
LEHRSTUHL F ÜR REALZE I T -COMPUTERSYSTEME

TECHNISCHE UNIVERS IT ÄT MÜNCHEN

UNIV. -PROF. DR. - ING. G. F ÄRBER

A Component-Based Image Processing
Framework for Automotive Vision

Applications

Simon Alois Hawe

Diplomarbeit

A Component-Based Image Processing Framework
for Automotive Vision Applications

Diplomarbeit

Supervised by the Institute for Real-Time Computer Systems
Technische Universität München

Prof. Dr.-Ing. Georg Färber

Executed at Robotic and Automation Lab
Centre of Intelligent Information Processing Systems

University of Western Australia
Perth

Advisor: Assoc. Prof. Dr. rer. nat. habil. Thomas Bräunl
Dipl. Ing. Stephan Neumaier

Author: Simon Alois Hawe
Edelweißstr. 9
82377 Penzberg

Submitted January 6, 2008

Acknowledgements

Perth, January 6, 2008

Contents

List of Figures viii

List of Tables x

List of Symbols xi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Thesis Outline . 4

2 Related Work 5
2.1 Literature Survey . 5
2.2 State of the Art Image Processing Tools 6

3 Image Processing Framework ImprovCV 9
3.1 Used Libraries . 9
3.2 General Description . 10
3.3 Software Design . 12

3.3.1 Abstract Pluggable Factory . 13
3.3.2 Communication Mechanism . 16
3.3.3 Graph Visualization and Management 17

4 Feature Extraction and Clustering 20
4.1 Hough Transform . 20

4.1.1 Standard Hough Transform . 20
4.1.2 Probabilistic Hough Transform . 22

4.2 Optical Flow . 22
4.2.1 Di�erential Techniques . 23
4.2.2 Area Matching Techniques . 26

4.3 Clustering . 27
4.3.1 Hierarchical Clustering . 28
4.3.2 Partitional Clustering . 28

5 Stereo Vision 30
5.1 Epipolar Geometry . 30
5.2 Fundamental Matrix and Essential Matrix 31

v

vi Contents

5.2.1 Eight-Point Algorithm . 33
5.2.2 Eight-Point Algorithm and RANSAC 35

5.3 Image Recti�cation . 36
5.4 Correspondence Analysis . 39

5.4.1 Sum of Absolute Di�erences . 39
5.4.2 Sum of Squared Di�erences . 40
5.4.3 Normalized Sample Correlation . 40

6 Driver Assistance Modules 42
6.1 Lane Detection . 42

6.1.1 Image Preprocessing . 43
6.1.2 Lane-Marking Detection . 44
6.1.3 Lane-Marking Veri�cation . 47

6.2 Car Detection and Tracking . 48
6.2.1 Optical Flow Estimation . 48
6.2.2 Optical Flow Clustering . 49
6.2.3 Car Veri�cation . 51
6.2.4 Car Tracking . 54

6.3 Distance Estimation by Stereo Vision . 57
6.3.1 Calculation of Fundamental Matrix and Image Recti�cation 58
6.3.2 Stereo Matching and Distance Estimation 59

7 Results 64
7.1 Accuracy . 64

7.1.1 Lane Detector . 64
7.1.2 Vehicle Detection and Tracking . 66
7.1.3 Stereo Procedure . 67

7.2 Execution Time . 69
7.2.1 Lane Detector . 69
7.2.2 Vehicle Detection and Tracking . 70
7.2.3 Stereo Procedure . 71

8 Conclusion and Future Work 73

A Appendix 75
A.1 A small tutorial on ImprovCV . 75

A.1.1 Loading a source . 76
A.1.2 Adding a �lter . 77
A.1.3 The warning window . 78
A.1.4 The preview window . 78
A.1.5 Saving and loading . 79
A.1.6 Deleting �lter/s . 80
A.1.7 Stereo Image processing . 80
A.1.8 Recording a video . 80

A.2 Filters provided by ImprovCV . 81

Contents vii

Bibliography 84

List of Figures

1.1 Junior, autonomous vehicle from Stanford University [3] 2

1.2 Di�erent automotive computer vision applications [5] 3

2.1 Three di�erent open source image processing frameworks 7

2.2 Two di�erent commercial image processing frameworks 8

3.1 ImprovCV . 11

3.2 Two connected �lters visualized in ImprovCV 12

3.3 UML diagram for Factory Method Pattern and Abstract Factory Pattern . 14

3.4 The framework's graph structure . 17

3.5 Complete graph in ImprovCV . 18

4.1 Line in image space with distance r and angle Θ 21

4.2 Optical �ow between two images . 23

4.3 Regarding image contour through aperture 25

4.4 Cluster example . 27

5.1 Epipolar Geometry . 31

5.2 Unrecti�ed Epipolar Lines . 32

5.3 Recti�cation goal . 36

5.4 Set of 2 cameras with imageplanes and the wanted recti�ed planes 37

5.5 Example for the recti�cation procedure. The original images are shown in
(a) and (b), overlaid by their respective epipolar lines. After recti�cation,
these lines become collinear and parallel with the image's x-axis and have
the same y-coordinate, as shown (c) and (d). 38

6.1 Unprocessed raw image data, taken by a camera mounted behind the car's
windshield . 43

6.2 Image where upper part (the sky) and lower part (the car's front lid) have
be clipped . 44

6.3 Image showing edges detected by a canny �lter. 44

6.4 Lines detected by a Probabilistic Hough Transform. 45

6.5 Flow chart for clustering . 46

6.6 Lane-marking detection result . 47

6.7 Flow vectors detected with Lucas and Kanade and pyramid images. 49

6.8 Resulting position of clustered �ow vectors represented by dots. 51

viii

List of Figures ix

6.9 Image (a) shows the image to be processed. (b) shows the resulting hori-
zontal edge map H of image (a) created by applying a sobel edge detector
for horizontal edges followed by a threshold. In (c) the resulting vertical
projection vector v is shown on the right side 52

6.10 Image (a) shows the image to be processed. (b) shows the resulting ver-
tical edge map V of image (a) created by applying a sobel edge detector
for vertical edges followed by a threshold. In (c) the resulting horizontal
projection vector w is shown on bottom side. 53

6.11 Pictures showing a performed downshift [48] 55
6.12 In the �rst picture, due to bad contrast the vertical edge map (second

picture) shows weak edges. Because of this, the left and right side of the
car are found in the same position. The horizontal edge map shown in the
third picture shows signi�cant horizontal edges to the left of the detected
side. Thus, the tracking-window is shifted to the left, shown in the fourth
image. 56

6.13 Result of the presented car-detection-tracking-process 57
6.14 Example set of stereo images taken in the mobile robot lab at UWA with a

set of uncalibrated webcams. The crosses mark corresponding points used
for RANSAC, blue crosses are points detected in previous frames whereas
the yellow ones are detected points from the current frames. 60

6.15 Same set of images as in 6.14; here, the green crosses mark points that have
been declared to be inliers, red crosses are outliers. 60

6.16 Recti�cation result of 6.14 with Fundamental Matrix calculated with
RANSAC and the points from 6.14. 60

6.17 Similar triangles theorem (Thales) . 62

7.1 Result of lane detection for four di�erent road scenes 65
7.2 Canny �lter with di�erent parameters applied to same image 65
7.3 Four results of the vehicle detector and tracker 66
7.4 Stereo test image set from the University of Tsukuba 67
7.5 Three depth maps of Tsukuba test image for three di�erent methods with

same window size . 68
7.6 Three depth maps of Tsukuba test image for SAD with di�erent sized search

windows . 68
7.7 Two example pictures for estimated distances to cars, plotted on the re-

spective cars rear view. 69
7.8 Execution time and detection rate of lane detection for two di�erent road

scenes . 71

A.1 Example Image showing how the plain GUI with additional information . . 75
A.2 Example Image showing how to connect a source 77
A.3 Example Image showing how to connect a camera 78
A.4 Example Image showing a graph with one sobel �lter 79
A.5 Example Image for stereo processing . 81

List of Tables

5.1 Number of iterations necessary to achieve a probability of 0.95 to have one
subsample of k = 8 pairs containing no outlier, for di�erent �xed fractions
of outliers . 36

6.1 Comparison of number of operations needed to perform SAD with di�er-
ent search window sizes for full window search and search along recti�ed
epipolar lines for images of size 320× 240. 61

7.1 Execution time regarding intermediate steps and resolution 70
7.2 Calculation times for creating complete depth map of the Tsukuba Image

size 320× 288 . 72

x

List of Symbols

RCS Lehrstuhl für Realzeit-Computersysteme
UWA University of Western Australia
WHO World Health Organization
SDK Software Development Kit
IDE Integrated Development Environment
GUI Graphical User Interface
FLTK Fast Light Toolkit
XML Extensible Markup Language
HTML Hypertext Markup Language
UML Uni�ed Modeling Language
BGL Boost Graph Library
PCA Principal Component Analysis
NN Neural Network
SVM Support Vector Machine
LP Line Pixel
SAD Sum of Absolute Di�erences
SSD Sum of Squared Di�erences
NSC Normalized Sample Correlation Coe�cient
SVD Singular Value Decomposition
DLL Dynamic Link Library
A bold font and captial letter ⇒ matrix
a bold font and small letter ⇒ vector
diag(x1, . . . , xn) diagonal matrix of dimension n× n with all elements equal to zero,

except the one in the trace x1, . . . , xn

A−T (A−1)T = (AT)−1

An×m matrix with n rows and m columns
GPU Graphics Processing Unit

xi

Abstract

Due to a continuously growing amount of traffic, and with it an increasing risk of car acci-
dents, the necessity and demand for assisting a car driver is constantly rising. A possible
way of providing the driver with additional information like warnings, is to equip cars with
cameras and extract information from the obtained images via image processing proce-
dures. A need for automotive vision frameworks to accelerate and simplify the development
of image processing algorithms has been widely expressed. Using such a software can
tremendously reduce time to market and thus saves costs. An extensible, modular and
flexible open source component-based automotive vision framework called ImprovCV, that
allows rapid and interactive development of image processing algorithms is presented in
this thesis.

As car accident statistics attest, the main risks a driver is facing are from other vehicles.
Consequently, developing on-board automotive driver assistance systems aiming to alert
a driver about driving environments and possible collision with other cars is a crucial task.
Knowing the own and other cars’ position is essential for warning the driver about lane
departure or detected obstacles in the lane the driver is traveling in. Here, an approach
for detecting other vehicles using optical flow and shape information, which once detected
are tracked in consecutive images via a correlation method is presented. Furthermore a
lane detection system is introduced which uses the Probabilistic Hough Transform to detect
lines, and a k-means cluster to combine these lines to lane-markings presenting the lanes.
Finally a complete stereo approach from calculating the Fundamental Matrix, over rectifying
the camera images to correspondence search with the goal of gaining depth information
for distance estimation to other cars is shown. To rate the algorithm’s performance, an
evaluation of accuracy and execution time for each of them is given.

xiii

Zusammenfassung

Aufgrund einer beständig anwachsenden Verkehrsdichte und damit eines größeren Un-
fallrisikos, steigt die Notwendigkeit und Nachfrage nach Unterstützung eines Autofahrers
konstant an. Eine Möglichkeit, den Fahrer mit zusätzlichen Informationen zu versorgen
ist, das Auto mit Kameras auszustatten und mittels Bildverarbeitung Informationen aus
den Kamerabildern zu extrahieren. Die Notwendigkeit eines “Vision Frameworks” zur Be-
schleunigung und Vereinfachung der Entwicklung von Bildverarbeitungsalgorithmen im
Automobilbereich wurde vielfach geäußert. Die Nutzung einer solchen Software reduziert
die Produkteinführungszeit ungemein und spart dadurch Kosten. In dieser Diplomarbeit
wird ein erweiterbares, modulares und flexibles “open source” komponenten-basiertes Au-
tomotive Vision Framework, genannte ImprovCV präsentiert, das schnelle und interaktive
Entwicklung von Bildverarbeitungsalgorithmen ermöglicht.

Wie Unfallstatistiken bestätigen, gehen die größten Risiken für einen Fahren von anderen
Fahrzeugen aus. Aus diesem Grund ist das Entwickeln von “on-board” Fahrassistenzsystem
mit dem Ziel, den Fahrer über seine Fahrumgebung und eventuell drohende Kollisionen mit
anderen Fahrzeugen zu warnen, eine entscheidende Aufgabenstellung. Die Position des
eigenen und der anderen Fahrzeuge auf der Straße zu kennen ist entscheidend, um den
Fahrer vor Abkommen von der Spur, oder vor erkannten Hindernissen in der befahrenen
Spur zu warnen. Hierfür wird ein Ansatz zur Detektierung von anderen Fahrzeugen in der
Fahrspur vorgestellt, der den optischen Fluss und Information über Form nutzt, welche
nach erfolgreicher Detektierung mittels einer Korrelations-Methode jeweils in aufeinander
folgenden Bildern verfolgt werden. Außerdem wird ein Liniendetektionssystem eingeführt,
das die probabilistische Hough-Transformation benutzt, um Linien zu detektieren, sowie
ein k-means cluster, der diese Linien zu Farhbahnmarkierungen kombiniert, die die Fahr-
spur begrenzen. Zuletzt wird ein kompletter Stereoansatz aufgezeigt, von der Errechnung
der fundamentalen Matrix, über Rektifizierung der Kamerabilder, bis hin zur Suche von
Korrespondenzen, dessen Ziel die Gewinnung von Tiefeninformation zur Abschätzung von
Entfernungen zu anderen Fahrzeugen ist. Um die Leistung des Algorithmus zu bewerten,
wird jeweils eine Auswertung der Präzision und Ausführungszeit angegeben.

xiv

1 Introduction

This introductory chapter shows the underlying motivation of the thesis' topic, explains
its objectives, and �nally gives a brief overview of the thesis' outline.

1.1 Motivation

Worldwide, an estimated 1.2 million people are killed in road crashes each year and as
many as 50 million are injured. That is one person dying every thirty seconds and one
injured person nearly every half a second. Projections indicate that these �gures will
increase by about 65% over the next 20 years, unless there is new commitment to pre-
vention. These shocking numbers have been presented by the World Health Organization
(WHO) in their �rst World report on road tra�c injury prevention [1].

Besides the fact of serious injuries, the costs arising due to car accidents consisting of
hospital bills, damaged property and so forth are tremendously high and are expected to
add up to 1%− 3% of the world's gross domestic product [2].

90% of all car accidents could be avoided if the car driver would react only one second
earlier. An earlier reaction could be achieved by a system assisting the driver, which
monitors the scene the driver sees, detects possible threats and either produces a warning
message or as a last step intervenes actively.

With the aim of reducing injury and accident severity, pre-crash sensing has become an
area of active research among automotive manufacturers, suppliers and universities. Car
accident statistics attest that the main risks a driver is facing are from other vehicles.
Consequently, developing on-board automotive driver assistance systems aiming to alert
a driver about driving environments and possible collisions with other cars has attracted
a lot of attention. In these systems, robust and reliable vehicle detection is the �rst step
and can pave the way for vehicle recognition, vehicle tracking, and collision avoidance.
Lane detection procedures can provide both estimations of the position and orientation
of vehicles within the lane and a reference system for locating other vehicles or obstacles
in the path of the one viewing the scene. The highly common problem of microsleep and
resulting accidents could be reduced by knowing the lane and warning the driver when
he is about to depart from it. Therefore, the detection of lanes is another reasonable part

1

2 1 INTRODUCTION

of a driver assistance system.

The usage of active sensors like laser, lidar or radar is currently the most common ap-
proach for vehicle detection. The sensors are called active because they actively detect
the distance of an object by emitting a signal and measuring the travel time of this
signal re�ected by this object. Their main advantage is that they can measure certain
quantities like distances directly and easily without requiring so many computational
resources. Prototype vehicles employing active sensors have shown promising results.
In 2007 for example, the autonomous vehicle "Junior" seen in 1.1 from the Stanford
University crossed the Golden Gate Bridge in San Francisco during rush hour by only
using the information provided by a 3D laser-scanner.

Figure 1.1: Junior, autonomous vehicle from Stanford University [3]

However, active sensors have several drawbacks, such as low spatial resolution, slow scan-
ning speed or for sensors like a 3D-laser scanner very high costs. Moreover, interference
among sensors of the same type applied to a large number of vehicles moving simultane-
ously in the same direction can produce big problems.

More powerful than active sensors are optical sensors like cameras, which are referred to
as passive sensors, as no other sensor provides comparably rich information about the
car's environment [4]. The low costs of cameras because of mass production combined
with increasing image resolution and the constant rise of available processing power are
another reason for using these sensors for vehicle detection, and provide the basis for
growing vehicle's intelligence. By equipping vehicles with multiple cameras, a complete
360◦ view of the scene can be achieved. Using two cameras looking to the front and
working in stereo makes it possible to gather 3D information of the current scene and can
provide distance information of tracked vehicles. Furthermore, other applications besides
vehicle detection, which are barely achievable with active sensors, can be realized, like
the already mentioned detection of lane-markings, road sign recognition or pedestrian

1.2 OBJECTIVES 3

identi�cation, see �gure 1.2. Nevertheless, image processing is a very challenging task, as
it underlies many variabilities like change of illumination, di�erent shapes and colors of
objects and weather conditions.

Lane Departure
Warning Blind-Spot

Viewing Occupant
Classification

System
Drowsy
Driver

Night Vision
Urban/Adaptive
Cruise Control

Sign
Recognition

Side View
Camera „Split-

View“

Backup
Camera

Accident
Recorder

Headlamp
Control

Driver
Recognition

Backseat
ViewingLane Change

Assistant

Figure 1.2: Different automotive computer vision applications [5]

To simplify and accelerate the development of image processing algorithms in any ap-
plication of image processing, an open source framework providing standard operations
like edge detection or noise �ltering is a desirable tool. Faster development of new vi-
sion procedures means shorter time to market and cost reduction. Furthermore, giving
developers the possibility of including their own algorithms into the framework would ex-
pand its power even more and eventually result in a continuous growth of available image
processing algorithms, which can be combined again and create new ones.

1.2 Objectives

Two major goals are tried to be achieved in this thesis. The �rst one is the development
of an open source image processing framework called ImprovCV. This framework is easy
to use, �exible, modular and extensible. The goal of this framework is to give the user
the feeling of "what you see is what you get", as several image processing �lters can be
combined and the resulting output is displayed on the screen. Both videos stored on the

4 1 INTRODUCTION

harddisk and live videostreams obtained from one or several cameras can be processed.
The underlying image processing library is OpenCV [6] and all image processing oper-
ations' implementations contained in the framework are based on it. The user gets the
opportunity to extend this framework with new image processing �lters, as a Software
Development Kit (SDK) is provided.

The second major goal of the thesis is the development and implementation of computer
vision algorithms, that could be used for driver assistance. Three types of algorithms
haven been implemented and run on the ImprovCV framework. The �rst algorithm
implemented is a lane detection system based on a Hough Transform. The second one is
the detection and tracking of an arbitrary number of vehicles without any initialization
by a human operator, using optical �ow and shape information. Finally, a stereo vision
procedure with the important steps of obtaining a Fundamental Matrix, rectifying images
and eventually �nding stereo correspondences is implemented to gain depth information
and a distances estimation.

1.3 Thesis Outline

The following chapter (2) will give an overview of related work concerning vision based
drivers assistance, and provides a listing of state of the art image processing frameworks.
An introduction to ImprovCV and its core features is presented in the third chapter (3).
Furthermore, the underlying software design is outlined. After that, two chapters present-
ing the theory of the more sophisticated, important applied image processing operations
(4) and the basics of stereo vision from epipolar geometry to correspondence search (5),
follow. The sixth chapter (6) explains the developed computer vision algorithms for lane
detection, vehicle detection and tracking and distance estimation of detected vehicles.
The algorithms' results are evaluated concerning execution accuracy and time in the sev-
enth chapter (7). Finally, a conclusion of the achieved goals and perspectives on future
work are presented (8).

2 Related Work

As the availability of feasible technologies accumulated within the past 30 years of
computer vision research and processor speed grew exponential, the way for running
computation-intensive video processing algorithms even on a low-end PC in realtime has
been paved and resulted in extensive research throughout universities and the automotive
industry.

This chapter will present some selected approaches of computer vision in automotive
applications, more precisely procedures for detecting cars in images and lane detection
algorithms. Furthermore, some state of the art image processing tools both open source
and commercial which simplify and accelerate the development of new vision approaches
will be illustrated.

2.1 Literature Survey

Various approaches for recognizing and tracking vehicles from a moving camera have
been proposed in respective technical literature. Here, three selected procedures using
di�erent methods like motion, symmetry or machine learning are presented. A review on
some more vehicle detection approaches can be found in [7]. Furthermore, two di�erent
ways of detecting lanes are shown.

Vehicle Detection:

In [8] Frank Dellaert presented a car tracker, which is initialized by detecting bounding
boxes in an image and selecting those bounding boxes as cars, for which an applied
technique based on machine learning returns the highest �tness function. The model-
based tracker [9], initialized with this method, relies on bayesian template-based image
measurement techniques and an extended Kalman Filter.

Sun et. al formulated in [10] the detection of a vehicle as a two-class classi�cation
problem. The �rst problem is the extraction of features which they call the "multi-scale
driven hypothesis generation step". They used the Principal Component Analysis (PCA),
Wavelets, and Gabor �lters to solve this task. The second step after having extracted the
features is to evaluate and classify them correctly, called the "appearance-based hypoth-
esis veri�cation step", which was performed using Neural Networks (NN) and Support

5

6 2 RELATED WORK

Vector Machines (SVM).

A third approach for vehicle detection is using extracted motion information from images,
arisen by moving cars. Choi suggested in [11] to use two di�erent extraction methods for
cars moving in the same direction as the one viewing the scene and cars traveling in the
opposite direction, as they have distinct features. For cars in the coming tra�c, an optical
�ow based detection is suggested as these cars represent distinct motion which is easy
to extract. To detect vehicles traveling in the same direction, a Haar-like feature detec-
tor is suggested. Detected cars are tracked in consecutive frames by using a Kalman �lter.

Lane Detection:

In [12] McCall and Trivedi used a steerable �lter bank to detect lane-markings. This
approach provides robustness to lighting changes and shadowing and performs well in
picking out both circular re�ector road-markings and painted line road-markings. Fur-
ther post-processing based on the statistics of the road-marking candidates is applied to
increase the robustness to occlusion by other vehicles and changing road conditions.

Instead of using a feature-based detection technique which localizes the lanes in the road
images by combining low-level features, such as painted lines or lane edges etc., where
lane segments are detected by traditional image segmentation, a model-based approach
can be applied. Assuming the shape of a lane can be presented by either a parametrically
straight line or a parametrically parabolic curve, the lane detection is done by calculating
those model parameters.

In [13] a B-Snake-based model describing the perspective e�ect of parallel lines is sup-
posed. Instead of detecting both boundaries, the mid-line is detected and the symmetry
of boundaries is used. The vanishing point of lines obtained by applying a Canny Edge
detector and a Hough Transform is used as the initial position for applying B-Snakes and
creating a road model. By measuring the matching degree between the obtained model
and the real edge map, the needed control points of the road model for lane detection and
tracking are determined.

2.2 State of the Art Image Processing Tools

Over the past decade there has been an evolution of video and image processing frame-
works used for several image processing applications like automotive vision processing.
Here, some of them are brie�y introduced but many more would be available, a fact that
expresses the great demand of image processing frameworks. At �rst, currently available
open source tools will be presented followed by commercial ones.

2.2 STATE OF THE ART IMAGE PROCESSING TOOLS 7

Open Source Frameworks:

The Improv [14] software is developed for real time robotics, uses and provides a stack-
based interface allowing vision operators to be stacked on top of each other. Its Graphical
User Interface (GUI) was developed with Trolltech R© Qt R© [15].

Another approach are data�ow visual language systems which allow users to graphically
create a block diagram of their applications and interactively control input, output and
system variables. An example for this architecture is Khoros [16], now known as VisiQuest
[17], an integrated software development environment for information processing and vi-
sualization. It is particularly attractive for image processing because of its rich collection
of tools for image and digital signal processing but sometimes the block diagram creations
lead to cluttered and complex graphs.

Another free tool is called RoboRealm [18]. This is a powerful robotic vision software
application for use in computer vision, image processing and robot vision tasks. It uses
a simple point-and-click interface for image analysis and furthermore provides the possi-
bility to create signals for controlling robots.

Each of the three frameworks presented above provides the user with a di�erent interface
to solve their image processing task. Figure 2.1 shows the three respective GUIs.

(a) Improv [14] (b) Khoros [16] (c) Roborealm [18]

Figure 2.1: Three different open source image processing frameworks

Commercial Frameworks:

A popular system for vision research is the combination of MATLAB R© and Simulink R©
for image processing, using the Image Processing Toolbox (MATLAB) and the Video
and Image Processing Blockset (Simulink) [19]. The Image Processing Toolbox provides
a comprehensive set of standard algorithms and graphical tools for image processing,
analysis, visualization, and algorithm development. The Video and Image Processing
Blockset extends Simulink with a rich, customizable framework for the rapid design,

8 2 RELATED WORK

simulation, implementation, and veri�cation of video and computer vision approaches.
This environment provides an extensible programming system as well as a data�ow ar-
chitecture. However, compiling and integrating the MATLAB and Simulink code for the
target platform can be di�cult.

An extremely powerful cross platform vision software used for applications in the area of
Medical Image Analysis, Surveillance and Security, the Automotive Sector and Robotics
is developed by MVTec and called HALCON [20]. The framework is shipped with more
than 1300 di�erent operators and provides its own Integrated Development Environment
(IDE) for machine vision called HDevelop. Within this IDE, di�erent HALCON opera-
tors can be combined by selecting them from a list and add them by click. The resulting
chain of operators can be exported as C, C++, C# or Visual Basic source code, which
can be integrated into an application. Figure 2.2 gives two examples of how these two
frameworks look like.

(a) MATLAB and Simulink [14] (b) Halcon with HDevelop [20]

Figure 2.2: Two different commercial image processing frameworks

3 Image Processing Framework
ImprovCV

Regarding the area of image processing, there is a great amount of standard operations
like color conversion, edge detection, noise elimination and so on, that are very frequently
used and therefore should not have to be implemented anew by everyone using them.
A very powerful library that provides the user with these standard operations and a lot
more, is the Intel R© open source image processing library OpenCV [6]. However, it is
not possible to quickly try a combination of �lters and getting a �rst idea of how the
output will look like, without writing a program that uses the library. Furthermore,
once a program is written, adjusting the �lter parameters is very time consuming as it
either has to be started again if parameters can be read from a �le, or the code has
to be recompiled every time the parameters have been changed, to see their e�ect on
the output. Therefore the extensible, �exible, and modular open source OpenCV-based
image processing framework ImprovCV has been developed, with the goal of solving
these problems and giving the user an impression of "look and feel". This is achieved by
allowing the operator to apply an arbitrary combination of �lters on a sequence of images
by drag and drop and to adjust the �lter parameters during runtime to gain immediate
feedback.

This chapter will describe ImprovCV in detail by giving a general presentation of its
functionality, pointing out the most important features and presenting the design of the
software. First a brief overview and explanation of the used libraries is given.

3.1 Used Libraries

FLTK: FLTK (Fast Light Toolkit) [21] is an open source cross-platform C++ GUI toolkit
for UNIX R©/Linux R© (X11), Microsoft R© Windows R©, and MacOS R© X. In contrast to
libraries like Trolltech R© Qt R© [15] and wxWidgets R© [22], FLTK has the advantage of
restricting itself to GUI functionality and using a more lightweight design, making the
generated programs small and modular enough to be statically linked. On the other
hand, the resulting disadvantage is that it o�ers fewer widgets by default than the li-
braries mentioned above. The version used for ImprovCV is version 1.1.7.

9

10 3 IMAGE PROCESSING FRAMEWORK IMPROVCV

OpenCV: OpenCV is an open source computer vision library originally developed by
Intel R©. It is free for commercial and research use under a BSD license. The library is
cross-platform, and runs on MacOS R© X, Microsoft R©Windows R© and Linux R©. It focuses
mainly on real-time image processing, if it �nds Intel's Integrated Performance Primitives
(IPP) on the system, it will use these commercial and optimized routines to accelerate
itself. It does not rely on external numerical libraries, although it can make use of some
of them at runtime, if they are available. Shipped with more than 300 di�erent functions
in the �eld of linear algebra and image processing, OpenCV is a very powerful library
and can be used in many di�erent areas where image processing is employed like Motion
Tracking, Object Identi�cation, Face Recognition and Mobile Robotics. OpenCV was of
key use in the vision system of Stanley [23], the autonomous vehicle of Stanford University
which won entry to the 2005 DARPA Grand Challenge Race. Its big disadvantage is
that many functions are only sparely documented or even not at all, which makes them
sometimes hard to understand and use.

TinyXML: TinyXML [24] is a very small and simple open source XML parser for the
C++ language. It can be easily integrated into programs to parse an XML document
and build a Document Object Model (DOM) from it. The DOM can then can be read,
modi�ed and saved. It also allows the user to construct own XML documents with C++
objects and write these to the harddisk or another output stream. As the name implies,
it is tiny and does not support Document Type De�nition (DTD) or extensible Stylesheet
Language (XSL) and in terms of encodings, it only handles �les using UTF-8 or an
unspeci�ed form of ASCII not entirely dissimilar from Latin-1.

3.2 General Description

The ImprovCV software is an open source image processing framework based on the above
mentioned libraries, developed for applications in the �eld of automotive vision, but can
be used for any other image processing application as well. It presents to the user an
easy to use graphical interface to construct and test image processing algorithms. Picture
3.1 shows the GUI of ImprovCV created with FLTK. On the top of the GUI, there is
a menubar for executing di�erent things like opening a video or quitting the program.
Below the menubar, a number of control buttons can be seen. On the left side there are
three di�erent lists for selecting:

1. Di�erent videos depending on how many are loaded

2. Groups of �lters

3. The �lters from the selected group.

The big beige area is the so called processing window. The black window on the upper
right is a display for showing the output of a selected �lter and is called preview display.

3.2 GENERAL DESCRIPTION 11

The empty grey area leaves space for control items to adjust the respective parameters,
which are dynamically loaded depending on the selected �lter. The thin white bar on
the bottom displays warning messages to provide the user with information if he did
something wrong, like connecting a �lter that returns a multichannel image with a �lter
that needs a single channel image.

Figure 3.1: ImprovCV

The data to be processed can be both a video �le and a live stream from a camera de-
pending on the user's choice. The input can be changed at any time, to provide feedback
of how an algorithm e�ects di�erent image sequences. Furthermore, an arbitrary number
of videos can be loaded and processed with any algorithm at the same time, whereby the
user can directly compare results of di�erent algorithms, or the same ones with di�erent
parameters. Depending on the number of loaded videos, the processing window is divided
into several smaller processing windows, one for each video. The program has the ability
to grab frames of multiple cameras for multiple vision. Two connected cameras can be
synchronized by using a thread, meaning they both grab images at the same time to
perform real and accurate stereo vision.

The software provides an amount of �lters, implemented as a Dynamic Link Library
(DLL), which are dynamically loaded during the start of the program. Thus the GUI is
separated from the actual implementations of the image processing �lters. This allows the
user to write his own �lters, which have to follow a certain convention, and import them
into the program. An algorithm, consisting of a number of di�erent �lters, is created by
simply selecting a �lter group, choosing the wanted �lter from the �lter list, drag it over
the processing window and drop it behind the �lter which provides the needed input.

12 3 IMAGE PROCESSING FRAMEWORK IMPROVCV

Removing a �lter from its respective processing window is also possible. For each �lter, a
documentation in Hypertext Markup Language (HTML) format is given which provides
information about the �lter's in- and output, the adjustable parameters and a description
of what the �lter does.

Filters are visualized by blue boxes, showing their name in the middle, the time they
needed for execution, the percentage of the whole algorithm execution time, their input
channels with respective type on the top and their output channels with respective type
on the bottom. In- and outputs of two consecutive �lters are automatically connected af-
ter the �lter has been dropped, and the connection is shown by a connecting line between
the respective channels. If a �lter is selected by clicking on it, the respective box changes
the color to red, the control elements for adjusting the �lter parameters will be loaded
and the �lter's output image will be shown in the preview display. Image 3.2 shows an
example of how two connected �lter boxes look like.

Figure 3.2: Two connected filters visualized in ImprovCV

It would be very unhandy and would make the software less useful if a developed algo-
rithm that consists of a number of �lters with certain adjusted parameters would have to
be created again every time by selecting those �lters, dropping them onto the processing
window and adjusting the parameters. Therefore it is possible to store a chain of �lters,
together with all respective �lter parameters, in an XML �le which then can be reloaded
at any time.

The underlying software design, which makes the described extensible, �exible and mod-
ular way of creating and combining �lters possible will be explained in the next section.

3.3 Software Design

One paradigm providing modular, �exible and extensible software that has been thor-
oughly embraced in the business software world is Component-Based Software. Component-
Based Software Engineering (CBSE) (also known as Component-Based Development

3.3 SOFTWARE DESIGN 13

(CBD) or Software Componentry) is a branch of the software engineering discipline,
with emphasis on decomposition of the engineered systems into functional or logical
components with well-de�ned interfaces used for communication across the components.
Components are considered to be of a higher level of abstraction than objects and as such
they do not share state and communicate by exchanging messages carrying data. Cai et.
al de�ne in [25] three main features of a component, here named F1-F3:

• F1: independent, non-context-speci�c and replaceable part of a system that ful�lls
a clear function

• F2: works in the context of a wellde�ned architecture

• F3: communicates with other components by its interfaces

In the presented software system it should be possible to place and remove image process-
ing �lters solving di�erent tasks from everywhere in a �lter chain (F1) and these �lters
should communicate and exchange data with each other (F3) as one �lter processes the
results of an other, independent from their concrete functionality. Thus a �lter perfectly
ful�lls the requirements of a component. Consequently the �lters are interpreted as
components and ImprovCV is engineered as a component-based software supplying the
required architecture (F2) to embed components.

The following three key features are provided by ImprovCV

• A central repository to construct and manage �lters

• The ability to plug in custom �lters

• The ability to intelligently connect �lters with a standard communications mecha-
nism for data exchange

3.3.1 Abstract Pluggable Factory

The idea of handling a �lter as a component implies that its creation has to be inde-
pendent from its actual implementation, so the program using the �lters can create each
�lter by calling the same method and does not have to be changed every time a new type
of �lter has been added or a �lter has been changed. The Factory Method Pattern [26] is
an object-oriented design pattern related to the group of creational pattern, which solves
the problem of creating objects without specifying the exact class of the object to be
created. It handles this problem by de�ning a separate method in a base class for creating
instances of objects, whose derived subclasses can then overwrite the creation method to
specify the concrete objet that will be created. When a new object has been added, not
the real application using an instance of this object has to be changed to create one of
the new objects, but only the factory has to be modi�ed. All products that are created
with the same factory method have to belong to one family.

14 3 IMAGE PROCESSING FRAMEWORK IMPROVCV

An even more general type of creational pattern is the Abstract Factory Pattern as it
deals with the creation of products belonging to multiple families without specifying their
concrete classes. Many times, the Abstract Factory Pattern is combined with several
Factory Methods, one for each product-family to be created [27]. Image 3.3 shows the
respective UML-diagrams for the Factory Pattern Method and the Abstract Factory
Pattern.

Product

ConcreteProduct

Creator

FactoryMethod()
AnOperation()

ConcreteCreator

FactoryMethod()

…
product = FactoryMethod()
…

return new ConcreteProduct

(a) Factory Method Pattern

Client

AbstractProductA

AbstractProductB

ProductA1ProductA2

ProductB2 ProductB1

AbstractFactory

CreateProductA()
CreateProductB()

ConcreteFactory1

CreateProductA()
CreateProductB()

ConcreteFactory2

CreateProductA()
CreateProductB()

(b) Abstract Factory Pattern

Figure 3.3: UML diagram for Factory Method Pattern and Abstract Factory Pattern

The Abstract Factory Pattern is a very good way to create the components of the software
described here, but still each time a new type of �lter has been added the respective fac-
tory has to be modi�ed as the factory itself has to know what it is creating. A Pluggable
Factory as proposed in [28] solves this problem by allowing plug-ins to automatically
extend the application's functionality without requiring any modi�cation to the Abstract
Factory code itself.

The implementation of a Pluggable Factory requires a central repository, called registry,
where all "plugged-in" and available components are registered and can be looked up.
Furthermore, a method is required to create the components. Thus each class that needs
to be accessible via the factory has to have a method to add its information to the
factory's registry and has to provide a method that allows to create a copy of itself,
which is known as the Prototype Design Pattern. The automatic registration of a class is
achieved by adding a static copy of each class to itself which is always initialized during
the application's startup process, as the copy is static. Because a class is initialized, the
constructor has to be called. By adding an instance of the newly created class to the fac-
tory's registry during the respective constructor call, the new class is registered. Once a
component is registered, it can then be created by looking for the desired class type in the
registry, construct it with the provided creation method, and return the resulting instance.

3.3 SOFTWARE DESIGN 15

The following C++ source code shows a possible implementation body of the base class,
which is referred to as the factory, allowing the creation of any subclass, and a subclass
inheriting from it which is a plug-in example.

1 class Baseclass {
2 private :
3 s t a t i c map< s t r i n g , Baseclass∗ > r e g i s t r y ;
4 protected :
5 void r e g i s t e r C l a s s (s t r i n g name) {
6 r e g i s t r y . i n s e r t (make_pair (name, th is)) ;
7 }
8 v i r t u a l Baseclass∗ create () = 0 ;
9
10 public :
11 s t a t i c Baseclass∗ createAnyObject (s t r i n g name) {
12 / / Find the ob jec t which uses t h i s name i n the r e g i s t r y
13 map< s t r i n g , Baseclass∗ > : : i t e r a t o r mapIter = r e g i s t r y . f i n d (name) ;
14 / / c a l l the create method , and r e t u r n the created ins tance
15 / / i f e x i s t i n g other wise r e t u r n 0
16 i f (mapIter != r e g i s t r y . end ()) return r e g i s t r y [name]−>create () ;
17 else return NULL;
18 }
19 } ;
20
21 class NewComponent : public Baseclass {
22 public :
23 NewComponent (s t r i n g name) { / / doing what to do } ;
24
25 private :
26 / / Const ruc tor to r e g i s t e r t h i s c lass
27 NewComponent () { r e g i s t e r C l a s s ("NewComponent ") ; } ;
28 / / c r ea t i on method
29 Baseclass∗ create () { return new NewComponent (" ") ; } ;
30 / / s t a t i c copy to c a l l cons t r uc to r dur ing app . s t a r t
31 s t a t i c const NewComponent r e g i s t e r T h i s ;
32 }
33
34 / / these l i n e s would be placed i n the respec t i ve cpp source f i l e s
35 NewComponent NewComponent : : r e g i s t e r T h i s ;
36 map< s t r i n g , Baseclass∗> Baseclass : : r e g i s t r y ;

As the default constructor of any subclass inheriting from the base class is used to reg-
ister the respective new subclass, and this has to happen only once, another constructor
with any other body (in the example above it is NewComponent (string name)) has to
be added to the subclass for the real construction of an object's instance that will be used.

With the Abstract Pluggable Factory design pattern, a lightweight system is given to
construct, manage and extend the components of the framework. Still the standard
communication interface is required for connecting components to exchange data. The

16 3 IMAGE PROCESSING FRAMEWORK IMPROVCV

next section will provide a solution for this task.

3.3.2 Communication Mechanism

The chosen communication mechanism for the interoperable components of ImprovCV
is build on top of the Abstract Pluggable Factory described in the previous section, by
providing an abstract uniform interface to the objects that enables the connections be-
tween components. The paradigm implemented to achieve this is a data�ow architecture.
The communication's interface between the objects is represented as a directed graph.
The open source Boost Graph Library (BGL) [29] is employed as it provides e�cient and
generic graph classes.

Fundamentally, a graph consists of a set of vertices and edges, where an edge is something
that connects two vertices in the graph. In a directed graph, edges are ordered pairs,
connecting a source vertex to a target vertex. This de�nition of a graph is vague in
certain respects, it does not say what is represented by a vertex or edge. They could
be cities with connecting roads, or web-pages with hyperlinks. These details are left out
of the de�nition of a graph for an important reason: they are not a necessary part of
the graph abstraction. By leaving out the details a theory can be constructed, which is
reusable and can help solving lots of di�erent kinds of problems. Thus, a directed graph
perfectly suits a component-based software to provide the connection and communication
interface between the components.

The presented framework has two di�erent kinds of vertices to be connected: �lters and
variables. The connections between �lter and variable are the edges of the presented
graph system. A variable contains any kind of data like images, lines, points and so forth.
A �lter processes a given number of inputs obtained from the same number of variables
and then can produce any number of outputs, which each of them will be connected to a
variable again, see picture 3.4 (a). Thus, each object being part of the data�ow has to
de�ne a number of input- and output-channels to assure the communication.

The graph containing the �lters and variables is maintained by the factory. Furthermore,
the factory provides the management of the graph, meaning adding, removing, rejecting
and following connections. Each �lter itself has to store a list of the output formats it
produces and the input formats it accepts. The name of an edge corresponds to the name
of the input- and output-channel format it is connecting. An input-channel of any �lter
can only be connected with an output-channel of a variable if they are of the same data
format. All variables with the same parent node are not necessarily connected to the
same child node �lter but can be connected to any number of �lters, see �gure 3.4 (b).
Likewise, the variables connected to the same child node do not have to be connected to
the same parent node, 3.4 (c). One variable can also be connected to multiple �lters.

3.3 SOFTWARE DESIGN 17

FilterA

FilterB

Variable1 VariableN…
(FilterA Outputchannels)

(FilterB Inputchannels)

named edges

named edges

Parent Node

Child Node

(a)

FilterA

FilterB

Variable1 Variable2

FilterC

Parent Node

Child Nodes

(b)

FilterA

FilterC

Variable1A Variable1B

FilterBParent Nodes

Child Node

(c)

Figure 3.4: The framework’s graph structure

The factory class is also responsible for managing data�ow during execution. The graph
is traversed in a modi�ed breadth-�rst search such that each �lter operates on its input
data and passes the results to its respective variables, which in turn are read by the
next �lters, operated on and passed down the graph to the terminating node to perform
an action such as issuing control commands or displaying results on the screen. After
reaching the �nal node, the execution will start from the beginning.

The introduced system allows each image processing operation to be implemented in an
independent separate �lter that can be connected to any other �lter that �ts the respective
outputs. Possibly required �lter parameters can be either adjusted manually or generated
by another �lter.

3.3.3 Graph Visualization and Management

The previous two sections explained the method behind the creation and communication
of the components of ImprovCV. As the user has to interact with the graph, the �lters and
respective connections of a currently existing graph have to be displayed in an appealing
way. Picture 3.5 gives an example of how a graph is visualized in the presented framework.

Each graph created with ImprovCV has a source node providing the data to be processed
and a terminating node. As ImprovCV is an image processing tool, the source node
supplies the image to be processed, and the terminating node performs the displaying of
the processing result to the screen. As mentioned before, a �lter is displayed as a box
in the processing window. By adding a new box representing a �lter to the processing
window, the respective �lter is added to the graph. An instance of the �lter is created by
the factory with the knowledge of the name of the box, as this is the same name as the
underlying implemented class. Each time a new �lter has been added, connection lines
between the connected in- and outputs are drawn and the positions of all boxes in the
processing window have to be updated.

18 3 IMAGE PROCESSING FRAMEWORK IMPROVCV

Figure 3.5: Complete graph in ImprovCV

The positioning is performed in a recursive way explained later in this section. Each box
has to know its previous boxes (parent nodes) and directly following ones (child nodes).
This is done by storing a pointer to each respective parent and child node. As mentioned
above, a �lter is added to the processing window via a drag and drop method. The new
�lter's parent nodes are determined by comparing the position at which the user has
dropped the new box with all positions of already existing boxes lying above this position
and selecting the closest ones to be the parent nodes. Once the parents are determined,
their outputs have to be �rst disconnected from their former child nodes, then connected
with the new �lter's input and �nally the new �lter's outputs have to be connected to the
former child nodes inputs. The newly added box is then moved to the position of its new
child node with the largest distance to the nearest parent of the new box. The moving of
the new box and all other ones lying below it, is done by their respective parents calling
a recursive positioning function which uses the pointers to their child nodes, shown in the
following pseudo code implementation:

1 void p o s i t i o n (i n t x , i n t y) {
2 / / to set the own p o s i t i o n to x and y
3 setMyPosi t ion (x , y) ;
4 / / s e t t i n g p o s i t i o n s o f a l l c h i l d nodes
5 for (i = 1 ; t i l l number o f c h i l d r e n ; i ++)
6 c h i l d r e n [i]−> p o s i t i o n (this−>x () , this−>y () + this−>he igh t () + gap) ;
7 }

As child nodes of one box are the parents of other boxes, they will call the positioning
function for their children and so forth. Like this all nodes lying below the new one added
are repositioned, the visualized graph is always correctly organized and allows an easy
usage. The required respositioning of the graph after removing a box is performed in the
same way.

3.3 SOFTWARE DESIGN 19

An additional feature of ImprovCV, the preview window, which allows the user to see in-
termediate steps of �lters which are not directly connected to the �nal node is realized by
having an additional node in the graph, which is not displayed on the processing window.
This node can be connected to any �lter by simply clicking on the box representing the
�lter whose output is wanted to be inspected, and performs the displaying of its currently
connected �lter output in the preview window.

The presented coupling of an Abstract Pluggable Factory concept with a component-based
data�ow graph provides an extremely �exible, modular, con�gurable and extensible soft-
ware platform. The possibility of implementing a �lter as a DLL separates the framework
from the actual �lters which makes the whole system even more �exible. Furthermore,
it gives developers the opportunity of publishing their �lters, without having to publish
the respective code. Thereby the amount of �lters can grow constantly, which makes the
software very powerful and promising. The runtime overhead required for this system as
opposed to a hard-wired system is a look up in a hash table for object creation and a
few extra pointer dereferencing operations during object execution. Although there are
many more operations required during the initial set up, this additional time is minimal
in comparison to that of other commercial component-based architectures.

4 Feature Extraction and Clustering

Images show many di�erent kinds of features like edges or shapes which all contain di�er-
ent information. By extracting these features with di�erent methods, the information can
be obtained and further processed. Often, feature extraction yields an amount of features
with redundant information. These features can be combined in order to reduce the data
to be further processed, with a clustering procedure mostly concerning a certain distance
or similarity measurement. This chapter will present the Hough Transform to extract line
features, optical �ow for motion feature extraction resulted from movement between two
consecutive images and a clustering method.

4.1 Hough Transform

Detecting certain forms and shapes like lines, circles or ellipses in an image is an important
task in the �eld of Image Processing. In 1962 Paul Hough patented a powerful global
method for detecting parameterized boundaries or curves which is named after him, the
Hough Transform [30]. The Hough Transform became famous for detecting 2D-Shapes
like lines and circles, but is not restricted neither to the dimensions nor to the shapes.
In the following sections the Hough Transform for detecting lines will be described in
detail. Both the standard method and a method called Probabilistic Hough Transform
for reducing calculation time will be presented.

4.1.1 Standard Hough Transform

Considering the 2D-Cartesian space, a line is described by an in�nite number of points
P (x, y) ful�lling equation 4.1

y = m ∗ x+ t (4.1)

Instead of presenting the line mentioned above by an in�nite number of points in the
2D-cartesian space, a 2D-parameter space represented by slope m and intercept t can be
created by reversing equation 4.1

t = y −m ∗ x (4.2)

20

4.1 HOUGH TRANSFORM 21

Now every line in the cartesian space is represented by a single point in the parameter
space.

However, the representation by slope and intercept is not a favorable option because both
parameters are unbounded. As a line becomes more and more vertical, the magnitudes
of t and m grow towards in�nity. To avoid this, Duda and Hart [31] de�ned lines by the
so called normal parametrization. It represents a line by its distance r between the line
and the origin, and the angle Θ of its normal (�gure 4.1). This line can be written as

r = x ∗ cos Θ + y ∗ sin Θ (4.3)

tq

Figure 4.1: Line in image space with distance r and angle Θ

By either restricting the angle Θ to the interval [0, π] and r ∈ R or Θ ∈ [0, 2π] and
r ≥ 0 the normal parameters for a line are unique and every line in the x/y − plane cor-
responds to a unique point in the Θ/r−plane. The Θ/r−plane is also called Hough space.

After transforming lines in an appropriate parameter space as shown above, it is possible
to detect lines in an image with the following algorithm:

• Detection of possible line pixels LP by applying an edge detector (Canny Filter,
Sobel Filter) to the image

• Discretization of the two parameters of the chosen parameter space, either t and
m or r and Θ, in the following called p1 and p2. Discretization is needed, because
otherwise the number of possible line parameters is in�nite.

• By discretizing the parameter space, it is not continuous any more but represented
by an array of N1 ×N2 rectangular cells. This array is called accumulator array A
and its elements are accumulator cells A(p1, p2) with start value 0

22 4 FEATURE EXTRACTION AND CLUSTERING

• For each LP , all allowed lines going through the LP with its parameters p1 and p2
are calculated and the corresponding accumulator cell A(p1, p2) is incremented by
one. This step is often referred to as voting.

• Accumulator cells with a high value are lines in the image, which are speci�ed by
the two line parameters p1 and p2

• Hence line detection in an image is reduced to �nding local maxima in the accumu-
lator space

As described above, the detection of lines is a two stage algorithm. The �rst stage is the
incrementation or voting stage, the second is the maxima search stage. For the parameter
space suggested by Duda and Hart O(M ∗ NΘ) operations are required in the voting
stage and O(Nr ∗ NΘ) in the search stage, where M is the number of LP s and Nr/Θ

the number of discretization steps of r/Θ where M is much bigger than NΘ. Therefore
computation time of line detection is dominated by the voting stage. An algorithm for
reducing the computation time of this stage is called Probabilistic Hough Transform and
will be described in the following section.

4.1.2 Probabilistic Hough Transform

The Probabilistic Hough Transform was �rst introduced by N. Kiryat, Y. Eldar and A.M.
Bruckstein in 1991 [32]. They suggested not to use all M detected LP s but only m with
m = M ∗ α where 0 < α 5 1 and therefore m < M . These m LP s are selected randomly
from all M LP s. Thus a small value of m results in a fast algorithm because the number
of operations in the voting stage is proportional to m ∗ NΘ which directly a�ects the
complete algorithmic execution time. The lower boundary of m is limited by the need of
a high probability of detecting a feature, which has a signi�cant peak in the accumulator
array of the standard method, even when using only m LP s.

To put it in a nutshell, it is su�cient to compute the Hough Transform only for a certain
amount 0% < α 5 100% of all possible LP s, taken from a randomly chosen uniform
probability density function de�ned over the image. The results of [32] show, that an
α approximately between 5% and 15% results in a remarkable reduction of computation
time with a negligible reduction of performance.

4.2 Optical Flow

Detecting motion from image sequences can be used in a variety of image processing ap-
plications, like computer vision or pattern recognition. A moving object causes temporal
varieties of the image brightness between two following images. These intensity changes
are used to estimate motion. Horn and Schunk describe Optical Flow in [33] as: "Optical
�ow is the distribution of apparent velocities of movement of brightness patterns in an

4.2 OPTICAL FLOW 23

image".

In other words, by estimating the Optical Flow, the 2D-motion and the speed for every
pixel between two consecutive images of an image sequence can be approximated by
di�erent methods, and result in a vector �eld shown in 4.2.

(a) Two consecutive images from a sequence (b) Optical �ow

Figure 4.2: Optical flow between two images

This �eld arises primarily from relative motion between objects and the viewer, but also
from brightness changes due to di�erent illumination, re�ections and other light e�ects.
The term optical �ow only describes this vector �eld but is often incorrectly referred
to as the process or algorithm estimating the optical �ow from an image. Optical �ow
estimation techniques can be separated into two classes:

Di�erential Techniques, which compute the velocity from spatiotemporal derivations
of the image intensity which results in a dense �ow �eld and

Area Matching Techniques, which de�ne the velocity as the shift that returns the best
�t between image areas at di�erent instances of time which results in a sparse �ow �eld.

4.2.1 Differential Techniques

The di�erential techniques derive the velocity at an image point by computing the spa-
tiotemporal derivatives of the image intensity. These methods assume that a point
occurring in the image has the same intensity in every following frame. In other words,
the brightness of a scene point is considered to be constant over time. The basis of
all di�erential optical �ow estimation algorithms is known as the motion constraint

equation.

24 4 FEATURE EXTRACTION AND CLUSTERING

Let I(x, y, t) be the continuous space-time intensity function of an image point at time t
with its x- and y-coordinates x and y, and I(x+ δx, y + δy, t+ δt) the intensity function
of the same point moved by δx and δy in time δt. As mentioned above, the intensity of
a point remains constant over time, which means that

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (4.4)

A constant brightness also means that dI
dt

= 0. Applying �rst order Taylor series to
I(x, y, t) and neglecting higher derivative orders, assuming them to be too small, results
in

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
∂x+

∂I

∂y
∂y +

∂I

∂t
∂t (4.5)

Inserting 4.4 in 4.5 and dividing the result by ∂t leads to

∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0 (4.6)

where vx = ∂x/∂t is the velocity component in x direction and vy = ∂y/∂t the velocity
component in y direction which are referred to as optical �ow. For easier reading and
writing, in the following the partial derivatives will be written as Ix = ∂I/∂x, Iy = ∂I/∂y
and It = ∂I/∂t. Now 4.6 can be compactly written as

[Ix, Iy] ∗ [vx, vy]T + It = 0 (4.7)

However, a unique solution for equation 4.7 can only be determined if motion is parallel to
the brightness gradient. This problem is known as the aperture problem, which says that
motion of a homogeneous contour can be locally ambiguous. Regarding image contours
through an aperture, di�erent physical motions are indistinguishable. As shown in �gure
4.3 the two di�erent movements shown in picture (b) and (c) appear to be the same
regarding them through an aperture. Only the normal component vn can be determined
but not the �ow velocity v = [vx, vy]T . To solve this problem, additional constraints have
to be made.

Horn and Schunk suggest in [33] to add the so called smoothness constraint. It says that
not every point of a brightness pattern moves independently because objects of �nite size
undergo rigid motion or deformation. In this case, neighboring points on the objects
have similar velocities and the velocity �eld of the brightness patterns in the image varies
smoothly almost everywhere. By minimizing 4.8 the optical �ow can be computed.

∫
D

([Ix, Iy] ∗ [vx, vy]T + It) + λ2

[(
∂vx

∂x

)2

+

(
∂vx

∂y

)2

+

(
∂vy

∂x

)2

+

(
∂vy

∂y

)2
]
dxdy (4.8)

4.2 OPTICAL FLOW 25

Figure 4.3: Regarding image contour through aperture

D denotes the domain, the whole image, over which the equation is de�ned and λ de�nes
the relative in�uence of the smoothness term. Horn and Schunk suggest using iterative
methods as Gauss-Seidel algorithm for minimizing 4.8 and obtaining the optical �ow.
This global method results in a very dense �ow �eld but is sensitive to noise.

A second popular approach for determining the optical �ow is presented by Lucas and
Kanade in [34]. They assume that motion, and with it the �ow velocity v in a small area,
de�ned by a window Q of size M ×M , is constant. This assumption leads to n = M2

equations, one for each pixel in the window.

Ix1 ∗ vx + Iy1 ∗ vy + It1 = 0

Ix2 ∗ vx + Iy2 ∗ vy + It2 = 0
...

Ixn ∗ vx + Iyn ∗ vy + Itn = 0 (4.9)

With this there are more than two equations for the two unknowns, which means the sys-
tem is over-determined. This system can be solved by a least squares method. Rewriting

26 4 FEATURE EXTRACTION AND CLUSTERING

the equations of 4.9 in matrix vector notation follows in
Ix1 Iy1

Ix2 Iy2

...
...

Ixn Iyn

 ∗
[
vx

vy

]
= −

It1
It2
...
Itn

A ∗ v = −b (4.10)

The �ow vector v can then be determined with the Moore-Penrose pseudoinverse of matrix
A

v = (AT ·A)−1 ·AT · (−b) (4.11)

Additionally Lucas and Kanade introduced a weighting functionW that gives more promi-
nence to the pixels in the center of Q. The �nal equation for determining the �ow vector
which is assigned to the center of Q is

v = (AT ·W 2 ·A)−1 ·AT ·W 2 · (−b) (4.12)

In contrast to the method introduced by Horn and Schunk, this local approach does
not result in a very high density of �ow vectors but is more robust against noise. For
further reading, a fast implementation of Lucas and Kanade algorithm, using pyramid
segmentation is presented in [35].

4.2.2 Area Matching Techniques

Algorithms based on numerical di�erentiation may be impractical due to noise or aliasing
artifacts. In these cases, area matching techniques can be used to achieve better results.
These algorithms de�ne the velocity v as the shift d = (dx, dy) between image areas at
di�erent instances of time that returns the highest similarity. Similarity can be measured
by di�erent methods, such as cross correlation, Sum of Absolute Di�erences (SAD) or
Sum of Squared Di�erences (SSD), which will be explained in section 5.4.

A popular method that can be referred to as the class of area matching techniques is the
Kanade-Lucas-Tomasi feature tracker (KLT) [36]. The basic principle of the KLT is
the termination of features that can be tracked well. A good feature is thereby de�ned
as a textured patch with high intensity variation in both directions x and y. Therefore,
points with high eigenvalues, such as corners in an image are potentially good candidates.
Two kinds of image notion models are used: the simple translation model and the a�ne
model, which represents translation plus linear warping. For estimating the movement
of an area between two consecutive frames, the standard Lucas-Kanade algorithm as

4.3 CLUSTERING 27

presented in chapter 4.2.1 will be applied and similarity will be measured restricted to
pure translational motion. After that, a root-mean squared error dissimilarity measure
between the new frame and the �rst one the feature occurred in will be applied, using
the full a�ne motion model. This step is called monitoring step, and tries to secure that
motion is determined for the same features. If the dissimilarity grows too high, the feature
is likely to be lost and will therefore be abandoned.

4.3 Clustering

In order to organise and reduce the amount of an unknown set of data, clustering is the
procedure that subdivides this set of data into so called clusters, which can be seen in
�gure 4.4.

(a) Set of points (b) Clustered points

Figure 4.4: Cluster example

The data in each cluster share a common feature or similarity de�ned by a certain dis-
tance measure, while every cluster is di�erent. Clustering is used in a broad �eld of data
analysis e.g. bioinformatics, data-mining, machine-learning and image analysis.

As mentioned above, a distance measure to determine the similarity of two elements
is an essential part of every clustering algorithm and will highly in�uence the resulting
cluster shape. Commonly used distance functions are the Euclidean distance, Manhattan
distance or Mahalanobis distance.

Generally, there are two types of clustering algorithms called hierarchical and partitional
described in the following.

28 4 FEATURE EXTRACTION AND CLUSTERING

4.3.1 Hierarchical Clustering

Hierarchical clusters are divided into agglomerative ("bottom-up") or divisive ("top-
down") methods. The more commonly used agglomerative method starts with each
element of a data set as a separate cluster, and step by step merges them to bigger
clusters, whereas the divisive method starts with a single cluster including the whole data
and dividing it into smaller clusters. The hierarchical methods result in a tree structure
which can be visualized as a dendrogram.

4.3.2 Partitional Clustering

In contrast to building clusters out of already established clusters, as done with hierar-
chical methods, partitional methods determine them directly from the whole data set.
There are a lot of di�erent partitional clustering algorithms, like the EM-Algorithm [37],
spectral clustering [38] or self-organizing maps but the most commonly used one is the
k-means algorithm which will be described in detail.

First introduced by J.B. MacQueen [39] in 1967 the k-means algorithm became very
popular because of producing good clustering results while requiring low computation
time. The procedure follows a simple way to classify a given data set through a certain
number k of clusters �xed a priori. It starts by choosing the value k and dividing the data
set into k di�erent sets. These sets are either chosen randomly or by using heuristic data.
After that, the mean point, called centroid, is calculated for each of the k parts. The next
step is associating every element of the data set to its nearest centroid. At this point, k
new centroids have to be re-calculated as barycenters of the clusters resulting from the
previous step. After having de�ned these k new centroids, a new binding has to be built
between the data set points to be processed and the nearest new centroid. A loop has
been generated. As a result of this loop it may be noticed, that the k centroids change
their location step by step until no more changes are done. Mathematically speaking the
algorithm tries to minimize a squared error function 4.13

E =
k∑

i=1

∑
xj∈Si

|xj − µi|2 (4.13)

with k clusters Si, i = 1, . . . , k and µi the centroid of all data points xj ∈ Si.

The algorithm consists of the following �ve steps:

1. Selection: Selecting the number k of clusters

2. Initialization: Choosing k cluster centroids

3. Assignment: Assigning each data point to the nearest centroid

4.3 CLUSTERING 29

4. Recalculation: Recomputing the centroids

5. Repetition: Repeating step 3 and 4 until some convergence criterion is met (usually
until the assignment has not changed)

K-means does not necessarily �nd the most optimal con�guration, corresponding to the
minimum of the objective function 4.13 because the result highly depends on the initial
random choice of the k cluster centroids. This e�ect can be reduced by running k-means
several times with di�erent initialization.

5 Stereo Vision

One of the problems in image processing is that a single camera viewing a three dimen-
sional scene only produces a two dimensional image which means a loss of one dimension
and therefore a loss of information. This problem can be solved by comparing two images
of the same scene, either taken by two di�erent cameras at the same time or, in case of a
static scene, taken by a single camera from two di�erent positions at di�erent time and
looking for corresponding points between the two images. The missing depth informa-
tion can then be calculated via triangulation. The crucial part thereby is the detection
of correct correspondences. In the following sections an image preprocessing step and
the required mathematical background for simplifying the correspondence search will be
presented. After that, three di�erent methods for �nding similarities will be explained.

5.1 Epipolar Geometry

The Epipolar Geometry describes the projective relation between points in two camera
images. An example set of two cameras C1 and C2, observing an arbitrary 3D point m
is shown in �gure 5.1 with its known optical centers c1 and c2. The connection of the
two camera centers is called baseline B which intersects the imageplanes I1 and I2 in the
points e1 and e2 which are known as epipoles. The epipoles can be interpreted as the
projection of one camera center into the image plane of the other camera. The position
of the epipoles only depend on the position of the cameras. If the cameras' optical axes
are parallel, the epipoles lie at in�nity. The baseline B and a point m create a plane Π
called epipolar plane. Given an image point m1 in I1 the corresponding 3D point m could
be any point on the semi line c1m1, which also lies on Π. The projection of c1m1 on I2 is
called epipolarline `2 of m1 which also results in intersecting Π and I2. This line passes
the epipole e2 and, most important, contains m2, which is the image point of m on I2.
By rotating the epipolar plane around the baseline every possible 3D point is captured,
all epipolarlines are created and result in the so called pencil of epipolarlines intersecting
in the epipole. This leads to the epipolar constraint which says that the correspondence
of a point in the �rst image must lie on the epipolarline in the second image. Therefore
the search space is reduced from two dimensions to one, which results in a signi�cant
reduction of computation time. An example for two images taken from di�erent views,
some points of interest and the corresponding epipolarlines can be seen in �gure 5.2. The
Epipolar Geometry is algebraically described by the Fundamental Matrix F.

30

5.2 FUNDAMENTAL MATRIX AND ESSENTIAL MATRIX 31

Figure 5.1: Epipolar Geometry

5.2 Fundamental Matrix and Essential Matrix

Given a pair of images, it was seen in 5.1 that to each point m1 in image one, the
corresponding point m2 in the second image must lie on the epipolarline `2. Thus, there
is a map

m1 7→ `2 (5.1)

from a point in one image to its corresponding epipolar line in the other image, which is
represented by the Fundamental Matrix.

A 3D point in the coordinate system of the �rst camera mC1 = [xC1, yC1, zC1]T , can be
expressed in the coordinate system of the second camera mC2 = [xC2, yC2, zC2]T by a rigid
transformation

mC2 = R ·mC1 + t (5.2)

where R is the orthogonal rotation matrix and t is the displacement vector between the
two camera centers calculated by t = c1 − c2. In the following it is assumed that the
camera performs an exact perspective projection, meaning the cameras are calibrated. m̃1

and m̃2 are the projection of the 3D point m on the respective image planes, represented in
normalized homogenous coordinates1) meaning that the z-coordinate equals one. Inserting

1) For two vectors a and b in homogenous coordinates the following mathematical conditions are valid:
a× a = 0 where 0 is the zero vector [0, 0, 0]T and aT · (b× a) = 0

32 5 STEREO VISION

Figure 5.2: Unrectified Epipolar Lines

them in 5.2 leads to the central equation of the epipolar geometry

m̃T
2 · [t]×R · m̃1 = 0 (5.3)

[t]× is known as the antisymmetric matrix de�ned by t, such that [t]× = t× x for all 3D
vectors x

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (5.4)

The cross product [t]×R results in the matrix E of dimension 3× 3, called the Essential
Matrix which was �rst introduced by Longout-Higgins in [40]. This matrix describes the
geometric relation between corresponding points in camera coordinates of both cameras
of the stereo system. Because [t]× has rank = 2, E has the same rank and therefore only
two rows or columns are linearly independent.

Now assuming the case of a non-calibrated camera system and thus a non-perfect per-
spective projection, the camera coordinates are not equal to the pixel coordinates but
undergo a transformation depending on the internal camera parameters which are focal
length f , principal point [u0, v0]T , skew coe�cient [ku, kv]T (angle between x and y axes)
and distortions s. These parameters can be combined in the intrinsic cameramatrix

A =

f · ku s u0

0 f · kv v0

0 0 1

 (5.5)

With the intrinsic cameramatrix of the respective camera, a point in camera coordinates
m̃1,m̃2 can be transformed into pixel coordinates m1,m2 by

5.2 FUNDAMENTAL MATRIX AND ESSENTIAL MATRIX 33

m1 = A1 · m̃1

m2 = A2 · m̃2 (5.6)

Inserting 5.6 in 5.3 leads to

mT
2 ·A−T

2 · [t]×R ·A−1
1 ·m1 = 0

mT
2 ·A−T

2 · E ·A−1
1 m1 = mT

2 · F ·m1 = 0 (5.7)

The matrix product A−T
2 ·E ·A−1

1 de�nes the Fundamental Matrix F, of same dimension
as E and also with rank = 2. It has the following important properties:

• Transpose: if F is the Fundamental Matrix between C1 and C2 then FT is the
Fundamental Matrix between C2 and C1

• Epipoles: for any point m1 6= e1 the epipolar line `2 = F ·m1 contains the epipole
e2. Thus e2 satis�es eT

2 · (F ·m1) = (eT
2 · F) ·m1 = 0 for all m1. It follows that

eT
2 · F = 0 where 0 denotes the zero vector [0, 0, 0]T , i.e. e2 is the left null-space of

F. Accordingly, F · e1 = 0, i.e. e1 is the right null-space of F

• Epipolarlines: for any point m1 in the �rst image, its epipolar line is `2 = F ·m1

in the second image. Similarly, `1 = FT ·m2 represents the epipolar line in the �rst
image corresponding to m2 in the second image. A line thereby is presented by
three coe�cients ` = [a, b, c]T and the following equations

a ∗ x+ b ∗ y + c = 0

`T [x, y, 1]T = 0 (5.8)

In the more common and appealing representation the slope m is equal to −a/b and
the intersect t is equal to −c/b

The last point mentioned above is the most important one for the correspondence search
problem, because it eventually performs the reduction of the search space by one dimen-
sion.

The following sections will describe two methods of determining the Fundamental Matrix
of any stereo camera system, with the help of image points in the two camera images
assumed to represent the same 3D world point (already known correspondences).

5.2.1 Eight-Point Algorithm

The Eight-Point Algorithm is a linear method of calculating F out of at least eight
corresponding points and was �rst introduced in [40]. The detection of these correspon-
dences can be done by methods like Harris corner detection or the method of Lucas and

34 5 STEREO VISION

Kanade described in section 4.2, but will not be explained here.
Given is a set of n ≥ 8 corresponding points in homogenous coordinates between the two
images denoted by mk,i = [uk,i, vk,i, 1]T k = 1, 2 i = 1, . . . n where point m1,i corresponds
to m2,i. Inserting these points into 5.7 leads to n equations of the following form

u1,iu2,if1,1+v1,iu2,if1,2+u2,if1,3+u1,iv2,if2,1+v1,iv2,if2,2+v2,if2,3+u1,if3,1+v1,if3,2+f3,3 = 0
(5.9)

where fl,r is an element of F in line l and row r. Creating the vectors
pi = [u1,iu2,i, v1,iu2,i, u2,i, u1,iv2,i, v1,iv2,i, v2,i, u1,i, v1,i, 1]T and
f = [f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, f3,1, f3,2, f3,3]T

The equation can be written in a compact form

pT
m · f = 0 (5.10)

Combining all n vectors p into the matrix P = [p1, . . . ,pn]T leads to the �nal linear
system of equations

P · f = 0 (5.11)

The goal of determining F and f respectively can be achieved by solving the least squares
problem

min
F

∑
n

(mT
2,iFm1,i)

2 (5.12)

or

min
f
‖Pf‖2 (5.13)

If n ≥ 8 and rank(P) ≥ 8, meaning the points are not coplanar, the vector f is de�ned up
to a scaling factor. For �nding a solution other than the trivial one f = 0, the Singular
Value Decomposition (SVD) of P can be used. It results in

P = UDVT (5.14)

where D is a diagonal matrix, containing all singular values which are positive and in
decreasing order σ1 ≥ σ2 ≥ . . . ≥ σ9 in its trace and V containing the corresponding
eigenvectors. The minimization problem 5.13 is satis�ed by choosing f equal to the
eigenvector that corresponds to the smallest singular value of P. Using the decreasing
order of the singular values, σ9 is the smallest, and therefore the last column of V is
the wanted solution for f . It is trivial to get the wanted Fundamental Matrix F out
of f . However, in presence of noise and due to incorrect correspondence measures, the
resulting F will not ful�ll rank(F) = 2, meaning that the epipolar lines will not all pass
through a common point, in other words there will not exist real epipoles but they will
be "smeared out" to a small region. This problem can be solved by performing another
SVD, F = ÛD̂V̂T , setting the smallest resulting singular value to 0 and calculating the
rank 2 �nal Fundamental Matrix by F = ÛD̃V̂T with D̃ = diag(σ1, σ2, 0).

5.2 FUNDAMENTAL MATRIX AND ESSENTIAL MATRIX 35

By just taking the pixel coordinates of the corresponding points without any preprocessing
step, the algorithm shows poor performance due to poor conditioning. To deal with
this problem, R. Hartley proposed in [41] to apply a normalization of input data before
executing the eight-point algorithm. This preprocessing consists of two steps

1. Translating the points so that their centroid lies in the image origin

2. Scaling the points such that the average distance of all points (already translated
as mentioned in step one) to the origin is equal to

√
2

Doing this preprocessing for both images independently, and executing the eight-point
algorithm with the preprocessed data, the results presented in [41] were nearly as good as
the more complex iterative methods described in [42], but less computationally expensive.

5.2.2 Eight-Point Algorithm and RANSAC

The problem of the above described Eight-Point Algorithm and all least-squares ap-
proaches is that they can not cope with outliers. Because of the quadratic error function,
a single outlier that di�ers strongly from the true solution completely biases the �nal
result. It is very challenging to segment the set of correspondences in inliers and outliers
before having obtained the correct solution.

A way to solve this problem was proposed by Fischler and Bolles in [43]. Their algorithm,
called RANSAC (RANdom SAmpling Consensus), was not developed with the goal of
improving the calculation of the Fundamental Matrix, but can be applied to this and
many other kinds of least-squares problems.

Having a set of n > 8 matching pairs, a random minimal subset of k = 8 pairs is taken
out of this subset and F is calculated with these 8 pairs and the eight-point algorithm.
With a certain probability this subset contains no outliers and the correct solution for F
is found. A point is referred to as outlier if the distance to its epipolar-line, calculated
with F, is bigger than a certain threshold τ . Otherwise it is called inlier. The RANSAC
algorithm maximizes the probability of having an subset without outliers, by repeating
the procedure of choosing random subsets and calculating F. Each time the set of n pairs
is divided into in- and outliers by the method mentioned above, using the Fundamental
Matrix calculated in the respective step. The solution for F with the largest amount of
inliers is identi�ed as the correct one. The crucial point is to determine the amount of
repetitions necessary for getting a high probability of inliers. Assuming the fraction of
outliers in the whole set is ε, then the probability that the subset of k pairs contains no
outlier is (1 − ε)k and the probability that a number s of di�erent subsets contain one
or more outliers is (1 − (1 − ε)k)s. Finally, the probability that at least one of these s
random subsets has no outlier is

P = 1− (1− (1− ε)k)s (5.15)

36 5 STEREO VISION

Thus the number s of iterations for getting a subset without outliers with the probability
of P is

s =
ln(1− P)

ln(1− (1− ε)k)
(5.16)

Typically, the threshold τ for distinguishing in- and outliers is 0.5 or 1 pixel. The prob-
ability P should be chosen between 0.95 and 0.99. The algorithm can easily deal with a
fraction of up to ε = 50% of outliers. Above this percentage, the number of iterations
becomes very high, as shown in table 5.1.

fractions of outliers ε 5% 10% 20% 30% 40% 50% 60% 70%
iterations s 3 6 17 51 177 765 4597 45658

Table 5.1: Number of iterations necessary to achieve a probability of 0.95 to have one sub-
sample of k = 8 pairs containing no outlier, for different fixed fractions of outliers

5.3 Image Rectification

In the previous sections the Epipolar Geometry was introduced, and it was shown that a
point in the �rst image must a lie on a line, the epipolar line, in the second image. With
this knowledge the search space can be reduced signi�cantly from two to one dimension.
However, the epipolar lines normally are slanted as shown in �gure 5.2 and therefore
search along these lines is di�cult and time-consuming. In order to speed up the search
algorithms, the epipolar lines are desired to be axis-aligned (usually to the horizontal axis)
and parallel, as points in one image then have the same y-coordinate as their corresponding
point in the other image shown in 5.3. This can be achieved by a process called image
recti�cation.

Figure 5.3: Rectification goal

5.3 IMAGE RECTIFICATION 37

Given is a set of two cameras with non-parallel optical axes and thus non-coplanar image
planes. As described in section 5.1, all epipolar lines intersect in their respective epipole,
and the epipole in image two is the projection of camera center one into image plane
two and vice versa. Thus, epipolar lines would be parallel, if the epipoles lay at in�nity,
because parallel lines intersect at in�nity. Epipoles lie at in�nity if the image planes are
coplanar, which can be achieved by reprojecting the two image planes onto a common
plane, parallel to the baseline (the connection between the two camera centers) as seen
in �gure 5.4. The transformation of each plane is accomplished by applying a so called
homography.

x´

z´

y´

x´

z´

y´

c1

x

y

z

c2

x

y

z

rectified image planes

I1 I2

m

normal image planes
H2H1

Figure 5.4: Set of 2 cameras with imageplanes and the wanted rectified planes

Let H1 and H2 be the homographies applied to image I1 and I2 respectively, then the
positions of m1εI1 and m2εI2 in the recti�ed images are calculated by

m̂1 = H1 ·m1 m̂2 = H2 ·m2 (5.17)

If m1 and m2 ful�l equation 5.7 with given F, then m̂1 and m̂2 will ful�l it accordingly,
with a matrix F̂. As the epipoles should lie at in�nity and epipolar lines should be
aligned to the x-axes and have the same y-coordinate as the corresponding point in the
other image, the matrix F̂ is given by2)

F̂ =

0 0 0
0 0 −1
0 1 0

 (5.18)

2) To prove that F̂ ful�ls the requirements, the properties of a Fundamental Matrix presented in section
5.2 can be used. As an epipolar line `2 of a point m1 = [x1, y1, 1]T is calculated with F̂ by `2 = F̂ ·m1

and results in `2 = [0,−1, y1] or with 5.8 y = y1, it is proved that lines are parallel to the x-axis
and have the corresponding y-coordinate. The epipoles at in�nity can be expressed in homogenous
coordinates by e1 = [1, 0, 0]T and e2 = [−1, 0, 0]T . The given F̂ satis�es F̂ ·e1 = F̂T ·e2 = 0. Thereby
all requirements are ful�lled.

38 5 STEREO VISION

Inserting 5.17 into 5.7 with 5.18 yields

mT
2 HT

2 F̂H1m1 = 0 (5.19)

and therefore
F = HT

2 F̂H1 (5.20)

The matrices H2 and H1 are not unique but should be calculated with the aim of mini-
mizing image distortion. Loop and Zhang show a solution for this problem in [44]. They
suggest to split up the matrices H1 and H2 respectively into three di�erent matrices:

1. Hp: a specialized projective transform which performs the transformation of the
epipoles to in�nity, which results in parallel epipolar lines

2. Hr: a similarity transform that rotates the epipolar lines in a way that they are
aligned with the x-axis plus a translation in one image into y-direction, such that
corresponding epipolar lines lie on the same scanline, meaning they have the same
y-coordinate in both images

3. Hs: a shearing transform for reducing horizontal distortion

For a mathematical description of these matrices and how to derive them, please refer
to [44]. The complete homographies are computed by multiplying the three respective
matrices described above H1 = Hs,1Hr,1Hp,1 and H2 = Hs,2Hr,2Hp,2. An example image
pair of how a recti�cation result can look like is shown in �gure 5.5.
Apart from the Loop-Zhang method, Fusiello et al. present in [45] a method for �nding

Figure 5.5: Example for the rectification procedure. The original images are shown in (a)
and (b), overlaid by their respective epipolar lines. After rectification, these
lines become collinear and parallel with the image’s x-axis and have the same
y-coordinate, as shown (c) and (d).

5.4 CORRESPONDENCE ANALYSIS 39

the homographies for calibrated cameras with the help of a given pair of projection ma-
trices. In [46] Pollefeys et al. proposed a simple method, which only requires the oriented
Fundamental Matrix, guarantees minimal image size and works for all possible camera
con�gurations.

5.4 Correspondence Analysis

After �rstly preprocessing the stereo images, meaning the Fundamental Matrix is known
and with it the epipolar lines can be calculated, and secondly recti�ying images, the last
step is �nding correspondences between the two stereo images for obtaining depth infor-
mation. As already pointed out knowing a point in one image, due to image recti�cation
its match in the other image will now lie on the horizontal scan-line in the other image
with the same y-coordinate as the known point. The question that arises is how to deter-
mine the corresponding point on this line. In [47] Lane and Thacker compared a dozen
of di�erent methods for �nding correspondences. They distinguish between area based
methods and feature based methods. Here, only area based approaches will be presented.

Finding correspondences is achieved by comparing similarities, therefore a method for
measuring the similarity of points has to be found. One problem to deal with is that
the only information given by a single point in an image is its intensity value. By only
comparing point to point it would be nearly impossible to �nd the correct match, because
with a high probability there will be more than one point in the other image with the
same intensity and a decision which is the correct one can not be made due to ambiguity.
The solution for this problem is to de�ne a �xed region of a certain size around the point
m1 = [x1, y] whose correspondence is wanted. A window of the same size as the respective
region is shifted step by step along the epipolar line in the other image and the similarity
between the two resulting regions is measured at each step. The point m2 = [x2, y] in
the center of the window in the second image with the highest similarity is considered to
be the correct match. Once a point is determined to be the correct match, the so called
disparity has to be calculated. The disparity is the distance between the corresponding
points in the image which is the result of putting the two stereo images on top of each
other. Because of recti�ed images here the disparity d is de�ned as the di�erence of the
x-coordinates of the two matching points

d = x2 − x1 (5.21)

The disparity of each point is stored in a depth map. The next sections will explain three
di�erent methods of how similarity can be measured.

5.4.1 Sum of Absolute Differences

The �rst method presented is called SAD (Sum of Absolute Di�erences). As mentioned
above, in order to �nd correspondences regions of a size sx+1×sy+1 are de�ned aroundm1

40 5 STEREO VISION

in the �rst image and then compared with regions of the same size in the second image. In
the following, [x1, y]T are the coordinates of m1 with intensity I1(x1−sx/2+i, y1−sy/2+j)
of a pixel in the �xed region in the �rst image at position [x1−sx/2+ i, y1−sy/2+j] with
0 ≤ i ≤ sx and 0 ≤ j ≤ sy. Respectively I2(x2 − sx/2 + i, y − sy/2 + j) is the intensity of
the corresponding point m2 in the second image. Similarity is measured by calculating
the di�erence of all corresponding pixel intensities I1(x1− sx/2 + i, y− sy/2 + j)− I2(x2−
sx/2 + i, y − sy/2 + j), and summing up the respective absolute values.

SAD =

sy∑
j=0

sx∑
i=0

|I1(x1 − sx/2 + i, y − sy/2 + j)− I2(x2 − sx/2 + i, y − sy/2 + j)| (5.22)

The center point of the region in the second image with the smallest SAD-value along the
epipolar line is the one with the highest similarity and assumed to be the correct match.
The disparity is �nally calculated as in 5.21 and inserted into the depth map. The search
is repeated until every pixel has been processed.

5.4.2 Sum of Squared Differences

The second method is called SSD (Sum of Squared Di�erences). The procedure for SSD
is the same as for SAD, except that the di�erences are not regarded with their absolute
values, but are squared. Squaring the di�erences has more in�uence on single outlier
pixels with a very high di�erence value.

SSD =

sy∑
j=0

sx∑
i=0

(I1(x1 − sx/2 + i, y − sy/2 + j)− I2(x2 − sx/2 + i, y − sy/2 + j))2 (5.23)

5.4.3 Normalized Sample Correlation

The last way for measuring similarity presented here is called NSC (Normalized Sample
Correlation). Let R(x̂2, ŷ) be the upper left point of the region in the second image with
x̂2 = x2 − sx/2 and ŷ = y − sy/2, and T (x̂1, ŷ) the upper left point of the �xed region in
the �rst image with x̂1 = x1 − sx/2 respectively. In the following, for easier reading and

writing
sy∑

j=0

sx∑
i=0

will be written as
∑

i,j, T (x̂1 + i, ŷ + j) as T (i, j) and R(x̂2 + i, ŷ + j) as

R(i, j). The NSC (r) is then calculated by

r =
pT

∑
i,j(T (i, j)R(i, j))− (

∑
i,j T (i, j))(

∑
i,j R(i, j))√

pT (
∑

i,j T (i, j)2)(
∑

i,j T (i, j))2
√
pT (
∑

i,j R(i, j)2)(
∑

i,j R(i, j))2
(5.24)

The scalar factor pT is equal to the number of pixels with non-zero brightness-value in
the region of the �rst image. The resulting value r is dimensionless and r ≤ 1 where 1
denotes perfectly correlated, whereas a smaller r implies a bigger discrepancy of the two

5.4 CORRESPONDENCE ANALYSIS 41

regions. Instead of �nding the smallest value as for SAD and SSD the highest value has
to be detected, the rest of the procedure does not change.

The three methods described above all result in dense depth maps, because the disparity
for every pixel is calculated. Well textured images return better results than images with
big homogenous areas, as the di�erence between the search windows is higher. Further-
more, false correspondences result in discontinuities of disparity. Concerning computation
time, SAD is the fastest algorithm. It needs as many operations as SSD but instead of
calculating squares it only calculates the absolute value which is not that computationally
expensive. The slowest method is the NSC algorithm, which needs the highest amount of
operations and the most expensive ones, like squaring and square-roots. A concrete com-
parison of the methods performances concerning execution time and accuracy is shown in
chapter 7.

6 Driver Assistance Modules

In this chapter concrete algorithms for vision based driver assistance will be described in
detail. All these algorithms have been implemented in C++ for ImprovCV, the image
processing framework introduced in chapter 3. The vision information is provided by a
camera mounted behind a vehicle's windshield. All algorithms are performed on 8-bit
single channel grey-scale images. As all algorithms should assist the driver, they have
to perform fast and therefore it is necessary to achieve low computation time for all
algorithms. A concrete performance analysis for each algorithm is shown in chapter 7.

The �rst section (6.1) will describe a method for detecting lane-markings by applying
the Probabilistic Hough Transform as shown in section 4.1.2. After that, a procedure for
detecting vehicles using optical �ow and shape information (as in 4.2) and tracking them
in consecutive images with a correlation method will be shown (section 6.2). Finally,
stereo vision algorithms with the goal of estimating distances to other vehicles will be
presented in section 6.3.2.

6.1 Lane Detection

Lane detection is an essential component of many intelligent vehicle applications, in-
cluding Lane Following (LF), Lane Keeping Assistance (LKA), Lane Departure Warning
(LDW), lateral control, Intelligent Cruise Control (ICC), Collision Warning (CW) and
eventually autonomous vehicle guidance. The lane detection procedure can approximate
the position and orientation of the vehicle within the lane, and can also provide a reference
system for locating other vehicles or obstacles in the path of the one viewing the scene.
Therefore the detection of lanes is a reasonably important part of a driver assistance
system. Lane detection is often complicated because of di�erent road markings, clutter
from other vehicles and complex shadows, lighting changes from overpasses, occlusion
from vehicles, and varying road conditions.

The algorithm presented in this section uses the Probabilistic Hough Transform and a
k-means clustering method as presented in 4.3.2. Furthermore, not only the information
of the current image is used but as the direction and number of lanes does not change
rapidly, also the information obtained from previous frames. Picture 6.1 shows the raw
unprocessed image which is the starting point of the detection method.

42

6.1 LANE DETECTION 43

The presented algorithm can be roughly divided into three steps. The �rst is preprocessing
the image for eliminating useless information, the second detecting lane-markings at the
current image, and the third and last is verifying the markings using information gained
from previous images. In the following, "lanes" are the wanted lane-markings and "line"
describes a line in general.

Figure 6.1: Unprocessed raw image data, taken by a camera mounted behind the car’s
windshield

6.1.1 Image Preprocessing

The detection of lines by the Hough Transform could be done on the raw image data
like picture 6.1 which would be computationally very expensive and take long time. By
preprocessing the image, non-relevant information can be eliminated. As it can be seen in
6.1 an estimated 30% of the image's upper part is useless data for lane detection because
it shows the sky and therefore can be cut out of the image. Furthermore, about 10% of
the lower part is covered by the cars front lid and can be clipped as well. By these simple
steps the image's size is reduced by about 40% without losing necessary information
for lane detection which will speed up the following procedures. Figure 6.2 shows the
resulting image.

The strong intensity contrast between pavement (grey) and lane-markings (white) is
another feature that can be used to reduce data. This jump from one pixel to the next
is known as an edge. By applying an edge-detector as sobel- or canny-�lter, the amount
of image data is reduced signi�cantly and useless information is �ltered out, while pre-
serving the important structural properties of an image. The edge-detection results in a
binary image only containing white edge-pixels and black non-edge-pixels. Only the white
ones will be used for the Hough Transform. Picture 6.3 shows the result of the canny
edge-detector performed on 6.2. Instead of using the canny �lter also two sobel-�lters,

44 6 DRIVER ASSISTANCE MODULES

Figure 6.2: Image where upper part (the sky) and lower part (the car’s front lid) have be
clipped

one for each direction x and y could be applied.

Altogether, the image preprocessing reduces the amount of data, to be �nally processed
to a fraction of only 2−4% of the original image data. The upcoming section will describe
the procedure of detecting the lane-markings out of the preprocessed data.

Figure 6.3: Image showing edges detected by a canny filter.

6.1.2 Lane-Marking Detection

After having preprocessed the input image the �rst step is to �nd all the lines in the image
and afterwards separate them into possible lane-markings (or parts of lane-markings),
called candidates, and arbitrary lines which are thrown away. The line detection is done
by applying the Probabilistic Hough Transform presented in 4.1.2 to the image. Although
the normal Hough Transform could be applied for the line detection and producing slightly
more accurate results, the Probabilistic Hough Transform has been selected because of
faster execution with negligible poorer results. A function for extracting Hough-lines is
implemented in OpenCV. The lines resulting from the transform are shown in �gure 6.4.
As seen, the image contains many lines not being part of lane-markings. Thus the second
step is to separate candidates from useless lines.

6.1 LANE DETECTION 45

A good starting point for that is looking at the extreme absolute values of the lines' slopes,
zero and in�nity. As lane-markings are rarely horizontal or nearly horizontal in respect
to the car's direction, all lines with absolute slope value smaller than a threshold θ0 can
be neglected. Although in many cases lane-markings are vertical to the car's direction
they do not appear as vertical lines on the camera image, because of camera position and
perspective distortion. They appear vertical, if they lie on the the vertical plane that
contains the camera center and is perpendicular to the image plane. As the camera is
installed in the middle of the windshield, that is only the case during lane-changing and
only for a single lane-marking. This is why lines with an absolute slope value bigger than
θ∞ can also be neglected. All remaining lines are assumed to be part of lane-markings.

As the Hough Transform has been applied to an edge-�ltered image, each marking has at
least two lines, one for the right, the other for the left edge of the marking. Furthermore,
dashed markings result in many lines that actually represent the same lane border. A
way to combine these lines to a single one for each boarder has to be chosen, which leads
to the third step, the clustering of candidate lines.

Figure 6.4: Lines detected by a Probabilistic Hough Transform.

To cluster the lines the k-means clustering algorithm introduced in section 4.3 is used.
The problem with this algorithm is that the number k of clusters has to be known prior
to execution. In other words, the number of lane-markings has to be known, but as they
di�er from road to road, and the task is to detect them, this is never the case. Therefore,
a method to dynamically determine the number of needed clusters with regard to the
current road scene has to be found.

The algorithm's input is an unknown number of lines, presented by slope m and intersect
t. Lines are considered to be part of the same lane-marking, if their m and t do not
vary too much. Thus the clustering is performed in the m − t space as the lines can be
represented by a single point and the fast and simple k-means point-clustering can be used.
The algorithm starts by applying the k-means clustering with k = 2 to the unclustered
data-set resulting in two new clusters. These clusters are stored in a clusterdepot cd1.

46 6 DRIVER ASSISTANCE MODULES

For each cluster of cd1 the variation σ of m and t is calculated by

σ =

ncj∑
i=1

(mi −mavg)2 + (ti − tavg)2

ncj

(6.1)

where ncj
is the number of cluster points in the cluster cj, mavg the average of all m of

cj and tavg the average of all t of cj. If the variation is smaller than a threshold σ < θacc

the cluster is stored in the �nal cluster depot cd2 and removed from cd1. All clusters
in cd2 are considered to be lane-markings represented by their respective mavg and tavg.
If the cluster's variation is bigger than σ > θacc it has to be decided whether the data
should be completely deleted or processed again. The decision is made by comparing the
variation of the cluster with an upper threshold θhigh. If σ > θhigh and the cluster only
consists of a number of lines smaller than θlowerNbr this cluster will be removed from cd1.
The algorithm is repeated for each remaining cluster of cd1. The whole procedure stops
when no clusters are left in cd1. The �ow chart representing the procedure is shown in 6.5.

Add cluster to
clusterdepot cd1

Kmeans for each
cluster of cd1 with k=2

Calculate variation
for each cluster

Add to final cluster
depot cd2 and remove
from clusterdepot cd1

< accYES
> high

&&
Nbr of points <

lowerNbr

NO

Delete cluster
from cd1

YES

NO

While size of cd1
>0 repeat

Inital Cluster cotaining
all points to be clusterd

Replace each cluster
in cd1 with the 2 new

ones. Size of cd1
doubles

Figure 6.5: Flow chart for clustering

As mentioned before, the clusters are only assumed to be lane-markings. The next section
will deal with the third and �nal step, the lane-marking veri�cation.

6.1 LANE DETECTION 47

6.1.3 Lane-Marking Verification

To verify that the detected and clustered lines are real lane-markings and not arbitrary
lines, information gained from prior images is used. This results in an initialization phase
after having started the algorithm where no lane-markings can be veri�ed because of
no or not enough prior information. Once having gained this information, the fact that
lane-markings neither change their slope m nor their intersect t over a short sequence of
images is used. A credit system is introduced to determine whether a real lane-marking
has been detected or not. First detected, three credits are assigned to each detected
but not yet veri�ed lane-marking, and their parameters slope, intersect and credits are
stored. In each frame all newly detected lines are compared with respect to m and t with
the already stored ones. If a new line matches an old one, the credits of the old one will
be increased by 1, if no match could be found the new one is stored and 3 credits are
assigned. The credits of all stored lines not detected, meaning no similar line could be
found again, will be decreased by one. If the credits of a stored line are equal to zero it will
be deleted. A stored line with credit value bigger than 5, meaning being detected in at
least four consecutive frames, is veri�ed as a real lane-marking. The possible credit value
of a lane-marking is limited to 30 which prevents lane-markings which have been detected
throughout many consecutive frames from being taken as an existing one even after they
have disappeared because of still high credit value. The problem of not detecting real
lane-markings in some frames, because of bad edges, bad light conditions or occlusion is
also solved by the credit system for already detected lane-markings as they will assumed
to be present even without detecting them because of having a high enough credit value.

The �nal lane-marking detection result can be seen in �gure 6.6. With these lane-markings
the real lanes are simply considered to lie between two consecutive lane-markings starting
from the outer left detected one and going to the right or vice versa.

Figure 6.6: Lane-marking detection result

48 6 DRIVER ASSISTANCE MODULES

6.2 Car Detection and Tracking

Vehicle accident statistics disclose that the main threats a driver is facing are from other
vehicles driving on the same road. Consequently, developing on-board vision-based auto-
motive driver assistance systems aiming to alert a driver about driving environments and
possible collisions with other vehicles has attracted a lot of attention. In these systems,
robust and reliable vehicle detection is the �rst step.

This section presents a car detection system based on optical �ow and shape attributes of
cars. The cars, once detected, will be followed in consecutive images by a tracking system
using a template matching technique. The procedure is done in four steps

1. Optical �ow estimation

2. Optical �ow clustering, resulting clusters are candidate cars

3. Veri�cation of car candidates by examining their shape and a correlation with pre-
de�ned templates

4. Tracking of cars with templates gained from the previous step

In the following, the points mentioned above will be described in detail.

6.2.1 Optical Flow Estimation

A possible way of estimating the presence of moving obstacles in general is using motion
information produced by them. This information can be extracted from consecutive
images by estimating the optical �ow. This can be done in di�erent ways as presented
in section 4.2. Here, the method of Lucas and Kanade described in chapter 4.2.1 in
combination with image pyramids is used. The advantage of this pyramid algorithm
over Horn and Schunk and the standard Lucas and Kanade is the much lower execution
time resulting from gaining only a sparse �ow vector �eld. This sparse �eld is not a real
disadvantage as, depending on the algorithms initialization, the resulting �ow vectors
concur with the position of the wanted cars. The algorithm used for calculating the �ow
vectors is already implemented in OpenCV.

As mentioned before, the result of the algorithm highly depends on how it is initialized,
because for a certain chosen number of points in image It−1 that have to be selected prior
to execution it �nds the matching points in image It and the �ow vector is represented
by the corresponding points. Good points to chose are points with high eigenvalues like
edges or corners as these points are easy to distiguish and therefore easy to detect. Cars
usually produce very strong edges, thus they are good features and suit this method for
calculating the �ow vectors.

6.2 CAR DETECTION AND TRACKING 49

A �ow vector in It−1 is represented by the x/y-position p(xt−1, yt−1) of its corresponding
point in It−1, and the angle α and magnitude mag between this point and its match point
p(xt, yt) in It. Angle and magnitude are calculated by1)

α = atan2(yt − yt−1, xt − xt−1)

mag =
√

(xt − xt−1)2 + (yt − yt−1)2 (6.3)

In �gure 6.7 an example image for �ow vectors detected with this method is shown. It

Figure 6.7: Flow vectors detected with Lucas and Kanade and pyramid images.

can be seen, that every car in the image contains a number of �ow vectors, but due
to the fact that the images are taken out of a moving car, not-self-moving objects like
lane-markings, guardrails or side posts also have �ow vectors. A decision has to be made
which �ow vectors actually belong to a car or other moving object to get an estimation
of the number of cars and their positions in the currently viewed scene. Furthermore, the
vectors of none-moving objects should be eliminated. A solution for these problems will
be presented in the upcoming section.

6.2.2 Optical Flow Clustering

All vectors arising from motion of the same car occur in a small region and have similar
value of magnitude. The absolute value of the angle is similar too, but depending on

1) atan2 is de�ned using the standard arctan function, whose range is (−π/2, π/2), as follows:

atan2(y, x) =

arctan(yx) x > 0
π + arctan(yx) y ≥ 0, x < 0
−π + arctan(yx) y < 0, x < 0
π
2 y > 0, x = 0
−π2 y < 0, x = 0
unde�ned y = 0, x = 0

(6.2)

50 6 DRIVER ASSISTANCE MODULES

the object's motion the angle's sign can be di�erent. These facts can be used to group
di�erent vectors and using their resulting mean x/y-coordinates as an initial guess for
the presence of a car at this position. The grouping is done in two stages and again, as
for the lane-marking detection, the k-means clustering algorithm is used. Before starting
the two-stage clustering, �ow vectors with a very large magnitude can be deleted as they
usually occur due to false similarity detection and thus are no real �ow vectors. By
limiting the magnitude, �ow vectors of static objects near to the camera will also be
deleted as their magnitude is large as well.

The �rst stage performs a k-means clustering in the magnitude/angle-space on all �ow
vectors remaining after the limitation of magnitudes. As the number k for the clustering
again is not known, the procedure as shown in picture 6.5 and explained in section 6.1.2
is used, but performed in di�erent spaces. This �rst grouping is done, because as already
mentioned above, �ow vectors from the same object have similar magnitude and angle.
Thus a grouping concerning these two attributes is a reasonable but not su�cient step
for object position estimation. A second grouping on each cluster obtained from the
�rst stage now performed in the x/y-space is required as objects at di�erent positions
can have similar �ow vectors with respect to angle and magnitude and therefore can not
be distinguished by only concerning these two attributes. The same kind of clustering
procedure as in the �rst stage done in x/y-space plus an additional criteria is applied.
This criteria helps to �nd optimal clusters concerning the cluster's variation in position of
the �ow vectors. The variation of C1 is compared with the respective variations of the two
clusters C11 and C12 created with k-means out of cluster C1. If the mean variation of C11

and C12 is bigger than C1's, and the variation of C1 is smaller than a threshold θacc2, while
at the same time the number of points of C1 lies in the interval Iacc = [lowacc, highacc],
C1 is stored as a �nal cluster, otherwise C11 and C12 and clusters to be further processed.
The �nal clusters are represented by the mean of magnitude, angle and position of all
�ow vectors assigned to them.

After having clustered the �ow vectors, a similar credit system as presented for the
lane-marking detection is applied to the clusters. Similarity between old stored clusters
and new detected ones needed for the credit system is measured by comparing the above
mentioned parameters. As the position of the cars can change more rapidly than the
lane-marking's, the maximum credit value is limited to 10 and comparison between new
and already stored clusters is done regarding position, angle and magnitude. All other
steps of applying credits and removing clusters is done exactly as presented in section
6.1.3. An example result for the clustering of �ow vectors is shown in �gure 6.8 where a
dot is drawn at the position of each cluster. The resulting clusters are the car candidates
for the methods described in the next section.

6.2 CAR DETECTION AND TRACKING 51

Figure 6.8: Resulting position of clustered flow vectors represented by dots.

6.2.3 Car Verification

As picture 6.8 shows, the clustered �ow points are a good estimation for the presence and
position of cars. However, the clusters not only coincide with cars and sometimes there
exist more than one cluster for each car. Furthermore, only a x/y-position, which is not
necessarily the cars' rearview center point, is known and no information about the size of
the cars exist. Thus the following two problems have to be solved

1. Separating cars from arbitrary objects.

2. Obtaining size information and the rearview center point.

The chosen solution is comparable to the method presented by Betke et. al in [48] who
use shape information and a template matching technique.

As cars' rearviews in an image appear as rectangular objects with a certain ratio, the �rst
step for the veri�cation of car candidates is to look for rectangular objects in the area
around the clustered �ow vectors, which is done by evaluating horizontal and vertical
edges. Therefore, a median �lter is applied to the image to eliminate unwanted noise
followed by two sobel-�lters extracting the vertical and horizontal edges which are stored
separately. As the result of a sobel-�lter is the gradient of the image intensity at each
point and here only the appearance of strong edges is needed and not the gradient value,
a threshold is applied to each sobel-�ltered image to achieve binary images. Since the
horizontal edges are normally more pronounced (higher gradient value) than the vertical
ones, di�erent thresholds are recommended otherwise the vertical ones would be "thresh-
olded away". The resulting binary images are called IV for the vertical edges and IH
for the horizontal edges respectively. For evaluating the presence of rectangular objects
and calculating their size and position, the horizontal projection vector w and vertical
projection vector v are used.

52 6 DRIVER ASSISTANCE MODULES

Let H be any rectangular search region in IH with size m × n and V any rectangular
search region of IV of the same size as H and the same coordinates, then v and w are
calculated by:

v = (v1, . . . , vn) = (
m∑

i=1

H(xi, y1), . . . ,
m∑

i=1

H(xi, yn))

w = (w1, . . . , wm) = (
n∑

i=1

V(x1, yi), . . . ,
n∑

i=1

V(xm, yi)) (6.4)

A large projection value of vector v at position j indicates pronounced horizontal edges
along H(x, yj). An example image showing a horizontal edge map and the resulting
vertical projection vector can be seen in �gure 6.9. A large projection value of vector

(a) (b) (c)

Figure 6.9: Image (a) shows the image to be processed. (b) shows the resulting horizontal
edge map H of image (a) created by applying a sobel edge detector for horizon-
tal edges followed by a threshold. In (c) the resulting vertical projection vector
v is shown on the right side

w at position j indicates pronounced vertical edges along V(xj, y). An example image
showing a vertical edge map and the resulting horizontal projection vector can be seen in
�gure 6.10. A projection value is assumed to be large, if it is bigger than half the value
of the largest projection coe�cient of its respective projection vector. For v and w the
thresholds θv and θw are formulated as

θv = 0.5 max{vi|1 ≤ i ≤ n}
θw = 0.5 max{wi|1 ≤ i ≤ m} (6.5)

Searching for the rectangle's sides is performed as follows. The horizontal projection
vector is searched, starting from the beginning until an entry is detected that lies above
θw. The entry's position or index is assumed to be the x-coordinate of the left side xL

of the potential object. The x-coordinate of the right side xR is detected by searching w
from the other direction starting from the end until an entry is detected that lies above
θw and assigning its index to xR. The same search is performed on v to detect the top
and bottom sides' y-coordinates of the object. The bottom coordinate yB is found by

6.2 CAR DETECTION AND TRACKING 53

(a) (b) (c)

Figure 6.10: Image (a) shows the image to be processed. (b) shows the resulting vertical
edge map V of image (a) created by applying a sobel edge detector for vertical
edges followed by a threshold. In (c) the resulting horizontal projection vector
w is shown on bottom side.

starting at the beginning of v until an entry is found, bigger than θv and the top yT by
starting from the end of v. The wanted rectangle, representing a potential object, can
then be described by its upper-left-coordinate ul = [xL, yT]T and lower-right-coordinate
lr = [xR, yB]T .

In the presented case of car detection, the search regions H and V are placed in the
way that their center points coincide with the position of the car candidate candi to be
evaluated. Their width wsearch and height hsearch are initially chosen to wsearch = hwstart

and hsearch = hwstart meaning the search regions are square. The rectangular search is
performed in this regions, and an object is considered a potential car if the aspect ratio
ar = (xR − xL)/(yT − yB) of the detected rectangle's width and height lies between 0.7
and 1.3.

Unfortunately rectangular objects are not necessarily cars but can also be objects like
tra�c signs or buildings or even only a cluttered region containing strong edges is assumed
to be a rectangular object. This is the reason why the information of shape alone is not
su�cient for the detection of cars. To reduce the number of false positives, the detected
rectangular region is correlated with a car template. The car template is chosen from
a set of existing images, showing the rear of cars, by comparing the mean grey value of
the rectangular region with the mean grey value of each template. The template with
the smallest di�erence in mean grey value is selected. Depending on the similarity of
template and the detected region, a car is recognized or rejected.

The similarity is measured by calculating the normalized sample correlation coe�cient r
as presented in section 5.4.3. If r is higher than 0.3 the rectangular region is assumed to
be a car, the size and position of the rectangle is stored and all candidate cars lying in
the rectangle's region are deleted, else the search for a rectangle is repeated with a bigger

54 6 DRIVER ASSISTANCE MODULES

size for the search region hsearch = wsearch = wsearch + δ but around the same point. The
procedure is repeated until either a car is detected or the search region's size exceeds a
limit wsearch = hsearch > szthresh without detecting a car. When all car candidates have
been processed in this way, the complete search is �nished. The whole algorithm can be
summarized in the following seven steps and will be called car-detector in the following:

1. Select a candidate car from the clustered �ow vectors, called candi. If no candidate
left, stop process, else set initial search window size wsearch = hsearch = hwstart

2. Extract square region H, the horizontal edge map from IH and V, the vertical edge
map from IV, with width wsearch, height hsearch and center point obtained from
candi

3. Calculate the projection vectors v and w for H and V plus the respective thresholds
θv and θw

4. Search along v and w for the left xL, right xR, top xT and bottom xT sides

5. Calculate aspect ratio ar = (xR−xL)/(yT −yB) of detected rectangle, if 0.7 ≤ ar ≤
1.3 go to next step, else go to step 7

6. Select appropriate car template and calculate r of detected rectangular region and
car template. If r > 0.4 store position and size of rectangle as parameters of detected
car, delete all car candidates lying in the rectangle and go to step 1, else continue
with the next step

7. Set search window size to wsearch = hsearch = wsearch + δ,
if wsearch = hsearch > szthresh. Delete candi and go to step one, else go to step 2

6.2.4 Car Tracking

The previous section described a method to detect cars by evaluating shape information
in a region around an estimated position obtained from the optical �ow clustering in a
single frame and the region's similarity to a template image. However, the immediate
recognition of a car from one frame is very di�cult and only works in presence of enough
brightness-contrast between vehicles and background as strong edges are required. There-
fore a tracking system is introduced to redetect cars recognized in previous frames and to
update their positions and size information. Furthermore, the tracking process is used to
�lter out remaining false positives.

For each car detected by the car-detector a separate tracking process is created which
initially stores a tracking-window represented by the parameters size and position of the
detected rectangle. A template containing the part of the image that coincides with the
detected rectangular region, in simpler words that shows the detected car, is stored as
well. Furthermore, bonus and malus points are assigned during the tracking process. The
malus points are initially set to 0 whereas the initial bonus points depend on the aspect

6.2 CAR DETECTION AND TRACKING 55

ratio, the NSC-coe�cient and the number of clustered �ow vectors lying in the region
of the tracking-window. The nearer the aspect ratio ar is to 1, the more credits will be
assigned. The same applies for the NSC-coe�cient r. More �ow vectors in the detected
region denote a higher probability that a car is detected and therefore more credits are
added to the bonus points. If the accumulated bonus value is above a threshold and higher
than the malus value, it is decided that the tracked object is a car. For visualization
a rectangle will be drawn into the current frame by the tracking process, showing the
tracking-window. In each frame a re�ned search within the tracking-window is done by
�rst evaluating the edge maps to provide a new estimation of the outlines of the potential
car followed by correlating the stored template with the region obtained from the re�ned
search.

Due to low contrast between car and environment resulting in weak edges, or up and
down movement of the camera viewing the scene because of uneven pavement or large
movements of the tracked car, the aspect ratio can be out of the wanted range or not all
outlines can be detected. To deal with these problems, the tracking-window's position
has to be adjusted. If the aspect ratio is too high, meaning the detected width is much
larger than the height, a search in the vertical edge map is performed. The number of
edge-pixels in V lying in the region between the bottom border of the tracking-window
and the detected bottom border of the car are summed up and compared with the sum
of the pixel lying between the detected bottom border and top border of the tracking-
window. If the lower sum is signi�cantly higher, the tracking-window is shifted towards
the bottom until the detected top coincides with the old tracking-window's top. Oth-
erwise it is shifted towards the top until the detected bottom coincides with the old
tracking-window's bottom. Picture 6.11 shows a window shifted downwards.

Figure 6.11: Pictures showing a performed downshift [48]

If the aspect ratio is too low, meaning much larger detected height than width, a similar
procedure is performed on the horizontal edge map. The sum of edge-pixels in H lying
between the left border of the tracking-window and the left detected border is compared
with the sum of all pixels between left detected border and right tracking-window border.
The tracking-window is shifted to the right if the sum on the right is higher than the one
on the left, otherwise it is shifted to the left. An example image showing the left shift
procedure is shown in �gure 6.12.

56 6 DRIVER ASSISTANCE MODULES

Figure 6.12: In the first picture, due to bad contrast the vertical edge map (second picture)
shows weak edges. Because of this, the left and right side of the car are found
in the same position. The horizontal edge map shown in the third picture
shows significant horizontal edges to the left of the detected side. Thus, the
tracking-window is shifted to the left, shown in the fourth image.

The two searches and shifts are also performed if the aspect ratio is correct, but the new
detected width and hight are implausibly smaller than the old ones. After having shifted
the tracking-window, the new size and position of the detected car are stored and the part
of the image lying in the new tracking-window is correlated with the stored template.
As the stored template should exactly represent the redetected region, the threshold for
the calculated NSC-coe�cient to accept that the redetected region is a car, is double the
threshold for the initial detection, r > 0.6. If the car is redetected meaning r > 0.6 and
0.7 < ar < 1.3, credits are assigned to the bonus account depending on the values of r
and ar. If not, the tracking-window's size is expanded only once more and the whole
process described in this section is repeated. If still no car can be detected, a malus value
is assigned, also depending on r and ar. The farther these values are away from 1, the
higher are the assigned malus points. If the number of malus points is higher than the
number of bonus points, the tracking process is deleted and no car is assumed at this
position anymore. The process is also deleted if for a number of consecutive frames not
enough signi�cant edges can be detected within the tracking-window, although the bonus
rate may still be higher than the malus rate. This ensures that a process tracking a car
does not drift away and starts tracking something else. After having tracked a car for
10 consecutive frames, a new template will be created by storing the currently detected
region, but only if for this frame r < 0.7 is valid, in order to not delete a still very good
working template.

To estimate the direction the tracked car is moving in, the tracking process stores the
parameters of its tracking-window from �ve consecutive frames. By calculating the mean
of the last �ve x-coordinates and comparing it with the current one, an estimation whether
the tracked car moves to the left, right or just goes straight ahead with reference to the car
viewing the scene is made. The tracked car's movement in x-direction xdir is calculated
by

xdir = xt − (
5∑

i=1

xt−i)/5 (6.6)

where xt denotes the current x-coordinate of the tracking-window's center point, and xt−i

6.3 DISTANCE ESTIMATION BY STEREO VISION 57

the x-coordinate obtained from the frame i-frames before. A large positive value of xdir
means the tracked car moves to the right, a large negative one it moves to the left. The
higher the absolute value of xdir the larger is the tracked car's movement. An arrow
to visualize the tracked car's moving direction is drawn into the tracking-window. The
longer the arrow, the stronger the movement.

To get a rough estimation of the tracked car's movement in z-direction, meaning whether
the car comes nearer to the car viewing the scene or goes farther away, the tracking-
window's size is taken into concern. The tracked car's movement into z-direction zdir is
estimated by

zdir = areat − (
5∑

i=1

areat−i)/5 (6.7)

where areat = widtht ∗ heightt meaning the surface area of the tracking-window at the
current frame and areat−i the tracking-window's surface area i-frames before. If zdir is
positive, meaning the tracking-window is getting larger, the tracked car is coming nearer
to the car viewing the scene whereas a negative value of zdir signi�es that the tracked car
is going farther away. As a car coming nearer to the one viewing the scene poses a certain
threat, the tracking-window is marked red, otherwise it is drawn green. An example result
of the whole car-detection-tracking-process is shown in �gure 6.13.

Figure 6.13: Result of the presented car-detection-tracking-process

6.3 Distance Estimation by Stereo Vision

A car-detection and -tracking algorithm has been presented in the previous section. A
method for estimating the movement of tracked cars in z-direction by evaluating the
change of the detected car's size has been recommended. However, this is only a very
rough approximation and does not yield an estimation of distance in meters, but only a
tendency whether the tracked car comes closer or goes farther away. Furthermore, the
tracking-window's size can di�er a lot, not only from the car's real movement but also

58 6 DRIVER ASSISTANCE MODULES

due to false edge detection. As the distance information is very important for driver
assistance, for example to warn the driver of possible collision, a second camera is used.
By applying stereo algorithms, a better estimation of the tracked car's movement in
z-direction and an estimation of the distance in meter can be obtained. The cars de-
tected with the algorithm presented above are tried to be detected in the image of the
second camera with stereo matching techniques. By calculating the disparities between
the tracked cars in the �rst image and their matches in the second image, the distance
between the camera viewing the scene and the tracked cars can be estimated.

In order to enhance the stereo matching, the epipolar geometry as presented in ?? is used.
The methods presented in the current section deal with a set of uncalibrated cameras and
therefore an unknown Fundamental Matrix F. Thus the Fundamental Matrix between
the two cameras has to be calculated at �rst, as it is needed for the epipolar geometry.
Once the Fundamental Matrix is obtained, the camera images will be recti�ed and the
epipolar geometry can be used to simplify and speed up the correspondence search.

6.3.1 Calculation of Fundamental Matrix and Image Rectification

Having a set of two cameras, the easiest way to calculate their Fundamental Matrix is
by knowing their intrinsic camera parameters meaning to have calibrated cameras. For
non-calibrated cameras, a robust and correct calculation of the Fundamental Matrix is
much more di�cult and challenging. Here, a modi�ed version of the RANSAC-algorithm
as described in ?? is applied.

To use the RANSAC-algorithm, or any other algorithm for calculating F, the �rst step
is to extract a set of points from image one and their corresponding points in image two.
The more accurate the corresponding points are, the better the �nal Fundamental Matrix
will be. Again, as for the calculation of the optical �ow, points with high eigenvalues
are chosen from image one as they are assumed to be detected more easily in the second
image. For calculating their corresponding points, the pyramid implementation of the
Lukas and Kanade algorithm as used for calculating the optical �ow in section 6.2.1 is
chosen. The number of points whose correspondences are searched should be very large
(> 5000), as the probability of having correct matching pairs and the number of them
rises with the number of points. Furthermore, as points are extracted only by taking into
concern their eigenvalue and not looking at their actual position in the image, a high
number of points have to be extracted to not only get points in the �rst image that are
not even part of the second image due to the di�erent position of the second camera.

After having extracted the corresponding points, RANSAC is applied and a �rst Funda-
mental Matrix F1 is calculated. The extracted points are then divided into outliers and
inliers by calculating the distance between their corresponding point and their respective
epipolar line calculated with F1. A distance larger than one pixel labels an outlier,

6.3 DISTANCE ESTIMATION BY STEREO VISION 59

otherwise the point is an inlier. Picture 6.15 shows an example stereo pair, where inliers
are marked green and outliers marked red. The inliers and F1 are stored, as well as
the percentage of inliers that F1 created, called µ1. The value of µ1 is a kind of quality
measurement for F1, the more inliers, the higher µ1 and the better F1. The stored matrix
is called Ffinal with its respective µfinal in the following.

In the next step, after the cameras have grabbed a new pair of images, again correspond-
ing points will be extracted in the same way as described above and a new Fundamental
Matrix F2 will be calculated. Instead of only using the new extracted points for the
calculation of the Fundamental Matrix, the points stored in the previous steps will be
used too, as they are assumed to be good pairs, which raise the probability of obtaining
the correct Fundamental Matrix. Image 6.14 shows a pair of images taken by a stereo
camera set, where the points used for RANSAC are marked with a cross. Already stored
points, detected again by the correspondence search, are only used once in the same
Fundamental Matrix calculation. All points used for calculating F2 are again divided into
in- and outliers and the percentage of inliers µ2 is calculated. Newly detected inliers are
added to the ones already stored. If µ2 is larger than µfinal, Ffinal = F2 and µfinal = µ2.
Otherwise F2 will not be stored and Ffinal still is assumed to be the correct Fundamental
Matrix. For each new pair of images, this procedure is repeated until for 30 consecutive
frames the Fundamental Matrix Ffinal has not changed, in other words it has not im-
proved anymore, and the �nal Fundamental Matrix is found.

After having obtained the Fundamental Matrix for the current camera set, its images
have to be recti�ed. The �rst step for the method used here is to �nd all scanlines in the
images. A scanline contains all points lying on the same epipolar line, calculated with
the Fundamental Matrix. Once all scanlines are obtained for both images, the images
are recti�ed by plotting for both images all points of their respective scanline i into line
i in other words to make the scanlines horizontal. The recti�ed images' heights are equal
to the number of scanlines and the widths are equal to the longest scanline. Figure 6.16
shows a set of recti�ed stereo images using the presented methods.

After having recti�ed images, the correspondence search followed by the estimation of
distance can be done and will be described in the next section.

6.3.2 Stereo Matching and Distance Estimation

As explained in section 5.3 once the images are recti�ed the correspondence search for a
known point in image one p1 = [x1, y1]T is performed on a horizontal line in image two
with the same y-coordinate as p1. This raises the accuracy of detecting the correct match
while at the same time reduces the calculation time enormously. For giving an example
of how much computation time is saved, the correspondence search is compared, once
using the epipolar constraint and once not, by calculating the total amount of operations

60 6 DRIVER ASSISTANCE MODULES

Figure 6.14: Example set of stereo images taken in the mobile robot lab at UWA with a set
of uncalibrated webcams. The crosses mark corresponding points used for
RANSAC, blue crosses are points detected in previous frames whereas the
yellow ones are detected points from the current frames.

Figure 6.15: Same set of images as in 6.14; here, the green crosses mark points that have
been declared to be inliers, red crosses are outliers.

Figure 6.16: Rectification result of 6.14 with Fundamental Matrix calculated with RANSAC
and the points from 6.14.

6.3 DISTANCE ESTIMATION BY STEREO VISION 61

needed without concerning their respective execution time.

For measuring the similarity in this example, a search window of size n× n with uneven
n and SAD as described in section 5.4.1 is used. SAD needs n2 subtractions, n2 absolute
value operations and n2 − 1 additions, which yields in total 3n2 − 1 operations. The
images are of size w × h. The total amount of points for which the similarity can be
measured is (w− (n− 1)) · (h− (n− 1)) as boarder points have to be cut out because the
search window does not �t for them. The total amount of operations for searching the
whole image is (w− (n− 1))2 · (h− (n− 1)2 · (3n2− 1)) and the number of operations by
taking into concern the epipolar constraint is (w − (n − 1)) · (h − (n − 1)2 · (3n2 − 1)).
Table 6.1 shows a comparison of the number of operations for di�erent search window
sizes on an image of size 320× 240.

window size n 3 5 7 9
number of operations full search 1.48e11 4.11e11 7.88e11 1.27e12

number of operations using epipolar constraint 4.68e8 1.30e9 2.51e9 4.06e9

Table 6.1: Comparison of number of operations needed to perform SAD with different
search window sizes for full window search and search along rectified epipolar
lines for images of size 320× 240.

The tremendous reduction of operations, and therefore the justi�cation for using the
epipolar constraint can be clearly seen from table 6.1. A further reduction of operations
can be achieved by not searching correspondences along the full epipolar line but only
along a fraction of it, as the maximum possible displacement is limited by the camera
parameters. But still calculating a complete depth map needs too many operations to
be performed in real time to estimate distances to every obstacle. Thus, for the task of
�nding distances to other cars, only the disparities d of the points lying in the tracking-
window of the tracked cars are calculated for the driving assistance system, with equation
5.21.

As all points lying in the same tracking-window are part of the same object, they should
result in nearly the same distance and therefore redundant information. Considering this,
it would be enough to take only the center point of the tracking-window and calculate its
disparity for getting a distance estimation, but as the detection of correspondences can
return wrong results more points should be used to get a robust estimation. Here points
with high eigenvalues are extracted from the tracking-window and their disparity and
distance are calculated. All these distances are then compared with their resulting median
and distances di�ering to much from the median are rejected, to delete large outliers.
The tracked car's distance is assumed to be the average of all remaining distances. The
question that has not been answered yet is how to actually calculate the distance from a
known disparity.

62 6 DRIVER ASSISTANCE MODULES

Image 6.17 shows a set of two axes-parallel cameras with same known focal length f and
known baseline length B = B1 + B2. The calculation of the distance D of a 3D world
point M that creates the two corresponding points p1 = [x1, y]T and p2 = [x2, y]T , in the
cameras c1 and c2 respectively, is derived by using the similar triangles theorem (Thales).

D

B1

=
f

x1

D

B2

=
f

x2

(6.8)

By summing up the two equations of 6.8, and using that x1 and x2 lie on di�erent sides of

c1 c2

B

D

f f

x1 x2

M

B1 B2

Figure 6.17: Similar triangles theorem (Thales)

their origin, meaning they have di�erent signs, the equation for calculating the distance
D can be derived and is shown in 6.9.

2D

B1 +B2

=
2f

x2 + (−x1)
⇒ D = f

B

x2 − x1

= f
B

d
(6.9)

A disparity d of 0 means the 3D world point lies at in�nity. This shows that an object
at in�nity appears at the same place on both image planes. Practically, the camera
resolution that is the pixel width will limit the minimum measurable disparity, that is
the maximum distance. The minimum measurable distance is given by the maximum
disparity which is equal to the image's width. The focal length and the disparity must
have the same unit, either meter or pixel are suggested. B should be given in meter so
the resulting distance will have the same unit.

6.3 DISTANCE ESTIMATION BY STEREO VISION 63

Equation 6.9 is only valid for axes-parallel stereo camera sets, but still can be applied
for "nearly" axes-parallel cameras, meaning these cameras have only a small rotation
between their optical axes, whose images are recti�ed. For the wanted task, the distance
calculated with 6.9 is still accurate enough to get a good impression whether a tracked
car moves farther away from the car viewing the scene or comes closer, even if it is not
100% correct. Thus, this method can be used for driver assistance to generate warnings
of cars coming too close. The real distance can only be calculated correctly, in the case
of none axes-parallel cameras, if both extrinsic and intrinsic parameters are known. The
distance is then calculated by a triangulation method that will not be explained here but
for further readings refer to [49].

7 Results

This chapter evaluates the results obtained by applying the algorithms presented in the
previous chapters to a sample set of road scene images. A descriptive way is chosen to
formulate the accuracy of these algorithms and their respective performances are measured
concerning execution time. They have been tested on a standard computer with 1024MB
RAM and a 1.7GHz Intel Mobile Centrino Processor running Windows XP Professional.
As all algorithms have been executed on ImprovCV, there is always an o�set in total
execution time of about 30ms needed, caused by the framework for grabbing frames,
displaying on the screen or in the preview window and transferring data between �lters.

7.1 Accuracy

Accuracy of image processing algorithms is often di�cult to measure and to formulate in
numbers which makes it hard to compare di�erent ideas solving the same problem. Fur-
thermore, most existing algorithms perform better or worse under di�erent circumstances
like weather- or road-conditions. This section tries to describe the accuracy of the lane
detection, vehicle detection and stereo algorithms.

7.1.1 Lane Detector

The lane detector has been tested on a number of road scenes di�ering in the number
of lanes and the amount of tra�c. It worked very well for both solid lane-markings
and dashed ones. After a short initialization phase of 5 − 10 frames, the outer highway
boundaries and the lane the camera-quipped car is traveling in, have been detected in
each case. Example detection results for four di�erent road scenes are shown in �gure
7.1. The graphics 7.8 (c) and (d) show the number of detected lanes in each frame of the
two example videos corresponding to 7.1 (a) and 7.1 (b). 7.8 (c) quotes that most of the
time �ve out of six lane-markings have been detected, which is good enough as both the
important two outer highway boundaries and the ones of the traveled lane have always
been detected. In 7.8 (c) it can be seen, that one lane-marking more than actually present
has been detected in several frames, originated by a guardrail not close enough to the
real outer lane-marking to be clustered. Furthermore the above mentioned initialization
phase until the important markings are detected becomes apparent.

64

7.1 ACCURACY 65

(a) (b)

(c) (d)

Figure 7.1: Result of lane detection for four different road scenes

The absolute value of the slope representing the detected outer highway boundary lane-
markings is often smaller than the real slope. This is due to the fact that guardrails
with a smaller slope than the boundary markings are also detected as lines close to the
outer boundary markings and combined to the same resulting marking. The detection
algorithm combines close lines to a single one by calculating the mean line parameters of
all combined lines which then results in the di�erent slope.

For edge detection at the stage of image preprocessing as described in ??, a canny �lter
has been applied. Depending on the camera's quality, weather conditions or the presence
of noise, the �lter parameters have to be adjusted by inspection. Di�erent �lter param-
eters result in completely di�erent images and e�ect both execution time and accuracy.
The more cluttered the output the lower the accuracy and the higher the execution time.
A tradeo� between noise reduction and strong edges has to be found. The same example
image, canny �ltered with di�erent parameters is given in picture 7.2.

(a) Wanted result, good to process (b) Not wanted result, bad to process

Figure 7.2: Canny filter with different parameters applied to same image

66 7 RESULTS

7.1.2 Vehicle Detection and Tracking

To evaluate the vehicle detection and tracking system introduced in chapter 6 images
taken by a video camera from a moving car on German highways have been used. The
images show very di�erent types of cars from sports cars over normal cars to vans and
trucks. The extraction of candidate cars via optical �ow and the k-means cluster method
works very well and yields one candidate position for nearly every present car, surprisingly
even for distant cars producing only little motion. Also the rectangle search provides
satisfying information, in presence of good contrast between cars and background and a
good reduction of car candidates. As false positives still exist after the �rst two steps,
a correlation technique with prede�ned car templates is applied, as described in 6. A
good set of car templates which ideally represents all possible cars is required from which
at each matching step one has to be chosen, which unfortunately is a weakness of the
detection system. Furthermore, a threshold has to be de�ned if the resulting correlation
coe�cient is high enough to assume a car is detected or not. Is this threshold too low,
too many false positives occur, is it too high, too many real cars are rejected. Once a
car is detected, the correlation method with the respectively created template to track it
in consecutive frames performs good. The presented position update concerning strong
edges, further increases the tracker's robustness.

The whole system was able to detect in several test sequences up to six real cars at the
same time 7.3 (a), and could even distinguish close cars which also can be seen in 7.3 (a).
After an initialization period some cars could be tracked during the entire duration of the
available video sequences, particularly cars driving directly in front of the one with the
camera.

(a) Six cars detected at same time (b) False detection due to tra�c sign

(c) Facing sides of 2 cars detected as one (d) Only small part of car detected

Figure 7.3: Four results of the vehicle detector and tracker

7.1 ACCURACY 67

Problems of false detections mainly occur due to other rectangular objects like tra�c
signs (image 7.3 (b)) or buildings on the side of the road or very cluttered areas. To
cope with this problem, the car-detector could be combined with the lane detector, and
everything detected as a car outside the outer lane-markings could be rejected. Another
kind of false detection or false positioning of the tracking-window could arise if two cars
are traveling too close to each other because their �ow vectors will be clustered together,
and the two sides facing each other will be detected as a rectangle 7.3 (c). In some cases
the tracking-window does not cover the whole car, but only parts of a it, see image 7.3 (d).

7.1.3 Stereo Procedure

In chapter 5, three di�erent methods for analyzing stereo images in order to �nd correspon-
dences have been presented. One of these with a certain search window size, performing
fast and accurate enough, has to be chosen to generate the distance estimation of detected
cars. To evaluate and compare the quality of the three di�erent correspondence analysis
methods SAD, SSD and NSC and their respective execution times for di�erent search
window sizes (see section 7.2), a test stereo image set from the University of Tsukuba
seen in �gure 7.4 has been used.
Both SAD and SSD perform comparably well concerning the quality of the resulting

(a) Left stereo image (b) Right stereo image

Figure 7.4: Stereo test image set from the University of Tsukuba

depth map, independent from the chosen search window size, whereas NSC performs
worse with lots of false detections. A comparison of the resulting depth map for the three
methods with a search window size of 7× 7 pixels applied on the test images is shown in
picture 7.5.

The bigger the search window size is chosen, the less false detections and ambiguities occur
and the smoother the resulting depth map. However, as the section about execution time
will show, the needed creation time rises linear with a bigger window size. A compromise

68 7 RESULTS

(a) SAD 7× 7 (b) SSD 7× 7 (c) NSC 7× 7

Figure 7.5: Three depth maps of Tsukuba test image for three different methods with same
window size

has to be found between high accuracy and low execution time. To visualize how depths
maps change depending on the used window size created with the same analyzing method,
three depths maps created with SAD and di�erent window sizes are shown in image 7.6.
It can be seen, that a larger window size yields a smoother depth map (not so many white
dots), but it also smears out edges where neighbor pixels would have a large di�erence of
disparity.

(a) Window size 3× 3 (b) Window size 5× 5 (c) Window size 9× 9

Figure 7.6: Three depth maps of Tsukuba test image for SAD with different sized search
windows

As a window size of 7 × 7 combined with SAD already results in a good and accurate
enough depths map, it is chosen for the correspondence analysis to estimate distances to
detected cars. The distance estimation by using the known distance between the two stereo
cameras, their focal length and the calculated disparity of points representing detected
cars worked well for the used test sequences. As no groundtruth data was available, the
obtained distance information could not be compared to the real data but at least cars
that are far away result in bigger distance then near cars and the results appear to be
quite accurate as �gure 7.7 shows.

7.2 EXECUTION TIME 69

(a) (b)

Figure 7.7: Two example pictures for estimated distances to cars, plotted on the respective
cars rear view.

7.2 Execution Time

Apart from accuracy, execution time is a very important criteria to evaluate the perfor-
mance of an implemented algorithm. The most accurate approach is useless for a real
time task like driver assistance when it needs too much calculation time. At leat every 0.2
seconds a new result should be available from the algorithm, or in other words 5 results a
second to provide the driver with su�cient information. This section will show how the
above evaluated algorithms perform concerning execution time.

7.2.1 Lane Detector

The lane detector has been evaluated on several videos and always needed similar exe-
cution time. Here, two samples are presented, one with six real present lane-markings
and a resolution of 720x480 pixels called V 1 (see �gure above 7.1 (a)) and the other
with three present lane-markings (above 7.1 (b)) and resolution 640x480 called V 2. The
resulting execution times for both road scenes are shown in �gure 7.8. Not only the enire
execution time from grabbing the frame until having detected lane-markings is evaluated,
but also all intermediate steps which are grey-scale �ltering, image clipping, canny �lter-
ing, Hough Transform and �nally line clustering and veri�cation step. Furthermore, for
each processed frame the number of detected lane-markings is given to provide informa-
tion about possible in�uence of the number of detected lanes on the actual execution time.

It can be seen that the whole algorithmic execution time in both cases is about 0.1 seconds
which is satisfying performance and fast enough to use it for drivers assistance. Moreover,
it has to be taken into account, that the framework needs about 0.03 seconds in each
step, which is about 30% of the whole execution time. This means running the algorithm
without the framework which eventually would be the case for a driver assistance system
would result in an even higher information rate.

70 7 RESULTS

The calculation time for the video with the lower resolution V 2 is consequentially shorter
as less information has to be processed. As expected, the Hough Transform needs the
highest calculation time and depends the most on the di�erent image resolutions, followed
by the canny detection. The k-means clustering and lane veri�cation step only needs a
fraction of about one percent of the entire execution time and has the lowest impact
on the performance. This further means, that execution time is not directly a�ected by
the number of present lane-markings. The grey scaling and image clipping together also
in�uence the whole time negligible. A conclusion of the average total execution time,
intermediate steps execution time and the respective percentage of the whole can be seen
in table 7.1

mean Greyscale Clipping Canny Hough Cluster ImprovCV Total

time(s) V 1 0,0018 0,0021 0,0090 0,0587 0,0010 0,0260 0,0988
% of whole 1,85 2,15 9,21 59,40 1,02 26,37 100
time(s) V 2 0,0025 0,0030 0,0099 0,0425 0,0010 0,033 0,0922
% of whole 2,73 3,24 10,77 46,1 1,08 36,08 100

Table 7.1: Execution time regarding intermediate steps and resolution

7.2.2 Vehicle Detection and Tracking

From the available test sequences two example videos have been elected for execution
time evaluation. Their main di�erence is the number of present cars, where the �rst
shows more cars than the second. These two were chosen to provide information whether
execution time changes regarding the number of present cars. A similar procedure as for
the lane detector has been chosen to measure the execution time of the vehicle detection
and tracking system. The calculation time is evaluated separately of the whole procedure
and of all intermediate steps to show which parts have the highest in�uence on the entire
execution time. Furthermore, information about the number of candidate cars and de-
tected objects is given. The number of points for which the optical �ow is estimated has
been de�ned to 150 as more points only result in a higher execution time but no better
result.

As for the lane detector, the k-means clustering works very fast and has the lowest in�u-
ence on the execution time. The calculation of optical �ow and the veri�cation need the
highest amount of time. Optical �ow calculation takes longer, the more points have been
chosen. The more cars are detected, the larger the execution time of the veri�cation step
primarily due to the higher number of time-expensive correlations. Regarding the entire
algorithm's execution time, it performs fast enough even for a large number of detected
vehicles. Thus taking the provided information rate into concern the system is applicable
for a possible adoption to a driver assistance system.

7.2 EXECUTION TIME 71

Execution time of lane-marking detection with 6
real present lane-markings

0

0,05

0,1

0,15

0,2

1 26 51 76 101 126
frame number

ex
ec

ut
io

n
tim

es
(s

)

greyscale filter clip filter canny filter
hough transform line cluster total time

(a) Execution time of lane detection algorithm
for a road scene with 6 present lane-markings,
or 3 lanes

number of detected lane-markings with 6 present
ones

0
1
2
3
4
5
6
7

1 26 51 76 101 126

frame number

nu
m

be
r o

f d
et

ec
te

d
la

ne
-m

ar
ki

ng
s

number of detected lane-markings

(b) Number of detected lane-markings in each
frame with 6 present ones

Execution time of lane-marking detection with 3
real present lane-markings

0

0,05

0,1

0,15

0,2

1 51 101 151 201 251 301 351
frame number

ex
ec

ut
io

n
tim

e(
s)

greyscale filter clip filter canny filter
hough transform line cluster total time

(c) Execution time of lane detection algorithm
for a road scene with 3 present lane-markings,
or 2 lanes

number of detected lane-markings with 3 present
ones

0

1

2

3

4

5

6

1 51 101 151 201 251 301 351
frame number

nu
m

be
r o

f d
et

ec
te

d
la

ne
-m

ar
ki

ng
s

number of detected lane-markings

(d) Number of detected lane-markings in each
frame with 3 present ones

Figure 7.8: Execution time and detection rate of lane detection for two different road scenes

7.2.3 Stereo Procedure

As mentioned above, for choosing the best correspondence analysis method, not only
accuracy plays an important role but for applying it to a driver assistance system which
eventually should provide the driver with a high information rate, execution time is
crucial. Thus an evaluation of the three presented methods SAD, SSD and NSC with �ve
di�erent search window sizes applied on the Tsukuba test stereo image set to create a full
depth map has been performed. It was performed without any further reduction of the
search area, which would have resulted in overall lower execution times but not a change
of the wanted tendency. The resulting execution times for each depth map creation can
be seen in table 7.2.

To be mentioned is the high computational expense for calculating complete depth maps,
independent from the method which has been used, as the fastest method took over 15

72 7 RESULTS

Window Size SAD SSD NSC

3× 3 15,21s 23,48s 31,79s
5× 5 17,05s 25,58s 34,13s
7× 7 19,77s 27,68s 38,89s
9× 9 21,74s 31,46s 44,67s

11× 11 25,83s 38,41s 51,52s

Table 7.2: Calculation times for creating complete depth map of the Tsukuba Image size
320× 288

seconds. As expected, the second remarkable fact is the increase of computation time
with growing search window size, because the number of calculations rises with larger
search windows. SAD's computation time increases nearly linear and slower than NSC's
and SSD's. Finally, SAD performs the fastest as it needs only half the computation time,
exactly in average 49, 5% of NSC's and 68% of SSD's computation time.

8 Conclusion and Future Work

A new open source image processing framework for automotive vision applications called
ImprovCV has been introduced. ImprovCV provides the user with a set of standard and
high-level image processing operators, based on the open source vision library OpenCV.
Both videos and live camera streams can be processed. An image processing procedure
containing any number of �lters can be easily created via a drag and drop method and
stored to reload it at a later time. During the procedure's execution, possible �lter
parameters can be adjusted to give the user a direct feedback. Furthermore, the user
can process several videos at a time to directly compare results and the program has
the capability of grabbing camera images synchronized for stereo vision applications. Its
component-based software design makes it very �exible, modular and extensible. Giving
developers the possibility of creating their own �lters, and including them easily as a DLL
into the framework yields a constant growth of available operators and makes ImprovCV
very powerful and promising.

Currently ImprovCV is only available for Microsoft Windows but as all used libraries
are cross-platform, a Version for Linux will follow. Further image processing operations
in the �eld of machine learning are provided by OpenCV and can extend the program's
ability. To directly utilize created procedures in an application without the overhead
arisen by the framework, an easy C-code generator is desirable. As image processing on
the Graphics Processing Unit (GPU) becomes more and more popular because it yields
a high acceleration of operator's execution, an interface for GPU-based image processing
�lters is reasonable and possible to do as C libraries for processing on GPU do already
exist, for example CUDA [50] and GPUCV [51].

For the purpose of driver assistance, and to show the ability of ImprovCV, three vision
algorithms for lane detection, vehicle detection and tracking and a stereo application with
the purpose of distance estimation have been presented and their respective results have
been evaluated.

The lane detector is based on a Probabilistic Hough Transform and a k-means cluster
method. It provides good information about the lane presently occupied by the vehicle
and the outer lane-markings of the highway. Depending on adjustable parameters, the
lane detection works well under several conditions, can detect both solid and dashed
lane-markings and can cope with lane-markings partially occluded by cars. Concerning
execution time, the algorithm performs fast enough for a driver assistance application as

73

74 8 CONCLUSION AND FUTURE WORK

it yields a framerate of about 10 − 12 frames per second. For further improvements a
way for automatically adopting parameters, depending on the current conditions could be
introduced. Adopting the algorithm to curved roads would result in further performance
enhancement.

Detection of an arbitrary number of cars without any initialization by a human operator
has been achieved by a system that uses motion information, obtained by extracted
optical �ow vectors further combined with a two stage k-means clustering, to get a �rst
position approximation of present cars, the car candidates. An edge-based search for
rectangular objects with a certain side ratio in the area of the resulting car candidates,
followed by a correlation of these objects with prede�ned car templates has been applied
to verify or reject the presence of a car in the searched area. Detected cars could be
tracked in consecutive frames by using a correlation method. Under cooperative cir-
cumstances, meaning high contrast between cars and environment, this approach works
robust and could detect up to six cars at the same time. The weak point of this system
is the veri�cation via prede�ned car templates as not all possible cars can be covered by
the template database and some "magic numbers" have to be found to accept or reject
car candidates. Satisfying performance concerning execution could be achieved as the
procedure works with a frame rate of about 10 fps. To improve the algorithm, the car
veri�cation could be executed by using methods from the area of machine learning like
Neural Networks or Support Vector Machines. Combining the car detection with the lane
detection to reject false positives which are not on the road, like road signs or buildings
would also lead to a further improvement.

A complete stereo vision approach has been introduced dealing with uncalibrated cam-
eras. By obtaining the Fundamental Matrix with the 8-Point algorithm and the RANSAC
method from assumed correspondences, the stereo images could be recti�ed. The fact that
corresponding points of recti�ed images lie on the same scanline has been used for corre-
spondence search. Three methods for �nding correspondences, Sum of Absolute Di�erence
(SAD), Sum of Squared Di�erence (SSD) and the Normalized Sample Correlation (NSC),
have been implemented and evaluated with di�erent search window sizes. SAD and SSD
performed similar whereas NSC yields the poorest results. Concerning execution time,
SAD is much faster than SSD and therefore the suggested method. A search window size
of 7 × 7 is supposed as it is a tradeo� between highest accuracy and lowest execution
time. The suggested methods used for �nding matches of cars in a stereo set detected
with the presented approach, and calculating the distance with the knowledge of dispar-
ity, the camera's focal length and the distance between the stereo cameras yields a good
�rst distance estimation. The distance calculation can be improved to be more accurate
by calibrating the cameras and using a triangulation method with the known intrinsic
and extrinsic parameters. Dynamic programming for correspondence search and a cross
validation of the detected matches could further improve this approach.

A Appendix

A.1 A small tutorial on ImprovCV

This tutorial gives a brief example of how to use ImprovCV. It shows how to get started
and explains the core features of the program. The following image shows the GUI plus
extra information added in red.

Figure A.1: Example Image showing how the plain GUI with additional information

Features:

• Loading a source

75

76 A APPENDIX

• Adding a �lter

• The warning window

• The preview window

• Saving and Loading

• Deleting �lter/s

• Stereo image processing

• Recording a video

A.1.1 Loading a source

There are 4 di�ernt ways of loading a video:

1. Click on File on the menubar and select the open menuitem, then simply brows the
video you want to load via the �le browser that will pop up

2. Click on the Open button on the button bar, rest is the same as above

3. Use shortcut ctrl+o, rest as above

4. Click on the Source item of the list Filter Groups, drag the Source listitem from
the list appearing in Filter list, drop it in the processing window. Click on the
occurring blue box called source, a checkmenubar occurs in the parameter area.
Select Connect Video, rest is the same as above. The next image shows this case.

If webcams are connected to your computer, there will be a checkbox called Connect
Camera. By selecting this, depending on the number of connected cameras, a new
list in this checkbox list will occur. Select the wanted camera.

After having loaded a source, the respective image will appear in the video window.

By default the video will be in loop mode, that means it will be repeated over and over
again. By clicking on the looping button, you can switch so the video will not be repeated
after it is �nished.

Furthermore, you can select the Frames Per Second by clicking on the fps button. A drop
down menu will occur from where you can select the number of frames per second you
want. Once a source is loaded, there will be two boxes on the processing window source
and video display. By clicking on the video display, the display window pops to the front.

A.1 A SMALL TUTORIAL ON IMPROVCV 77

Figure A.2: Example Image showing how to connect a source

A.1.2 Adding a filter

In this easy example, an edge detection should be performed. Thus, after having loaded
a source you choose the group Edge Filter from the �lter group list. All �lters being part
of this group will be shown in the list of the Filter window. In this example you chose
the sobel �lter for performing the edge detection. Just select it by clicking on it, hold the
mouse button and drop it on the position you wish to add it to. The result is shown in
the next image.

78 A APPENDIX

Figure A.3: Example Image showing how to connect a camera

A.1.3 The warning window

As the input image of the sobel �lter is an RGB image, and sobel requires a greyscale
image, no processing will be performed. Instead, a warning is given in the warning window
on the bottom of the GUI. The problem is solved by adding a greyscale �lter in front of
the sobel �lter from the Channel Filter group.

A.1.4 The preview window

Shown on the screen is always the output of the last �lter in the graph. If you want to
see the output of any other intermediate �lter, you can either just click on the respective
box and the output will be shown in the preview window plus in the headline over the
preview window the name of the selected �lter or you can add an extra display by adding
the �lter ExtraDisplay from the Data Flow group.

A.1 A SMALL TUTORIAL ON IMPROVCV 79

Figure A.4: Example Image showing a graph with one sobel filter

A.1.5 Saving and loading

Once the graph is created, you can store it in an XML �le to reuse it. Saving can be
performed in 3 di�erent ways: either by selecting the save menu item from File in the
menubar, with the shortcut ctrl+s or by using the save button from the button bar. Either
way, you just have to select the place where you want to store the xml �le via the �le
browser, then type in NAME.xml and click save.
For loading a �le you either load it by selecting load from the �le menu, click the load
button from the button bar or the shortcut ctrl+l. Each time, a �le browser will occur
where you select the wished xml �le. If you want to load a new �le into an already existing
graph, you have to click on source before you perform the steps mentioned above.

80 A APPENDIX

A.1.6 Deleting filter/s

If you wish to delete a �lter from the graph, select the �lter to be deleted by clicking on
the respective box, then you can either click the delete button on you keyboard or select
Remove from the Edit menu. If you want to remove all �lters, you click on the source
and hit ctrl+delete or select clear graph from Edit.

A.1.7 Stereo Image processing

As already described, you can process images from web cams as well. Furthermore, the
program has the ability of grabbing frames from more than one source and even better
if two webcams are connected, the grabbing will be synchronized so the frames provided
by the cameras are taken at the same time.

The stereo processing is performed by �rst connecting a source (video or camera) as
describe above, then you have to add the �lter called StereoSource shown in the next
image.

The boxes in the parameter area occur by clicking on the StereoSource box. If you
want to connect another video, you just select Connect Video and perform it in the
same way as described before. If you have two cameras connected to your computer,
you will have the possibility of choosing Connect Camera. If you select this, the second
camera will automatically be connected and synchronized with the �rst connected camera.

The output image from the already connected source is on the �rst image-output on the
left of StereoSource, and the new one on the second output. You can change this by
selecting swap output images as shown in the image above and you can swap them back
by selecting the respective checkbox.

A.1.8 Recording a video

A resulting output can be recorded and stored in an .avi �le. This is done by simply
clicking on the record button, the red button in the button bar. Once clicked on it a �le
browser opens and you can select where to store the video and how to name it. When
recording should be �nished, click on the pause button in the button bar.

A.2 FILTERS PROVIDED BY IMPROVCV 81

Figure A.5: Example Image for stereo processing

A.2 Filters provided by ImprovCV

• GreyScaleFilter

• ColorConvFilter; Converts images to a number of color spaces

• InvertFilter; Inverts each pixel

• ChannelSelector; separates channels from image

• Visualizer

• BlendFilter; Adds or subtracts two images

• Multiplexer

• ExtraDisplay

• Histogram

• Histoequ; Equalizes image's histogram

82 A APPENDIX

• HistoThresh; Thresholds or normalizes image's histograms

• Erosion

• Dilation

• Morphological

• Thinning

• MedianFilter

• GaussianFilter

• MinMaxMeanFilter

• CalcFundamentalMatrix

• CreateDepthMap

• CreateRedGreen

• FindOuterLanes; �nds the most outer lane-markings

• FillWithBlack; �lls everything with black beyond the detected outer lane-markings

• FlipFilter

• OpenCvDepth

• RectifyImages

• RedGreen; Splits am image into two images by selecting the red and green channel

• RoadprepFilter

• SteerFilter

• BinaryFilter

• VanishPointFilter

• LineDetectFilter

• LineClusterFilter

• SeperateCars

• SeperateStreets2

• StereoSource

• Tracker

• VerifyCars

• SeperateCars2

• VirtualCamera

A.2 FILTERS PROVIDED BY IMPROVCV 83

• OpticalFlowFilter

• OpticalFlowHsFilter

• HoughLinesFilter

• HoughCirclesFilter

• ClipFilter

• ClipXY

• PyrDownImage; Performs image down-sampling by 2

• PyrUpImage; Performs image up-sampling by 2

• SkyClip

Bibliography

[1] Margie Peden. World report on road tra�c injury prevention. Technical report,
WHO, 2004. 1

[2] Willie D. Jones. Building saver cars. IEEE Sprectrum, pages 82�85, 2002. 1

[3] University of Stanford. http://cs.stanford.edu/group/roadrunner/media.html. viii,
2

[4] Uwe Franke, Dariu Gavrila, Axel Gern, Ste�en Görzig, Reinhard Janssen, Frank
Paetzold, and Chrisitian Wöhler. From door to door - principles and applications
of computer vision for driver assistant systems. Technical report, Daimler Chrysler
AG, 2001. 2

[5] Micron. http://www.micron.com/applications/automotive/. viii, 3

[6] Intel Corporation. http://www.intel.com/technology/computing/opencv/. 4, 9

[7] Zehang Sun, George Bebis, and Ronald Miller. On-road vehicle detection: A review.
In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006. 5

[8] Frank Dellaert. Canss: A candidate selection and search algorithm to initialize car
tracking. Technical Report CMU-RI-TR-97-34, School of Computer Science Carnegie
Mellon University Pittsburgh, October 1997. 5

[9] F. Dellaert and C. Thorpe. Robust car tracking using kalman �ltering and bayesian
templates. In SPIE: Intelligent Transportation Systems, 1997. 5

[10] Zehang Sun, George Bebis, and Ronald Miller. Monocular pre-crash vehicle detec-
tion: Features and classi�ers. Technical report, Computer Vision Lab. Department
of Computer Science, University of Nevada, Reno e-Technology Department, Ford
Motor Company, Dearborn, MI, 2004. 5

[11] Jaesik Choi. Realtime on-road vehicle detection with optical �ows and haar-like fea-
ture detector. Technical report, Computer Science Department University of Illinois
at Urbana-Champaign Urbana, IL 61801, 2006. 6

[12] Joel C. McCall and Mohan M. Trivedi. An integrated, robust approach to lane
marking detection and lane tracking. In IEEE Intelligent Vehicle Symposium, 2004.
6

[13] Yue Wanga, Eam Khwang Teoha, and Dinggang Shenb. Lane detection and tracking
using b-snake. In Image and Vision Computing 22, 2004. 6

84

Bibliography 85

[14] Thomas Bräunl. http://robotics.ee.uwa.edu.au/improv/. UWA Robotics Lab. 7, 8

[15] Trolltech. http://trolltech.com/products/qt. 7, 9

[16] Konstantinos Konstantinides and John R. Rasure. The khoros software development
environment for image and signal processing. IEEE Transactions on Image Process-
ing, volume 3:pages 243�252, 1994. 7

[17] AccuSoft. http://www.accusoft.com/products/visiquest/. 7

[18] RoboRealm. http://www.roborealm.com/. 7

[19] The MathWorks. http://www.mathworks.com/products/image/
http://www.mathworks.com/products/viprocessing/. 7

[20] MVTec. http://www.mvtec.com/halcon/. 8

[21] Bill Spitzak et. al. http://www.�tk.org/. 9

[22] Julian Smart et. al. http://www.wxwidgets.org/. 9

[23] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian Thrun, and Gary R.
Bradski. Self-supervised monocular road detection in desert terrain. In Robotics:
Science and Systems, 2006. 10

[24] Lee Thomason. http://www.grinninglizard.com/tinyxml/. 10

[25] Xia Cai, Michael R. Lyu, Kam-Fai Wong, and Roy Ko. Component-based software
engineering: Technologies, development frameworks, and quality assurance schemes.
13

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside. Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesly, 1995. 13

[27] Bruce Eckel. Thinking in C++ 2nd edition Volume 2: Standard Libraries & Advanced
Topics, chapter 16, page 441. 1999. 14

[28] Dia Kharrat and Syed Salman Qadri. Self-registering plug-ins: An architecture for
extensible software. In Canadian Conference on Electrical and Computer Engineer-
ing, pages 1324�1327, 2005. 14

[29] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison Wesley Professional, 2001. 16

[30] Paul Hough. Method and means of recognizing complex patterns. U.S. Patent
3,069,654, 1962. 20

[31] Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect
lines and curves in pictures. Communications of the ACM, volume 15:pages 11�15,
January 1972. 21

[32] N. Kiryati, Y.Eldar, and A.M. Bruckstein. A probabilistic hough transform. In
Pattern Recognition, volume 24, pages 303�316, 1991. 22

86 Bibliography

[33] Berthold K.P. Horn and Brian G. Schunk. Determing optical �ow. 1980. 22, 24

[34] B. D. Lucas and T. Kanade. An iterative image registration technique with an ap-
plication to stereo vision. In International Joint Conference on Arti�cial Intelligence
(IJCAI81), pages 674�679, 1981. 25

[35] Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker.
description of the algorithm. 26

[36] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR'94), volume June, 1994. 26

[37] Frank Dellaert. The expectation maximization algorithm. Technical Report GIT-
GVU-02-20, College of Computing, Georgia Institute of Technology, February 2002.
28

[38] Ulrike von Luxburg. A tutorial on spectral clustering. Technical Report TR-149,
Max Planck Institute for Biological Cybernetics, August 2006. 28

[39] J. B. MacQueen, editor. Some Methods for Classi�cation and Analysis of Multivariate
Observations. California Press, 1967. 28

[40] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. In Nature, volume 293, September 1981. 32, 33

[41] Richard I. Hartley. In defense of the eight-point algorithm. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, volume 19, pages 580�593, June 1997. 35

[42] Zhengyou Zhang. Determining the epipolar geometry and its uncertainty: A review.
Technical Report RR-2927, INRIA, 1996. 35

[43] M. Fischler and R. Bolles. Random sampling consensus: A paradigm for model �tting
with application to image analysis and automated cartography. In Communications
of the ACM, volume 24, pages 381�395, 1981. 35

[44] Charles Loop and Zhengyou Zhang. Computing rectifying homographies for stereo
vision. Technical Report MSR-TR-99-21, Microsoft Research, 1999. 38

[45] A. Fusiello, E. Trucco, and A. Verri. Recti�cation with unconstrained stereo geom-
etry. In Proceedings of the British Machine Vision Conference. BMVC 1997, pages
400�409, September 1997. 38

[46] Marc Pollefeys, Reinhard Koch, and Luc J. Van Gool. A simple and e�cient recti�-
cation method for general motion. In ICCV (1), pages 496�501, 1999. 39

[47] R.A. Lane and N.A. Thacker. Stereo vision research: An algorithm survey, January
1996. 39

[48] Margrit Betke, Esin Haritaoglu, and Larry S. Davis. Multiple vehicle detection
and tracking in hard real time. Technical Report CS-TR-3667, Computer Vision
Laboratory, Center for Automation Research and Institute for Advanced Computer
Studies University of Maryland College Par, MD 20742-3275, 1996. ix, 51, 55

Bibliography 87

[49] David Forsyth and Jean Ponce. Computer Vision - A Modern Approach., chapter 13,
pages 355�360. Prentice Hall, 2003. 63

[50] Nvidia. http://developer.nvidia.com/object/cuda.html. 73

[51] Jean-Philippe Farrugia, Patrick Horain, Erwan Guehenneux, and Yannick Alusse.
https://picoforge.int-evry.fr/cgi-bin/twiki/view/gpucv/web/webhome. 73

	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivation
	Objectives
	Thesis Outline

	Related Work
	Literature Survey
	State of the Art Image Processing Tools

	Image Processing Framework ImprovCV
	Used Libraries
	General Description
	Software Design
	Abstract Pluggable Factory
	Communication Mechanism
	Graph Visualization and Management

	Feature Extraction and Clustering
	Hough Transform
	Standard Hough Transform
	Probabilistic Hough Transform

	Optical Flow
	Differential Techniques
	Area Matching Techniques

	Clustering
	Hierarchical Clustering
	Partitional Clustering

	Stereo Vision
	Epipolar Geometry
	Fundamental Matrix and Essential Matrix
	Eight-Point Algorithm
	Eight-Point Algorithm and RANSAC

	Image Rectification
	Correspondence Analysis
	Sum of Absolute Differences
	Sum of Squared Differences
	Normalized Sample Correlation

	Driver Assistance Modules
	Lane Detection
	Image Preprocessing
	Lane-Marking Detection
	Lane-Marking Verification

	Car Detection and Tracking
	Optical Flow Estimation
	Optical Flow Clustering
	Car Verification
	Car Tracking

	Distance Estimation by Stereo Vision
	Calculation of Fundamental Matrix and Image Rectification
	Stereo Matching and Distance Estimation

	Results
	Accuracy
	Lane Detector
	Vehicle Detection and Tracking
	Stereo Procedure

	Execution Time
	Lane Detector
	Vehicle Detection and Tracking
	Stereo Procedure

	Conclusion and Future Work
	Appendix
	A small tutorial on ImprovCV
	Loading a source
	Adding a filter
	The warning window
	The preview window
	Saving and loading
	Deleting filter/s
	Stereo Image processing
	Recording a video

	Filters provided by ImprovCV

	Bibliography

