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Abstract

The EyeBot M6 is the newest revision of an embedded system designated for the control
of small mobile robots. Unlike previous revisions of the system, the EyeBot M6 features
not only a 400MHz CPU running a fully fledged operating system but also a Xilinx FPGA
accompanied by an SRAM and two cameras in a stereo setup. The recent advancements in
FPGA fabrication not only induced lower prices but also permit the implementation of large
signal processing algorithms in FPGAs. The current revision is the first EyeBot that tries to
exploit the increasing capabilities of FPGAs for image processing purposes on small robots.

This project focuses both on the low-level interfacing between the FPGA and the CPU and
on the internal memory bus architecture required for image processing purposes.

Previous work on the EyeBot M6 already showed that the communication between CPU and
FPGA was unreliable. Sporadic transfer errors (mostly occurring during long DMA transfers,
after FPGA design modifications or toolchain configuration changes) had a severe impact on
reliability and maintainability of the system.
In this thesis first of all an in-depth analysis of the previous system is undertaken and reveals
several potential sources of error. The old system disregards the fact that CPU and FPGA
are in distinct clock domains and therefore is prone to timing violations. Timing violations
may occur in a register if one of its input signals changes too close to the clock edge that
triggers the register. Because CPU and FPGA clocks are fully unrelated, a signal generated
by the CPU may change close to an FPGA clock edge. In consequence this may induce a
timing violation in a register inside the FPGA that samples this signal. The same scenario
may happen in reverse, too.
Timing violations may lead to a metastable state in the particular register. Because this results
in unpredictable behaviour of the register’s output the proper operation of all downstream units
is compromised.
In addition, it is found that an important step in the FPGA design flow has been omitted:
Timing constraints are required to inform the development toolchain of the timing requirements
caused by the components connected to the FPGA. If no constraints are applied to an FPGA
design the toolchain will only implement the design according to its internal objectives. This
might lead to an FPGA design that violates the timing requirements of the external components
and thus to transfer errors, too.

As a next step, possible solutions for the problem related to register timing violations are
investigated. Several straightforward approaches (that would convert the design into a fully
synchronous system) are found but can not be deployed on the EyeBot M6. The asynchronous
interface therefore has to be utilized and used to interconnect CPU and FPGA in a safe manner.
Because of its asynchronous nature timing violations can not be fully avoided and their possible



outcome therefore is evaluated. The probability of metastable events affecting the operation
can be minimized using the gained knowledge on metastability. Based on these findings two
interfacing approaches are identified and assessed.
One interface supports arbitrary accesses to storage locations inside the FPGA but is unable
to achieve the highest possible transfer rate on the bus between CPU and FPGA. The other
interface, however, is capable of fully loading the bus but comes at the cost of setup-overhead.
The former therefore is suitable for transmitting small amounts of data (e.g. for measurement
or control purposes) and the latter is adequate for large, continuous transfers (e.g. images).
The interfacing requirements are analyzed based on the expected data flow between CPU
and FPGA. Based thereon, both interfaces are considered necessary and thus selected for
implementation. The two interfaces are integrated into a bus bridge that terminates the
asynchronous VLIO bus and instantiates a fully synchronous internal bus architecture.
The operativeness of the bus bridge is verified both using simulation and testing on the actual
hardware. Simulation alone is considered insufficient because the behaviour of a metastable
register can not be modelled.

As a next step, timing constraints are applied to the new design. Regular synchronous con-
straints are used to specify the timing requirements of the CPU and the two cameras con-
nected to the FPGA. In addition, several combinatorial constraints are applied to cover the
asynchronous paths in the bus bridge.

In a final step, a storage architecture required to access the external SRAM is designed.
External storage is required by an image processing system that was developed simultaneously
by a fellow student (see [29] for reference). The image processing system utilizes the stereo
cameras of the EyeBot M6 and pursues the generation of a depth map.
Its requirements are analyzed and the required high-level flow control is determined. Based
thereon, the storage architecture is tailored to the estimated data flows generated by the image
processing system. The existence of several clock domains in the system rules out a static,
predefined arbitration scheme. Instead a simple priority-based arbitration is used to determine
which flow is handled next by the storage system. Based on a performance estimation the
achievable maximum frame rate of the complete system is given.
However, it is found impossible to implement the proposed storage architecture with the current
revision of the PCB. Due to a missing external clock feedback trace the clock skew between
the FPGA and the external SRAM can not be compensated. This rules out the application of
timing constraints for the SRAM as well.
Clock skew is a common problem in synchronous systems and Xilinx FPGAs contain dedicated
resources capable of compensating it. A solution deploying two phase locked loops is found
and the modifications required on the PCB are shown.

Further suggestions for improvement of the platform are presented in the appendix.
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1 Introduction

1.1 Context of this thesis

This thesis is associated with the ongoing development of a new computing platform for
mobile robots at the Centre for Intelligent Information Processing Systems of the Uni-
versity of Western Australia. This platform, the EyeBot M6, was created to supersede
previous versions of that controller in terms of speed and to allow research on hardware-
accelerated image processing algorithms. As previous versions it features an LCD, several
communication ports, various sensor inputs and actuator outputs as well as a camera in-
terface. It is comprised of a Linux-based embedded system (which even provides Ethernet
and Bluetooth connectivity) and a Xilinx Spartan-3E FPGA, all on one small PCB.

The inclusion of an FPGA is the major advancement compared to older models, because it
allows the deployment of hardware/software co-design techniques to distribute the various
computation-tasks among soft- and hardware. This enables the user to implement more
complex algorithms, mainly in terms of image processing. Besides that, the EyeBot M6
is the first EyeBot that actually runs a fully fledged operating system (Linux), which
implicates a different approach in writing software.
A few peculiarities and differences to other systems have to be noted firstly:

• The EyeBot M6 was (and is) developed, manufactured and tested by students and
employees of the School. This allowed the system to be contrived to match a lot of
different requirements (e.g. size, cost or power consumption).

• As a result of the long development process (which started in 2006), the components
used to build the EyeBot M6 now may seem to be a little outdated. This is particu-
larly true for the Spartan-3E FPGA, which has been overhauled by newer devices in
terms of logic count, size and architectural features. Nonetheless, the system forms
a solid base for research, provided that the limitations imposed by the FPGA are
taken into consideration when assessing the performance of the system.

• Because of the EyeBot M6 being a custom design, various hard- and software-
building blocks needed to form the system had (and still have) to be developed from
scratch. This not only includes software components (e.g. I/O-libraries) but also all
hardware modules that are required in the FPGA. Bringing the EyeBot M6-platform
into an usable state is quite a complex task compared to other similar, commercial
platforms featuring a CPU and an FPGA (such as the Xilinx Virtex-5 FPGA). The
reason therefore is that even basic capabilities such as data transfers between CPU
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1 Introduction

and FPGA have to be implemented by hand. This includes the development of
drivers (on the software side) and of appropriate HDL-modules (on the hardware
side) to interface to the CPU. Commercial CPU-FPGA-platforms normally not only
provide this basic features/capabilities but also include various high level modules
by being shipped with a comprehensive library of software and IP-cores.

Previous work on the EyeBot M6 had already shown that the data communication between
CPU and FPGA is unreliable. The reasons for it were unknown at that time.

1.2 Addressed tasks

This project focuses on the low-level building blocks required to use the EyeBot M6 for
image processing and robotics purposes.
The primary goal is to establish a reliable link-up between CPU and FPGA. This com-
prises an in-depth analysis of the failing system at hand, an extensive research in inter-
facing approaches and associated topics and the actual problem solving. The resulting
system has to be verified carefully and the achievable performance of the interface has to
be evaluated, too.
The secondary goal is the development of an internal storage architecture for the FPGA.
An external SRAM is used to extend the limited internal memory of the FPGA and is
required by the image processing system designated for the EyeBot M6. Its requirements
have to be analyzed and taken into consideration when designing the storage architecture.

1.3 Outline of this thesis

Chapter 2 overviews the platform used during this project. The EyeBot M6, its origin,
evolution and features are presented. Existing hard- and software is covered, too.

Chapter 3 takes a closer look at the hardware and the existing VHDL design. Based
thereon, two sources of the observed transfer errors are identified. The first is caused by
the existence of several clock domains in the system while the second is a result of an
omitted step in the FPGA design flow. These errors are also found to be responsible for
a problem related to the cameras and the external SRAM.

Chapter 4 presents all steps of the development and begins with a short overview.
Section 4.2 describes the bus bridge which links CPU and FPGA in a reliable way. The
chosen implementation solves the first source of error identified in chapter 3.
Section 4.3 catches up on the omitted step in the FPGA design flow and introduces timing
constraints. This solves the second source of error identified previously.
Section 4.4 presents the storage architecture developed for the image processing system
that is designated for the EyeBot M6 (and pursues the generation of a depth map).

Chapter 5 summarizes both findings and results of this project and suggests future work.
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2 The EyeBot M6

2.1 Introduction

The platform used in this thesis is the EyeBot M6, mainly described in [25]. It is the
newest of all embedded systems developed at the Robotics and Automation Lab and seeks
to be compatible with the established API called RoBIOS (more information can be found
in [9]). This library provides the user with various functions to access all hardware needed
to control a robot and also provides an interface to OS-like features (e.g. multitasking,
timers, semaphores, etc.). Additionally, a simulator software is available which allows
testing of programs depending on RoBIOS even without having an actual robot at hand.
In the following a short overview of the EyeBot M6 will be given.

The EyeBot M6 was intended to supersede previous versions of the EyeBot-controller.
These old EyeBots were based on a Motorola 68332-CPU and allowed the connection of
one small CMOS-camera for image acquisition and processing purposes. Because of the
limited processing power of the CPU a camera with a resolution of only 80 × 60 px was
used. Furthermore, various I/O devices were available, such as an LCD, some buttons,
serial ports, motor and servo drivers, encoder and PSD inputs, general purpose I/O lines,
infrared and audio.

The new EyeBot was supposed to have at least the same number of interfaces for reasons
of backward compatibility. Additionally, some new ones were required, for example USB
(to cope with the evolving lack of serial ports on modern computers), Ethernet (for
IP networking) and a second camera port (to allow research on stereo vision). Three
major changes were done to account for this increased demand for processing power and
additional communication methods:

• The Motorola 68332 got replaced by an Intel XScale PXA255,

• the RoBIOS operating system got replaced by a fully fledged Linux kernel and

• the CPU was accompanied by an FPGA.

This changes had (and still have) huge impact on all the development related to the new
revision of the EyeBot:

• A new development toolchain was introduced

• All RoBIOS-OS-related functions had to be ported to their Linux equivalent
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2 The EyeBot M6

• All previously CPU-supported functions1) have to be replaced either by software or
by suitable hardware modules (dedicated ICs or logic inside the FPGA)

• Kernel drivers have to be developed to gain access to all these modules and all
RoBIOS-library functions have to be modified

• Documentation describing the new architecture has to be written to support new
developers in getting used to the system

• The RoBIOS-API documentation has to be updated to reflect the changes visible
to the user interface

At the time of this writing most of these tasks are still in progress or have not been started
yet. Figure 2.1 shows the EyeBot M6 controller mounted onto a robot.

Figure 2.1: The EyeBot M6

The next two paragraphs introduce the parts of hard- and software that are related to
this thesis. A more detailed description is given in [25].

1) such as PWM generation that had been handled by the TPU before
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2.2 Hardware

2.2 Hardware

During the development of the EyeBot M6 some importance was attached to avoiding ICs
in BGA packages (to enable the Electronic Workshop of the School to populate the PCB).
This decision ruled out a lot of fast, up-to-date CPUs, what seemed inappropriate for the
next generation of EyeBots. Thus, an alternative approach was taken: Instead of a CPU
a single board computer (connex 400xm-bt) from a company named gumstix (see [3])
was purchased and used as foundation for the new EyeBot. It features a 400MHz Intel
XScale PXA255-CPU, 64MB RAM, 16MB Flash, a Bluetooth module and two connectors
for external components.

The external bus interface of the PXA-CPU is exposed on one of these connectors and
uses a transfer protocol named VLIO (see chapter 6 of [5]). This bus was used to create
a connection between the CPU and various components, such as an Ethernet controller,
an USB-host controller and the FPGA.

Again for packaging reasons a medium-sized FPGA was selected, namely the Xilinx
Spartan-3E 500 (XC3S500E PG208). It features 4656 Slices (each containing two 16 ×
1 bit-LUTs, two 1 bit registers and more), 360 kBit of internal (dual-ported) SRAM (so-
called “Block-RAM”) and 20 multipliers. The pin-count of the package limits the device
to 158 I/O-Pins (single-ended), which also limited the connection to the CPU data bus
to a width of 16. A more detailed look on the interface between CPU and FPGA is given
in section 3.3.

The FPGA is connected to various other components, such as

• PSD and encoder inputs,

• motor drivers,

• servo outputs,

• two camera ports,

• a 50MHz oscillator and

• a 18MBit (single-ported) SRAM.

Figure 2.2 shows a coarse block diagram of the EyeBot M6.

The used cameras are capable of capturing at a resolution of 352 × 288 px and support
various output modes (e.g. RGB and YUV). An image of this size consists of 99 kPx, so
a grayscale image (with 8 bit per px) will have a size of 99 kB or 792 kBit – too much for
the internal SRAM of the FPGA. Thus, if an entire camera frame shall be stored, the
external SRAM has to be utilized.
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2 The EyeBot M6

Figure 2.2: Block diagram of the EyeBot M6

2.3 Software

The gumstix connex is shipped with a pre-installed version of the Linux operating system
on its flash memory. To enable the user to modify and upgrade the system, gumstix ex-
tended a software package called buildroot (see [1]) to support their hardware. Thereto,
various patches (for kernel and user space) were added and made available via SVN. In
combination with freely available software (as e.g. GCC or the Linux kernel) the buildroot
package forms the complete build environment needed to recreate the root file system re-
siding on the flash memory.
The kernel patches from gumstix did (obviously) not include support for Ethernet con-
troller, USB-host and the FPGA. Drivers for Ethernet- and USB-controller were created
by adapting drivers of similar chips that already were included in the Linux kernel.
A driver for programming and transferring data from and to the FPGA was written from
scratch. It supports both classic MMIO- and DMA-based transfers including DMA-to-
userspace which results in higher transfer rates.
To provide a similar “look and feel” as previous versions of the EyeBot, a software called
m6main was written. It initializes the LCD, displays various pieces of information (name
of the system, IP address, etc.) and enables the user to start his/her programs by selecting
them in a graphical file browser.
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3 Analysis of the existing platform

3.1 Introduction

An FPGA design for the EyeBot M6 was already under way at the beginning of this thesis.
Additionally, some software libraries for accessing these modules have been developed,
trying to imitate the known RoBIOS-interface (which has been provided by previous
versions of the EyeBot).

The following modules did already exist:

• a bus interface (simply routing the external VLIO to an internal bus)

• an address-decoding unit (producing various enable signals)

• an SRAM interface (allowing access from both CPU and an internal camera module)

• various peripheral modules for digital I/O, motor control (PWM and encoder-
acquisition), servo driving (PWM), PSD measurement acquisition (serial-to-parallel
conversion) and camera frame-grabbing (including image storage to SRAM)

A serious problem had already been noticed when the author of this thesis joined the
development team: The communication between CPU and FPGA tended towards being
unreliable (in terms of sporadic data corruption) – for (at that time) unknown reasons.
The problem could by triggered by

1. executing DMA transfers with 128 or more beats or by

2. applying certain modifications (e.g. rearranging registers or extending the design).

Either scenario depicts a serious issue, the former because it renders fast transfers of data
impossible, the latter because it inhibited the development process.

A thorough analysis of (and the explanation for) this problem is given in sections 3.3
and 3.4. The problem solving formed a significant part of this thesis and is described in
section 4.2.

Apart from the transfer errors between CPU and FPGA another flaw has been found:
When streaming video from the cameras noise-like pixel errors appeared in the stream.
The reason was found to be similar to the one generating the bus transfer errors above.
More information on this topic can be found in section 3.5.
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3 Analysis of the existing platform

3.2 General notes

3.2.1 VHDL

The VHDL modules were mostly written in behavioural VHDL, though they were never
intended (and used) for simulation. This led to various problems for everyone trying to
explore the design using simulation, e.g. runtime errors because of range exceptions or
simulation mismatches because of missing initialisation values.

Even tough simulation tools (such as Modelsim) support a much larger subset of VHDL
compared to synthesis tools (as XST), it is still inevitable to keep an appropriate coding-
style at the back of one’s mind. (But for obvious reasons the capabilities of the synthesis
tool also have to be considered.)

A coding style that accounts for both comprises various factors:

• Initialize register values (to avoid uninitialized bits (’U’) in simulation)

• Use std logic( vector) (at least for ports)

• Be very careful when using resets (especially when using asynchronous ones)

• Take care that integer-based types do not overflow in simulation

• Avoid latches (use registers as they simplify timing analysis)

• Keep sensitivity lists up-to-date

• Use rising edge(foo) instead of foo’EVENT and foo=’1’1)

• Don’t use signals for storage (which would decrease simulation speed)

• Avoid complex operations as e.g. division if possible (saves logic resources)

• Do not use wait for (delay lines are rarely available in FPGAs)

Finally, a designer keeping both simulation and synthesis in mind (while writing HDL
code) will be rewarded by a simulation that matches hardware behaviour (as far as pos-
sible) and therefore alleviates debugging.

Further suggestions can be found in in [23] and in [24].

3.2.2 Documentation and revision control

Also some infrastructural issues were encountered:

• The previous FPGA design (introduced in section 3.1) was sparsely documented.

1) rising edge() also detects transitions from e.g. ’L’ to ’H’, which can occur in simulation. This is
important because XST will map ’L’ to ’0’ and ’H’ to ’1’.
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3.3 Interface between FPGA and CPU

• Some former theses included VHDL code designated to the EyeBot M6, but at least
one of them already had been decided unusable (because of the complete lack of
documentation).

• The various versions of the source code (of the FPGA design) were not stored in an
RCS. This hampered comparison between working and non-working designs which
may have eased finding the reason for the transfer errors.

• The source code of the modified RoBIOS library was neither stored at a central
location nor maintained in an RCS, even tough multiple developers were updating
the library at the same time.

• The DMA routines of the kernel driver for accessing the FPGA have not been
documented2).

All these factors hindered new developers in joining the project.

3.3 Interface between FPGA and CPU

In the first part of this section the electrical interface between CPU and FPGA is de-
scribed and the challenges for a safe data transmission are identified. After that, the
previous FPGA design (henceforth called “old design”) is studied and further flaws are
demonstrated. Finally, the resulting set of problems is evolved from the previous findings.

3.3.1 Electrical interface and bus protocol

This section firstly introduces the memory interface of the PXA255-CPU and its various
modes of operation. After that, it focuses on the existing electrical interface between CPU
and FPGA and derives useable transfer modes.

The memory controller of the PXA255 processor supports various types of memories,
categorized into three groups according to their interface:

Synchronous dynamic RAM (SDRAM): The most important property of SDRAM is
its need for periodic refreshes to retain the saved data. Up to four SDRAM chips
(16 bit or 32 bit wide) with a maximal size of 64MB each are supported. All signals
are synchronized to a clock signal.

Synchronous static memory: Static memories, as e.g. SRAM (volatile) or Flash (non-
volatile), retain their data without a continuous refresh. As with SDRAM all signals
are synchronized to a clock signal from the memory controller, which supports up
to four of these devices.

2) This in particular was a serious problem because the author of the driver deployed a tricky method to
store the buffer address, which is needed to start a DMA-to-userspace transfer. Someone not being
aware of that has great difficulties to reconstruct the driver’s mode of operation.
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3 Analysis of the existing platform

Asynchronous static memory: Asynchronous memories however do not make use of a
clock signal at all. Reads are performed by applying an address, enabling the
memory and reading the data after a device-specific delay. For writing address
and data are supplied first and write-enable is asserted. After a certain time write-
enable is deasserted again. A special mode called “variable latency I/O” (VLIO)
enables external devices to lengthen the bus cycle by adding CPU wait states. This
is useful for devices with variable response time.

Each mode make use of a specific (sub-)set of control-pins of the memory controller.
Table 3.1 describes the most important signals. For space reasons “external device” is
written as “ED”.

Pin Name Direction Comment

MA[25:0] address bus CPU → ED 26bit can address up to 64MB
MD[31:0] data bus bidirectional can be configured to a 16 bit data bus

OE output enable CPU → ED notifies the ED to drive the data bus
WE write enable CPU → ED notifies the ED that valid data is on the bus

PWE PCMCIA WE CPU → ED same as WE, but used for PCMCIA and VLIO

SDCS[3:0] SDRAM select CPU → ED 4 chip selects (one for each SDRAM chip)
SDCLK[2:1] SRAM clock CPU → ED 2 clock signals (sync. static interface)

CS[5:0] SRAM select CPU → ED 6 chip selects (sync. and async. static interface)
RD/WR direction CPU → ED identifies the direction of the transfer

RDY device ready CPU ← ED only used with VLIO

Table 3.1: Ports of the PXA255’s memory controller

Figure 3.1 presents a more detailed view on the circuitry on the EyeBot M6. Compared
to figure 2.2 some unimportant components have been omitted. Please note that (due to
the lack of a schematic from gumstix) the connections shown onboard of the gumstix may
not reflect the actual circuitry.

At first sight a shared bus between CPU, flash, SDRAM, FPGA, Ethernet- and USB-
host-controller can be identified. This imposes a first limit on the maximal data rate.

On closer inspection, more details can be found:

• The RDY-pin is only connected in later versions of the EyeBot M6

• Data and address lines are routed through bidirectional transceivers (buffers)

• Transfer qualifiers such as RDY, OE or PWE are not buffered

• RD/WR is not connected to the FPGA

• There is no clock signal leaving the gumstix

Because of various reasons (given in section 4.2.1) the only usable transfer mode is VLIO.
Therefore, only VLIO will be presented. Figure 3.2 shows a write access, figure 3.3 a read
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Figure 3.1: Schematic view of FPGA-CPU-interface

access using the VLIO protocol in non-burst mode. (Burst mode will be introduced in
section 4.2.5.2.)
Timing values are given as multiple of MEMCLK = 10ns (fMEMCLK = 100 MHz).

Figure 3.2: VLIO write Figure 3.3: VLIO read
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3 Analysis of the existing platform

The sequence of signal changes is mostly the same for write and read: First and foremost,
an address is driven to the address bus and CS gets asserted3) one clock later. After two
further clocks OE or PWE gets asserted for (at least) 4 clocks, depending on the state of
the RDY-pin (which will be described in section 4.2.5.1). For this first introduction on
VLIO the RDY-pin will be assumed to be high at all times.

On a write access the data bus has been valid since one clock before the assertion and
will be valid until one clock after the deassertion of PWE. An external device being
written to has to latch data and address during that time.

On a read access the data bus will be sampled by the CPU 3 clocks after the assertion of
OE and has to be stable at least 1.5 clocks before the deassertion of OE. Thus, the
external device has to drive the data bus to a valid value in 2.5 clocks (or less) after
the assertion of OE. Considering the delay of the buffer on the data bus (< 5.2 ns),
less than 20 ns are available to the external device to answer the read request.

Because of inconsistent values in the data sheets of the PXA255 a table containing all
known timing parameters is included in appendix A.

3.3.2 Analysis of the existing FPGA design

Initially the author started exploring the existing FPGA design to familiarize himself
with the partitioning and the used coding style. During that process some design flaws
have been noticed. These flaws and their impact on the system will be described in the
following.

Figure 3.4 shows a cut-out of the existing design. For the sake of clarity the circuitry
is drawn on RTL even though it was extracted from the actual implementation on the
FPGA (by analyzing CLB- and routing-information). The I/O-pins connecting FPGA
and CPU are shown on the left hand side and are prefixed with CPU . The link-up of
the various internal modules to the CPU is exemplified with a single 16 bit register (FD)
of the xdio-module. The module itself handles digital I/O and uses the same internal
architecture as all other modules.

First and foremost, three modules can be identified: The leftmost (cpu interface) gener-
ates two control signals (cpu nrd flag and cpu nwr flag) and splits the incoming address
into two parts. The next module (mod interface) then uses these signals to decode a
part of the address and to drive both the transfer qualifiers (mod rqrd and mod rqwr)
and a sub-address bus of the internal module bus. Among others the xdio-module is
connected to that bus. It contains a 16 bit register that is used to configure, read and set
each single I/O-line. This functionality is not illustrated in figure 3.4.

On closer examination an issue concerning the timing of the two registers can be identified.
Both registers are clocked by internal clocks derived from the clock-input GCLK11. The
latter is connected to an external stand-alone 50MHz oscillator on the EyeBot-PCB (see

3) An inverted signal is considered asserted when it is driven low.
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Figure 3.4: Old FPGA design (cut-out only)

figure 3.1). From this follows that both internal clocks have to be considered asynchronous
to all other clocks on the EyeBot M6. This is particularly true for all clocks of the PXA-
CPU (which are derived from a crystal on the gumstix-PCB) including MEMCLK indicated
in figure 3.2 and figure 3.3.

Before continuing the derivation a short introduction to registers and their timing-
requirements will be given.

Registers and setup- and hold-time-violations

A register is the basic element used to store a value in a synchronous digital
circuit. In a synchronous FPGA design a register can be treated as a “black
box” that copies the value of its D-input to the Q-output on every rising edge
on the clock-input.

Because of its physical nature a register applies certain requirements on the
timing of the signals. These constraints will be exemplified by the waveforms
given in figure 3.5.

First of all, a register obviously only supports clock frequencies up to a
specific value (which defines a lower bound for the clock period). Additionally,
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3 Analysis of the existing platform

Figure 3.5: Register timing

the so called “clock to output” time (tc2q
4)) gives the maximum delay for data

(copied from the input) showing up at the output after the active clock edge.
Finally, there are two important restrictions related to changes of the input
signal happening close to the active clock edge:
The setup time (tsetup) determines the minimum period of time before the

active clock edge in which the signal applied to the D-input has to be
stable.

The hold time (thold) determines the minimum period of time after the active
clock edge in which the signal applied to the D-input has to be stable.

If either of these timing requirements is not satisfied the behaviour of the
register is considered being undefined. This is indicated by the dashed line in
the output waveform on clock edge 3 (which violates the setup time) and 4
(which violates the hold time requirement). On edges 1, 2 and 5 setup- and
hold-timing is valid. But because of the timing violations occurring at edge 3
and 4 there is a (non-zero) probability that the register doesn’t recover to a
stable state fast enough (e.g. in a period of time that is shorter than the clock
period). This case is shown at clock edge 5.

Please note that all these timing requirements also hold true for all other
synchronous inputs of a register (e.g. set or reset, both not depicted). Chap-

4) The output of a register is commonly named “Q”.
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3.3 Interface between FPGA and CPU

ter 7 of [32] provides detailed information on several possible register imple-
mentations and presents timing simulations. More details on registers and
their behaviour after timing violations will be given in section 4.2.2.

Nonetheless, the mentioned “black-box view” is valid for synchronous de-
signs because current FPGA toolchains include support for timing driven syn-
thesis (and static timing analysis) and thus take care of all timing requirements
of the register.

With this in mind the design mistake can be identified in the following: Both registers in
figure 3.5 impose setup- and hold-constraints on the timing of their synchronous inputs
related to the free running 50MHz clock of the EyeBot M6 (which enters the FPGA as
GCLK11). The analysis will be done for each block individually:

mod interface The D input of the register FDR is connected to a constant signal and
can therefore be ignored for setup- and hold-timing verification. The (synchronous)
reset input R though is connected to a signal driven by a combinatorial logic block
(DECODER). This decoder generates a negated enable signal (nDIO) for the xdio-
module by comparing a part of the CPU address (CPU A[18:11]) with a fixed value.
The problem comes to existence here because CPU A is generated in the CPU clock
domain and therefore will change at arbitrary points in time from the FPGA’s point
of view. This obviously also is true for the “enable” signal fed into and sampled by
the register. If the CPU address (and therefore the “enable” signal nDIO) changes
too close to a rising edge on GCLK11 a setup- or hold-time violation might occur.

xdio Register FD and multiplexer M2 1 together form a register with enable: Only if
S0 is set to 1 a new value (applied to input D1 of the multiplexer) can reach the
register. Otherwise the current value of the register will be stored as “new” value,
effectively disabling writing. A similar problem as above can be identified here: The
multiplexer is controlled by a signal that is generated from signals originating in the
CPU clock domain (CPU A[20], CPU NCS, CPU NWR and CPU A[10:1]). If one of these
signals changes at an unfitting point in time the multiplexer might be in the process
of switching between its two inputs when the rising edge of DCM CLK150 triggers
FD. Then, depending on the data and the switching behaviour of the multiplexer a
setup- or hold-violation in FD might occur. Please note that even a single timing
violation in one of the sixteen 1 bit registers may render the complete word useless.

Errors generated by these design mistakes generally are hard to trace because they heavily
depend not only on the timing relation of both clocks but also on the delays introduced
by combinatorial logic and therefore can not reproduced reliably. Additionally, the im-
plementation of a “register with enable” using a register (without enable) accompanied
by a multiplexer is a (little) waste of logic resources because all (hardwired) registers
in the FPGA already feature a clock enable-input. Apparently the synthesis tool is not
capable of inferring a register with clock-enable when processing VHDL code written on
the behavioural level of abstraction used in the old design.

Figure 3.6 shows an exemplary waveform depicting signals both from the CPU clock
domain (above dotted blue line) and from the FPGA clock domain (below line). For
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Figure 3.6: Timing violations in the old design

illustration purposes the timing relationships between MEMCLK and GCLK11 and be-
tween MEMCLK and CPU A do not reflect the actual values. (In reality MEMCLK is
twice as fast as GCLK11 and CPU A is stable for more than one MEMCLK – in the
figure GCLK11 has been chosen to a frequency close, but not entirely equal, to MEM-
CLK). These variations do not affect the predications but lead to a more straightforward
waveform. Additionally, tc2q of the register is assumed to be negligible.

Timing requirements of the FDR register are illustrated in the same way as in figure 3.5,
the signal names correspond to the names in figure 3.4. In this example the CPU accesses
the xdio module every second MEMCLK. Therefore, the address bus (CPU A) is set to the
address of the xdio module (A DIO) every second MEMCLK. The address on the bus then
gets compared to the fixed address A DIO. If the addresses match, nDIO will be driven to 0

(after a certain constant delay tdecoder) which releases the synchronous reset input of FDR.
On the next rising edge of GCLK11 the D and R inputs of the register are sampled and the
output Q is updated accordingly.

It can be seen that the clock signals have a variable relative skew (the interval between
their rising edges is not constant). Because of that the sampling point of the FDR register
(determined by GCLK11) may be close to a signal change on nDIO (whose timing is deter-
mined by MEMCLK and tdecoder) which then leads to timing-violations ranging from rising
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edge 3 to rising edge 7. No timing violation occurs at rising edge 8 and the register is
assumed to be able to recover to a defined output value.

Besides that, an additional problem shall be pointed out: Because of these long asyn-
chronous paths (originating at input pins driven by the the CPU) the behaviour of the
resulting FPGA design also heavily depends on the placement and routing chosen by
the FPGA design tools. If for example the routing delays for each single bit on the bus
between M2 1 and FD would vary by a large amount the probability of ending up with
at least one wrong bit in FD is larger than if all bit lanes would be delayed by the same
amount of time.

3.3.3 Identified problems

In summary the following can be put on record:

• The PXA CPU supports both synchronous and asynchronous bus transfer modes5)

• Address and data buses are buffered on the PCB, but the transfer qualifier (CS, OE
and PWE) are not

• RD/WR is not connected to the FPGA

• The deployed behavioural coding style somehow hides (in this case important) im-
plementation details and leads to a less efficient implementation

• The old FPGA design ignores the existence of the two clock domains and is therefore
prone to timing-violations and their consequences

More details and the solution to this problem can be found in section 4.2.

Apart therefrom another problem endangering the data transfer was identified. It will be
presented in the following section.

3.4 Timing constraints

During the exploration of the existing FPGA design another problem was found. An
essential part of the FPGA design flow, the applying of input/output timing constrains,
has been skipped. These timing constraints are used to inform the FPGA toolchain of
the timing properties and requirements of the surrounding logic.

This section first briefly introduces why timing constraints are an essential part of the
design flow and then discusses the potential effects of the lack of (I/O) timing constraints.

5) meaning that there are modes that not only support connecting clocked and non-clocked devices but
also allow an external peripheral to halt the processor if needed
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Looking back at section 3.3.2 it can be found that registers impose certain timing require-
ments to their data inputs to avoid setup- and hold-violations. This not only holds true
for registers inside the FPGA but also for registers outside the FPGA that are connected
to the latter (e.g. the SRAM). Therefore, the requirements of both the internal and the
external registers have to be considered by the toolchain. Obviously, the compliance with
these requirements can only be verified if the delays on the numerous paths inside the
FPGA are known. Because the routing inside an FPGA is newly created on every run of
the toolchain all path delays may change drastically between design iterations.

Three different cases have to be considered:
Assume that a register inside the FPGA is clocked by an external device (e.g. one of the
cameras) and samples one output of that external device (which is connected to one of
the FPGA’s input-pins). If the path delay between data input-pin and register is much
longer (or shorter) than the delay on the path connecting the external device’s clock to the
register’s clock-input it might happen that a data transition arrives too close to the active
clock edge and therefore violates the register’s setup- or hold-requirements. Therefore,
the delays on both clock- and data-paths starting at an input-pin of the FPGA have to
be monitored closely.
The same challenge arises if an external device is clocked by the FPGA (or an external
clock source) and shall receive data synchronized to that clock. If the path carrying the
data to the FPGA’s output-pin is much longer (or shorter) than the clock network the
timing requirements of the external device might get violated. Therefore, the delays on
paths originating in and leaving the FPGA have to be monitored as well.
The most obvious paths that have to be checked are the data paths between two registers
inside the FPGA. If the delay introduced by the logic between the registers is too large
(compared to the clock period), the timing requirements of the second register might get
violated or it might even miss the signal transition completely. In the old design the only
existing constraint was of that type and covered all register-to-register (“synchronous”)
paths that were clocked by the 50MHz oscillator (or a derived clock).

To allow this monitoring the FPGA toolchain has to be informed which path delays should
be considered (because it would be unfeasible to monitor and output all potential paths).
If the paths have been identified even the requirements can be entered into the toolchain.
This not only enables the toolchain to verify whether all requirements have been met
but also allows the tools to take these requirements into account when implementing the
design. This leads to an optimized placement and routing inside the FPGA.

If no timing constraints are specified the toolchain will place and route the design accord-
ing to its internal objectives (e.g. “minimum space consumption”). Depending on the
design and the tool, its revision and its configuration this might lead to an FPGA design
that does not comply with the timing requirements of the surrounding logic.

This problem might have contributed to the problems found in the old design even though
one constraint was used. The reason therefore is the large number of asynchronous paths
that were not covered by that (synchronous) constraint. It is difficult to prove that the lack
of I/O timing constraints is (solely or even only partially) responsible for these problems
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because the failing revisions of the old design have not been preserved. The author of this
thesis assumes that both the problem identified in the previous section and the missing
timing constraints have contributed to the failure of the old design.

In summary the following can be put on record:

• Timing constraints are an essential part of the FPGA design flow

• The lack of timing constraints may lead to the errors observed in the old design

Therefore, I/O timing constraints have been integrated to the design. More details can
be found in section 4.3.

3.5 Link-up of cameras, SRAM and FPGA

Looking back at figure 3.1 it can be found that each camera provides a clock signal to
the FPGA and therefore has its own clock domain each. The clock signal indicates when
the camera data bus is stable and may be latched by the FPGA. The old FPGA design
however used an internal clock signal to sample the camera signals and therefore is prone
to the same problem already identified in section 3.3.2. If the signals on the camera data
bus change close to an edge of the internal clock signal a setup- or hold-violation might
occur in the sampling registers. The solution to this problem is based on the findings of
section 4.2.4 and can be found in appendix F.1.

In addition, a CDC-related problem was found in the old SRAM interface. The interface
was used to buffer an image received from the camera and to make it then available to
the CPU. This was implemented in the following way: An internal 100MHz clock signal
of the FPGA was routed to the SRAM’s clock input. One bit in a CPU-accessible control
register was used to switch between accesses from the internal camera module and accesses
from the CPU.
For camera accesses the SRAM’s address bus was driven by a counter in the FPGA. This
approach is fine from a CDC point of view because both clock and bus signals are related
to the internal clock of the FPGA6).
CPU read accesses however were implemented by routing the CPU’s address bus to the
SRAM’s address bus while the SRAM still was clocked by the internal 100MHz clock
of the FPGA. This might cause setup- or hold-violations in the address registers of the
SRAM that sample the address bus (originating in the CPU-CD) using the clock signal
from the FPGA-CD. The reason therefore is that these two CDs are not related to each
other (and thus will have an arbitrary phase relation).

6) Even though both clock and address bus are generated in the same CD additional care has to be taken
because of the FPGA’s internal routing delays. More information can be found in section 4.4.2.
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4 Development of an image processing
framework for the FPGA

4.1 Overview

This chapter describes all the actions that have been taken to solve the problems identified
in chapter 3. It is organized in three sections:

Bus bridge (section 4.2): Based on the findings of section 3.3 a bus bridge was developed
that shall overcome all the limitations and problems of the old FPGA design’s
interface. The section contains not only additional low-level information about
register but also how synchronization between two clock domains (CDs) can be
achieved in general. Based thereon, the bus bridge, its features and all design
decisions made will be presented.

Timing constraints (section 4.3): As described in section 3.4 the old existing FPGA
design was lacking timing constraints for both CPU and camera interface. This
section describes not only the timing constraints needed for these two interfaces but
also derives some additional ones used to enforce a proper routing of the bus bridge.
The latter ones were needed to limit delays on certain asynchronous paths that were
not covered by regular (synchronous) constraints.

SRAM controller (section 4.4): The SRAM interface of the old design (already men-
tioned in section 3.5) was only intended for temporary buffering between camera
module and CPU. The interface only supported alternating accesses from either
camera module or CPU and was controlled by software. The stereo image process-
ing system developed by a fellow student (see [29] for more information) however
requires multiple quasi-simultaneous accesses to the SRAM. Therefore, a new SRAM
controller was designed to meet this requirement.
Sadly a time-consuming problem on PCB-level (related to the clocking of the SRAM)
was found during research and rendered the implementation of the SRAM controller
impossible. The section anyhow explains the proposed implementation, the ideas
behind and demonstrates its interaction with the image processing system. In ad-
dition, the problem is analyzed and a solution therefor is presented.

During the development of the bus bridge two major goals were pursued: Firstly, reliable
(and fast) communication between FPGA and CPU should be established. Secondly, as
much as possible of the complexity of the asynchronous interfaces should be encapsulated
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to unburden other developers from dealing with this low-level kind of interfacing. This was
achieved by replacing all partially asynchronous logic inside the FPGA with synchronous
circuits which are not only easier to understand but also fully supported by the FPGA
design toolchain. Additionally, this synchronous approach improves the value of timing
simulations (because a simulation of a synchronous circuit generally is more likely to
reflect reality compared to a simulation of an asynchronous circuit).

4.2 Interfacing the CPU: The bus bridge

4.2.1 Conceivable approaches to interface CPU and FPGA

This section first theoretically introduces two straightforward (but still sophisticated)
approaches to interface the FPGA to the CPU. The goal of these approaches is to avoid
timing-violations both in the CPU and the FPGA. This can be achieved by ensuring
certain (known) timing-relationships between one or more clocks and all status- and data-
lines. Sadly none of these concepts could be used on the EyeBot M6 so an alternative,
matched (but also more complex) solution had to be designed.

4.2.1.1 One clock domain: FPGA synchronous to CPU

Figure 4.1: Fully synchronous system (FPGA using clock from CPU)

Figure 4.1 shows the most obvious approach: One of the FPGA’s global clock inputs
(GCLK) is connected to one clock output of the CPU’s memory controller (e.g. SD-
CLK[2]). The memory controller then has to be configured in a way that this clock
output emits a continuous non-gated clock1). This clock (generated by the CPU) will

1) For anyone interested: The relevant bits are K2FREE, K2RUN and APD in the MDREFR register of
the controller. More information can be found in table 6-5 of [5].
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then be fed into a DCM of the FPGA and all clocks needed inside the FPGA will be
derived from it. This approach makes use of the “Synchronous static memory” interface
of the CPU, therefore the memory controller has to programmed to “Non-SDRAM mode”
to avoid the generation of SDRAM-commands (like Bank Activate, Precharge, etc.).

This approach has multiple advantages:

• There is no need for an external clock source (e.g. an oscillator). Additional (slower
or faster) clocks can easily be generated by a DCM inside the FPGA.

• All bus signals driven by the CPU will be synchronous to the clock leaving the
CPU. Inside the FPGA this clock then can be used to sample all these bus signals.
Because both registers inside the CPU (driving the bus signals) and registers inside
the FPGA (sampling the bus signals) are clocked by the same clock it can be ensured
that no timing-violations will occur in any of these registers2).

• The whole system therefore forms one single CD. There is no need for any kind of
resynchronization or clock domain crossing which keeps the system easy to under-
stand and simplifies maintenance.

• Depending on the chosen configuration the SDCLK frequency can be as high as
50MHz. A (16 bit) data word can be transferred on every rising edge. Assuming a
burst transfer of infinite length a notional maximum data transfer rate of 100MB/s
can be achieved.

4.2.1.2 Two clock domains, CPU clock available to FPGA

Figure 4.2: Synchronous system with two clocks (CPU clock available to FPGA)

2) The input/output-circuitry at every IO-pad of the FPGA and the DCMs contain special features
(delay-lines and deskew-units) to balance timing in a way that no timing-violations will occur.
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Figure 4.2 shows another valid approach that can be used if the FPGA shall be clocked by
an external oscillator3). This oscillator and again one clock output of the CPU’s memory
controller are connected to two of the FPGA’s global clock inputs. This leads to a system
with two clock domains that meet inside the FPGA. To transfer the signals coming from
or going to the CPU clock domain a special type of FIFO is used inside the FPGA, the so
called “independent clock FIFO”. It not only serves as a regular queue (as every FIFO)
but also is able to pass over data between two (completely independent) clock domains.
Because this type of FIFO is one of the only two circuits that allow the safe crossing of
clock domains it will be examined in-depth in section 4.2.4.

Compared to the first approach (with only one CD) a few differences can be observed:

• Two dedicated FIFOs are needed to transfer the data between CPU and FPGA
clock domain in a safe fashion. These FIFOs take up additional CLBs and at least
one Block-RAM each. Additionally, some logic has to be inserted on the FPGA
side of the receiving FIFO (FIFO1) to recreate some kind of bus transactions for
the inner modules.

• The FIFOs introduce (variable) delay on the path between CPU and FPGA. The
actual value heavily depends on the design of the FIFO, the frequencies of the two
clocks and their phase relationship. This delay mostly is created by the circuitry
used to synchronize signals between the two clock domains.

• Write accesses can be handled easily: After detecting an access to the FPGA both
address and the data to be written will be stored in FIFO1. Both then will be
driven to the internal bus and the accessed module will react appropriately (e.g. by
updating one of its internal registers).

• The delay introduced by the FIFOs has huge impact on CPU reads that access
resources in the FPGA: During a regular VLIO read access (see figure 3.3 in sec-
tion 3.3.1) the CPU expects the read data to be on the data bus at a certain time
after driving the address bus and asserting CS and OE. When using this FIFO-
based approach all the following has to happen during that period of time: Firstly,
a control word (“request”) indicating a read access and containing the requested
address has to be written to FIFO1. Then FIFO1 has to transfer this request to the
FPGA clock domain. After that, an access to the internal bus has to be triggered
which then will be answered by the internal module. This response finally has to
be sent back to the CPU by storing it into FIFO2 and driving the data bus after
the answer has reached the CPU clock domain. The delays introduced by the two
FIFOs are in the range of a few clocks (of the corresponding domain) each. Taking
this into consideration it becomes clear that it is impossible to drive the data bus
fast enough when using the timing shown in figure 3.3, because there are only three
clock cycles between the assertion of OE and the point in time when the CPU sam-

3) This approach can be used if the CPU should be able to enter some sort of power save mode (in which
the clock frequency may change or the clock even may stop completely) and the FPGA shall be active
all the time.
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ples the data bus4). Therefore, the bus timing has to be slowed down accordingly
(by changing the configuration of the memory controller) which will affect (both
read and write) performance.

4.2.1.3 On the EyeBot M6: Two clock domains, CPU clock not available to FPGA

Unfortunately these two approaches above are not applicable to the EyeBot M6 because
there is no clock signal leaving the gumstix PCB that could be connected to the FPGA (see
figure 3.1 in section 3.3.1 for reference). Figure 4.3 shows the situation on the EyeBot M6.

Figure 4.3: Asynchronous system (CPU clock unknown)

In summary it can be said that

• plain sampling can not be used because the FPGA has its own independent clock
and therefore the signals driven by the CPU will change asynchronously and that

• crossing the clock domains using an independent clock FIFO can not be used because
no CPU clock is available to drive one side of the FIFO.

Therefore, a new approach to handle this asynchronous interface has to be found.

4.2.2 Metastability

The previous section (4.2.1) demonstrated that there is no straightforward possibility
to interface CPU and FPGA because of the lack of a clock signal from the CPU. Be-
cause FPGAs are fully synchronous ICs the asynchronous CPU bus somehow has to be

4) By prefetching the requested data at the assertion of CS (before it is actually known whether a write-
or a read-access will be initiated) two additional clock cycles could be gained. But even five clock
cycles would be too short.
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synchronized to the FPGA-CD. Since registers are the only elements that are capable
thereto the impact of timing-violations has to be probed further. The following therefore
focuses on the possible consequence, the so called metastability. Based thereon, a classical
synchronization circuit will be introduced in section 4.2.3.

This section starts with an introduction to metastability and recapitulates why it can
not be avoided when interfacing asynchronous signals. After that, the possible outcomes
of a timing-violation will be presented. The section concludes with different theoretical
methods to characterize metastability.

4.2.2.1 Introduction

As already noted in section 3.3.2 (figure 3.5) registers require their inputs to adhere to
certain timing constraints. If these requirements are violated the output of the register
will be unpredictable. In synchronous circuits this behaviour is avoided by ensuring that
all timing-requirements for each register are met by design. To avoid setup-violations the
maximum combinatorial path delay tlogic,max (between two registers) has to be smaller
than the clock period Tclk (or – in case of multi-cycle designs – a multiple thereof) minus
tc2q and tsetup of the registers (tlogic,max ≤ Tclk − tc2q − tsetup). To avoid hold-violations the
minimum combinatorial path delay tlogic,min has to be longer then thold minus tc2q of the
registers (tlogic,min ≥ thold − tc2q). Besides that, the skew of the whole clock distribution
network has to be taken into consideration. Unfortunately these checks are infeasible
when interfacing an asynchronous signal because no timing relation is known between
sending and receiving register.

When a signal is sampled in another clock domain than it was created in it is impossible to
avoid these timing violations because the signal may change at an arbitrary point in time.
Assume signal Sa is generated in CDa and has to be transferred to CDb. Transitions
on signal Sa will always happen after a certain (maximum) delay after the active edge
of CLKa. If CLKb is not derived from or by some other means synchronized to CLKa the
phase offset between the two clocks will change over time. This will induce setup- or hold-
violations on (at least) the first register in CDb (see figure 3.6 for reference) depending on
the exact timing of both the circuit and the two clocks. Because these violations neither
can be avoided nor predicted in time a way to handle them appropriately has to be found.
This has to be done on register- or even transistor-level what generally leads to specialized
circuits and even to handcrafted transistor stages in ASIC designs.

4.2.2.2 Possible failure modes

To analyze the requirements for a synchronization circuit first all possible failure modes of
a single register have to be identified. If the timing requirements of a register are violated
its output is considered to be undefined. Whilst this (high) level of abstraction is perfectly
valid for behavioural simulation it does not reflect the physical reality because a voltage
level of “undefined V” does not exist. In reality the output of the register might
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• stay unchanged,

• immediately adopt the logic value of the input pin before5) or after its transition or

• enter a metastable state

after the timing requirements of the register have been violated.

Please note that the term “metastability” is not well-defined: Some authors consider a
register being “metastable” as soon as its (setup- and hold-) timing requirements
are violated, while others use the term only to describe situations when the clock-
to-output delay tc2q of the register is longer than specified in the data sheet. Finally,
the term “metastable” is also used to denote the operating point of a feedback loop
formed of two inverters (e.g. a latch) in which both their outputs are at the same
electrical level. Theoretically a latch would stay in this state for an infinite amount
of time (tc2q → ∞), but in real circuits a small disturbance (e.g. noise or voltage
variation) will push the circuit out of equilibrium.

In this thesis the second definition will be used: Metastability has occurred if tc2q
is longer than specified in the data sheet.

The first two possibilities do not pose a problem because the output will be a stable legal
logic value of either 0 or 1. It is not important which value appears at the output because
the input signal was changing anyhow so both 0 or 1 are considered correct.

The third outcome tough imposes a serious problem for digital circuits because the exact
behaviour of a metastable circuit can not be predicted. The output of a metastable
register might

1. finally settle to 0 or

2. settle to 1 (after a certain amount of time),

3. oscillate in a voltage range exceeding the trigger limits of the logic family and finally
settle to a stable level or

4. oscillate in a voltage range smaller than the trigger limits of the logic family and
settle to a stable level (after a certain amount of time),

5. finally change to the value of the input or

6. change to the negated value of the input (after a certain amount of time).

The problem in all this cases is that the output of the register will change its logic level
spontaneously (for one or even several times). This change will happen a certain time
after the active clock edge and this interval will be longer than the clock-to-output delay
specified in the data sheet. This additional delay can be considered as “time that is needed
by the register to decide whether the (changing) input is considered being a logic 1 or a
logic 0”. Case 3 additionally imposes a limit on the usage of register outputs that are
endangered to metastability: An output of such a register must never be used to drive

5) The input might have changed after it was sampled one clock period before.
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any clock inputs (e.g. of other registers) because an oscillation on that net might lead to
switching activity at unwanted points in time.

4.2.2.3 Characterizing metastability

The actual behaviour of the register can only be described by statistical means because
the underlying physical processes are depending on values that can be characterized sta-
tistically only, too. Two important values can be defined:

The metastability window determines the length of the interval around the active clock
edge in which a transition on the data input forces a register into a (theoretically)
persistent metastable state. The actual length and the position of that window
depend on used IC technology parameters, temperature, voltage and noise levels.

The resolution time is the time that is taken by a register before it finally settles to a
stable output value after the metastability window has been hit. Theoretically this
interval could be of infinite length if the metastable operating point was reached
perfectly. Practically the resolution time mainly depends on the supply voltage and
on the voltage levels on the feedback paths just after the active clock edge. The
latter ones obviously are influenced by the exact shape of both clock- and data-pulses
and again by IC technology parameters, temperature, voltage and noise levels.

This topic is covered by various publications: [16] presents real life measurements of
the metastable recovery time in Virtex 2-FPGAs and extrapolates MTBF values based
thereon. The article states that the metastable behaviour of a real register (in an FPGA)
can be quantified by likelihood measurements only because it is impossible to build a
circuit that is accurate enough to hit the metastability window in a reliable way. There-
fore, two asynchronous clocks were used to push a register Qa into metastability. The
number of metastable events in the register Qa was determined by sampling its output Sa
at two different points in time after the active (rising) clock edge and by comparing both
samples. The sampling was implemented by two registers, one clocked on the falling (Qc)
and one clocked on the rising edge of the clock (Qb). If the clock-to-output delay tc2q of
register Qa has increased by more than half a clock period the transition on Sa will hap-
pen after the falling clock edge and will therefore be missed by Qc. Assuming that tc2q is
smaller than the clock period (which is very likely) Qb will sample Sa after its transition.
Therefore, Sc and Sb (which are the outputs of Qc and Qb resp.) will have different
logic values. This state then can be used to trigger a counter that counts the number of
metastability events in Qa. The interval in which Qa will be checked for metastability
can be adjusted by setting the clock period to different values. By increasing this period
additional time to resolve the metastable state can be granted to Qa. A period of time
provided to a register to leave a metastable state is frequently called (allowed) settling
time (see [11] or [18]).
The most important result of the above measurements is that even a small increase in
the allowed settling time has a huge positive effect on the MTBF of the register ([13]).
From this it follows that the probability of an output transition closer to the clock edge
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is higher than the probability of an output transition further away from the clock edge.
In other words: The probability for a short resolution time is much higher than the
probability for a longer resolution time. Additionally, the measurements are indicative
of an improvement of the metastability behaviour (in terms of a higher MTBF) when
comparing a Virtex 2-FPGA with an older XC4005. It has to be pointed out though
that according to [18] the metastability behaviour of newer Virtex-FPGAs got worse for
unknown reason. The above and the complete lack of (official and unofficial) numbers for
the Spartan architecture lead the author of this thesis to stop further investigations into
metastability estimations on the Spartan-3E.

[31] however presents mathematical models to estimate the behaviour of metastable
CMOS circuits. It also discusses methods to reduce the probability of errors induced
by metastability both on transistor- and system-level. Equation 4.1 shows (a slightly
adapted version of) equation 3.42 on page 55 of [31]. It is the result of an extensive
derivation and allows the quantitative computation of the MTBF. A “failure” here is
defined as “the metastable state lasts longer than a certain, chosen time” which is iden-
tical to “the register fails to resolve the metastable state within a certain, chosen time”.
This time will be called the metastable time tm and is measured from the active clock
edge. Because metastability lengthens (the observable) tc2q it is obvious that tm is always
greater than tc2q specified in the data sheet.

MTBF =
e

tm−tpDL
τ

fclkfdatatw
=

e
ts
τ

fclkfdatatw
with ts = tm − tpDL (4.1)

Equation 4.1 also is a more detailed version of the equation in [16], page 2. In the
following the symbols used in both will be introduced and the qualitative relationship
between MTBF and additional settling time will be shown.

τ is the latch time constant and tw is the metastability window already introduced earlier6).
Both of them are technology parameters depending on load capacitance, transistor gain,
threshold and supply voltage. fclk is the clock frequency that clocks the register under
test while fdata is the test frequency applied to the data input.
tpDL is the average propagation delay of the underlying latch structures. The difference
between tm and tpDL can be interpreted as additional settling time ts that is granted to
the register to avoid that a metastable state will be entered all too often (which would be
equivalent to a too small MTBF).

The measurements in [16] were performed by observing the MTBFs at two different fre-
quencies fclk. Because both frequencies and therefore both (half-)periods were known the
difference of the two allowed settling times (∆ts) could be calculated. Based thereon, τ

6) In [16] the metastability window is named K1 and the inverse of the latch time constant τ is called
K2. The comment that “some researchers list 1/K2 as a time constant, (τ)” is somehow misleading
because the letter τ in that document actually stands for the allowed settling time.
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could be determined using equation 4.27).

τ =
∆ts

ln MTBF1 f1

MTBF2 f2

(4.2)

To evaluate the impact of additional settling time on the MTBF the same system will be
considered twice (f1 = f2 ). Rearranging equation 4.2 leads to equation 4.3 which shows
that a small variation on ∆ts will have an exponential effect on the MTBF.

MTBF1

MTBF2

= e
∆ts

τ (4.3)

This leads to the following rule of thumb: To reduce the probability of metastability-
related errors (identical to a long MTBF) as much as possible additional settling time has
to be granted to all registers whose inputs are driven by asynchronous signals. Because the
technology parameter τ is unknown for the Spartan architecture no quantitative values
can be presented.

Insert E of [32] focuses on timing-requirements from an RTL point of view. Both [31]
and [32] include an alternative, incisive representation of the (simulated) effects of
metastability on the output of a register. Figure 4.4 reprints figure E-4 from page 433

Figure 4.4: Clock-to-output delay as function of the data-to-clock offset
(source: [32], page 433)

7) Please note that his equation was reconstructed by the author of this thesis because [16] just presents
numbers without calculations. Apparently the values in table 1 of [16] were achieved assuming that
f1/f2 ≈ 1.
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of [32]. It depicts the clock-to-output delay tc2q (see figure 3.5 for reference) as function
of the offset between the last change on the input signal and the active clock edge (the
data-to-clock offset td2c). Again an exponential characteristic can be identified. It can
be seen that tc2q differs from the “usual” value (below 200 ps) for td2c ∈ [−125;−15] ps.
Whenever the data input signal changes during that window the signal transition on the
output of the register will be delayed. Because of the internal delays of the circuit the
window is not centered around 0 ps, which explains why setup times are usually longer
than hold times. Setup- and hold-times (labeled tsu resp. tH ) were defined by choosing a
“tolerable delay” of 5% (tagged by the horizontal line labeled 1.05tC−Q). It can be seen
that (in this example) the hold time tH is negative because the clock-to-output delay
decreased to 1.05tC−Q left of td2c = 0 ps. This means that there is no need to hold the
data-input on a stable level after the clock edge has occurred.

Please note that (at least in Xilinx FPGAs) in most cases a setup- or hold-time-violation
does not induce metastable behaviour because the metastability window is much shorter
than the sum of setup- and hold-times recorded in the data sheets (see [15] or [11] for
reference). The reason therefore is that IC manufacturers tend to specify setup- and hold-
time requirements longer than actually required. This “safety margin” then may be used
to compensate process, voltage and temperature variations, routing delays and more.

4.2.3 Clock domain crossing with the two-stage synchronizer

Aside from the already mentioned independent clock FIFO another class of circuits exists
that transfers signals between different clock domains. These circuits are called synchro-
nizers and facilitate a (reasonably safe) way to transfer single-bit signals from one to
another clock domain.
This chapter firstly presents a classical synchronization circuit, the two-stage synchro-
nizer, its limitations and its applications. The following section (4.2.4) then focuses to
the independent clock FIFO which makes use of the two-stage synchronizer.

4.2.3.1 Fundamentals

As shown in section 4.2.2.3 metastability can not be avoided if a register Qa receives
a signal originating in a different CD. The basic approach pursued is to reduce both
probability and impact of a metastability event on the whole system. The circuit used to
reach this goal is called a synchronizer.

Equation 4.3 indicates that the mean time between two metastable events leaving a regis-
ter Qa can be increased by granting additional settling time to the register. The latter is
the equivalent of maximizing the available slack on the path driven by Qa. The slack on
a synchronous path is defined as tslack = Tclk − tc2q − tinterconnect − tlogic − tsetup . The slack
can therefore be maximized simply by connecting nothing but a second register Qb to
the output of Qa (which is equivalent to tlogic = 0). The delay caused by the interconnect
between the two registers (tinterconnect) has to be minimized by placing Qa and Qb close
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to each other. Because all available slack should be used as settling time for Qa ts can be
specified as ts = Tclk − tc2q − tinterconnect − tsetup .

Figure 4.5: The two-stage synchronizer

This simple circuit (shown in figure 4.5) is called two-stage synchronizer. If implemented
carefully it is able to extend the mean time between two metastable events by magnitudes.
The absolute value of the synchronizer’s MTBF still depends on the technology parameters
and on the frequencies of the clock (fclk) and the data (fdata). Please note that the
MTBF of Qa is no longer reciprocally proportional to fclk because ts now is a function
of fclk = 1/Tclk . This is in contrast to equation 4.1 (section 4.2.2.3) where the MTBF is
reciprocally proportional to fclk (because ts is assumed to be constant).

Please also note that the probability for a metastable signal at the synchronizer’s output
is still non-zero. This is the case because Qa might resolve its metastable state in such a
way that the transition will hit the (very small) metastability window of Qb. The only
chance to completely avoid metastable failures (which is identical to MTBF → ∞) is to
grant an infinite settling time to the synchronizer which is obviously impractical for real
world circuits.
If the MTBF achieved by the two-stage synchronizer is only a few magnitudes lower than
desired value an additional register Qc can be connected to Qb. By again maximizing
the slack on the path between Qb and Qc the cumulative settling time can be doubled.
This leads to an increased MTBF at the cost of one additional clock cycle of latency.

Because synchronizing circuits work on the principle of granting additional settling time
to one or more registers it is unavoidable that the asynchronous signal handled by the
synchronizer will be delayed by (at least) a certain time. Because a metastable event
would delay the result by an unknown (theoretically infinite) interval it will be assumed
in the following that the asynchronous input signal will not violate setup- and hold-time
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requirements of the first register (and therefore metastability will not occur).
In case of the two-stage synchronizer the best- and the worst-case delay can be determined
as follows:

Best case: The asynchronous signal changes as close as tsetup allows ahead of the next
active clock edge. Qa will then sample the new value on this clock edge. Qb will see
the updated value one clock cycle later and output it delayed by tc2q . The best-case
delay therefore can be specified as tsync,min = tsetup + Tclk + tc2q .

Worst case: The asynchronous signal changes as close as thold allows after an active
clock edge. Qa will sample this transition on the next active clock edge which
happens after Tclk − thold . Qb will see the updated value one clock cycle later and
will output it delayed by tc2q . The worse-case delay therefore can be specified as
tsync,max = Tclk − thold + Tclk + tc2q = 2Tclk − thold + tc2q .

This uncertainty of the delay introduced by the synchronizer leads to a few problems that
have to be handled on system-level. Please note that these problem are not related to
metastable events at all, neither inside the synchronizer nor in the downstream logic.

4.2.3.2 Pitfall 1: Synchronization of a single-bit signal

Figure 4.6: Two logic units with one local
synchronizer per unit

Figure 4.7: Two logic units with centralized
synchronization at the input

Consider the following scenario: Two logic units in a synchronous environment depend
on one and the same (external) asynchronous input signal IN. To increase the MTBF
the designer chose to synchronize that signal using two independent synchronizers just
before it is fed into the logic units (figure 4.6). This structure is fine from a metastability
point of view because the synchronizers (again only if implemented carefully) will push
the MTBF by magnitudes. We will further assume that the achieved MTBF has been
scrutinized and considered sufficient by the designer. But because of the asynchronous
nature of IN and because of the uncertainties of the delay introduced by the synchronizers

33



4 Development of an image processing framework for the FPGA

the system is vulnerable to a race condition: The paths carrying the external signal from
the device’s input pin to the two synchronizers will never be of the exact same length
which results in different propagation delays (path A vs. path B). Therefore, a transition
on IN will reach the two synchronizers at different points in time. If a clock event takes
place just (tsetup) after the signal transition on IN has reached the upper synchronizer the
lower one will miss the transition because the new value is still on the way on path B. In
this case an “impossible state” will be observed by the logic because the outputs of both
synchronizers are expected to be equal all times.
From a high-level point of view the skew on IN would have to be larger than tsetup + thold
(so that the upper synchronizer’s setup- and the lower synchronizer’s hold time require-
ments will not get violated). In reality both tsetup and thold are specified much longer than
needed so the skew on IN needed to trigger this scenario might be in the magnitude of
picoseconds or even lower.
The solution (depicted in figure 4.7) is straightforward: Only one central synchronizer
transfers IN into the system’s CD. Assuming that the synchronizer did not enter a
metastable state its output is synchronous to the clock. Therefore, the design tools are
able to verify that a transition on the synchronized IN safely reaches both logic A and B
before the next active clock edge. This leads to

Rule 1: An asynchronous input signal must not be synchronized by more than one syn-
chronizer. This avoid race conditions caused by divergent synchronization results.

The same rule is valid for designs that use a single register instead of the two-stage syn-
chronizer (figure 4.8) which might be an appropriate approach for slow systems interfacing
an even slower asynchronous input.

Figure 4.8: Two registers sampling an asyn-
chronous input signal

Figure 4.9: Asynchronous input signal sam-
pled by one register

Looking back at figure 3.4 (section 3.3.2) exactly this scenario can be identified in the xdio-
module: CPU NCS, CPU NWR and CPU A are used to generate a write-enable signal for each
submodule that is used to control the multiplexer M2 1 in front of the 16 bit register FD.
Hence there are paths from an asynchronous input (e.g. CPU NWR) to more that one register
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that indirectly synchronize that input to the FPGA’s CD. If the timing relationship
between a transition on CPU NWR and the active clock edge (on DCM CLK150) is unlucky
the multiplexer might still be in the process of switching between its inputs when FD

samples its inputs. Therefore, only some bits in FD might be updated to the new value
whilst others would stay unchanged.
The solution is the same as already presented above: The asynchronous input signal
(here: CPU NWR) has to be synchronized at a central location before it is fed into subsequent
logic stages (figure 4.9).
Please note that this is exactly the same type of race condition as described above, the
only difference is the higher MTBF of the circuit presented in figure 4.7.

Another pitfall inherent to flag transfers across CDs has to be considered: Because of the
unknown relationship between the clock signals of sending and receiving (and therefore
synchronizing) CDs special care has to be taken to ensure the safe reception of the flag
in the destination CD.

Figure 4.10: Flag synchronization failed Figure 4.11: Flag synchronization successful

Figure 4.10 shows a typical example of two clock domains running at different frequencies.
Signal Sa is driven by CDa to flag a special state and shall be transferred to CDb. Sa*
is the waveform observed after the first register inside the synchronizer in CDb. It can
be seen that the flag-pulse might not be recognized by the destination CD depending on
(frequency- and) phase-relation of the two clocks.
The solution depicted in figure 4.11 is based on the knowledge that the frequency of CLKa
is twice the frequency of CLKb: If Sa is asserted for at least two8) CDa clock cycles
the flag-pulse will be detected by CDb. This scenario obviously only shows up when
transferring a signal from a faster to a slower CD.

If the clock relation between the two CDs is unknown a more complex solution has to be de-

8) If the clock jitter of one or both clocks is not negligible Sa has to be asserted for at least three CDa
clock periods which is equal to 1.5 CDb clock periods.

35



4 Development of an image processing framework for the FPGA

ployed: By implementing a request/acknowledge-protocol as depicted in figure 4.12 CDa
will assert REQ until CDb acknowledges the reception of the flag by asserting a signal
ACK which will then be recognized by CDa.
Because REQ resp. ACK will be generated in CDa resp. CDb and read in CDb resp.

Figure 4.12: REQ/ACK-protocol for flag transfer

CDa two synchronizers are needed. The signals after the first resp. second register of the
particular two-stage synchronizer are tagged with * resp. ** each.
This approach guarantees not only that CDb has received the flag but also that CDa waits
long enough between two subsequent flag-pulses. The obvious downside of this scheme is
the long time between two rising edges on ACK that is introduced by the double cross-CD
synchronisation. Depending on the exact relationship between the two clocks the runtime
of the protocol may vary (orange vs. blue waveform). Figure 4.13 in the following section
depicts a circuit realizing the protocol.
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This leads to

Rule 2: To ensure the reception in the destination CD a signal has to be asserted at least
one clock period of the destination CD or a REQ/ACK-protocol has to be deployed.

More advanced scenarios and possible solutions for synchronizing a single-bit signal can
be found in [26], chapter 9.0.

4.2.3.3 Pitfall 2: Synchronization of a bus

A problem similar to the race condition presented above emerges when multiple synchro-
nizers are used imprudently to transfer bus signals between CDs. Assume each single bit
of the bus is connected to one dedicated synchronizer. After reconsidering that the re-
spective delay of each of these synchronizers can only be specified with a some uncertainty
the problem becomes visible: If the data on the bus changes close to the active clock edge
of the receiving system it might happen that

• some synchronizers update their output to the value of their associated bit after the
transition (short delay), and that

• at the same time the other synchronizers will miss the transition and therefore still
output the previous value for one more clock cycle (long delay).

This might occur because

• some bit lanes are slightly shorter than others and the new (bit-)values therefore
arrive earlier at their respective synchronizer than other ones, or because

• some of the synchronizers sample earlier than the others, e.g. because of skew on
the clock network.

Therefore, some bits of the data word will be updated and others won’t. This will result in
a partially updated word similar to the situation described in section 3.3.2 (xdio-module).
The fault described above is a race condition between many bit lanes crossing over to CDb
(with distinct delays introduced by the synchronizers which themselves depend on the ex-
act timing of the respective bit lane). This fault will be called a multi-bit synchronization
failure and again is not related to metastability.

If no knowledge about the data on the bus is available the only safe way to transfer a bus is
to make use of the REQ/ACK-protocol introduced in section 4.2.3.2: In the beginning the
sending side (CDa) latches the data into its output buffers and starts driving the bus X.
At the same clock cycle it asserts REQ which is used to inform the receiving side that
valid data is available (“request to fetch data”). The receiving side (CDb) will latch the
data on bus X after receiving REQ. After that, it will assert ACK to inform the sending
side of the successful transfer. The sending side must continue driving bus X (with the
same word) until it has received the acknowledge from the receiving side. After that, the
process may start from the beginning. Figure 4.13 shows one possible realization.
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Figure 4.13: REQ/ACK-protocol used to transfer a bus

In contrast to the scenarios described earlier it is perfectly acceptable to use a multi-bit
register in CDb to store the data on bus X even its inputs are driven by CDa. The reason
therefore is that because of the REQ/ACK-protocol the receiving side knows for sure that
the bus signals are stable when REQ** is asserted.
This method of transferring a bus inherits the disadvantage from the REQ/ACK-protocol
mentioned before: The two synchronizers involved in the data flow control lead to a long
runtime of the protocol which limits the number of bus-beats per time and therefore the
bus throughput.

The following presents an exemplary special case scenario where some knowledge about
the data on the bus is available: The value of a 3 bit binary counter has to be transferred
from CDa (slow) to CDb (fast). The internal structure of the logic in CDa guarantees
that the counter either only increments by one (per CDa-clock cycle) or holds its current
value. To visualize the impact of an improper CDC using multiple synchronizers at first
the worst-case outcome will be studied for this case. After that, an alternative approach
that makes use of the knowledge about the data will be presented.

Table 4.1 shows all possible decimal values (xdec) and their binary equivalent (xbin). The
number of changed bits between two values (when increasing x) is given in the third
row (nbin) and the respective bits are underlined in row xbin .

If the 3 bit bus carrying the binary counter value xbin would be transferred to CDb using
three synchronizers a multi-bit synchronization failure could occur. When the counter
value x increases all or only some of the changed bits (marked in row xbin) could be
delayed (by one clock cycle of the destination CD). Row wbin shows the worst-case result
for each increment. Delayed, unchanged bits are overlined while successfully transferred
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xdec 0 1 2 3 4 5 6 7 0

xbin 000 001 010 011 100 101 110 111 000

nbin 1 2 1 3 1 2 1 3

wbin 000 000 010 000 100 100 110 111

wdec 0 0 2 0 4 4 6 7

δbin 1 2 1 4 1 2 1 7

Table 4.1: Synchronization errors for binary up-counter

ones are underlined. The decimal equivalent of wbin is given in the next row (wdec) while
the last row specifies the resulting error δbin = |x− w|.

Example: When x changes from 1 (001) to 2 (010) the two rightmost bits change and
are therefore susceptible to being delayed by the synchronizers. If the middle bit
gets delayed (and therefore stays 0) but the right bit (the LSB) gets successfully
updated to 0 the resulting bit sequence will be 000 (0). The difference between the
expected value x = 2 and the received value w = 0 is δbin = 2.

It can be seen that the error δbin gets as large as 7 which is the maximum span covered
by the counter. This means that (using this approach) the receiving side is unable to
recover the actual value because it was transferred using binary coding and might have
been damaged (and therefore invalidated) by the synchronization to the target CD.

Apart from transferring the 3 bit binary value using the REQ/ACK-scheme a more time-
efficient approach can be deployed here because it is known that the value on the bus is
generated by a counter that either keeps or increases the value by one.

To circumvent the problem of a multi-bit synchronization failure the binary counter value
can be converted using a coding scheme that ensures that two adjacent numbers (repre-
sented by bit patterns) are only distinguished by one bit. This scheme is called Gray-Code
named after its inventor Frank Gray who patented it in 1953. The patent specification
can be found in [30].
Because the counter in this special case scenario only increases by one (per clock cycle of
the sending CDa) it can be guaranteed that only one bit of the Gray-encoded value on
the bus might have changed when the bus is sampled in CDb (which is faster than CDa).
Table 4.2 again shows all possible counter values x in decimal (xdec) and their equivalent
in Gray-coding (xGr .). The number of changed bits between two values (when increas-
ing x) is given in the third row (nGr .) and the respective bits are underlined in row xGr ..
It can be seen that because of the Gray-coding nGr . is equal to 1 for all possible counter
transitions (because there is only one changed bit between two adjacent numbers).

If the 3 bit bus carrying the Gray-encoded value is transferred to CDb using three synchro-
nizers no multi-bit synchronization error can occur because only one bit of xGr . changes
when the counter increments. The change of this single bit can either be successfully
transferred to CDb (which will lead to an up-to-date counter value in CDb) or be delayed
by one clock cycle. The latter is the only possible failure scenario when synchronizing a
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xdec 0 1 2 3 4 5 6 7 0

xGr . 000 001 011 010 110 111 101 100 000

nGr . 1 1 1 1 1 1 1 1

wGr . 000 001 011 010 110 111 101 100

wdec 0 1 2 3 4 5 6 7

δGr . 1 1 1 1 1 1 1 1

δbin 1 2 1 4 1 2 1 7

Table 4.2: Synchronization errors for up-counter represented in Gray-coding

Gray-encoded (multi-bit) signal that only changes by one per clock cycle (of the sending
CD). Because this is the only possible failure this case is the worst-case scenario.
When the change of this single bit is delayed the output of the three synchronizers will
stay the same (and wGr . therefore will be identical to the value of xGr . before the counter
has incremented). Because the receiving CD is faster than the sending CD the next syn-
chronization attempt will take place before the counter in CDa increments its value for a
second time. This synchronization attempt will (most likely) be successful (because the
bus has been stable for approximately one clock period) and therefore the new, updated
value will appear at the outputs of the synchronizers.

It can be seen that the worst-case error δGr . is always equal to 1 when Gray-coding is
used9). This small difference will only be present for one clock cycle of the receiving
CD (CDb). After the next active clock edge the correct value will be available.

In others words: The counter value received in CDb can always be used without concerns
for its validity. In case of a clock event (in CDb) close to a counter transition the CD
crossing might take an additional clock cycle, therefore the received counter value might be
off by one. This situation (depicted in figure 4.14) is perfectly legal because the counter
value just changed when it was read by CDb so both the old and the new value are
considered correct. The obvious advantage of this approach is the much higher possible
data rate compared to the REQ/ACK-protocol because there is no need to wait for an
acknowledge from the receiving side.

Figure 4.14: Counter synchronization using
Gray-code (slow to fast)

Figure 4.15: Counter synchronization using
Gray-code (fast to slow)

9) For reference the worst-case error found for binary coding (δbin) is given in the last row.
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This approach will also work if CDa is faster than CDb (figure 4.15). The only difference
is that in that case the counter in CDa might increment by more than one before its (Gray-
encoded) value gets synchronized into CDb. The Gray-coding guarantees that only one
bit lane on the 3 bit bus will change after the active clock edge of the sending CD (CDa).
The minimum interval between two single-bit changes on the bus is therefore equal to the
clock period of CDa. Because this clock period will be (by magnitudes) longer than the
metastability window10) of the synchronizing registers not more than one synchronizer (at
one time) might see a transition on its input signal close to the active clock edge (of CDb).

All the above leads to

Rule 3: If an unknown multi-bit signal has to be transferred from one CD to another the
only permissible approach is the usage of the REQ/ACK-protocol. If exact knowl-
edge about the multi-bit signal is available special techniques (e.g. Gray-coding)
might allow the successful synchronization using multiple single-bit synchronizers.

4.2.3.4 Simulation issues

Please note that synchronization errors related to metastable events are hard to hit in
simulation and already should be handled during the design phase of the system.

Usual register simulation models just verify whether setup- and hold-times have been
met. If these timing requirements have not been met the model will drive the output
of the register to ’X’ (unknown). The output will remain unknown until a following
active clock edge (with proper input timing) brings the register back to a defined state.
Downstream logic as well as downstream registers will propagate this (undefined) value
into the design and may cause a lot of other signals getting undefined as well. This
behaviour is only observed in simulation and does not reflect the physical reality inside
a chip because an “unknown voltage level” does not exist. These unknown signals are
usually a good indication that the design violates the timing requirements for synchronous
circuits (section 4.2.2.1). But they also make the simulation of asynchronous interfaces
(where timing violations are expected to happen) impossible.

In a proper (synchronous) FPGA design the only location where timing violations are
expected and tolerated are all the registers inside the synchronizers.
To transfer this situation into simulation ’X’-propagation has to be disabled for the first
register of each synchronizer. While timing violations in reality could also occur in the
second register this will never be observed in simulation. The reason therefore is that
Xilinx chose that if a timing violation occurs at a register with disabled ’X’-propagation
the register will just continue driving the previous value to its output. Hence the timing
requirements of the subsequent register(s) will never be violated.
The Xilinx software offers multiple ways to disable ’X’-propagation on single registers
using the ASYNC REG constraint. More information can be found on page 87 of [17].

10) The blue lines marking the active clock edges of the receiving CD also can be interpreted as (exagger-
ated) metastability windows of the receiving registers.
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4.2.3.5 Summary

This section described a classical synchronization circuit, the two-stage synchronizer. It
is capable of increasing the mean time between two metastable events injected into the
system by magnitudes. The downside is that it causes an uncertain amount of latency
that can not be avoided. This variable latency leads to restrictions concerning the transfer
of single- and multi-bit signals between different CDs.

Single-bit control signals can safely be transferred if the asynchronous signal is only syn-
chronized by one synchronizer. Additional care is needed to ensure the safe reception of
short pulses if the sending system is faster than the receiving system. If the frequency
relation between the systems is unknown a REQ/ACK-protocol with additional latency
has to be deployed.

Multi-bit signals (buses) generally have to be transferred by holding the data until the
receiving side has acknowledged the reception. The REQ/ACK-protocol already men-
tioned may be reused therefore. Only if additional knowledge about the data on the bus
is available special coding schemes may allow the transfer without such a protocol.

The techniques describes above are not only used to interface integrated circuits but also
are essential to implement the independent clock FIFO described in the following section.

4.2.4 Clock domain crossing with the independent clock FIFO

Regular synchronous FIFOs usually feature a write- and a read-port that both are syn-
chronous to a single clock input. Various status lines as e.g. FULL (at the write-port) or
EMPTY (at the read-port) are generated by the FIFO and have to be evaluated by the
surrounding logic before accessing the FIFO to avoid over- or underflows.
These flags can be created easily, e.g. using a single binary counter that holds the so
called FIFO fill level (the number of words currently stored in the FIFO). A write access
increments, a read access decrements the counter. In case of no accesses or simultaneous
read- and writes the counter keeps its value. The flags then simply can be generated by
comparing the counter to zero (for EMPTY) resp. to the FIFO depth (for FULL). Another
possibility to determine the FIFO fill level is to compare the write- and read-counters that
point to the memory locations which will be written resp. read next.
The actual data can be stored in any kind of (synchronous) memory that is fast enough
for the targeted application. If a single port memory shall be used the FIFO core and
the memory itself have to be clocked at a frequency at least three11) times faster than the
clock of the surrounding logic.

Independent clock FIFOs however have to be designed to achieve the same functionality
with their write- and read-ports being in different clock domains, respectively. This
complicates not only the actual data storage but also particularly the generation of the

11) This allows the core to fetch (two clocks) and to write (one clock) new data – if required – in one clock
cycle of the surrounding logic.
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status lines.
In a Xilinx FPGA the data storage can be realized using (hard core) dual-port Block-
RAM (see [21], page 151 ff, for more details) that itself supports accesses from two clock
domains. The actual challenge is the design of the accompanying logic that contains
read- and write-pointers, creates the status signals fast enough and also takes care of
transferring status information between both domains. The latter is needed because both
EMPTY (read clock domain) and FULL (write clock domain) are depending not only
on the value of the counter of their respective clock domain but also on the value of the
counter located in the other clock domain. The reason therefore is that the status signals
depend on the FIFO fill level which only can be determined when both write- and read-
pointer are known. Therefore, the read-pointer has to be transferred to the write clock
domain to generate FULL and the write-pointer has to be transferred to the read clock
domain to create EMPTY.

Figure 4.16: Block diagram of a FIFO with independent clocks
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Figure 4.16 shows a design of such a FIFO based on information taken from the Xilinx
documentation. At first sight a strict division in a write- and a read-CD is evident. All
the signals entering and leaving the FIFO in the write-CD form the so called write-port
of the FIFO, all the incoming and outgoing signals of the read-CD form the read-port.

All signals of one particular port are synchronous to the respective clock-input of the
port. This means that all signals connected to the inputs of the particular port have to
comply with setup- and hold-timing requirements in respect to their associated clock and
that all outputs will change after a clock event on the associated clock.
It is a vital requirement that the port signals are only used in their own clock domain,
because otherwise an illegal CDC would be created. The only elements crossing the CDs
are the dual-port Block-RAM and the two synchronizers inside the FIFO.

Both write- and read-address inputs of the dual-port Block-RAM are driven by a counter
(“write- resp. read-pointer”) synchronous to the respective domain. These pointers work
in exactly the same way as they do in a synchronous FIFO: The write-pointer holds the
address that will be written next and the read-pointer holds the address that will be read
next. If a word was written the write-counter will be increased by one, if a word was
retrieved the read-counter will increment by one.

To generate the essential status lines FULL and EMPTY both counters have to be avail-
able in both CDs. The read-port’s status logic will assert EMPTY if read- and write-
counter are equal whereas the write-port’s status logic will assert FULL if the difference
of the two counters, the FIFO fill level, is equal to the FIFO depth. Therefore, the
read-pointer has to be transferred to the write domain and the write-pointer has to be
transferred to the read domain. Both of them are multi-bit signals so all the findings of
section 4.2.3 have to be taken into consideration. Because both counters (in one clock cy-
cle of their respective CD) only increase by one (or stay unchanged) the second approach
presented in section 4.2.3.3 can be used: By converting both counters into Gray-coding
before transferring them into the other CD it can be ensured that the received values
always are valid. In case of a synchronization problem because of a counter transition
too close to a clock edge of the receiving side the transfer of the new value will take one
additional clock cycle.
It has to be verified that the (variable) delay introduced by the synchronizers does not
lead to incorrect flags (which then would lead to over- or underflows).

The EMPTY flag is asserted if the read pointer had been incremented that much that it
has reached the same value as the write pointer. The write pointer seen by the read-
CD may be smaller than the actual value of the “real” write pointer in the write-CD
because of the delay introduced by the CDC. It will never be bigger because the
write-pointer only increments, not decrements12).
The important edge of EMPTY is the rising one that informs the surrounding logic
that no more data is available in the FIFO. If this edge is generated too late an
underflow will occur (because the logic would try to read from an empty FIFO).

12) If it would decrement the decremented value might be delayed by the CDC which would lead to a too
large value seen by the read-CD.
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If the write-pointer seen by the read-CD is up-to-date the EMPTY flag will be
asserted exactly after the last word has been read. If the write-pointer seen by
the read-CD is delayed (and therefore smaller than the “real” one) EMPTY will be
asserted too even though data would still be available in the Block-RAM. Therefore,
no underflow will occur and the delay introduced by the CDC of the write-pointer
does not pose a problem to the timely assertion of EMPTY. After the updated value
of the write-pointer has reached the read-CD EMPTY will be deasserted again and
the surrounding logic will continue reading from the FIFO (until it is empty again).

In other words: The delay introduced by the CDC of the write-pointer might only
delay the unimportant falling edge of EMPTY, the important rising edge will always
be generated right on time.

The FULL flag is asserted if the write pointer had been incremented that much that the
FIFO fill level has reached the FIFO depth. The read pointer seen by the write-CD
may be smaller than the actual value of the “real” read pointer in the read-CD
because of the delay introduced by the CDC. It will never be bigger because the
read-pointer only increments, not decrements13).
The important edge of FULL is the rising one that informs the surrounding logic
that no more data may be written to the FIFO. If this edge is generated too late
an overflow will occur (because the logic would try to write to a FIFO that can not
store one more word).
If the read-pointer seen by the write-CD is up-to-date the FULL flag will be asserted
exactly after the FIFO fill level has reached the FIFO depth. If the read-pointer
seen by the write-CD is delayed (and therefore smaller than the “real” one) FULL
will be asserted too even though some more data could be stored in the Block-RAM.
Therefore, no overflow will occur and the delay introduced by the CDC of the read-
pointer does not pose a problem to the timely assertion of FULL. After the updated
value of the read-pointer has reached the write-CD FULL will be deasserted again
and the surrounding logic will continue writing to the FIFO (until it is full again).

In other words: The delay introduced by the CDC of the read-pointer might only
delay the unimportant falling edge of FULL, the important rising edge will always
be generated right on time.
This situation is symmetrical to the situation described for the EMPTY flag.

Compared to transferring the counter values using the REQ/ACK-protocol introduced
in section 4.2.3.3 the deployment of the Gray-code-based approach leads to a higher
FIFO throughput. The reason therefore is that the additional latency of the REQ/ACK-
protocol would slow down the updating of both counters which would lead to the unneeded
assertion of both EMPTY and FULL.

This topic has been covered by many publications: [27] gives a good introduction to FIFOs
covering pointer generation as well as problems that come with creating an independent

13) If it would decrement the decremented value might be delayed by the CDC which would lead to a too
large value seen by the write-CD.
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clock FIFO. [28] was co-authored by a Xilinx employee and presents a sophisticated ap-
proach: Instead of synchronizing Gray-coded counter values to the opposite clock domain
an asynchronous compare-unit is used to create the status flags. This topic also served
as starting point for numerous discussions in the Usenet, e.g. [14] or [12] and related
messages.

The result of all the efforts above is a fast independent clock FIFO that does not impose
any restrictions on the two clock signals. As long as the FIFO is not full resp. empty
one word can be written resp. read in every clock cycle of the associated CD. Not only
both clock frequencies but also the phase relationship between the two active clock edges
may be arbitrary. Please note that both clocks have to be continuous free running clocks
because they drive, among others, the two synchronizers used to transfer the counter
values between the CDs. If the clocks stop between accesses the status flags (e.g. FULL
and EMPTY) might not get updated because they depend on these counter values being
updated continuously.

Figure 4.17: FIFO read (standard) Figure 4.18: FIFO read (FWFT)

The Xilinx software comes with a versatile tool that allows the creation of heavily cus-
tomized FIFO macros (soft cores), the “FIFO core generator” (see [19]). Some of the
core’s design options and features are listed below:

• The core can be configured to use various types of memory for data storage: Block-
RAM is appropriate for large FIFOs while distributed RAM (implemented in the
CLBs) may be used for small, localized buffers.

• Both regular synchronous and asynchronous FIFOs with two independently clocked
ports may be generated. The core handles all required synchronization between the
two CDs.

• Two readout modes are available: A “standard mode” in which each word has to
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be requested one clock cycle before it can be read and an alternative mode called
“first-word fall-through” (FWFT). In this mode the next word available for readout
will “fall through” the FIFO and can be processed immediately. The validity of the
data output will be indicated by an additional status line called VALID. After the
surrounding logic has processed the data it asserts RD EN which informs the FIFO
to output the subsequent data word (if available). The activation of the FWFT-
mode leads to additional logic on the read-port (see figure 4.16). Comparing the
read-operations shown in figure 4.17 (standard mode) and figure 4.18 (FWFT-mode)
the difference is evident.

• Various data widths and FIFO depths can be selected. If the data storage is im-
plemented using Block-RAM even different input and output data widths can be
chosen by the user.

• Various additional status flags as e.g. almost full, almost empty, write acknowledge,
(write) overflow, (read data) valid, (read) underflow and programmable full and
empty can be generated by the core.

• An (in some cases obligatory) asynchronous or synchronous reset input can be added.

• Finally, both write and read counter values can be output by the core.

4.2.5 Helpful VLIO quirks

The introduction to VLIO given in section 3.3.1 intentionally makes no mention of two
characteristics of the VLIO bus protocol because they were not used in the old design.
First of all, the RDY-pin (wired in latter revisions of the EyeBot M6-PCB, see figure 3.1)
can be used to slow down bus transactions on demand. Second the VLIO-implementation
of the PXA255-CPU is capable of burst transactions that not only accelerate the data
transfer but also can be used to compensate the lack of a clock signal from the CPU.
Both features will be introduced in the following. Based thereon, two distinct approaches
to interface CPU and FPGA will be deduced.

4.2.5.1 Using the RDY-pin to throttle the data transfer

If an external device connected to the VLIO-interface needs additional time to handle
the current transfer it may use the RDY-pin to advise the CPU to lengthen the current
bus cycle. It RDY is deasserted during a VLIO-beat (OE or PWE asserted) the CPU
will stop until RDY is asserted again. The RDY signal is routed through a two-stage
synchronizer in the PXA-CPU that drives the internal signal RDY sync and adds a delay
of two MEMCLKs. OE or PWE will be asserted for two more MEMCLKs after RDY sync
has been asserted (driven high). Because RDY sync is the delayed version of RDY this is
equivalent to: OE or PWE will be asserted for four more MEMCLKs after RDY has been
asserted (driven high). This means that the state of the (external) RDY signal at the
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assertion (falling edge) of OE or PWE determines whether any wait states will be inserted
or not because their regular assertion time (without wait states) is equal to 4 MEMCLKs.

Figure 4.19: VLIO write with wait states
(one additional MEMCLK)

Figure 4.20: VLIO read with wait states (two
additional MEMCLKs)

Figure 4.19 shows an example for a VLIO write access: The FPGA deasserts RDY after
it has been selected by the CPU. After the CPU asserted PWE the FPGA asserts RDY
because the FPGA is always fast enough to handle write-requests. This late assertion
(after PWE has already been asserted) will lead to one wait state. This additional MEM-
CLK can not be avoided if read-accesses have to be throttled because the direction of
the transfer (write or read) is unknown to the FPGA until OE or PWE is asserted14).
The RDY signal will then be synchronized into the CPU-CD which will take two MEM-
CLKs. Two MEMCLKs after RDY sync has been asserted PWE will be deasserted and
the transaction will end as usual.

Figure 4.20 shows an example for a VLIO read access: The FPGA again deasserts RDY
after its CS has been asserted. The assertion of OE causes the bus interface of the FPGA
to send a read-request to the addressed internal module. The exact time required to
handle the read-request might depend on the type of the addressed storage inside the
FPGA (register, Block-RAM, etc.), the interconnect delays and on the current phase
alignment between CPU- and FPGA-clock. After (a little less than) two MEMCLKs
the FPGA has fetched the requested data and asserts RDY. On the first rising edge of
MEMCLK after RDY sync was asserted by the synchronizer the data bus will be sampled
by the CPU. One MEMCLK later OE will be deasserted again and the transaction will
end as usual.

14) If RD/WR would be connected to the FPGA this wait state for write-accesses could be avoided.
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Looking back at figure 4.12 (section 4.2.3.3) some similarities between the REQ/ACK-
protocol and the operating mode of the RDY-pin can be identified. The equivalent signal
names of the REQ/ACK-protocol are given in brackets.
For write-accesses (data transfer from CPU to FPGA initiated by CPU) the VLIO-
protocol is identical to the REQ/ACK-scheme. The CPU is equivalent to CDa (asserting
REQ to signal valid data) while the FPGA represents CDb (asserting ACK). PWE (REQ)
informs the FPGA that data from the CPU is available on the data bus X and the FPGA
acknowledges the reception by asserting RDY (ACK).
For read-accesses (data transfer from FPGA to CPU initiated by CPU) the handshaking-
scheme is extended to a three-way-handshake because the direction of the data flow is
reversed: The FPGA now is equivalent to CDa (asserting REQ to signal valid data) while
the CPU represents CDb (asserting ACK). OE (no equivalent in the two-way REQ/ACK-
protocol) informs the FPGA that the CPU wants to read data. The FPGA then fetches
the requested data, drives the data bus and asserts RDY (REQ) to inform the CPU that
the data bus now is stable and may be latched. After the CPU has latched the data on
the bus it deasserts OE (which is equivalent to the assertion of ACK) to inform the FPGA
of the successful transfer.
The above leads to

Approach 1: To achieve a reliable data transfer on the asynchronous VLIO-interface
between CPU and FPGA a request/acknowledge-protocol can be implemented using
the CPU’s RDY-pin. The RDY-pin will be used to lengthen the read bus-cycle until
the FPGA has fetched the requested data. This allows read-accesses to arbitrary,
possibly slower, memory locations as well as arbitrary write-accesses.

4.2.5.2 Using the VLIO burst mode to generate a clock signal

The FIFO-based approach proposed in section 4.2.1.2 made use of the CPU’s SRAM in-
terface and could not be implemented because there is no clock signal leaving the gumstix.
Its only disadvantage was that read-accesses had to be slowed down because of the (vari-
able) delay introduced by the two FIFOs. Because the configuration of the bus timing
affects both read- and write-accesses the latter got slowed down as well.
If (in addition to the VLIO-interface) a CPU clock signal would have been available
to the FPGA a slightly modified version of the FIFO-based approach presented in sec-
tion 4.2.1.2 could have been implemented. This approach would use the RDY-pin of the
VLIO-interface and the status flags of the FIFOs to lengthen a read access only by exactly
the time that is needed to transfer the requested data back to the CPU-CD. This would
lead to a non-degraded write-performance because only read-accesses would be slowed
down accordingly. More details on this notional approach can be found in appendix B.
During research it was discovered that the lack of a CPU clock signal does not wholly
preclude the deployment of this FIFO-based approach if some trade-offs can be accepted.
These trade-offs and their causes will be explained in the following.

Apart from the single-beat transactions already shown in section 3.3.1 (figure 3.2 and
figure 3.3) the VLIO interface is also capable of a burst-mode that transfers more than
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Figure 4.21: VLIO burst write

Figure 4.22: VLIO burst read

one beat per transaction. Figure 4.21 shows a burst-write access, figure 4.22 a burst-read
access. One property of this transfer-mode is that the control lines OE resp. PWE toggle
once per beat and therefore look similar to a clock signal. Because the signals are not
toggling all the time they are considered non-continuous clocks.

Looking at appendix B it can be found that non-continuous clocks might lead to a deadlock
if the RDY-pin is used for flow control: Because the status flags of the FIFOs are not
updated (if a continuous clock is not available) it is impossible to drive RDY in a way
that stops the CPU if a read-request is still processed by the FPGA (equivalent to FIFO2
still being empty) or if FIFO1 is full. Because of the former this modified FIFO-based
approach can not be used to implement reads from arbitrary memory locations (which
could not be answered fast enough). Because of the latter the CPU must not write to
FIFO1 except it is somehow ensured that FIFO1 will not overflow. Therefore, some
other way to implement the flow control that protects FIFO1 from over- and FIFO2 from
underflows has to be found.
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This obviously has to be done on software-level because the hardware-based solution using
RDY is unavailable. In the event the CPU wants to transfer a certain amount of data
to the FPGA it first has to check whether there is enough space in FIFO1 to store this
specific number of words. If enough space is available the CPU may write the data because
FIFO1 will not overflow.
In the event the CPU wants to read a certain amount of data it first has to verify that
enough data is ready in FIFO2. Then the CPU may read that specific number of words
because FIFO2 will not underflow.
These checks take a certain time and therefore introduce an overhead to each data transfer.
To reduce the impact of this overhead on the achievable data rate only large amounts of
data should be transferred. Therefore, the target pursued here is to establish a way to
transfer large, contiguous amounts of data with the highest achievable data rate.
For the sake of simplicity it is appropriate to implement these transfer in a way that the
particular FIFO is empty after the transfer has finished. As a rule both FIFOs therefore
can be assumed to be empty before the start of a transfer.
Because the FIFOs will only be used for large, contiguous amounts of data, but not
for accesses to arbitrary memory locations, there is no need to transfer more than one
address to the FPGA-CD. The reason therefore is that only the address of the first word
is relevant because the subsequent words will (by definition) just be saved to resp. read
from the subsequent memory locations. This single address will be called pointer.

Such a transfer will consist of two phases initiated by the CPU:

Setup phase: In case of a write access two steps are needed: First it will be verified
whether FIFO1 is actually empty as it should be (by definition). After that, the
pointer to the memory area inside the FPGA that shall be written to and the
transfer size will be sent to the FPGA.

In case of a read access three steps are necessary: First it has to be verified whether
FIFO2 is actually empty as it should be (by definition). After that, the CPU will
request the FPGA to fill FIFO2 with the data needed (which again will be identified
by a pointer to a memory area inside the FPGA and the size of the transfer). Finally,
the CPU has to wait until the FPGA has initiated the transfer to FIFO2 to make
sure that enough data is available in the FIFO when the CPU starts reading.

For both accesses the transfer size obviously has to be smaller than the size of the
respective FIFO to avoid over- resp. underflows.

Data transfer phase In this phase the actual data will be transferred between CPU
and FPGA. Because it has been verified that FIFO1 is empty resp. FIFO2 contains
enough data neither an over- nor an underflow will occur. This strategy compensates
the lack of a hardware flow control on the VLIO bus.

In other words:
To transfer data from CPU to FPGA the CPU first informs the FPGA of the upcoming
transfer and supplies a pointer to the memory area that shall be written to. After that,
the CPU writes the data to FIFO1. In the end the FPGA transfers the data from the
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FIFO to the memory area specified by the pointer received from the CPU.
To transfer data from FPGA to CPU the CPU first notifies the FPGA to fill FIFO2 with
the data needed (which again will be identified by a pointer to a memory area inside the
FPGA). After the FIFO has been filled by the FPGA the CPU will receive the data from
the FIFO.
These large data transfers and their associated setup phases (to transfer the pointer)
will be called FIFO-transactions. They are able to compensate the lack of a hardware
flow control and therefore allow a reliable (and fast) data transfer for large, contiguous
amounts of data.

Please note that the introduction of these FIFO-transactions is not that a serious draw-
back (in terms of complexity and overhead) as it might seem at first glance. The reason
therefore is that they make use of the VLIO burst mode which is anyway designated for
large, continuous data transfers that have to be set up before. Besides that, these high-
level transactions ease the arbitration of the SRAM connected to the FPGA. This topic
will be covered in section 4.4.1.6.

The above leads to

Approach 2: To achieve high-speed data transfers between CPU and FPGA two signals
of the VLIO-interface can be used as (non-continuous) clock signals for the FIFOs.
Because the FIFO’s status flags are only up-to-date if a continuous clock is available
it is impossible to implement a hardware flow control using the RDY-pin in this case.
Nevertheless over- and underflows in the FIFOs have to be avoided using some sort
of software flow control which leads to FIFO-transactions.

More information on the usage of this interface will be given in the next section (4.2.6),
the actual implementation will be presented in section 4.2.7.

Please note that this approach to generate a clock signal for the FIFOs only works if
the VLIO-protocol is used. All other interfaces (including the SRAM-interface proposed
in [25]) do not provide any sort of signal that marks each single beat of a transfer. Without
this knowledge (and without a clock signal from the CPU) the FPGA sooner or later will
loose synchronization which again would lead to transfer errors.

4.2.6 Peripheral- and burst-interface

Up to now two distinct approaches to interface CPU and FPGA have been introduced.
This section compares the two methods and deduces their respective fields of application
on the EyeBot M6. The next section (4.2.7) then presents the actual implementation
chosen for the bus bridge in the FPGA.

Section 4.2.5.1 introduced the RDY-pin of the VLIO-interface and concluded with an
approach how to implement read- and write-accesses to arbitrary memory locations of
the FPGA’s address space. Section 4.2.5.2 however presented the VLIO-burst-mode and
how it can be used to deploy a fast FIFO-based interface for large amounts of data.
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To assess the requirements on the FPGA’s bus interface the expected data flow between
FPGA and CPU has to be estimated first. This data flow obviously depends on which
types of functions are implemented in the FPGA and have to be controlled and utilized
by the CPU. Looking back at the block diagram of the EyeBot M6 (figure 2.2) various
components connected to the FPGA can be identified. They and their supposed interface
requirements are listed in table 4.3.

Component Direction Main requirement
Name Class of flow low latency high throughput

GPIO I/O bidirectional yes no
PSDs Sensor FPGA → CPU yes no

Encoders Sensor FPGA → CPU yes no
Motors Actuator CPU → FPGA yes no
Servos Actuator CPU → FPGA yes no

Camera Sensor FPGA → CPU no yes
SRAM Storage bidirectional no yes

Table 4.3: Interface requirements of components connected to the FPGA

Looking at the requirements of the components two distinctive classes of devices can
be identified: The first one (mainly used to access components for basic robot control)
features mostly single-word accesses (both read and write) and requires a low latency (to
facilitate a smooth control of the robot).
The second one features large data transfers between CPU and FPGA and there-
fore requires the highest possible throughput (to save time that then can be used for
computation-intensive tasks on the CPU).

If these two transfer classes are compared with the two available interface methods an
obvious conformance can be found: The first approach based on the REQ/ACK-protocol
supports both read- and write-accesses to arbitrary memory locations without setup over-
head. The second, FIFO-based approach provides high-speed data transfers at the cost
of setup overhead. Hence both interface methods are needed on the EyeBot M6 and will
therefore be implemented as coexisting subsystems.
Because the two interfacing methods have distinctive focuses it is advisable to use two
diverse bus systems inside the FPGA: One for low-latency accesses (via the REQ/ACK-
protocol interface) and one for high-throughput transfers (via the FIFO-based interface).
These bus systems have been named peripheral- resp. burst-bus, briefly PB and BB15).

The following decision was taken during the design phase: The BB will only be used to
transfer (large amounts of) data from or to the 18MBit-SRAM connected to the FPGA.

15) The naming was influenced by various factors:
Virtex-based embedded systems usually incorporate a bus system with similar objectives to the PB
that is called On-Chip Peripheral Bus (OPB) which lead to the name “peripheral bus”.
On the other hand transfers containing image-data will be the most common ones on the BB and hence
can be transferred in large chunks (bursts). Therefore, and because the associated communication
between CPU and FPGA will be implemented using VLIO-bursts the bus was called “burst bus”.
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The reason for this decision is that the external SRAM is the sole storage element available
to the FPGA that is large enough for image data or other huge data sets (such as a list
of feature points generated by an image processing unit in the FPGA).
Because the SRAM will be accessed by multiple units (e.g. a frame grabber storing raw
images from the camera(s), the image processing unit already mentioned, the CPU, etc.)
the BB has to be multi-master capable.
Because only a limited number of transfer types will be needed it is advisable to implement
these transfers as transactions16) on the BB. Each transaction consists of an arbitration-,
a setup- and a data-transfer phase. Typical examples for the data assigned to a specific
transaction type could be one line of a color image, one line of a grayscale image, four
specific pixels from a 2x2-window or non-image data such as a list of feature points.
Further information on the BB can be found in section 4.4.

Table 4.4 shows a summary of both interfacing methods, their assets and drawbacks, their
associated internal bus system, their respective field of application and the assignment to
the components resp. modules.

Interface REQ/ACK-protocol using RDY FIFO-based (pseudo-clocked)

Description
Uses the RDY-pin of the VLIO- Uses PWE and OE of the
interface to support accesses to VLIO-interface to generate

arbitrary memory-locations a clock for the FIFOs

Internal bus peripheral bus (PB) burst bus (BB)
Type single-master system multi-master system

Facts

managed by CPU managed by SRAM-controller
per-module enable module-based arbitration
10 bit address bus transfer-type based addressing
16 bit data bus 16 bit/18 bit data bus

arbitrary accesses transaction-based accesses
Assets no arbitration and setup needed high data rate
Drawbacks low data rate overhead for transaction setup

Used for GPIOs, sensors, actuators SRAM accesses (camera, CPU, etc.)

Table 4.4: Available interface methods and assigned components

As mentioned in section 3.3.2 the old FPGA design already contained an internal bus
system (containing asynchronous paths). Because various modules (GPIOs, PWM gener-
ation for servo and motor control, data acquisition for encoders and PSDs) were already
implemented for this internal bus system the PB was designed to be (mostly) compatible
with the old internal bus system. The only feature not (natively) supported by the PB
is the generation of a special bus signal called mod abit. It was used to switch the mod-
ules into a special mode that allowed the alteration of single bits in a multi-bit register
with one single write-access. To recover this functionality the respective inputs of the

16) Please note that these transactions are different from the FIFO-transactions defined earlier. The latter
ones are used to implement the safe data transfer between CPU and the FIFOs in the FPGA using
the VLIO-interface. The transactions on the BB are used to transfer data purely inside the FPGA.
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modules were connected to an unused address-line of the PB. This achieved backward
compatibility with the old design and therefore with the existing driver library, too.

4.2.7 Design of the bus bridge

The previous section (4.2.6) explained the need for two distinct bus systems inside the
FPGA, the peripheral bus and the burst bus. The former will be utilized by the CPU
to access various peripheral modules while the latter provides both CPU and internal
modules with access to the external SRAM.

Because the interface between CPU and FPGA is asynchronous but FPGAs generally are
built to implement synchronous circuits, the asynchronous VLIO bus shall be terminated
as “early” as possible inside the FPGA. The requests sent by the CPU using VLIO
therefore have to be bridged to the appropriate bus system inside the FPGA (PB or BB).
This section is dedicated to the actual implementation of the bus bridge that transfers
the asynchronous VLIO bus into the synchronous FPGA.

After the requirements for the bus bridge have been analyzed in the following the imple-
mentation of both the REQ/ACK-based (for the PB) and the FIFO-based interface (for
the BB) will be presented. Thereafter various measurements of the achievable transfer
rate on both interfaces will be shown. The section finally ends with a summary on the
bus bridge and a block diagram.

4.2.7.1 Requirements and partitioning

The bus bridge provides the connective link between the CPU and the modules inside the
FPGA and therefore is an essential module in the FPGA. It has to implement multiple
features:

• process the asynchronous signals from the PXA-CPU and transfer the CPU requests
from the CPU-CD to the FPGA-CD,

• decode the address supplied by the CPU and forward the request to the relevant
sub-interface (PB, FIFOs or internal control),

• generate the signals on the PB based on the CPU’s requests,

• control and monitor the FIFO-ports that are part of the CPU-CD and

• drive the RDY-pin of the CPU’s VLIO-interface.

The bus bridge (whose entity is named bus bridge) mainly consists of two main and two
supporting subsystems:
A dedicated unit (PB bus bridge) establishes the communication between VLIO and PB
while two independent clock FIFOs accomplish the data transfer between VLIO and BB.
Both of them implement the CDC between CPU- and FPGA-CD.
Additional combinatorial logic is needed to decode the address supplied by the CPU, to
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activate the relevant subsystem and to control multiplexer and tri-state buffer driving the
data bus. Furthermore, a control/status-unit for the FIFO-ports that are in the CPU-CD
was added.

Figure 4.23: Bus bridge (coarse block diagram)

Figure 4.23 shows a coarse block diagram of the bus bridge only depicting address-, enable-
and data-signals. All control signals (including RDY) have been omitted for the sake of
clarity. The CDC between CPU-CD (left) and FPGA-CD (right) is tagged by the dotted
blue line.

The address-decoder decodes the two highest address-bits (CPU A[20:19]), checks whether
the FPGA’s chip-select (CPU NCS) is asserted and generates a 4 bit-wide enable signal
(ENABLES). This signal is used to enable one of the three subsystems. Each subsystem is
wired to the CPU’s data bus (CPU DATA) to receive data during a write-access. If the CPU
wants to read from one of these subsystem the data output of the respective subsystem
has to be passed through to the CPU’s data bus. This is accomplished by a multiplexer
that is fed by the outputs of the subsystems and controlled by the enable signal (which
determines the active subsystem). The output of the multiplexer (datamux) is connected
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to a tri-state buffer (controlled by CPU NCS and CPU NRD) that drives the data bus during
a read-access.

In the following the subsystems will be presented.

4.2.7.2 Peripheral bus bridge

Figure 4.24: PB bus bridge

Figure 4.24 shows the subsystem responsible for the data transfer between VLIO and
PB. The respective entity is called bus bridge pb and is instantiated in bus bridge.
Internal signals are named using the following scheme: Signals generated in the CPU-CD
are prefixed with C while signals generated in the FPGA-CD are prefixed with F . All
signals connecting the two CDs are prefixed with X . On certain registers the asynchronous
reset input C(LR) is used to bring the unit back to reset state.
For the sake of clarity the clock-net in the FPGA-CD has been omitted (all registers in
the FPGA-CD are clocked on the rising edge of CLK).

Again the CDC is tagged with a dotted blue line (CPU-CD left, FPGA-CD right). The
implementation exactly matches the interfacing requirements of the VLIO-interface and
takes care of the CDC between CPU and FPGA. The approach used is similar to the
REQ/ACK-protocol introduced in section 4.2.3.3 (figure 4.13). In the following the order
of events during write- resp. read-accesses from the CPU will be demonstrated.

Write-accesses in general do not make that high demands on the accessed system’s
performance compared to read-accesses because only one CDC is needed (from CPU
to FPGA). Looking back at figure 3.2 it can be seen that both address- and data-bus
are stable for 6 MEMCLKs one MEMCLK after CS has been asserted. During this
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time the FPGA has to store both address and data. After that, the address has to be
evaluated and the data has to be stored to the addressed storage element (register,
Block-RAM, etc.). If the RDY-pin of the VLIO-interface is used (see figure 4.19) it
then has to be asserted to inform the CPU of the successful transfer. Because the
RDY-pin is needed for read-accesses (see below) it has to be considered here, too.

Section 4.2.5.1 already touched the utilisation of the REQ/ACK-protocol to imple-
ment write-accesses using the RDY-pin:
First the sending CD (here: the CPU) informs the receiving CD (here: the FPGA)
that valid “data” (here: address and data) is available. The receiving side then ac-
knowledges the reception and thereby also permits the sending side to begin with the
next cycle. In the case of the VLIO-protocol the PWE signal informs the FPGA
that address and data are valid (REQ). The RDY signal then is asserted by the
FPGA to inform the CPU of the successful reception (ACK).

Looking back at figure 4.13 it can be seen that a register (clocked by the sending
CD) was used to ensure that bus X was stable during the protocol cycle. A register
serving the identical purpose obviously is integrated in the PXA’s memory controller
(because address- and data-bus are stable while PWE is asserted). Therefore, it is
not compulsory to add such a register inside the FPGA.
However, it is advisable to do so because such a register eases the timing analysis of
the FPGA design flow (more details in section 4.3). Hence registers for both address
and data were included: write data reg latches the data bus while write reg

registers the address bus and enables-signal generated from the address bus. The
latter ones are called PB ENABLES and used to enable one single unit on the PB.

Both the falling and the rising edge on PWE can be used as indicator that address-
and data-bus are valid and can be latched by the FPGA safely (see figure 3.2 for ref-
erence). However, the analysis of the circuit on the EyeBot M6-PCB in section 3.3.1
showed that both address- and data-bus are routed through (bidirectional) buffers
but the transfer qualifiers (PWE, CS, RDY) are not. These buffers introduce a
delay (of up to 5.2 ns) on both buses which is equivalent to shifting address- and
data-bus in figure 4.19 to the right (by approx. half a MEMCLK). If the falling edge
is used to clock write reg and write data reg the data only has arrived approx.
4.8 ns before the clock edge. This might be insufficient to conform with the setup
requirements of the register because the routing inside the FPGA adds additional
delay.
Therefore, it is advisable to use the rising edge of PWE to latch enables-signal,
address- and data-bus. This only delays the execution of the write-access inside the
FPGA, the achievable data rate will stay the same.

Therefore, the following order of events will take place after address and data have
been supplied by the CPU:
The assertion of PWE is recognized by the FPGA and leads to the immediate
assertion of RDY because the FPGA “knows” that it is fast enough to handle the
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write-access without wait states17). This functionality is implemented by rdymux.
Simultaneously to the latching of enables, address- and data-bus (at the rising edge
of PWE) the FPGA can be informed that enables, address and data are valid. This
is implemented by register write en reg that latches PB BRIDGE EN at the same
time. PB BRIDGE EN is generated by the address-decoder in the bus bridge that
distinguishes accesses to PB, FIFOs (BB) and the FIFO-control/status-unit (see
figure 4.23 for reference).
The output of write en reg is connected to X PB WR. A two-stage synchronizer
transfers this signal to the FPGA-CD (where it is called F PB WR2). Based thereon,
two flag signals (F WR1 and F WR2) consecutively get asserted for one clock cycle
each. F WR1 is used to latch the enables-signal, the address- and the data-bus into
addr reg resp. wr data reg. Hence PB ENABLES, PB A and PB DOUT are valid after
this cycle.
In a final step, F WR2 and therefore PB WR get asserted which triggers the unit on
the PB to transfer the data on the PB to its internal storage. Additionally, an
acknowledge (X WR DONE) is sent to the CPU-CD. It is used to deassert X PB WR

which brings the unit back to reset state.

In short:

• The CPU first drives chip-select, address- and data-bus

• After that, it asserts PWE for (at least) 4 MEMCLKs

• The FPGA recognizes the write-access and asserts RDY as fast as possible

• The CPU receives RDY and deasserts PWE

• This rising edge on PWE clocks enables-, address- and data-bus into registers
in the CPU-CD

• A single-bit enable signal then is synchronized to the FPGA-CD

• After the enable signal has been recognized the enables-, address- and data-
buses get latched into the FPGA-CD and driven to the PB

• One (FPGA) clock cycle later the FPGA asserts the PB’s write signal, the
addressed device latches the data on the PB and the unit returns to reset state

Read-accesses are more demanding than write-accesses because the FPGA has to fetch
the data requested by the CPU and return it to the CPU-CD before the CPU itself
latches the data bus. The underlying procedure however is similar to the write-
access described above.
A VLIO-read-access (see figure 3.3) begins with the CPU driving the address bus
and CS. Two MEMCLKs later OE gets asserted and the RDY-pin is monitored.
During this time the FPGA has to evaluate the address and will start fetching the
requested data. If RDY is not asserted at that time the CPU will insert (at least)
one wait state (see figure 4.20). After the FPGA has finished fetching the data it

17) It is impossible to assert RDY earlier because the RDY-pin will be driven low during read-accesses and
the FPGA is not aware whether a write- or a read-request will take place before either PWE or OE
are asserted (RD/WR is not connected).
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will assert RDY. Once RDY has been synchronized into the CPU-CD the CPU will
latch the data bus and finalize the access by deasserting OE.

Again section 4.2.5.1 has already mentioned how to use the RDY-pin to implement
the REQ/ACK-protocol for reads:
The two-way-handshake is extended to a three-way one because the receiving CD
(the CPU) first requests the sending CD (the FPGA) by asserting OE to send back
data. The FPGA then drives the data onto the bus and requests the CPU to fetch
the data by asserting RDY (REQ). Finally, the CPU acknowledges the successful
transfer by deasserting OE (ACK). The names in brackets again are the equivalent
signals of the REQ/ACK-protocol.

For the same reason as already mentioned for write-accesses above it again is ad-
visable to register enables- and address-bus in the CPU-CD. This is handled by
read reg. In the case of a read access only the falling edge of OE can be used as
indicator that the address bus is valid because the (later) rising edge is delayed until
RDY is asserted.

Therefore, the following order of events will take place after the address has been
supplied by the CPU:
At the same time the enables- and address-buses have been latched (thus on the
falling edge of OE) the register read en reg asserts X PB RD. This signal then is
synchronized to the FPGA-CD. Based thereon, three flag signals (F RD1, F RD2

and F RD3) consecutively get asserted for one clock cycle each. F RD1 is similar to
F WR1 and used to enable addr reg which latches enables- and address-buses. Hence
PB ENABLES and PB A are valid after this clock cycle.
In the next cycle F RD2 and therefore PB RD get asserted. The latter one induces
the addressed unit on the PB to drive PB DIN with the data stored at the addressed
location. F RD2 also enables rd data reg that latches the data on PB DOUT on the
next rising clock edge and drives X F2C.
In a final step, F RD3 is asserted which leads to the assertion of RDY by rd rdy reg.
RDY is also used to bring read en reg back to reset-state. The rising edge of OE
furthermore brings rd rdy reg back to reset-state.

In short:

• The CPU first drives chip-select and address bus

• After that, it asserts OE for (at least) 4 MEMCLKs

• This falling edge on OE clocks enables-signal and address bus into registers of
the CPU-CD

• A single-bit enable signal then is synchronized to the FPGA-CD

• After the enable signal has been recognized the enables-signal and the address
bus get latched into the FPGA-CD and driven to the PB

• One (FPGA) clock cycle later the FPGA asserts the PB’s read signal, latches
the data received from the addressed device and drives the data bus towards
CPU
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• One (FPGA) clock cycle later the FPGA asserts RDY to inform the CPU that
valid data is on the bus

• Finally, the CPU latches the data, deasserts OE and the unit returns to reset
state

This implementation of the bus interface has multiple advantages compared to the old
design analyzed in section 3.3:

Metastability awareness: All (asynchronous) enable signals between CPU-CD and
FPGA-CD are transferred using two-stage synchronizers. They increase the mean
time between two metastable events reaching the system by magnitudes.

Apart from these asynchronous enable signals three registers with an asynchronous
clear-input (CLR) are used. Depending on the (unknown) internal structure of the
registers these inputs might not be truly asynchronous. If this is the case a timing
violation still could occur in one of these registers. Presumably this will not happen
in two of them because of the following reasons:
X WR DONE resets write en reg after the write access has been processed in the
FPGA-CD. As long as the FPGA clock is (much) faster than the maximum fre-
quency of PWE (12.5MHz) X WR DONE will be asserted before the next edge takes
place on PWE (which clocks write en reg). Therefore, no timing violation can
occur in this register.
X RDY resets read en reg after the read access has been processed in the FPGA-CD.
PB BRIDGE EN will be stable until RDY has been received by the CPU because the
CPU holds the value on the address bus as long as RDY is not asserted. Therefore,
no timing violation can occur.

The third register is rd rdy reg and is reset by X NRD after the CPU has received
RDY. Because rd rdy reg is continuously clocked by the (fast) FPGA clock the
output of the register might get metastable from time to time. This however does
not impose a problem because this only might happen after a read access has been
finished and the RDY-pin is ignored therefore.

Avoidance of race-conditions: All single-bit control signals are synchronized in one sin-
gle location. Multi-bit signals (e.g. address- and data-buses) are transferred us-
ing the REQ/ACK-protocol. This avoids the race conditions presented in sec-
tions 4.2.3.2 and 4.2.3.3.

Supporting the synchronous design flow: Looking back at figure 4.24 it can be seen
that almost all signals entering resp. leaving the unit (port signals) are latched resp.
driven by registers triggered by a clock signal associated with the same port. (The
notable exception is X F2C which is generated in the FPGA-CD but is connected to
the CPU-port.) This eases the timing analysis using the FPGA’s synchronous design
flow because (nearly) all timing relations on a particular port then can be described
using synchronous timing constraints. More details can be found in section 4.3.
Exceptions to this obviously also are the asynchronous control signals “between”
the two CDs (X PB RD, X RDY, X NRD, X WR DONE and X PB WR).
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4.2.7.3 FIFO control

As already shown in section 4.2.5.2 the VLIO burst mode can be used to generate a clock
signal to drive an independent clock FIFO. Looking back at figure 4.21 it can be seen
that both address and data are valid on the falling and on the rising edge of PWE. But
for the same reason already explained in section 4.2.7.2 it is advisable to use the rising
edge (to clock the FIFO): Because of the delay introduced by the buffers on address- and
data-bus the available time between the arrival of the bus signals and the falling edge
might be insufficient.

Additionally, to a clock signal an enable is needed to write data into an independent clock
FIFO. Every time this enable is asserted and a rising edge appears on the FIFO’s clock
input one word will be saved into the FIFO. Because the clock input will be wired to
PWE and not all words written to the VLIO shall be stored in the FIFO the FIFO’s
enable signal WR EN has to be asserted only if an address region assigned to the FIFO is
accessed. This is implemented by the address-decoding-unit that generates ENABLES(1)

(see figure 4.23) and a register that sampled ENABLES(1) on the falling edge of PWE.

Figure 4.25: VLIO burst write using FIFOs

Figure 4.25 shows the sequence of signals for a VLIO burst write. After the address has
been decoded and CS has been asserted the address-decoder will assert ENABLES(1). On
the falling edge of PWE the register will sample this signal and drive the FIFO enable
signal WR EN to high. On the following rising edges the FIFO will store the data on the
data bus. After the burst is finished the CPU will deassert CS and the address-decoder
will deassert ENABLES(1).
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WR EN will be deasserted on the falling edge of PWE of a subsequent VLIO write-access
to an address region not assigned to the FIFO. This is not depicted in figure 4.25.

Read-accesses are more time-critical because the FIFO has to drive the data bus in a
certain time and it is impossible to use the RDY-pin to lengthen the read-access (see
section 4.2.5.2 and appendix B). Instead of requesting each single word from the FIFO an
independent clock FIFO in “first-word fall-through” (FWFT) (see section 4.2.4) is used:
In this mode the FIFO will output valid data as soon as it is available. The surrounding
logic then will acknowledge the reception by asserting RD EN. This signal is as generated
as for write-accesses: A register clocked by the falling edge of OE latches ENABLES(1) and
drives RD EN.

Figure 4.26: VLIO burst read using FIFOs

Figure 4.26 shows the waveform of a VLIO read-access. Apart from the FIFO’s data-
output (FIFO DOUT) the timing required by VLIO is depicted (Data, see figure 4.22): The
data has to be stable 1.5 MEMCLKs and will be latched 1 MEMCLK before the rising
edge of OE. This can easily be accomplished because the FIFO outputs the first word of
data (D1) as soon as it has been received.

Please note again that this approach only works if it has been ensured that no FIFO-over-
resp. -underflow will occur during the burst-access. Therefore, some sort of software-based
flow control has to established which was achieved by the FIFO-transactions introduced
in section 4.2.5.2. More details can be found in section 4.4.1.6.
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4.2.7.4 Evaluation and measurements

While the previous three sections described the implementation of the bus bridge the fol-
lowing evaluates the design, presents transfer rate- and scope-measurements and analyzes
the impact of the REQ/ACK-protocol on the achievable speed.

After the bus bridge has been integrated into the design the transfer errors observed
previously disappeared. The operativeness of the design was verified by the transfer of
gigabytes of data using both small and large FPGA designs. Two tests of the slower
REQ/ACK-based interface were undertaken: The correctness of (data) writes and reads
was verified using a 16 bit register connected to the PB to which data was written to and
read out afterwards. Secondly, the validity of the address bus (PB A) was confirmed by
“mirroring” PB A to the data bus (PB DIN) and comparing the received data value with
the accessed address.
The test of the FIFO-based interface was performed by connecting the two FIFOs in the
FPGA-CD in a way that data written to cpu2fpga fifo could be read straight afterwards
from fpga2cpu fifo (loopback). Then the FIFOs were filled and emptied using burst
VLIO transfers.

To determine the impact of the REQ/ACK-protocol used for the PB some comparative
measurements have been undertaken. Write- and read-accesses to both PB and FIFOs
(BB) have been evaluated. Table 4.5 shows the results that were achieved with a simple
C program that reads a certain amount of data from the selected interface and measures
the throughput. It supports the verification of the received data by comparing it to the
(known) expected values. The bus bridge was clocked with 50MHz during this test.

Interface
Method PB (REQ/ACK-protocol) BB (FIFO-based)

MMIO
with verify 3.2MB/s 4.0MB/s

without verify 3.0MB/s 3.0MB/s
DMA via with verify 7.2MB/s 9.6MB/s

kernel without verify 7.8MB/s 13.5MB/s
DMA-to- with verify 7.1MB/s 11.1MB/s
userspace without verify 8.7MB/s 16.2MB/s

Table 4.5: Achievable transfer rates (read, fFPGA = 50 MHz)

It can be seen that the verification mostly has a negative impact on the achievable data
rate. Oddly enough this does not hold true for MMIO where transfers with verify are
faster. The reason therefore presumably is some kind of optimization done by the used
compiler. This has not been probed further because such a kind of a read access (reading
without evaluating the received data) is not overly close to reality.

In the following a few waveforms of the VLIO transfer qualifiers will be displayed. Chan-
nel 1 is connected to CS, channel 2 to PWE resp. OE and channel 3 to RDY. The signals
were routed to the camera-port to measure the waveforms because it is impossible to
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reach the signals on the PCB due to the lack of test-pads. Thus, there might be a (small)
phase offset between the different traces depending on the routing inside the FPGA.

Figure 4.27: PB write using MMIO Figure 4.28: BB write using MMIO

Figure 4.27 and figure 4.28 show VLIO writes to PB and BB using MMIO. It can be seen
that the RDY-pin is unused during accesses to the BB and the waveform therefore looks
similar to figure 3.2 (CS is asserted for 7 MEMCLKs). If the FPGA detects a write access
to the PB it asserts RDY immediately and only one wait state is inserted by the CPU
(CS asserted for 8 MEMCLKs) and the waveform is similar to figure 4.19.

Figure 4.29: PB read using MMIO Figure 4.30: BB read using MMIO

Figure 4.29 and figure 4.30 show VLIO reads from PB and BB using MMIO. Again the
RDY-pin is unused during accesses to the BB and the waveform therefore looks similar
to figure 3.3. If the PB is accessed the RDY-pin is used to lengthen the VLIO bus cycle
(see section 4.2.7.2).
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Increasing the clock frequency from 50MHz to 100MHz should cause higher throughput on
the PB because the FPGA will assert RDY earlier. The transfer rates on the FIFO-based
interface should be independent on the FPGA’s clock frequency (as long as it is higher than
the VLIO-frequency). The measurements depicted in table 4.6 confirm this (apart from
small variations for kernel-based DMA). Please note that increasing the clock-frequency
simultaneously also shortens the clock period and therewith the settling time granted
to the synchronizers in the peripheral bus bridge (see figure 4.24 and section 4.2.2.3 for
reference), too. Therefore, the MTBF of the FPGA design running at 100MHz is lower
than when running at 50MHz. This has to be taken into consideration when changing
the clock frequency.

Interface
Method PB (REQ/ACK-protocol) BB (FIFO-based)

MMIO
with verify 3.3MB/s 4.0MB/s

without verify 3.0MB/s 3.0MB/s
DMA via with verify 8.5MB/s 9.7MB/s

kernel without verify 9.4MB/s 13.6MB/s
DMA-to- with verify 8.4MB/s 11.1MB/s
userspace without verify 10.7MB/s 16.2MB/s

Table 4.6: Achievable transfer rates (read, fFPGA = 100 MHz)

It can be seen that read-accesses are significantly slower on the PB than on the FIFO-based
interface. Because presumably mostly large, continuous image data will be transferred
from the FPGA to the CPU the FIFO-based interface can easily be used to circumvent
the negative impact of the REQ/ACK-protocol.

Looking back at section 4.2.7.2 it can be found that write-accesses to the PB can be
handled by the FPGA without the insertion of wait states (using the RDY-pin). But
because read-accesses to the PB have to be slowed down and the FPGA does not know
whether a write- or a read-access will take place the RDY-pin has to be deasserted as
soon as CS gets asserted. Therefore, not only read- but also write-accesses to the PB will
be slower than the respective access to the BB. The measurements in table 4.7 (for both
50MHz and 100MHz) confirm this assumption.

Interface
Method fFPGA PB (REQ/ACK-protocol) BB (FIFO-based)

MMIO
50MHz 9.0MB/s

9.7MB/s
100MHz 9.1MB/s

DMA via 50MHz 14.3MB/s
15.6MB/s

kernel 100MHz 14.0MB/s
DMA-to- 50MHz 15.2MB/s

16.6MB/s
userspace 100MHz 15.2MB/s

Table 4.7: Achievable transfer rates (write)
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The obtainable data rate on the FIFO-based interface was exactly the same for both
frequencies (which was expected because the RDY-pin is not used here). However, it
can be seen that the achievable write-speed on the PB is (apart from minor variations)
independent of the FPGA clock frequency. The reason therefore is that (during writes)
the RDY-pin is asserted combinatorially by rdymux (bus bridge pb) in the CPU-CD.
The delay between the assertion of PWE (by the CPU) and the assertion of RDY (by
the FPGA) is therefore only depending on logic- and interconnect-delay and not on the
FPGA clock frequency.

It should be pointed out that these measurements were done without any user programs
running on the PXA-CPU. If e.g. m6main (the main user interface mentioned in sec-
tion 2.3) is running the transfer rate drops down to 50%. The reason for this behaviour is
not understood yet, therefore it is advisable to stop m6main before running applications
that need the full speed of both CPU and VLIO-interface.

Additional measurements can be found in appendix C.

4.2.7.5 Summary

Figure 4.31: Interfacing CPU and FPGA with the bus bridge

Figure 4.31 shows both CPU and FPGA and their respective CDs. The bus bridge
implements the CDC using both the REQ/ACK-protocol- and the FIFO-based approach.
The former supports arbitrary accesses to devices connected to the PB while the latter
facilitates fast transfers at the cost of setup overhead.

The introduction of the bus bridge came with an extensive rewrite of the toplevel-module
to hook up the new interface and to instantiate the new bus architecture. For the sake of
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clarity several VHDL data types have been introduced to distinguish the various address-
parts from each other. Several auxiliary entities have been designed and written from
scratch, e.g. an address-decoder, multiplexer-units and a scalable register-file.

Simulation was used to ease the development and the verification of the design. To facili-
tate not only behavioural but also detailed timing simulation (post-route) a cycle-accurate
model of the CPU’s VLIO-interface has been developed and integrated into the testbench.
It is based on the timing parameters extracted from the kernel driver and from the values
given in the PXA-documentation. The testbench not only models VLIO bursts but also
the CPU’s behaviour when the RDY-pin it used to throttle the transfer rate. Appendix A
lists the used parameters. The delay introduced by the buffers on address- and data-bus
is modelled, too.
Please note that a simulation reflecting the actual behaviour of the hardware is unachiev-
able because synchronizers are used in the design to facilitate the CDC (see section 4.2.3.4
for reference) and the asynchronous clocks of CPU and FPGA are hard (if not impossible)
to model.

4.2.8 Overview of the resulting FPGA system

Figure 4.32: Complete system with CPU, FPGA and internal modules

Figure 4.32 shows the complete system consisting of CPU, FPGA and the internal mod-
ules. The structure of the SRAM-controller will be elaborated on in section 4.4. The
image processing modules in the hardware vision-entity were developed concurrently by
a fellow student and are presented in [29].
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The implemented design not only handles the asynchronous CPU-interface but also con-
stitutes a clean foundation for further development. The bus bridge takes care of proper
synchronization of all signals coming from the CPU and instantiates a fully synchronous
internal bus system. Therefore, designers using PB or BB may safely ignore the asyn-
chronous nature of the CPU-interface and rely on the toolchain to detect timing problems.
Two distinct approaches to interface the CPU have been deployed, each with different
(dis-)advantages. The peripheral bus allows arbitrary access to connected devices and the
FIFO-based interface facilitates fast, continuous data transfers from and to the CPU.
Various auxiliary modules were developed and allow subsequent projects to focus on the
implementation of new features.

Appendix D lists all entities and data types used in the VHDL design. Appendix E shows
the address map of the resulting system. These values should not be used directly, instead
thereof the macros in fpga busbridge.h should be used.

To preserve compatibility with the old design (and the existing library) nearly all modules
of the old design have been ported to the new one. The only exception is the combined
camera- and SRAM-controller that did not satisfy the requirements of the image process-
ing modules.

4.3 Meeting deadlines: Applying timing constraints

Section 3.4 already pointed out that the lack of timing constraints can cause awkward
problems during the development. This section starts with an introduction to the timing
constraints that are supported by the Xilinx toolchain. After that, these constraints are
applied to the new design.

4.3.1 Supported constraint types

The constraints in the following sections will be introduced by means of an example circuit
with two clock nets, three inputs and two outputs.

4.3.1.1 Grouping constraints

Most constraints can operate on not only a single element (e.g. a register) but also on
groups thereof. Although possible it is not advisable to constrain a design without using
groups because they not only improve the readability of the constraints but also shorten
the runtime of the toolchain.
Groups can include registers, nets, I/O-pads and multipliers. It is also supported to merge
several groups into another and to exclude elements of one group from another.
A common usage scenario for groups is to add all signals of a bus into one group. Then
an OFFSET constraint can be used to specify the I/O timing requirements of that bus.
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Using group-based constraints for buses allows the toolchain to calculate and output the
skew between the bus signals.

Further information on groupings can be found on page 19 of [17]. The Xilinx toolchain
already includes predefined groups, they are listed in table 2-1 on the same page.

4.3.1.2 PERIOD

The PERIOD constraint is used to inform the toolchain about period, duty-cycle and
jitter expected on a specific clock net that is fed into the FPGA. The toolchain then
identifies all synchronous elements (registers, Block-RAMs, multipliers, etc.) inside the
FPGA that are clocked by the specified clock net. Finally, it ensures that the path delay
(between two such elements) caused by logic and interconnect is shorter than the period
of the clock net after clock jitter, clock skew and register setup- and hold-requirements
have been taken into account. Additionally, the PERIOD constraint specifies which edge
of the clock will be used by default in conjunction with OFFSET constraints. The paths
covered by a PERIOD constraint are marked in figure 4.33.

Special rules apply to clock nets that are routed through a DCM. A DCM not only may
modify a clock signal in various ways (e.g. phase-shifting, duty-cycle-correction) but also
is capable of deriving new (but obviously related) clocks by multiplying or dividing the
input clock frequency. If a DCM is fed by a clock signal that is tagged with a PERIOD
constraint the toolchain will propagate modified PERIOD constraints to the outputs of
the DCM. Further information can be found on page 225 of [17].

Figure 4.33: Paths covered by a PERIOD
constraint

Figure 4.34: Paths (usually) described by
a FROM-TO constraint

4.3.1.3 FROM-TO

The FROM-TO constraint is a very powerful tool to limit the path delay between any
two groups. It can be used to constrain both paths related and unrelated to a clock net.
In the following two typical use cases will be presented.

Pure combinatorial paths can be covered by creating a FROM-TO constraint starting
at a group containing one or more input-pads and ending at a group of one or more
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output-pads. The red path in figure 4.34 illustrates this case: A pure combinatorial
logic block (Logic A) creates a path from signal originating at an input-pin (INb)
to an output-pin (OUTb). If the external device that drives INb samples OUTb a
certain time Tdelay after it has changed INb a FROM-TO constraint has to be used
to limit the path delay to or below Tdelay . Otherwise a timing violation could occur
in the external device.

Paths between two clock domains can be covered by a FROM-TO constraint starting
at a register in the sending CD and terminating at a register in the receiving CD.
This case is illustrated by the green path in figure 4.34: Register Qd (clocked by
CLKb) drives a signal ending in Qb (clocked by CLKa). Such a path is not captured
by a PERIOD constraint because the two registers are clocked by different clock nets
and therefore has to be constrained manually.

Further information on the FROM-TO constraint (and related constraints) be found on
page 131 of [17].

4.3.1.4 OFFSET IN

The OFFSET IN constraint is used to relate data input-pins to an external clock signal. It
specifies the time difference Toffset ,in between the data at the FPGA’s input-pin becoming
valid and the arrival of the active clock edge at the FPGA. Apart from Toffset ,in the name
of the associated clock input has to be indicated. Additionally, the time interval Tvalid in
which the data will be valid and the active clock edge (rising or falling) can be given. If
the constraint does not specify the active edge the specification in the PERIOD constraint
associated with the clock net will be used instead. This information is then utilized to
ensure that setup- and hold-requirements of all internal registers (driven by that clock
signal and) sampling that input-pin (or a signal depending thereon) are met.

In other words: The toolchain will ensure that the delay on the path from input-pin to
the register will be smaller than the time specified in the OFFSET IN constraint after
data and clock delay, clock jitter, clock skew and register setup time have been taken
into account. Therefore, the register’s data input will be stable before the active clock
edge arrives. The register’s hold time requirement will only be verified if Tvalid has been
specified in the constraint.

The OFFSET IN constraint can be specified in three different ways: Global, group-specific
or net-specific. If used globally all inputs-pins of the FPGA will be constrained relative
to the specified clock net. If only specified input-pins shall be constrained the group- or
even the net-specific approach can be chosen.

Figure 4.35 shows some exemplary paths that are covered by an OFFSET IN constraint:
The red path shows an input signal INa that is directly fed into a register Qa that is
driven by CLKa. The same scenario appears on the blue path (INc is sampled by Qd
that itself is clocked by CLKb). The green path marks another type of paths that are
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covered by an OFFSET IN constraint: An input signal INb traverses through Logic A
and finally is registered by Qb (clocked by CLKa).

OFFSET IN constraints can be used for both single and double data rate interfaces.
Further information can be found on page 206 of [17].

Figure 4.35: Paths described by an OFF-
SET-IN constraint

Figure 4.36: Paths described by an OFF-
SET-OUT constraint

4.3.1.5 OFFSET OUT

The OFFSET OUT constraint is similar to the OFFSET IN constraint but is used to
relate data output-pins to an external clock signal. It specifies the time difference Toffset ,out

between the active clock edge at the FPGA’s (clock) input and the data becoming valid at
the output-pin of the FPGA. Apart from Toffset ,out the name of the associated clock net has
to be indicated and the active clock edge used as reference can be given. If the constraint
does not specify the active edge the specification in the PERIOD constraint associated
with the clock net will be used instead. An OFFSET OUT constraint is therefore needed
to ensure that setup- and hold-requirements of an external synchronous device are met.

In other words: The toolchain will ensure that the delay on the path between the last
register and the FPGA’s output-pin will be smaller then Toffset ,out after register clock-to-
Q-time, clock delay, clock jitter, clock skew and data routing delay have been taken into
account. Therefore, the input of the external device will be stable before the active clock
edge arrives there.

As the OFFSET IN constraint OFFSET OUT can be specified in three different ways:
Global, group-specific or net-specific. If used globally all output-pins of the FPGA will
be constrained relative to the specified clock net. If only specified output-pins shall be
constrained the group- or even the net-specific approach can be chosen.

Further information can be found on page 212 of [17].

4.3.1.6 TIG

The TIG constraint can be used to exclude specific paths from the timing-analysis and
-optimization. The delay of the ignored paths nevertheless will be calculated and output
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by the toolchain. This constraint is handy to “clean up” the timing report generated by
the toolchain and allows the developer to focus on more important paths.

4.3.2 Required constraints for the new FPGA design

In the following the constraints needed for the new FPGA design will be presented.
Because the asynchronous VLIO bus is terminated in the bus bridge the process of intro-
ducing timing constraints was simplified. The reason therefore is that the bus bridge is
the only entity that has to be checked for paths that have to be constrained relative to
the CPU’s VLIO interface. After the groupings have been listed the required constraints
of each type will be explained.

4.3.2.1 Grouping constraints

In the following all defined groups will be presented. The following sections then explain
the timing constraints that are based on the groups.

Group name Pin

CLKGRP M6CLK M6CLK

CLKGRP CPU NWR CPU NWR

CLKGRP CPU NRD CPU NRD

CLKGRP CAM1 PCLK CAM1 PCLK

CLKGRP CAM2 PCLK CAM2 PCLK

Table 4.8: Clock input groupings via TNM NET

Table 4.8 shows all net groupings that were created using TNM NET. These groups will
be used to assign a PERIOD constraint to each single clock input. Therefore, every group
only contains one net.

The net groupings shown in table 4.9 were created using TNM. These groups are used to
identify the nets that have to be constrained using OFFSET IN resp. OFFSET OUT (for
synchronous constraints) and using FROM-TO (for combinatorial constraints).
The difference between TNM NET and TNM is related to the automatic propagation
performed by the toolchain. Please see pages 314 and 322 of [17] for reference.

Table 4.10 shows all groupings created to constrain the paths inside the bus bridge that
are related to the CDC. These groups are needed for three reasons:

Limit delay on control- and data-paths: To ensure proper functioning of the PB bus
bridge the data paths (X PB ENABLES, X PB A and X C2F) and the control paths
(X PB WR and X PB RD) have to be of the (approximate) same length. Otherwise it
could happen that (if, for example, X PB A is much longer than X PB RD) addr reg

latches X PB A before the new address has arrived.
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Group name Pins

GRP CPU NCS CPU NCS

GRP CPU NWR CPU NWR

GRP CPU NRD CPU NRD

GRP CPU RDY CPU RDY

GRP CPU A CPU A<20:1>

GRP CPU D CPU D<15:0>

GRP SRAM A SRAM A<19:0>

GRP SRAM D SRAM D<17:0>

GRP CAM1 D CAM1 D<7:0>

GRP CAM1 CTRL CAM1 VSYN, CAM1 HREF

GRP CAM2 D CAM2 D<7:0>

GRP CAM2 CTRL CAM2 VSYN, CAM2 HREF

Table 4.9: I/O pin groupings via TNM

Group name Path

GRP BBPB write en reg write en reg → X PB WR → synchronizer

GRP BBPB write reg
write reg → C PB WR ENABLES → mux → X PB ENABLES → addr reg

write reg → C PB WR A → mux → X PB A → addr reg

GRP BBPB write data reg write data reg → X C2F → wr data reg

GRP BBPB read en reg read en reg → X PB RD → synchronizer

GRP BBPB read reg
read reg → C PB RD ENABLES → mux → X PB ENABLES → addr reg

read reg → C PB RD A → mux → X PB A → addr reg

GRP BBPB synchronizer F PB WR1 and F PB RD1

GRP BB C2F FIFO SEND Registers inside cpu2fpga fifo transmitting write- and read-pointers
GRP BB C2F FIFO RECV Registers inside cpu2fpga fifo receiving write- and read-pointers
GRP BB F2C FIFO SEND Registers inside fpga2cpu fifo transmitting write- and read-pointers
GRP BB F2C FIFO RECV Registers inside fpga2cpu fifo receiving write- and read-pointers

GRP BB CSREG all elements in bus bridge/csreg

Table 4.10: CDC path groupings

Constrain paths inside the independent clock FIFO: Chapter 5, page 91, of [20] sug-
gests that paths inside an independent clock FIFO should be constrained to avoid
warnings of the toolchain.

Maximize slack between the registers in the synchronizers: As already explained in
section 4.2.3.1 the registers inside a synchronizer have to be placed as close as
possible to each other. This maximizes the slack and therefore the time that can be
used by the first register to resolve a (possible) metastable state. This finally leads
to an increased MTBF of the synchronizer.

To simplify the timing report various paths starting resp. ending at I/O-pins connected
to the m6-modules have been ignored. The groups shown in table 4.11 were used therefor.
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Group name Pins

GRP DIO DIO<11:9>

GRP ENC ENC A<4:1>, ENC B<4:1>

GRP M MDIR<4:1>, MPWM<4:1>
GRP SERVOS SERVO<14:1>

Table 4.11: M6 I/O pin groupings via TNM

Please note: The groupings shown in table 4.8, table 4.9 and table 4.11 are attached to
specific nets that are identified by their toplevel names (which are unlikely to be changed).
The path based groupings shown in table 4.10 however specify nets and instances based
on their position inside the hierarchy. If the bus bridge (and therefore its submodules) is
moved all constraints have to be updated. The same applies to net- and instance-names
inside the bus bridge. Therefore, it is advisable to avoid any of these changes to ensure
that the constraints can be applied successfully.

4.3.2.2 PERIOD

Looking back at figure 4.31 and figure 4.32 it can be seen that five clock nets enter the
FPGA. The 50MHz oscillator generating M6CLK is connected to GCLK11, PWE and
OE are wired to GCLK8 resp. GCLK9. Both cameras generate a clock each, too. Five
PERIOD constraints were used to specify the clock period on the respective input pin.
They are shown in table 4.12.

Name of timespec Name of group Frequency

TS M6CLK CLKGRP M6CLK 50MHz
TS CPU NWR CLKGRP CPU NWR 12.5MHz
TS CPU NRD CLKGRP CPU NRD 12.5MHz

TS CAM1 PCLK CLKGRP CAM1 PCLK 24MHz
TS CAM2 PCLK CLKGRP CAM2 PCLK 24MHz

Table 4.12: Deployed PERIOD constraints

Looking back at figure 4.21 and figure 4.22 it can be seen that the minimum period of
PWE resp. OE while a DMA transfer is 8 MEMCLKs (80 ns). This is equivalent to a
clock frequency of 12.5MHz. Because DMA transfers are faster than MMIO transfers the
latter are covered by these constraints as well.

The data sheet of the camera’s CMOS sensor specifies a maximum clock frequency of
24MHz, but the minimum period is given as 56 ns (equivalent to 17.86MHz). As a
precaution the higher value was used for constraining.
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4.3.2.3 FROM-TO

FROM-TO constraints are used to specify both pure combinatorial paths and paths be-
tween two CDs. They are shown in table 4.13. tB is the delay introduced by the buffers
on address- and data-bus (see figure 3.1 for reference).

Name of timespec FROM group TO group delay

Combinatorial paths (prefix TS COMB ) only used for read
NCS2DATA CPU NCS CPU D 45 ns - tB

ADDR2DATA CPU A CPU D 55 ns - 2tB
NRD2DATA CPU NRD CPU D 25 ns - tB

Combinatorial paths (prefix TS COMB ) used for write and read
NCS2RDY CPU NCS CPU RDY 20 ns

ADDR2RDY CPU A CPU RDY 30 ns - tB
TS TIG NWR2RDY CPU NWR CPU RDY TIG

Clock domain crossing paths in PB bus bridge (prefix TS CDC BBPB )
write reg TO addr reg BBPB write reg – 10 ns
read reg TO addr reg BBPB read reg – 10 ns
write en reg TO sync BBPB write en reg – 10 ns

read en reg TO sync AND muxes BBPB read en reg – 10 ns
write data reg TO wr data reg BBPB write data reg – 10 ns

synchronizer BBPB synchronizer – 1.5 ns

Clock domain crossing paths in bus bridge (prefix TS CDC BB )
F2C FIFO BB F2C FIFO SEND BB F2C FIFO RECV 10 ns
C2F FIFO BB C2F FIFO SEND BB C2F FIFO RECV 10 ns

Table 4.13: Deployed FROM-TO constraints

Two constraints are hard to spot: TS COMB NCS2RDY and TS COMB ADDR2RDY
ensure that the RDY-pin is deasserted before the falling edge of PWE or OE. As already
explained in section 4.2.5.1 the state of the RDY-pin during this falling edge is deciding
whether the CPU will lengthen the access by inserting wait states. These paths have to
be constrained because CS and the address bus determine whether an access is routed to
PB (wait states needed) or BB (no wait states needed).

Please note that (as depicted in figure 3.1) there are two buffers on the path that is
constrained by TS COMB ADDR2DATA: The address bus leaves the CPU, traverses a
buffer and is fed into the FPGA. During a read access the data bus then is driven by the
FPGA, traverses another buffer and is finally fed into the CPU.

The CDC paths have been constrained to 10 ns which is a good trade-off between rout-
ing complexity and delay. The synchronizer paths have been constrained to 1.5 ns which
enforces a close placement inside the FPGA. Additionally, care was taken to avoid the
optimization on that paths because otherwise the toolchain would map the synchronizers
into a shift register (SRL16) each. This would decrease the MTBF of the synchronizers be-
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cause an SRL16 is implemented as a “charge transfer chain” that has a worse metastability
behaviour (probably in terms of a longer metastability window and a longer resolution
time) than regular registers. More information can be found in [10].

Please note that all the constraints listed in table 4.13 base on the groupings defined in
table 4.10. Thus, these constraints depend on the hierarchy of the design and on the net
names inside the bus bridge. The consequences were already explained in section 4.3.2.1.

4.3.2.4 OFFSET IN

OFFSET IN constraints are needed for all external signals that are sampled in the FPGA
(synchronous to an external clock). The 50MHz oscillator only is used as clock signal for
the FPGA and not fed into any other device. Therefore, no data arrives at the FPGA
synchronously to that clock. The CPU address- and data-buses and CS however arrive
synchronously to PWE resp. OE. The same holds true for the camera data buses and
their associated PCLK signals. Therefore, OFFSET IN constraints are needed.

Table 4.14 lists all OFFSET IN constraints that were needed to constrain the synchronous
interfaces. The clocks and the relevant clock edges are shown on the left. For each
constraint some registers/FIFOs are given that necessitated the respective constraint.

Clock Group Offset Valid paths via

PWE
↑

GRP CPU NCS 60 ns 70 ns write en reg, csreg
GRP CPU A 70ns - tB 80 ns write en reg, write reg, csreg
GRP CPU D 50ns - tB 60 ns write data reg, cpu2fpga fifo

↓ GRP CPU NCS 20 ns 70 ns cpu2fpga fifo-enable
GRP CPU A 30ns - tB 80 ns cpu2fpga fifo-enable

OE ↓ GRP CPU NCS 20 ns 70 ns read en reg, fpga2cpu fifo-enable
GRP CPU A 30ns - tB 80 ns read en reg, read reg, fpga2cpu fifo-enable

CAM1 ↑ GRP CAM1 D
10ns 30 ns

independent clock FIFO for camera CDC and
PCLK GRP CAM1 CTRL image stream generator
CAM2 ↑ GRP CAM2 D

10ns 30 ns
independent clock FIFO for camera CDC and

PCLK GRP CAM2 CTRL image stream generator

Table 4.14: Deployed OFFSET IN constraints

Example 1: write en reg samples an enable signal (PB BRIDGE ENABLE=ENABLES(0))
on the rising edge of PWE. This enable signal depends on both CS and the address
bus. read en reg does the same on the falling edge of OE.

Example 2: The enable signal for cpu2fpga fifo is generated by a register clocked on
the falling edge of PWE that samples ENABLES(1) (which depends on both CS and
the address bus).

Example 3: cpu2fpga fifo samples the data bus on the rising edge of PWE.
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There is no OFFSET IN constraint relating OE and GRP CPU D because no register
reads the CPU data bus during a write-access (which is signalized by OE). A relation
between OE and GRP CPU D is only needed for read-accesses, thus when data is trans-
ferred from FPGA to CPU. Since then the FPGA is driving the data bus an OFFSET
OUT constraint is needed here.
The timing parameters of the camera were taken from table 13 of the data sheet (which
is not available online).

An OFFSET IN constraint can only be used in relation to an external clock input pin of
the FPGA. This eliminates the possibility to constrain the SRAM’s address- and data-
buses because the SRAM is clocked by an output-pin of the FPGA.

4.3.2.5 OFFSET OUT

OFFSET OUT constraints are needed for all signals leaving the FPGA synchronous to a
clock that is fed into the FPGA. This is only the case for read accesses where the CPU
drives OE (which is fed into the FPGA) and the FPGA drives the data bus. Table 4.15
lists the constraint.

Clock Group Offset paths via

OE ↑ GRP CPU D 65ns - tB fpga2cpu fifo

Table 4.15: Deployed OFFSET OUT constraints

The offset value of 65 ns can be understood looking back at figure 4.22. fpga2cpu fifo

is used in FWFT-mode, therefore valid data will be output by the FIFO as soon it is
available. Therefore, the offset has to be measured from the rising edge of OE to the next
data word in a burst: After its rising edge OE will be deasserted for 40 ns. Subsequently
it will be asserted again. The CPU then requires the data bus to be stable 25 ns after the
assertion of OE.
Therefore, the data bus has to be stable 40 + 25 ns = 65 ns after the rising edge of OE.

There are two more buses leaving the FPGA, the address and the data bus of the SRAM.
If the SRAM would be clocked by a clock signal that is fed into the FPGA (and used
to trigger the registers driving these buses) OFFSET OUT constraints could be applied.
This is impossible though because the SRAM is clocked by an output-pin of the FPGA.

4.3.2.6 TIG

All nets included in the groups shown in table 4.11 were ignored using TIG constraints.
This is permissible because all these nets are in- or outputs that are not related to any
clock network. Furthermore, it is feasible to ignore the clocked path from csreg to the
CPU data bus because reads from csreg are done combinatorially. This is covered by
TS TIG BB CSREG.
Various other paths inside debugging modules were excluded as well.
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4.3.3 Summary

The timing constraints introduced in the previous section enforce valid routing inside the
FPGA to facilitate reliable communication between CPU and FPGA. If the toolchain fails
to satisfy a constraint it will notify the user18).

As expected the introduction of timing constraints changed both placement and routing
inside the FPGA to meet the required timing. The timing analyzer included in the
toolchain supports cross-probing to the FPGA editor which enables the user to trace the
constrained paths on the FPGA.

4.4 Providing storage: Accessing the SRAM

The 18MBit SRAM on the EyeBot M6 has to be utilized as soon as an entire image
has to be stored because the internal Block-RAM is too small for it. One of the image
processing blocks presented in [29], the stereo rectification unit, needs arbitrary access to
two complete camera frames and therefore necessitated the use of the SRAM.
To facilitate easy access to the external SRAM the author of this thesis planned to design
an internal bus system dedicated to SRAM accesses. This bus system was named burst
bus (BB) and already kept in mind during the design of the CPU interface and the
development of the bus bridge (see section 4.2.6 and section 4.2.7 for reference).
Sadly a problem found in the early stages of implementation could not be solved in a timely
manner and detained the author of this thesis from implementing the SRAM controller.

Section 4.4.1 therefore presents the ideas behind the burst bus and how it would interact
with the image processing units described in [29]. The subsequent section (4.4.2) examines
the encountered problems and proposes a solution.

4.4.1 Design of burst bus and SRAM controller

In the following the devised concepts for burst bus and SRAM controller will be presented.
After the requirements have been identified the proposed implementation and its use for
image processing purposes will be expound. Based thereon, the achievable performance
of the complete image processing system will be estimated.

4.4.1.1 Requirements of the image processing system

The requirements on burst bus and SRAM controller heavily depend on the image pro-
cessing algorithms that shall be implemented in the FPGA. The following applies to the
stereo image processing architecture proposed in [29]. It pursues the generation of a depth

18) Please note that – at least in the default configuration – the toolchain will only output a warning if a
timing constraint is not met. Please check the console output or the timing report for such messages.
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map of the scenery recorded by the cameras. Please refer to this document for a more
detailed explanation on the deployed approach.

This image processing architecture needs quasi-simultaneous accesses to the SRAM:

1. Both cameras (left and right) continuously stream frames to the SRAM. Because
the image processing units operate on grayscale images only it is advisable to use the
cameras in YUV mode (the Y channel contains grayscale information). However,
it is necessary to save the UV channel as well because the existing RoBIOS-library
supports frame grabbing both in color and in grayscale mode and backward com-
patibility has been requested.

2. The rectification unit used to compensate camera- and alignment-errors fetches
umpteen small blocks from both images and generates two rectified grayscale image
streams (one for each camera).

3. These image streams are not only stored in the SRAM but also fed into a stereo
Harris detector that extracts features from each image. The resulting two lists of
features are then stored in the SRAM.

4. Finally, the CPU fetches these feature lists and the rectified grayscale images, cor-
relates the features of both images (using block matching) and generates a depth
map of the scenery seen by the cameras.

5. In addition, the user may choose to transfer the (not rectified) color images to the
CPU as well (e.g. for reference or demo purposes).

It can be seen that a multiplicity of units have to write to resp. to read from the SRAM.
The timing of the system can not be predicted because it consists of four CDs (camera 1,
camera 2, FPGA and CPU) with unknown (phase) relationships. Therefore, the burst
bus should support dynamic arbitration to handle all these requests as they arrive.

4.4.1.2 Required data flows

Figure 4.37 shows a block diagram of the proposed system consisting of cameras, rectifi-
cation unit, Harris corner detector, SRAM controller and the CPU link-up through the
bus bridge. The four CDs and all the required data flows are marked as well.

All flows defined in figure 4.37 and their data rates are shown in table 4.16. Inside
the FPGA both left and right images are processed and transferred in parallel. On the
contrary to that the transmission (of left and right frames resp. feature lists) to the CPU
is done in a serial fashion.

The BB provides several transaction types that define the kind of the transferred data.
Details on the individual transaction types can be found in section 4.4.1.4.
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Figure 4.37: Image processing system and data flows

Source Data word size Rate Sink

1l Camera 2 raw image left (color) 16 bit (YUV) 8.9Mpx/s SRAM
1r Camera 1 raw image right (color) 16 bit (YUV) 8.9Mpx/s SRAM

2 SRAM
raw image (left and right

16 bit (YUV) 2× 20 Mpx/s
rectifica-

channel alternating) tion unit
3l rectifica- rectified image l. (gray) 8 bit (Y) 5Mpx/s SRAM
3r tion unit rectified image r. (gray) 8 bit (Y) 5Mpx/s SRAM
4l Harris feature list left 18 bit 5Mfts/s SRAM
4r detector feature list right 18 bit 5Mfts/s SRAM
5 SRAM rectified image (l. resp. r.) 8 bit (Y) 12.5Mword/s CPU
6 SRAM feature list (l. resp. r.) 2× 9 bit 12.5Mword/s CPU
7 SRAM raw image (l. resp. r.) 16 bit (YUV) 12.5Mword/s CPU

Table 4.16: Data flows and estimated transfer rates on the BB
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The processing can be split into three sub-processes:

Image capturing: The cameras output the YUV data as a repetitive pattern of 8 bit
values (sequence Y U Y V) with a byte rate of 17.8MHz each. One pixel consists
of 8 bit Y and 8 bit U resp. V which is converted to a so called image stream with
a width of 16 bit and a pixel rate of 8.9MHz. These two streams are stored in the
SRAM (flows 1l and 1r).

Image processing: The images are then read by the rectification unit. One pixel of
the destination image is interpolated from four source pixels, therefore the input
data rate will be four times higher than the output data rate. The theoretical
maximum output rate is 20Mpx/s19), but because of the arbitration and setup
overhead introduced by the BB the actual rate will be lower. This overhead (roughly
estimated in section 4.4.1.8) will reduce the output rate to 10Mpx/s or less. Because
two images will be processed in parallel the resulting maximum rate is 5Mpx/s for
each image channel. The input data rate for each channel therefore is 20Mpx/s
(flow 2). Due to hardware constraints the rectification unit was designed to operate
on the Y channel only (U and V are transferred in flow 2 but discarded by the unit).
The rectified (grayscale) image generated by the rectification unit is then saved back
to the SRAM (flows 3l and 3r) and simultaneously fed into the Harris detector.
The Harris detector then outputs one feature list for each image channel that is
saved in the SRAM (flows 4l and 4r).

Transfer to CPU: The CPU finally fetches both rectified grayscale images (two times
flow 5) and the two feature lists (two times flow 6) from the SRAM. If required
flow 7 (not shown in figure 4.37) may be used to fetch the unrectified color images.
These transfers are done sequentially using the FIFO-based interface presented in
section 4.2.5.2. The maximum transfer rate on the VLIO-interface is 12.5Mword/s,
the FIFOs however can be read resp. written with 100Mword/s.

4.4.1.3 Required high level control

A high-level flow control for the image processing modules is needed to ensure that both
cameras have stored one frame each into the SRAM before the rectification unit starts
its calculations. This could be achieved using a double buffering approach: Four frame
buffers (for the raw images) are created in the SRAM, two for the left camera (L1 and
L2) and two for the right camera (R1 and R2). After L1 and R1 have been filled by the
cameras the control redirects their data streams to L2 resp. R2 and the rectification unit
starts processing the frames in L1 and R1. After the processing has been finished the
cameras are switched back to L1 and R1 and the rectification unit starts processing L2
and R2. This ensures that the most recent camera frames are used for rectification. If
the exact runtime of the rectification unit is known it is also possible to stop the cameras

19) Five clock cycles (at 100 MHz) are needed to generate one pixel of the destination image: One to
request the four source pixels and four for the actual transmission from SRAM to rectification unit.
More information can be found in section 4.3 of [29].
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while the rectification unit is busy. The cameras then could be reactivated in such a way
that two new frames are available in L2 resp. R2 when the rectification has been finished
and a new rectification pass could then be started immediately.
The same scheme is needed for the rectified grayscale images generated by the rectification
unit and for the feature lists generated by the Harris detector. They will be fetched by
the CPU after the processing inside the FPGA has been finished and the CPU has been
informed by high-level control thereof.
Therefore, the SRAM has to support the storage of (at least) 8 frames and 4 feature lists
in total. The respective storage locations are indicated in figure 4.37 by the small colored
squares sketched into the SRAM controller. The colors signalize the flows associated to
that particular location.

Alternatively an easier, but slower fully sequential approach could be deployed by stopping
the cameras until the full processing has been done and the CPU has fetched both images
and feature lists.

4.4.1.4 Proposed transaction types and address generation

The SRAM supports clock frequencies up to 100MHz for both read and write accesses. It
is advisable to use this frequency to exploit the SRAM’s full throughput. Because SRAM
and BB have to form a synchronous system the frequency of BB and all connected units
will be 100MHz, too. Therefore, 100Mword/s (more than 200MB/s) can be transferred
on the BB (to resp. from the SRAM).

One drawback of a multi-master bus system (see section 4.4.1.5) is the additional time
needed for the arbitration. Even if the bus is idle (and the requesting device therefore
could use it immediately) the arbitration procedure has to be performed to ensure that
no other units start using the bus at the same time. This additional time results in an
overhead that decreases the achievable (average) data rate.
To alleviate the impact of this overhead only large, continuous transfers (“bursts”) should
be performed on such a bus system. The longer the transfer the smaller is the arbitration
overhead as a percentage. These transfers have already been mentioned in section 4.2.6
and will be called (BB-)transactions.
Looking back at figure 4.37 six FIFOs can be identified. They decouple data sources and
BB which is required to adapt the data rate of a particular source to the data rate on the
BB20). They are required because all units that write to the SRAM (cameras, rectification
unit and Harris corner detector) are not able to output 100Mword/s and therefore would
not be able to perform a burst transfer that saturates the BB. After the FIFO fill level has
reached a certain limit (depending on the particular flow) a transaction on the BB will
be initiated and the FIFO will be emptied (“flushed”) using the BB’s native data rate of
100Mword/s. This obviously is more efficient that requesting several smaller transactions
with lower data rates.

20) The two FIFOs connecting the cameras to the BB serve an additional purpose: They implement the
CDC between the two camera-CDs and the FPGA-CD.
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It is advisable to use a word size of 18 bit on the BB because this matches the SRAM’s
native word size21). Therefore, all transfers on the BB may use a word size up to 18 bit.
The width of the CPU data bus however is only 16 bit, therefore transfers involving the
CPU may only utilize 16 bit or less.
Because the cameras output 352×288 px in YUV using 4:2:2 chroma subsampling one pixel
consists of 1 byte brightness (Y) and 1 byte color (U resp. V) information. Therefore, one
color pixel (16 bit) can be saved per SRAM word (18 bit). If a frame shall be transferred
to the CPU the 16 bit data bus is wide enough.
This is different for the feature lists though: One feature is identified by its x- and y-
coordinates and each coordinate has to be represented by 9 bit because both maximum
coordinate values (352 resp. 288) are in the range [256; 511] (representable by 9 bit). One
feature therefore needs 18 bit of storage. This perfectly matches the word size of the
SRAM but poses a problem for the transfer of the feature lists to the CPU because the
width of the CPU data bus is only 16 bit. Therefore, the feature coordinates have to
be rearranged before they are sent to the CPU. This can be achieved with two distinct
transaction types for feature lists: One is used to store the coordinate tuples as 18 bit
words into the SRAM. The other one is used to read one coordinate tuple (consisting of
two 9 bit coordinates) as two 16 bit values that then can be sent to the 16 bit data bus.

Name Description
Length address- used by
(words) ed by flows

1 2 lines (YUV) 704 px color (2 byte per px) 704
PSID, 1l, 1r,
line (y) 7

2
2× 2 window

window containing 4 px (color) 4
PSID,

2
(YUV) x and y

3 2 lines (Y only)
704 px rectified grayscale (1 byte

704
PSID, 3l, 3r,

Y and 1 byte unused) line (y) 5

4a
512 features

512 coordinate tuples (9 bit for 512 LSID 4l, 4r
4b the x-coordinate, 9 bit for y) 1024 LSID 6

Table 4.17: Proposed transaction types on BB resp. FIFO-based interface

Table 4.17 lists the transaction types (TT) that are needed for the proposed system.

TT 1 is used in flows 1l and 1r to transfer the color images from cameras to SRAM.
The rectification unit then issues one request of TT 2 (flow 2) for each pixel in each
(rectified) destination image. One pixel of each rectified destination image then will be
interpolated based on four pixels of the associated source image. Even tough U and V
are fetched only the Y channel is rectified by the unit.
The rectified grayscale images are not only saved to the SRAM using TT 3 (flows 3l

and 3r) but also fed into the Harris corner detector.
Each feature (with a width of 18 bit) output by the Harris corner detector is saved back
to the SRAM using TT 4a (flows 4l and 4r). As already explained above the coordinates
of one feature have to be realigned for the transfer to the CPU (TT 4b, flow 6).

21) The SRAM is organized as 1 Mword× 18 bit and thus is addressed by a 20 bit address bus.
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The CPU finally reads both rectified grayscale images using TT 3 (flow 5) to perform the
block matching (based on the features transferred previously).
In case the original non-rectified color images are needed TT 1 can be reused (flow 7 from
SRAM to CPU, not depicted in figure 4.37).

Usual bus systems implement bursts in a way that either the master transfers an address
for every single beat or the slave internally generates increasing addresses based on a start
address supplied by the master.
Neither of these approaches was chosen for the BB. It seemed more appropriate to define
several transaction types (see table 4.17) and to generate the needed addresses (supplied
to the SRAM) in the SRAM controller. A transaction type shall therefore not only deter-
mine the type of the transferred data but also the initial and subsequent addresses (sent
to the SRAM). The reasons therefore will be given in the following.
All the transaction types mentioned above transfer more than one word in a row. There-
fore, it is unnecessary to support word-based accesses to resp. from the SRAM on the
BB. The SRAM will be split into several storage areas, e.g. into 8 slots for color images
and 4 slots for feature lists22) (which would perfectly match the requirements shown in
section 4.4.1.3).
If e.g. TT 1 resp. TT 3 are used to transmit two lines of a (color resp. grayscale) image the
only information needed is the number of the image slot (PSID, picture slot ID) and the
line number y that should be operated on. For TT 2 only PSID and x- and y-coordinates
are needed. Feature lists (TT 4a and 4b) are addressed by list slot ID (LSID).

This transaction-type-based approach has several advantages in the proposed system:

• The various masters on the BB only have to notify the SRAM controller of the
required TT and of the specific data set that should be operated on.

• The SRAM controller partitions the SRAM into suitable memory areas and gener-
ates the word addresses needed to access the SRAM.

• Therefore, only one address generation unit is needed in the whole system and the
complexity of the units on the BB is reduced.

• This address generation unit can be placed close to the FPGA’s I/O-pins to improve
the timing.

The generation of the word addresses needed to communicate with the SRAM is a complex
task because one image consists of npixel = 352×288 = 101376 px which is no power of two.
Therefore, the 20 bit address bus of the SRAM can not simply be splitted. To calculate the
word address at least one multiplier is needed which not only occupies FPGA resources
but also introduces additional latency.

For TT 1 and TT 3 (addressed by PSID and y) the following has to be done: To align
the eight picture slots without any cut-offs a multiplication has to be used to generate the

22) The 8 slots for color images resp. feature lists will occupy 8·352·288 = 811008 resp. 4·512 = 2048 words.
If this partitioning is used still 220 − 8 · 352 · 288 − 4 · 512 = 235520 words (529920 byte) are free for
other purposes.
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start address of the PS (α = PSID · npixel). Another multiplication is needed to calculate
the line offset inside the image (β = y · 352). The sum of both then is the word address
ADDR = α + β = PSID · npixel + y · 352 of the first pixel in the requested line. If this is
implemented with one multiplier three clock cycles are needed to generate the address.

For TT 2 (addressed by PSID, x and y) the situation is similar: The start address of the PS
is calculated the same way (α = PSID · npixel). Again another multiplication is needed to
calculate the line offset (β = y ·352). At the same time an interim result can be calculated
(γ = α+x). The sum then is the word address ADDR = γ +β = PSID ·npixel +x+y ·352
of the top left pixel (in the requested 2x2-window). If this is implemented with one
multiplier three clock cycles are needed to generate the address.

The situation is easier for TT 4a because its length (512) is a power of two. Therefore,
bits 11 and 10 of the 20 bit SRAM address can be used to address one of the four list
slots. Only one clock cycle is needed to add the LSID to the base address of the list slots.

The impact of this additional latency will be analyzed in section 4.4.1.8.

4.4.1.5 Proposed arbitration scheme

As found in the previous sections the burst bus has to be able to serve multiple requests
from different units quasi-simultaneously. Units that initiate transfers on a bus system
are called (bus) masters, responding units are called (bus) slaves. The only slave in the
proposed system is the SRAM controller that serves the masters’ requests by forwarding
them to the SRAM. All the image processing units mentioned above are masters, the BB
therefore is a multi-master bus system (as already deduced in section 4.2.6).
Multi-master systems generally require some kind of arbitration to determine which mas-
ter is the next one allowed to initiate a transfer on the bus. The process of arbitration
generally takes some time and thus creates an overhead (compared to a single-master
system without arbitration).

The deployment of a static predefined arbitration scheme would waste precious data rate
because the requests from different units (located in different CDs) will arrive in a non-
predictable, varying manner and it would be necessary to assign a certain percentage of
the available bus bandwidth to each unit. In case of a unit being idle the assigned bus
bandwidth would be unused and thus lost. In addition, a predefined arbitration scheme
has to be adapted if new units are connected.
Therefore, a simple, dynamic priority-based arbitration scheme was selected for this sys-
tem. The advantage is that bus bandwidth dynamically gets assigned to a specific unit
only if that unit actually has some data to transfer. On the other hand this scheme is
endangered to data loss if the bus is overloaded temporarily and if the units are unable
to buffer the data they want to transfer until the bus is able to handle their request.

To reduce the risk of data loss the priorities would be assigned as follow (highest to
lowest):
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1. Left camera

2. Right camera (cameras can be interchanged)

3. The output module of the rectification unit (writing the two rectified images)

4. The output module of the Harris corner detector (writing the two feature lists)

5. The input module of the rectification unit (reading the two raw camera frames)

6. The CPU interface used to fetch feature lists, rectified grayscale images and (op-
tionally) non-rectified color images

The highest priorities will be assigned to the cameras because they continuously output
data and can not be stopped after the transmission of a frame has been started23).
The next lower priorities will be assigned to the modules that write the two rectified image
streams resp. the two feature lists to the SRAM. The module fetching the unprocessed,
raw frames into the rectification unit will be assigned an even lower priority. This is
needed because the image processing units have been implemented with forward flow
control only: It is possible to stall the processing if no more input data is available at the
moment, though it is impossible to stop the processing if the downstream units (receiving
images resp. feature lists) are not ready to receive. By assigning higher priorities to
the modules writing the results (compared to the unit reading the input data) it can be
ensured that no overflow will occur in the output modules because the rectification unit
(being out of new input data) will stall the processing.

4.4.1.6 Proposed CPU link-up using the FIFO-based interface

The lowest priority on the BB will be assigned to the CPU-to-BB interface. Looking back
at section 4.2.5.2 it can be seen that CPU accesses to the SRAM shall be implemented
as FIFO-transactions (to establish a software flow control on the VLIO bus). These
FIFO-transactions on the VLIO bus can be mapped to requests on the BB:

Write accesses are handled as follows: The CPU first checks whether FIFO1 is empty.
If FIFO1 is empty the CPU supplies the address (to be written to) to the FPGA
and writes the actual data into FIFO1. The FIFO-transaction which is defined
from the CPU’s point of view is finished at this point in time. The data stored in
FIFO1 however still has to be transferred to the SRAM. Therefore, the CPU-to-BB
interface requests access to the BB and finally writes the data (from FIFO1) to the
SRAM (after it has been granted access to the BB).
If FIFO1 is not empty the previous write access has not been processed by the
CPU-to-BB interface yet and the CPU has to wait until the FPGA has handled the
previous write.

23) Of course it is possible to stop the cameras from grabbing frames, but it is impossible to stop the
transfer “in the middle” of a frame. The reason therefore is that the cameras stream the image data
directly from the CMOS sensor without intermediate buffering.
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Read accesses are handled as follows: The CPU firsts transfers the address (to be read
from) to the FPGA and requests the CPU-to-BB interface to fill FIFO2 with the
desired data. This causes the CPU-to-BB interface to request access to the BB.
After access has been granted the interface fetches data from the SRAM and stores
it in FIFO2. Finally, the CPU is informed that enough data is available in FIFO2
and the CPU starts reading.

It can be seen that the FIFO-transactions on the VLIO bus can easily be used by the
CPU-to-BB interface to support the arbitration on the BB.

4.4.1.7 Proposed partitioning

The storage architecture provided by the BB will be implemented using several modules
already depicted in figure 4.37. The SRAM controller couples BB and SRAM and the
various bus adapters (BA) link the bus masters to the BB.

The SRAM controller is the only slave on the BB. It takes care of the arbitration and
handles requests issued by the masters. Thereto, it converts the ID-based addressing
of the requests into word addresses that are then used to communicate with the
SRAM.

The FIFO bus adapter (FIFO-BA) fetches data from a FIFO and stores it into a pre-
defined storage slot in the SRAM. It monitors the FIFO’s fill level and starts a
BB-transaction as soon as a certain FIFO fill level has been reached.
FIFO-BAs are used for both images and feature lists, hence configuration options
for both TT and the associated slot IDs have to be provided.

The 2x2-BA is only used by the rectification unit to fetch four pixels from a 2x2-window
that are needed for the rectification algorithm. The rectification unit only transmits
the x- and y-coordinates of the top left pixel and the PSID of the desired image.
The SRAM controller then automatically calculates the (word) addresses of the four
pixels, reads the pixels from the SRAM and transmits them to the rectification unit.

The SRAM controller itself consists of three submodules:

A combinatorial arbiter which is connected to every master on the bus. It outputs the
number of the master with the highest priority that currently requests bus access.

An address generation unit that decodes the TT and its addressing information (PSID,
LSID, x- and y-coordinates). It counts the number of words already transferred and
generates the word addresses required for the SRAM.

An FSM that controls the BB. It reads the arbitration result from the arbiter, grants
access to the BB, initiates the address calculation and handles the communication
with the SRAM.

The BB itself has to be implemented as a large multiplexer because no internal tri-states
are available in the FPGA.
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4.4.1.8 Performance estimations

The delay introduced by address generation (see section 4.4.1.4) and data fetching influ-
ences the maximum pixel rate than can be generated by the rectification unit. Because
this rate has a big influence on the achievable frame rate it will be estimated in the fol-
lowing. Based thereon, the achievable frame rate of the whole system will be calculated.

rectification unit SRAM controller SRAM

1
requests transaction

idle

(TT 2, PSID, x and y) arbitration (combinatorial)

2

wait for data

arbitration finished,
fetch request (PSID, x and y)

3 α = PSID · npixel

4
β = y · 352,
γ = α + x

5 ADDR1 = γ + β

6
ADDR1 sent to SRAM,

calculate ADDR2 output D1

7
D1 latched, ADDR2 sent,

D1 arrived calculate ADDR3 output D2

8
D1 latched D2 latched, ADDR3 sent,
D2 arrived calculate ADDR4 output D3

9
D2 latched D3 latched, ADDR4 sent
D3 arrived output D4

10
D3 latched latch D4

idleD4 arrived
11 D4 latched idle (ready for new transaction)

Table 4.18: Order of events during a transaction of TT 2

One transaction of TT 2 is needed for every rectified output pixel. Table 4.18 shows the
order of events during a transaction of TT 2. It can be seen that a transaction may be
started every 10 clock cycles (10MHz). Because each transaction transfers four pixels the
resulting pixel rate is 40Mpx/s as already shown in table 4.16 (flow 2). The efficiency of
a burst transfer is defined as (Ttransfer)/(Ttransfer + Tsetup). Transactions of TT 2 therefore
have an efficiency of only (4)/(4 + 6) = 40%. Transactions of all other TTs have a
much higher efficiency because much more words are transferred in one transaction (see
table 4.17 for reference).
Please note that this calculation is based on the assumption that flow 2 is the only flow on
the BB. In reality both flows 3l and 3r and flows 4l and 4r will decelerate the transfer.

In addition, all delays originating in arbitration delays (that will occur due to congestion
on the BB) will be neglected because they can not be estimated reasonably. This means
that all flows involved in the image processing sub-process (2, 3l, 3r, 4l and 4r) can be
treat as independent subsequent transfers that may fully utilize the BB. As determined
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above the maximum rate of flow 2 is 40Mpx/s. The maximum rate of flows 3l and 3r

resp. flows 4l and 4r is close to the BB’s maximum rate of 100Mword/s24).

Under these assumptions the upper bound for the achievable frame rate can be calculated:

Image capturing: Each camera streams one image (101376 px) into the SRAM with a rate
of 8.9Mpx/s. Thus, one transfer will take 101376 px/8.9 Mpx/s ≈ 11.4 ms. Both
cameras capture at the same time, therefore the whole process of image capturing
is finished after this time.

Image processing: The rectification unit fetches four pixels for every pixel in one output
image and therefore reads 8 full images to generate the two rectified output images.
Assuming the whole transfer capacity of the BB will be used for flow 2 a transfer
rate of 40Mpx/s can be achieved. Therefore, the rectification of both images will
take 8 · 101376 px/40 Mpx/s ≈ 20.3 ms.
The transfer of the rectified images will take 2 · 101376 px/100 Mpx/s ≈ 2.0 ms
(flows 3l and 3r). The two feature lists are much smaller than the images and thus
can be neglected (flows 4l and 4r).

Transfer to CPU: The maximum transfer rate on the CPU interface is 12.5Mword/s,
therefore the two rectified images will be transferred in 2 · 101376 px/12.5 Mpx/s ≈
16.2 ms. The transfer of the two feature lists can be neglected here as well (flow 6).

Consequently the full processing (capturing, rectification, feature extraction and transfer
to the CPU) is finished after approx. 50ms. This results in an achievable frame rate of
20 frames/s. It can be seen that the resulting overall duration is dominated by transfer
times. This highlights the negative impact of using one (external) single-port SRAM
instead of multiple independent (internal) dual-port Block-RAMs (that would have been
available in a more recent FPGA).

4.4.1.9 Summary

The image processing system presented in [29] required the storage of (at least) two
camera frames to perform the generation of a depth map using the two cameras of the
EyeBot M6. Therefore, the image processing system’s storage requirements were analyzed
and the expected flow of data to and from the SRAM was derived thereof. In addition,
the high level control required to manage storage locations and full system (including
cameras and CPU) was addressed.
The proposed storage architecture consisting of burst bus (BB) and SRAM controller
supports quasi-simultaneous SRAM accesses. Competing concurrent transfer requests are
handled by the controller using a simple priority-based arbitration scheme. Mostly long
transfers will be performed on the BB to mitigate the negative impact on the achievable
transfer rate caused by arbitration and setup overhead. The address generation is handled

24) Looking back at table 4.18 it can be seen that 6 clocks go by before data is transferred. This time is
needed to setup the transfer and to generate the required word address. The efficiency is therefore
equal to 704

704+6 = 99.15% and the overhead can be neglected.
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by the SRAM controller to save resources and improve the timing inside the FPGA. In
addition, several bus adapters (simplifying the connection to the image processing units)
and the link-up to the FIFO-based CPU interface has been introduced.

The achievable processing speed of the system was estimated based on the speed of the
image processing units and on the expected overhead of the storage architecture. Un-
der the (unrealistic) assumption of no bus congestions (mutually caused by the image
processing modules) a maximum average processing rate of 20 frames/s can be achieved.

4.4.2 Discovered problems

As already mentioned in sections 4.3.2.4 and 4.3.2.5 the SRAM can not be constrained
in a straightforward way. The reason therefore was that the toolchain does not support
OFFSET constraints relative to an output of the FPGA. This poses a problem because
the clock input of the SRAM is connected to an output pin of the FPGA.

In addition, a serious problem related to the clocking of the SRAM has been found. This
problem will be examined in section 4.4.2.1. A solution (that also solves the problems
related to timing constraints) will be proposed in section 4.4.2.3.

4.4.2.1 Clock skew between FPGA and SRAM

Figure 4.38: SRAM link-up (on current revisions of the PCB)

Figure 4.38 shows the (simplified) link-up of FPGA and SRAM. A DCM generates an
internal 100MHz clock signal which is fed to a global clock net of the FPGA that drives
the internal registers. This signal is also routed to an output buffer that drives SRAM CLK

which is connected to the clock input of the SRAM. The delay on the blue path inside
the FPGA is dominated by the propagation time of the buffer (TIOOP) which is approx.
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2.9 ns (see page 133 of [22] for reference). This results in clock skew between the registers
inside the FPGA (spot F) and the registers inside the SRAM (spot S) of at least 2.9 ns.
The wire on the PCB adds additional (unknown) delay to the path from F to S.

Figure 4.39: SRAM clocking (skewed)

The resulting timing is shown in figure 4.39. The FPGA initiates a read access on the
rising edge of the clock driving the internal registers (CLK F). The SRAM will receive
this rising edge (at least) 2.9 ns later (CLK S) and will then start fetching the data from
its internal memory array. This will take approx. 8.5 ns (tCDV , see page 20 of [2] for
reference) and the data bus therefore will be valid (at the earliest) 11.4 ns after the rising
edge (on CLK F) that initiated the read access. The data then has to propagate through
the FPGA’s input buffer (purple path) before it finally reaches the register in the FPGA.
The FPGA however will sample the data bus (SRAM D) one clock cycle (10 ns) after it has
initiated the read access and therefore will latch the data bus before the SRAM has even
started driving it. The value read by the FPGA thus will be invalid because of clock skew.
The obvious solution seems to be a lower clock frequency or to latch the data bus not
before two clock cycles have passed. Both approaches though decrease the achievable
transfer rate and are prone to another problem: The path from the address register to
the output driving SRAM A (red) might have similar delay to the path driving SRAM CLK

(blue). Depending on the clock-to-output delay of the register this might lead to a hold-
time violation in the SRAM. OFFSET OUT constraints (used to avoid timing violations
in devices fed from the FPGA) can not be used because the toolchain only supports
OFFSET constraints relative to a clock input of the FPGA.

Clock skew between two devices on a PCB is a common problem in synchronous designs
and has to be eliminated as far as possible. The overall objective is that all synchronous
elements in the design (e.g. registers) receive the clock edge at the same time.
In Xilinx FPGAs this can be realized using one or more DCMs. The next section shows
how DCMs can be used to eliminate the clock skew inside the FPGA. Based thereon,
the subsequent section (4.4.2.3) explains how external clock skew can be removed and
section 4.4.2.4 describes the modification of the PCB that is required for that purpose.
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4.4.2.2 Eliminating internal clock skew

In a synchronous design all registers inside the FPGA should receive the active clock edge
at exactly the same time as the registers in external devices (that are clocked by the same
external clock source). Therefore, the delay on the path from the FPGA’s clock input pin
(I) to the internal registers (F) has to be eliminated25).
This clock skew (between the FPGA’s clock input and the internal registers) is created
not only by wiring but also by components on the clock path (e.g. DCMs or buffers). The
external clock signal enters the FPGA through a buffer and then is fed into the DCM
(light green path in figure 4.40). Another buffer then drives the 100MHz clock net in the
FPGA that is connected to the internal registers. To eliminate the clock skew between
clock input (I) and internal registers (F) all these path delays have to be known. Then a
phase shift compensating the clock skew can be applied using the DCM.

Figure 4.40: Internal skew elimination

Figure 4.40 shows the usual way to compensate internal clock skew in a Xilinx FPGA.
Because the path from the clock input (spot I) to the DCM (depicted in light green)
is exactly known and characterized its delay can be compensated by the DCM using a
fixed phase shift26). The buffer and the internal clock distribution network connected to
the CLK2X output of the DCM however delays the clock signal before it arrives at all the
registers in the FPGA. The exact delay is unknown because the internal clock network is
not compensated and therefore the delay has to be measured during runtime.

25) Please note that on the EyeBot M6 the FPGA is the only device clocked by the external oscillator
(see section 4.3.2.4 for reference). Hence it is, at first sight, unnecessary to delve into eliminating
the internal clock skew (relative to the external oscillator). But because OFFSET timing constraints
(needed to constrain the external SRAM) are always related to a clock input of the FPGA this topic
has to be dealt with.

26) This is only possible for certain specific paths inside the FPGA driven by an IBUFG which is the case
for all clock inputs of the FPGA. These paths are compensated and retain their timing characteristics
even if temperature or voltage changes.
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This is implemented by feeding the internal clock net back into the DCM’s feedback input
(FB). The DCM will then phase-shift its output CLK2X until IN and FB are in phase using
a delay-locked loop control mechanism. The phase difference between the FPGA’s clock
input (spot I) and the internal registers (spot F) thus is controlled to be nearly zero. The
registers inside the FPGA therefore will be triggered exactly at the point in time the clock
edge arrives at the clock input of the FPGA.
In other words: The DCM (knowing the delay of the light green path and measuring the
delay of the internal clock net) removes any phase difference between spots I and F. This
compensates the delay of the internal clock net and thus eliminates the internal clock
skew (between clock input pin and registers). More information about clock routing and
DCMs can be found in chapters 2 and 3 of [21].

The above also explains why it is feasible to relate OFFSET timing constraints to a clock
input of the FPGA instead of the clock input of the particular register. Because the
DCM removes the phase shift between I and F (and therefore compensates the delay
of the clock net) the OFFSET constraints can be given relative to the clock input of
the FPGA. For fully synchronous systems (where all units on a PCB are clocked by the
same clock source) these constraints are completely sufficient. All signals fed into the
FPGA are synchronized to that external clock and all signals originating in the FPGA
will be sampled synchronously to that clock (because all the other devices on the PCB
are triggered by that external clock as well).
If the SRAM would be clocked by the external 50MHz oscillator two OFFSET OUT
constraints (red and yellow paths) and one OFFSET IN constraint (purple path) could
be used to constrain the SRAM link-up. This however is not the case, therefore the skew
between the FPGA’s internal clock net and the external SRAM has to be compensated.
The next section thus explains the elimination of external clock skew.

4.4.2.3 Eliminating external clock skew

External skew can be compensated in exactly the same way as internal skew. Because
the delays of both the output buffer and the external clock net are not known precisely
an external feedback path is needed. This feedback path is then used to determine which
amount of (negative) phase shift has to be inserted to compensate the delay of output
buffer and external clock net.

Figure 4.41 shows the proposed system deploying two DCMs. Just like in section 4.4.2.2
DCM1 eliminates the skew on the internal clock net of the FPGA by zeroing the resulting
phase difference between the FPGA’s clock input (I) and the internal clock net (F).

A compensated path connects DCM2 to the internal clock net of the FPGA (light green
path). The output of the DCM is sent to the SRAM using an output buffer. A dedicated
track on the PCB and another compensated path inside the FPGA (dark green) are used
to provide a feedback to DCM2. DCM2 automatically compensates the delays on the
two green paths using a fixed phase shift. The unknown delay of the external clock net
feeding the SRAM is compensated using the feedback path. Therefore, DCM2 eliminates
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Figure 4.41: External skew elimination

any phase difference between the internal clock net (F) and the SRAM clock net (S) (light
blue path). Because DCM1 at the same time eliminates any phase difference between I
and F no phase difference will occur between the FPGA’s clock input I and the clock net
feeding the SRAM (S) (dark blue path).

In other words: The deployment of a feedback path on the PCB and two DCMs in
the FPGA eliminates both internal skew in the FPGA and external skew on the clock
net feeding the SRAM. A rising edge generated by the 50MHz oscillator (I) will appear
simultaneously both at the registers inside the FPGA (F) and at the SRAM (S).

This approach also solves the problem related to the timing constraints required for the
external SRAM. The original problem was that the toolchain only supports timing con-
straints relative to (clock) inputs of the FPGA. However, a need for timing constraints
relative to an output pin of the FPGA was identified earlier because one output is used to
clock the external SRAM. The timing properties (setup-, hold- and clock-to-output-times)
of the SRAM therefore have to be considered and calculated relative to that particular
output pin of the FPGA.
Looking back at the previous findings it can be seen that the two DCMs will ensure that
the clock signal sent to the SRAM is as similar as possible to the clock signal that is fed
into the clock input of the FPGA. Therefore, timing constraints relative to clock inputs
(which are supported by the toolchain) can be used to constrain the SRAM because no
difference between the two signals can be noted anymore.

4.4.2.4 Required modifications on the PCB

Looking back at figure 4.41 it can be seen that an external feedback path is needed to
deploy the approach described in section 4.4.2.3. It routes the clock signal sent to the
SRAM back into the FPGA and allows the DCM to compensate the clock skew.
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The current revision of the PCB however lacks this feedback path. In addition, all pins
of the FPGA are currently used, therefore an input pin has to be freed first. As already
mentioned in section 4.4.2.2 only certain input pins feature a compensated path to one of
the four DCMs. It is recommended to use one of these input pins for the feedback path to
allow for the most precise deskewing possible. More information on clock resources and
DCMs can be found in chapters 2 and 3 of [21].

4.4.3 Summary

The first part of this section proposed a storage architecture that satisfies the requirements
of the the stereo image processing system presented in [29]. The storage architecture
provides facilities to stream data to and from the external SRAM and is tailored to the
expected data flows in the resulting system. The link-up of the FPGA to both the cameras
(sourcing the data into the FPGA) and the CPU (performing the final processing steps)
is shown as well.
The proposed image processing system combines processing in hard- and software to
achieve a higher frame rate compared to a pure software solution. Assuming a best-
case scenario a maximum frame rate of 20 frames/s was found for the processing steps
implemented in hardware. The actual frame rate depending on the exact timing relation
between cameras, FPGA and CPU will be lower and has to be determined by measuring.

The actual implementation of the storage architecture however was rendered impossible
by a previously unnoticed problem on hardware-level (related both to timing constraints
and clock skew on board-level). The second part of this section therefore analyzed this
problem, presented the general approach to eliminate clock skew and proposed a solution
that can be incorporated in the next revision of the PCB.

It should be mentioned that a basic SRAM controller was implemented to allow for timing
analyses and measurements. More information can be found in appendix E.
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The thesis at hand presented the communication and image processing framework that
was developed for the EyeBot M6. The framework is designated to be loaded into the
FPGA and was specifically tailored to fit the requirements of the platform. It solves the
data transfer errors between CPU and FPGA observed in previous designs, introduced
a storage architecture suitable for image processing systems and forms a foundation for
further development.

The work was partitioned into four major parts:
First of all, the old existing design was analyzed and the reasons for the transfer errors
were exposed. The asynchronous interface between CPU and FPGA was found to be
responsible and had to be redesigned from scratch. In addition, it was noticed that an
important step in the FPGA design-flow (that ensures operativeness if the FPGA design
grows) has been skipped.
To solve the transfer errors several alternative approaches to interface CPU and FPGA
have been investigated. Several interfacing methods have been deduced and checked for
applicability. Due to platform limitations it was impossible to replace the asynchronous
interface which, if possible, would have simplified both system and development. Nev-
ertheless two reasonable approaches were found, implemented and deployed successfully.
Additionally, the impact of the new interface on the achievable transfer speed between
CPU and FPGA has been evaluated. A part of the existing code base has been ported to
the new design to facilitate backward compatibility with the old design.
Subsequently the missing step in the FPGA design-flow was performed to ensure the
continuous operativeness of the new design. The effectuality of the measures taken was
verified both using simulation and performing measurements on the hardware.
Furthermore, a storage architecture was designed that facilitates access to the external
SRAM. The SRAM was required by the image processing system developed by a fellow
student that pursues the generation of a depth map. Its requirements were analyzed and
used to tailor the storage architecture to the expected data flows. The link-up between the
storage architecture and the CPU was taken care of, too. Based thereon, the achievable
frame rate of the image processing system (using the storage architecture) was estimated.
A problem on the PCB however precluded the use of the SRAM and had to be investi-
gated. A solution to the problem has been found but could not be deployed because a
time-consuming redesign of the PCB is required. The proposed storage architecture can
come into operation at a later point in time.

The modification related to the SRAM is not the only change that has to be included in
the new revision of the PCB. In addition, the following problems still have to be solved:
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5 Conclusion and future work

The camera interface is unstable if the cameras are switched to the color mode required
by the image processing system. Furthermore, the current link-up of the external clock
sources to the FPGA’s global clock inputs is disadvantageous. This not only complicates
the clock routing inside the FPGA but also impedes the utilization of more than one
internal system clock. Finally, the existing VHDL module used for servo control (PWM
generation) unnecessarily wastes precious logic resources and thus should be revised.
More detailed suggestions that should be considered for the next revision of the PCB can
be found in appendix F. It is essential that these low-level flaws are fixed before further
time is spent on high-level tasks (that depend on the maturity of the lower level).
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A VLIO timing values

During research various sources of information regarding the timing of the VLIO interface
have been considered. Chapter 6.7.6 (page 6-55) of [5] (Developers Manual) describes
the interface and gives two waveforms, one for a read-burst and one for a write-burst.
Chapter 2.6.5 (page 2-10) of [4] (Design Guide, DG) presents a similar description, one
waveform and a table of timing parameters (in ns). Finally, the same timing parameters
(this time in MEMCLKs) can be found in chapter 4.8 (page 35) of [6] (Specification,
Spec.). Inconsistent values are marked with “!!”, the ones chosen for simulation and
constraining the timing are the ones from the Developers Manual.

In addition, two data sheets of the PXA270 ([7] and [8]) were used as reference (be-
cause they are more precise than the ones for the PXA255). Changes between PXA255
(Developers Manual) and the PXA270 are indicated by “¡¡”.

Table A.1 summarizes all sources. All values are given as multiple of MEMCLK (= 10 ns).

The timing parameters were set to following values: RDF=3, RDN=2 and RRR=1.

value PXA255 PXA270 255

name description valid Developers DG & (AC Timing) =

for Manual Spec. Specification 270

tAS address setup to CS asserted W, R 1 1 1 y
tAH address hold after OE or PWE deasserted W, R 1 1 ¡¡ RDN ¡¡ n
tASRW0 address setup to OE or PWE asserted (1st beat) W, R 3 ? 3 y
tASRWn address setup to OE or PWE asserted (following) W, R RDN !! 1 !! RDN y
tCES CS setup to OE or PWE asserted W, R 2 2 2 y
tCEH CS hold after OE or PWE deasserted W, R 1 1 1 y
tDSWH minimum write data setup to PWE deasserted W RDF+2 !! 2 !! RDF+2 y
tDH data hold after PWE deasserted (tDHW ) W 1 1 1 y
tDSOH data setup to “address changing” R 1.5 ? 1.5 y
tDOH data hold after “address changing” (tDHR) R 0 0 0 y
tRDYH RDY hold after OE or PWE deasserted W, R 0 0 0 y
tRWA OE or PWE assert time W, R RDF+1+waits ? RDF+1+waits y
tRWD OE or PWE deassert time (tNPWE ) W, R RDN+2 !! 2 !! ¡¡ 2×RDN ¡¡ n
tCD minimum CS deassert time between two transfers W, R 2×RRR+1 ? 2×RRR+1 y

Table A.1: Timing of the VLIO interface

Note: Chapter 6.7.6 (page 6-55) of [5] states “Data will be latched on the rising edge
of MEMCLK once the internal RDY signal is high and the minimum assertion time of

99



A VLIO timing values

RDF+1 has been reached” and “The nOE or nPWE signal will de-assert one MEMCLK
after data is latched”. Considering the minimum assertion time of OE or PWE being
RDF+1, the first quote should state “Data will be latched on the rising edge of MEMCLK
once the internal RDY signal is high and RDF MEMCLKs have passed by”.
Additionally, “This means that for a transaction to complete at the minimum assertion
time for either nOE or nPWE (RDF+1), the RDY signal must be high two clocks prior
to the minimum assertion time for either nOE or nPWE(RDF-1)” should state “(...) the
internal RDY signal must be high (...)”.
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B FIFO-based approach to interface
CPU and FPGA using VLIO if CPU
clock is available

The FIFO-based approach described in section 4.2.1.2 was using the SRAM-interface of
the CPU’s memory controller. Therefore, a clock signal was available to drive the FIFO-
ports turned towards the CPU. To implement write accesses the write-port of FIFO1 was
connected to the VLIO-interface (CPU-CD) and the read-port was part of the FPGA-CD.
For read accesses the read-port of FIFO2 was connected to the VLIO-interface (CPU-CD)
and the write-port was part of the FPGA-CD (see figure 4.2 for reference). All problems
related to CDCs would have been handled by the independent clock FIFOs internally.
Though a limitation of this approach has been identified already: Because read-accesses
have to traverse through both FIFOs additional clock cycles (compared to the VLIO-setup
depicted in figure 3.2 and figure 3.3) were needed which lead to a slowdown of both read-
and write-accesses.

This approach could be modified by using the VLIO-interface instead of the SRAM-
interface and still keeping a clock signal from the CPU wired to the FPGA.
Because we assume the availability of a clock signal from the CPU all CDC-related prob-
lems can be solved as in the previous approach (if the design is done carefully).
Additionally, it would be possible to speed up write-accesses by using the RDY-pin (see
section 4.2.5.1) of the VLIO-interface to produce the additional delay needed for read-
accesses: The EMPTY status flag of FIFO2 could be used as indicator whether the
requested data has already arrived in the CPU-CD. As long as a read-request is still pro-
cessed by the FPGA FIFO2 will be empty, its EMPTY signal will be asserted and RDY
will be deasserted by the interface-unit inside the FPGA. If the requested data is finally
available in FIFO2 EMPTY will be deasserted. This deassertion can then be used to as-
sert RDY which informs the CPU that the data bus now contains valid data. Therefore,
a read-access will be lengthened by exactly the time needed to fetch the data.
If the CPU commences a write-transaction the FPGA will assert RDY immediately (if
FIFO1 is not full) because FIFO1 can easily store the address and the data supplied by
the CPU and no wait states are needed. Therefore, write-accesses will not be slowed
down.
In other words: During read-accesses RDY will be connected to the negated EMPTY
signal of FIFO2, during write-accesses it will be connected to the negated FULL signal
of FIFO1. This flow control therefore implicitly also takes care of avoiding over- and
underflows in both FIFOs.
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B FIFO-based approach to interface CPU and FPGA using VLIO and SDCLK

This approach therefore has the following advantages over the approach described in
section 4.2.1.2: Write-transfers will run at the highest speed supported by the bus and
read-transfers will only be slowed down as much as needed for the (dual) CDC. Overflows
in FIFO1 and underflows in FIFO2 will never happen because the status signals of the
FIFOs are used to stop the CPU until the respective error condition has been resolved.

Looking back at section 4.2.4 it can be found that continuous clocks are required on both
ports of an independent clock FIFO. They are used to drive the two synchronizers inside
the FIFO that are involved in the updating of the status flags (FULL and EMPTY).
If the clock is non-continuous a deadlock could arise: During a read-request the RDY-pin
will be driven with the negated value of FIFO2’s EMPTY. Therefore, the CPU will stop
until EMPTY gets deasserted by the FIFO which will only happen if two conditions are
fulfilled: First some data has to be written to the write-port of FIFO2 (in the FPGA-CD)
and second a few clock cycles on the read-port are needed to synchronize this change on
the write-port side to the read-port side. If the read-clock is not running at this point
in time RDY will never be asserted (because EMPTY will never get deasserted) and the
CPU will wait infinitely.

Again this approach can not be used on the EyeBot M6 because there is no clock signal
leaving the gumstix that could be connected to the FPGA.
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C Additional VLIO waveforms

This section presents additional waveforms of the VLIO transfer qualifiers. Section 4.2.7.4
already showed MMIO- (and therefore single-beat-)accesses. Again channel 1 is connected
to CS, channel 2 to PWE resp. OE and channel 3 to RDY. The signals were routed to
the camera-port to measure the waveforms because it is impossible to reach the signals
on the PCB due to the lack of test-pads. Thus, there might be a (small) phase offset
between the different traces depending on the routing inside the FPGA.

Figure C.1: PB read using MMIO (sweep with 400 samples)

Figure C.1 shows a sweep of 400 VLIO reads from the PB using MMIO. The trigger
(again) is set to the asserting (falling) edge of CS. It can be seen that the duration of a
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C Additional VLIO waveforms

read access is not constant because the deasserting (rising) edge of each particular signal
happens at different points in time after the asserting (falling) edge. This behaviour was
expected because there are two synchronizers involved (one transferring X PB RD from
CPU- to FPGA-CD and one inside the PXA-CPU transferring RDY from the FPGA- to
the CPU-CD). Each of this synchronizers introduces an uncertain delay approx. equal to
the clock period (see section 4.2.3.1 for reference).
The RDY signal gets asserted [100; 120] ns after CS has been asserted. It is not understood
yet why the rising edge of RDY is somehow distributed in such an interval. The author
expected two possible points in time for this rising edge, one at 100 ns and one at 120 ns
after the assertion of CS. The reason therefore is that RDY is asserted synchronously
to the FPGA-clock (that has a period of 20 ns) and this assertion only depends on one
synchronizer (the one that transfers X PB RD) which has an uncertainty of 20 ns.
The deasserting edge of CS happens at 160 ns, 170 ns or 180 ns after the assertion of CS.
This additional uncertainty is created by the synchronizer transferring RDY to the CPU-
CD that runs at a frequency of 100MHz (which is equivalent to a period of 10 ns). The
case of an CS assertion time of 170 ns is the one already depicted in figure 4.29.

Figure C.2: PB write using VLIO-bursts Figure C.3: BB read using VLIO-bursts

Figure C.2 shows a write to the PB using VLIO-bursts (generated by a DMA-transfer)
similar to figure 4.21. Identical to the single-beat access depicted in figure 4.27 the RDY-
pin is only deasserted until PWE gets asserted. Figure C.3 shows a read from the PB
using VLIO-bursts (generated by a DMA-transfer) similar to figure 4.22. Again the RDY-
pin is used during each single beat to throttle the CPU identical to the single-beat read
depicted in figure 4.29.

Waveforms of DMA transfers to resp. from the BB look exactly as depicted in figure 4.21
resp. figure 4.22 and thus are not shown.
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D VHDL entities, component hierarchy
and additional data types

The following gives an overview of the deployed VHDL-entities, their functions and the
resulting hierarchy. Additional data types used to increase readability are presented, too.

Table D.1 lists all user-defined VHDL data types used in this design. They are defined in
system pack which therefore has to be included (USEd) in every entity. Some of them can
be modified using constants, e.g. the address types used to split the address bus. Helper
functions ease the splitting of the address bus into its sub-parts.

Name Width Description

data t 16 generic data type (used for datamux)
data array t ? × 16 unconstrained array of data t

unknown addr t ? address of unknown width
cpu addr t 20 CPU address bus
cpu data t 16 identical to data t

cpu data array t ? × 16 unconstrained array of cpu data t

fpga data t 16 identical to data t

fpga addr t 20 address bus inside FPGA, split into:
fpga addrhigh t 2 MSBs of address bus to select bus system
fpga addrlow t 18 remainder of address bus
fpga pb data t 16 identical to fpga data t

fpga pb addr t 18 identical to fpga addrlow t, split into:
fpga pb modaddr t 8 selects device on PB
fpga pb subaddr t 10 selects register inside device on PB
fpga pb enable t 7 enables for PB (one-hot encoded)

Table D.1: VHDL data types

Table D.2 lists all entities of the design and their function and states where each respective
entity is instantiated. Entity-names generally end with entity to ease the distinction
between entity and instantiated component. To shorten the synthesis’ runtime and to free
FPGA resources a configuration constant allows the disabling of the old m6-modules.
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D VHDL entities, component hierarchy and additional data types

Name of entity instantiated in Description/Reference

Supporting units
address decoder bus bridge, bus bridge pb, dataregfile decodes address to one-hot

bitmux bus bridge multiplexer (1 bit signal)
datamux bus bridge, dataregfile, pb subsys, toplevel multiplexer (16 bit bus)
datareg dataregfile 16 bit register

dataregfile bus bridge, hardware vision, sram controller scalable register-file

CPU interface
bus bridge toplevel 4.2.7

bus bridge pb bus bridge 4.2.7.2
bus bridge testregs bus bridge debug-module

Feature units
hardware vision toplevel see [29]

pb subsys toplevel instantiates old m6-modules
m6xdio pb subsys digital I/O
m6xdrv pb subsys registers for motor-control
m6xmot m6xdrv PWM/encoder (single motor)
m6xsen pb subsys registers for PSDs
m6xpsd m6xsen data acquisition (single PSD)
m6xhnd pb subsys Registers for servos
m6xsrv m6xhnd PWM (for single servo)

sram controller toplevel 4.4.3

Toplevel
toplevel (toplevel tb) 4.2.8

toplevel tb – testbench (4.2.7.5)

Xilinx cores
m6clk dcm toplevel generates internal clocks

fifo bram 18x1k bus bridge independent clock FIFO

Supporting packages
component pack – components

component pack coregen – CoreGen components
misc mgeier pack – testbench helpers

system pack – data type definitions

Table D.2: VHDL entities (without entity-suffix)
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E Address map of the design

Table E.1 shows the address map of the VHDL design. More detailed information can be
found in fpga busbridge.h. This file contains a C-macro to generate the start address
of each module on the PB (GETPBBASE()) and various constants to access BB (BBBASE)
and csreg.

start address end address bus/module function

0x00000 0x3FFFF PB

0x00000 0x003FF m6xdio Digital I/O1)

0x00400 0x007FF m6xdrv Motor control1)

0x00800 0x00BFF m6xsen PSD acquisition1)

0x00C00 0x00FFF m6xhnd Servo control1)

0x01000 0x013FF sram controller SRAM interface
see table E.2

0x01400 0x017FF hardware vision Hardware vision
0x01800 0x01BFF (in toplevel) address-mirror
0x01C00 0x3FFFF unused

0x40000 0x7FFFF BB FIFO write and read

0x80000 0xBFFFF csreg FIFO-control
0x80000 ID register (set to 0xBB)
0x80001 REGIN1: debug2)

0x80002 REGIN2: fpga2cpu-FIFO3)

0x80003 REGIN3: cpu2fpga-FIFO4)

0x80004 REGOUT1: debug5)

0xC0000 0xFFFFF debug counts write- and read-accesses

Table E.1: Address map

Table E.2 shows the register map of the basic SRAM controller used for timing analyses
and measurements.

1) See libM6fpga/libM6fpga.h in the library source for detailed information on the single registers.
2) Bit 0: TMPIN
3) Bits 9-0: rdcnt, bit 14: empty, bit 15: valid
4) Bits 9-0: wrcnt, bit 14: almost full, bit 15: full
5) Bit 0: TMPOUT
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E Address map of the design

address name description

0x01000 RDDATAREG1 SRAM D[15:0] after read
0x01001 RDDATAREG2 0x1230 & SRAM D[17:16] after read

0x01002 CTRLREG1
Bit 0 (write): Set to 1 to initiate a write access
Bit 1 (read): Set to 1 to initiate a read access

Both bits are reset automatically
0x01003 CTRLREG2 Bit 0 (enable): If set to 0 SRAM PWROFF is asserted
0x01004 ADDRREG1 driven to SRAM A[15:0]
0x01005 ADDRREG2 Bits 3 to 0 are driven to SRAM A[19:16]
0x01006 WRDATAREG1 driven to SRAM D[15:0] during write
0x01007 WRDATAREG2 Bits 1 to 0 are driven to SRAM D[17:16] during write

Table E.2: Register map
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F Suggestions for improvement

F.1 Camera link-up

As already mentioned in section 3.5 the old camera interface was prone to timing vi-
olations, too. An independent clock FIFO was used to transfer the signals from the
camera-CD to the FPGA-CD (see figure 4.37, section 4.4.1.2, for reference). This ap-
proach eliminated the pixel errors observed previously. The FIFOs did not only facilitate
the CDC but also served as buffer to collect enough data for a BB-transaction.
Though a problem with this approach was found: The control signals generated by the
camera (VSYN and HREF) could not be detected reliably when using the default frame
rate of 50 frames/s. Only if the camera was slowed down (using its internal prescaler) a
stable image could be received. The probability of success depended both on the prescaler
value and on the drive strength setting of the camera’s output buffers.
An electrical problem thus seems to be responsible for the observed errors and needs fur-
ther attention. Rise- and fall-times and voltage levels of the camera signals should be
checked as close as possible to the FPGA.

The following commands are needed to reproduce the problem:

# disable both cameras

echo set > /proc/gpio-ac97/UCB1400-0-4

echo set > /proc/gpio-ac97/UCB1400-0-5

# enable cam1

echo clear > /proc/gpio-ac97/UCB1400-0-4

# initiate software reset

i2c wb 0x60 0x12 0x80

# switch to YUV mode

i2c wb 0x60 0x12 0x34

i2c wb 0x60 0x13 0x21

# increase drive strength

i2c wb 0x60 0x20 0x01

i2c wb 0x60 0x38 0xc1

This will result in a misaligned or garbled picture. To slow down the camera the following
command can be used:

i2c wb 0x60 0x11 0x08
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F Suggestions for improvement

In addition, it is advisable to route both camera clocks (CAM1 PCLK and CAM2 PCLK)
to dedicated clock input pins. See section F.2 for additional information.

If possible though the cameras should be synchronized to the FPGA using the “slave
mode” of the camera module. This has not been investigated further.

F.2 Clock input allocation

When reallocating the clock inputs of the FPGA (which is required for the SRAM feedback
path, see section 4.4.2.4) the following has to be taken into consideration:

• The FPGA is partitioned into four clock regions that all receive all global clocks.

• Eight global clock nets can be driven by one of the 16 global clock inputs or a signal
derived therefrom (using a DCM).

• Four of these eight global clock nets each originate in the upper resp. lower half of
the device.

• Additional clock nets are available in the left resp. right half of the device only.

• Because only four clock signals can be injected per half it is advisable to route

– M6CLK to an input pin connected to the upper half and to route

– PWE and OE to an input pin assigned to the lower half.

This ensures that both PWE and OE and a maximum of four clock signals derived
from M6CLK1) can be routed to a global clock network (and therefore are available
everywhere in the FPGA). The SRAM clock feedback can be connected to a (global)
clock input pin that is associated with an unused DCM, preferably one in the lower
half (because two more global clock nets can be injected from that half).

• Additional clocks (e.g. CAM1 PCLK and CAM2 PCLK) should be routed to clock
inputs of left resp. right half because they are only used to clock a small amount of
logic (and an independent clock FIFO).

F.3 CPU link-up

If anyhow possible a clock signal from the CPU should be routed to the FPGA. This
would not only further reduce the probability of metastability issues but also allow the
usage of the faster S(D)RAM interface.

1) With the current clock input assignment a maximum of two clocks derived from M6CLK can be routed
to a global clock network because two (out of four) global clock nets (originating in that half) are
required for PWE resp. OE. If the second DCM in the upper half of the device is used to generate
the SRAM clock only one global clock net is left for a clock signal derived from M6CLK.
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F.4 JTAG link-up and boundary scan

In addition, the buffers on address- and data-bus introduce additional delay. The transfer
qualifiers (PWE, OE and RDY) however are unbuffered and therefore undelayed.
This was factored into the timing constraints presented in section 4.3 and should not
impose a problem anymore. If however (at a later stage of development) the toolchain
fails to fulfil the timing constraints some additional slack could be gained by removing
the buffers and adapting the constraints.

F.4 JTAG link-up and boundary scan

Some of the ICs on the PCB (FPGA, SRAM and gumstix) supports boundary scan testing
(BST) via the JTAG interface. BST can be used to verify the solder joints on an assembled
PCB. Devices that support BST contain additional logic that allows to write to and read
from (nearly) all pins of the device. Given the case that two devices supporting BST are
connected to a PCB track its connectivity can be verified easily: One IC drives known
values to the track and the values received by the other IC are read back. If the values
match the track and all associated solder joints are considered working.
In addition, the link-up of the FPGA’s JTAG interface allows the use of the FPGA’s
debugging capabilities.
Multiple devices can be served by one single JTAG interface using a chain-based wiring.

F.5 General purpose I/Os and PWM signals

Several I/O-pins of the FPGA are used for “low-speed” purposes. Fourteen pins are
needed for servos and 8 pins are occupied for motor control. In addition, four pins are
used as general purpose digital I/O.
The PWM signal generation currently is implemented in an inefficient way that consumes
a lot of FPGA resources. Instead of rewriting the VHDL code it seems reasonable to
relocate the generation of the PWM signals from the FPGA to an external microcontroller.
The microcontroller could be connected to the CPU’s I2C-bus already used to control the
cameras. It therefore would not consume any additional I/O resources on the board.
Presumably the microcontroller would be powerful enough to handle additional general
purpose I/O as well. The microcontroller could be hooked up to the JTAG chain already
proposed above to allow for easy programming.

This would free not only precious logic resources but also 26 I/O-pins that then could be
used to widen the data bus between FPGA and CPU to 32 bit (which would double the
achievable transfer rate).
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