a global control unit has to be
developed. The easiest way will be to ignore the cameras at the beginning and write test
patterns directly from the CPU into the SRAM. It is recommended to first start with a
sequential flow inside the FPGA as described in chapter 7. Once the first rectified images
and feature lists have been successfully transfered back to the CPU it should be inves-
tigated in which way the proposed doublebuffering can improve the performance of the
system. The doublebuffering will result in a higher competition on the bus and therefore
will increase the arbitration times. At the moment it can hardly be estimated how this
increase behaves compared to the time gained by partially parallel running processes.
Another unsolved task is the instability of the camera interface. All investigations which
have been done indicate a electrical problem on the PCB. These problems have to be
solved with the new revision of the EyeBot M6. For further details see [10]. Once the
cameras work reliable they can be integrated in the design with the help of the developed
camera to image stream converter. The resulting image stream in the clock domain of
the FPGA then has to be written into the SRAM. As soon as two images are available
the rectification unit can be started.
When the hardware based image processing part is ready a camera calibration has to be
performed and a rectification unit for given stereo rig has to be synthesized. The resulting
rectified image streams in combination with the feature lists have then to be used for the
optimization of the available parameters. The thresholds for the Harris Detector are in
the current software controlled with a simple I-controller and can therefore be improved
to achieve faster adaptions regarding the feature distributions over the image. In addition
the parameters of the matching software have to be evaluated to find a good setting which
guarantees high accuracy and a small computational effort.
With the gained 3D information of the environment basic control tasks like obstacle avoid-
ance can be programmed for the robot. The image processing takes only a small amount
of the CPU time because of the hardware acceleration so more complex algorithms can
be taken in consideration as well. The Simultaneous Localization And Mapping (SLAM)
algorithm is only one example. This algorithm would allow the EyeBot to create full maps
of his environment out of the gained feature locations in space [22]. The presented stereo
vision system gives a huge variety of possibilities for further research and experiments.

81

9 Future Work

82

A Rectification Toolbox

The Rectification Toolbox includes all scripts programmed for this thesis in order to au-
tomatically generate quantizer settings out of a stereo calibration. The following step by
step instruction explains how to create such a calibration and gain an optimized rectifi-
cation unit.
First of all the cameras have to be calibrated. To take the appropriate pictures a bit
stream and a program called cheese can be found in the source directory. Program the
FPGA of the EyeBot M6.12 with the bitstream and run the cheese program. For the
calibration process a chess pattern is now presented both cameras in different angles.
Such a pattern can be found on the homepage Camera Calibration Toolbox [6]. Take now
at least 20 pictures of the chessboard by pushing the cheese button. Take care that the
chessboard can be seen with both cameras. By pushing the button two pictures are taken
at ones and the actual picture count shown on the LCD is incremented. After you have
enough pictures, just copy the pictures which are stored at the same location from where
you ran the cheese program to your PC.
The next step is the calibration of the cameras, first each on their own and afterwards
a stereo calibration. This is done in MATLAB with the help of the Camera Calibration
Toolbox [6]. Very good tutorials can be found on the homepage thus there is no further
need to explain it in more detail here. Just follow the instructions of the Stereo Calibra-
tion Tutorial.
Once you created the outputfile stereo_calib_cam.mat you can run the automated float-
ing to fixed point conversion. The main file is the run_all script. Inside here all necessary
configurations are done. First of all you have to specify the path to you calibration file,
the desired maximum error EM_MAX, and L and H for the coarse quantization as described
in chapter 2. Additionally specify the number of points the algorithm should run with.
This number highly influences the runtime of the optimization thus chose it carefully.
The script then calls the function calc_regression_polynomials() which returns the
coefficients for the left and the right side and additionally the perfect mappings for both
sides. With the help of the returned coefficients of the four polynomials the function
calc_best_quantizers() is called for each of the polynomials which starts the opti-
mization process for the specified coordinate X or Y and side left or right. As a result you
get four vectors with the settings of 26 quantizers each. These quantizer settings are now
merged into one list by calling the function merge_quantizers(). After they have been
merged a VHDL package is created with the create_stereo_cam_package() function.
This file has finally to be included into the coordinate warper vhd-file to synthesize a
rectification unit for the current camera settings. Table A.1 gives a short overview about
all MATLAB files included by the Rectification Toolbox.

83

A Rectification Toolbox

file/function name description
run_all runs the whole process to determine optimized quantizer

settings; the parameters are specified inside the script
calc_best_quantizers implements all functions described in chapter 2: the

range estimation, coarse optimization and the finetun-
ing; returns list of 26 quantizers for the specified coor-
dinate

calc_error returns the pixel error between two mappings; used to
compare floating with fixed point solution; to change the
error measure edit this file

calc_fixpoint calculates the fixed point solution for the points and
quantizers given as parameter value; returns the result-
ing mapping

calc_floating calculates the mapping based on floating point accuracy;
returns the resulting mapping with fixed point accuracy

calc_ranges returns mins and maxs for all 26 quantizers based on
floating point position; this function is used by the range
estimation function

calc_regression_polynomial calculates the LUTs out of the stereo calibration file
given as parameter value; this LUTs are then regressed
with 2D polynomials and the resulting coefficients are
returned together with the LUTs

compare_mappings useful to visualize the mapping errors; just give the func-
tion two mappings and the image size as parameter val-
ues and it calculates mean square error, residuals and
the variance of the error; additionally a 3D plot is cre-
ated which visualizes the error

compare_mappings_2D same as compare mappings but visualization is done in
2D with quivers as used for this thesis

compare_vhdl_with_fixpoint useful script to validate the VHDL-module; the csv-
files created by the testbench rectification unit tb.vhd
are loaded and compared with quantizers which have to
be specified inside the script

create_c_lut creates four header-files with the LUTs used in the writ-
ten c-version of the rectification

create_stereo_cam_package creates the VHDL package which has to be finally in-
cluded into the coordinate warper

merge_quantizers merges quantizer lists given as parameter values to one
single quantizer list

imwarp rectifies an image with the specified method formula or
map; formula means that the polynomials are evaluated
inside the function and the resulting rectified image is
returned together with the LUT; map rectifies an image
based on the handed over LUT

Table A.1: Functions of the Rectification Toolbox

84

Quantizer X left Y left X right Y right merged
q1 ufix[11,7] ufix[7,6] ufix[9,6] ufix[6,7] ufix[11,7]
q2 ufix[14,14] sfix[13,15] ufix[12,12] sfix[14,15] sfix[16,15]
q3 sfix[14,15] ufix[14,14] sfix[13,15] ufix[13,13] sfix[16,15]
q4 ufix[9,18] ufix[11,22] ufix[13,22] ufix[10,21] ufix[13,22]
q5 ufix[11,22] ufix[12,22] ufix[11,21] ufix[9,18] ufix[13,22]
q6 ufix[12,22] ufix[12,21] ufix[12,22] ufix[11,20] ufix[13,22]
q7 sfix[13,30] sfix[6,27] sfix[13,30] ufix[5,30] sfix[14,30]
q8 ufix[7,31] sfix[13,30] sfix[5,28] sfix[11,28] sfix[15,31]
q9 sfix[1,25] sfix[13,30] sfix[6,28] sfix[13,30] sfix[13,30]
q10 sfix[13,30] sfix[9,30] sfix[12,29] sfix[6,30] sfix[13,30]
q11 ufix[5,21] sfix[13,22] sfix[7,21] sfix[12,21] sfix[14,22]
q12 sfix[13,22] sfix[9,22] sfix[12,21] sfix[6,22] sfix[13,22]
q13 sfix[12,21] sfix[9,22] sfix[13,22] ufix[5,22] sfix[14,22]
q14 sfix[6,21] sfix[13,22] sfix[8,22] sfix[13,22] sfix[13,22]
q15 sfix[12,14] ufix[11,14] sfix[12,14] ufix[11,14] sfix[13,14]
q16 ufix[12,14] ufix[13,14] ufix[13,15] ufix[13,14] ufix[14,15]
q17 ufix[12,14] sfix[13,15] ufix[12,14] sfix[14,15] sfix[15,15]
q18 sfix[12,7] ufix[14,5] sfix[11,6] ufix[14,5] sfix[17,7]
q19 ufix[14,5] sfix[13,6] ufix[14,5] sfix[15,7] sfix[17,7]
q20 sfix[11,21] ufix[11,21] sfix[11,21] ufix[13,22] sfix[14,22]
q21 ufix[12,21] sfix[12,22] ufix[13,22] sfix[12,22] sfix[14,22]
q22 sfix[13,15] ufix[14,13] sfix[12,14] ufix[14,13] sfix[17,15]
q23 ufix[13,13] sfix[13,14] ufix[14,14] sfix[14,14] sfix[15,14]
q24 ufix[14,5] sfix[15,5] ufix[14,5] sfix[15,5] sfix[16,5]
q25 ufix[9,0] ufix[9,0] ufix[9,0] ufix[8,-1] ufix[9,0]
q26 ufix[7,-2] ufix[9,0] ufix[9,0] ufix[9,0] ufix[9,0]

Table A.2: Quantizer Settings produced with Rectification Toolbox

85

A Rectification Toolbox

86

Bibliography

[1] MATLAB. http://www.mathworks.com/. 6, 13

[2] ModelSim. http://www.model.com/. 6

[3] Open Computer Vision Library. http://sourceforge.net/projects/

opencvlibrary/. 11, 74

[4] AccelDSP Synthesis Tool, 2006. http://www.xilinx.com/ise/dsp_design_prod/

acceldsp/index.htm. 12

[5] A. Verri, V. Torre: Absolute depth estimate in stereopsis. Vol. 5:426–431, 1985.
20

[6] Bouguet, Jean-Yves: Camera Calibration Toolbox for Matlab. http://www.

vision.caltech.edu/bouguetj/calib_doc/. 26, 79, 83

[7] Coors, Martin, Holger Keding, Olaf Lüthje and Heinrich Meyr: Design
and DSP implementation of fixed-point systems. EURASIP J. Appl. Signal Process.,
2002(1):908–925, 2002. 12

[8] Cordelia Schmid, Roger Mohr, Christian Bauckhage: Evaluation of Inter-
est Point Detectors. International Journal of Computer Vision, 37(2):151–172, 2000.
46

[9] Diaz, Javier: Fine grain pipeline systems for real-time motion and stereo-vision
computation. International Journal of High Performance Systems Architecture, 1:60–
68(9), 19 April 2007. 45

[10] Geier, Martin: Design and Implementation of an FPGA-based Image Processing
Framework for the EyeBot M6. Perth, University of Western Australia, 2009. 2, 41,
44, 63, 69, 70, 71, 72, 79, 81

[11] Gumstix, inc. http://www.gumstix.com/. 2

[12] Harris, Chris and Stephens: A Combined Corner and Edge Detector. In The
Fourth Alvey Vision Conference, pages 147–151, 1988. 46

[13] Hartley, R. I.: In defense of the eight-point algorithm. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 19(6):580–593, 1997. 25

[14] Heikkila, Janne and Olli Silven: A Four-step Camera Calibration Procedure
with Implicit Image Correction. In CVPR ’97: Proceedings of the 1997 Conference

87

http://www.mathworks.com/
http://www.model.com/
http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/opencvlibrary/
http://www.xilinx.com/ise/dsp_design_prod/acceldsp/index.htm
http://www.xilinx.com/ise/dsp_design_prod/acceldsp/index.htm
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.gumstix.com/

Bibliography

on Computer Vision and Pattern Recognition (CVPR ’97), page 1106, Washington,
DC, USA, 1997. IEEE Computer Society. 23, 26

[15] Hirschmuller, Heiko: Improvements in Real-Time Correlation-Based Stereo Vi-
sion. In IEEE Workshop on Stereo and Multi-Baseline Vision at IEEE Conference
on Computer Vision and Pattern Recognition, pages 141–148, Kauai, Hawaii, USA,
9 - 10 December 2001. viii, 76, 77

[16] Jiao, W., Y.L. Fang and G. He: An Integrated Feature Based Method for Sub-Pixel
Image Matching. page B1: 1157 ff, 2008. 46

[17] Jorg, Stefan, Jorg Langwald and Mathias Nickl: FPGA based Real-Time
Visual Servoing. In ICPR ’04: Proceedings of the Pattern Recognition, 17th Interna-
tional Conference on (ICPR’04) Volume 1, pages 749–753, Washington, DC, USA,
2004. IEEE Computer Society. 29, 43

[18] Keding, Holger, Markus Willems, Martin Coors and Heinrich Meyr:
FRIDGE: A Fixed-Point Design And Simulation Environment. In proc. Design Au-
tomation and Test in Europe, pages 429–435, 1998. 12

[19] Kim, Seehyun, Ki il Kum and Wonyong Sung: Fixed-point optimization utility
for C and C++ based digital signal processing programs. In IEEE Trans. Circuits
and Systems II, pages 1455–1464, 1998. 12

[20] Knowles, J. and E. Olcayto: Coefficient Accuracy and Digital Filter Response.
Circuit Theory, IEEE Transactions on, 15(1):31–41, Mar 1968. 11

[21] Lane, R. A. and N. A. Thacker: Stereo vision research: An algorithmic survey,
1996. 45

[22] Leonard, J.J. and H.F. Durrant-Whyte: Mobile robot localization by tracking
geometric beacons. Robotics and Automation, IEEE Transactions on, 7(3):376–382,
Jun 1991. 81

[23] Longuet-Higgins, H. C.: A computer algorithm for reconstructing a scene from
two projections. Nature, 293(5828):133–135, 1981. 25

[24] Masrani, Divyang K. and W. James MacLean: Expanding Disparity Range
in an FPGA Stereo System While Keeping Resource Utilization Low. In CVPR ’05:
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Workshops, page 132, Washington, DC, USA,
2005. IEEE Computer Society. 45

[25] Moravec, Hans: Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover. In tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon
University & doctoral dissertation, Stanford University. September 1980. 46

[26] OmniVision. http://www.ovt.com/. 2

[27] Roy, Sanghamitra, Debjit Sinha and Prith Banerjee: An algorithm for
trading off quantization error with hardware resources for MATLAB based FPGA

88

http://www.ovt.com/

Bibliography

design. In FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays, pages 256–256, New York, NY, USA,
2004. ACM. 13, 14, 15, 17

[28] Scharstein, Daniel and Richard Szeliski: A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms. Int. J. Comput. Vision, 47(1-
3):7–42, 2002. vii, 47, 74, 75, 76, 78

[29] Slama, Chester C., Theurer Charles. Henriksen Soren W.: Manual of
photogrammetry. 22

[30] T. Grötker, E. Multhaup and O.Mauss: Evaluation of HW/SW Tradeoffs
Using Behavioral Synthesis. ICSPAT, 1996, 1996. 12

[31] Vancea, C. and S. Nedevschi: LUT-based Image Rectification Module Imple-
mented in FPGA. Intelligent Computer Communication and Processing, 2007 IEEE
International Conference on, pages 147–154, Sept. 2007. 29, 30, 43

[32] Xilinx: Spartan-3E FPGA Family - Data Sheet, 2006. http://direct.xilinx.

com/bvdocs/publications/ds312.pdf. 2

89

http://direct.xilinx.com/bvdocs/publications/ds312.pdf
http://direct.xilinx.com/bvdocs/publications/ds312.pdf

	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Eyebot M6
	Project Scope
	Thesis Outline

	Floating Point to Fixed Point Conversion
	Basic Design Flow
	Fixed Point Representation
	Fixed Point Calculations
	Floating Point to Fixed Point Conversion
	Automatic Floating Point to Fixed Point Conversion

	Theory of Rectification
	Parallel Stereo Camera Constellation
	Principle of central perspective
	Camera Distortion Model
	Stereo Rectification
	Determination of Look-Up Tables
	Calculation of the Rectified Image

	Rectification in Hardware
	The Rectification System - Overview
	Coordinate Warper
	Calculation Unit
	Automatic Package Generation
	Coordinate Warper Control Unit

	SRAM Fetch and Interpolation Unit
	Controller
	In-Stream Interpolation

	Summary

	The Harris Corner Detector
	Disparity Calculation
	The Harris Corner Detector
	Thresholding
	Summary

	Harris in Hardware
	Module Interface
	Mono Harris
	Convolution in Hardware
	The Window Function
	Calculating the Cornerness
	Thresholding
	Summary

	Stereo Harris

	Image Processing System
	Hardware Based Image Processing
	Harris Integration
	Software based Image Processing
	Feature Matching
	Matching Cost Function
	Correlation Parameters
	Splitted Correlation
	Dense Disparity Mapping

	Conclusion
	Future Work
	Rectification Toolbox
	Bibliography

