
LEHRSTUHL F ÜR REALZE I T -COMPUTERSYSTEME

TECHNISCHE UNIVERS IT ÄT MÜNCHEN

UNIV. -PROF. DR. - ING. G. F ÄRBER

Graphics for a 3D Driving Simulator

Johannes Georg Brand

Bachelor Thesis

Graphics for a 3D Driving Simulator

Bachelor Thesis

Supervised by the Institute for Real-Time Computer Systems
Technische Universität München

Prof. Dr.-Ing. Georg Färber

Conducted at Robotics and Automation Lab
Center for Intelligent Information Processing Systems

University of Western Australia
Perth

Advisor: Assoc. Prof. Dr. rer. nat. habil. Thomas Bräunl
Adrian Boeing
Dipl.-Ing. Philipp Harms

Author: Johannes Georg Brand
Eulenweg 2
85356 Freising

Submitted 3rd March 2008

Contents

List of Figures v

List of Tables vii

List of Symbols viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 4
1.3 Thesis Outline . 5

2 Related Work 6
2.1 Literature Review . 6

2.1.1 Design Patterns . 6
2.1.2 Terrain Rendering . 7
2.1.3 Geometric Data Systems . 9

2.2 Simulators . 10
2.2.1 RARS . 10
2.2.2 TORCS . 11
2.2.3 Racer . 12
2.2.4 SubSim . 13

3 AutoSim Framework 15
3.1 Used Libraries . 15
3.2 Framework Architecture . 17
3.3 Program Description . 18

3.3.1 AutoSimServer . 18
3.3.2 AutoSimClient . 19
3.3.3 The UserProgram . 20
3.3.4 OsmManipulator . 20

3.4 Client Software Design . 22

4 World and Robot Creation 25
4.1 World Creation . 25
4.2 Robot Creation . 27

5 Terrain Modeling 29

iii

iv Contents

5.1 Bilinear Interpolation . 29
5.2 Shaders . 31
5.3 Applying Height Data to the World . 33
5.4 Graphics Terrain . 34

5.4.1 Terrain Mesh . 34
5.4.2 Terrain Vertex Shader . 36

5.5 Creation of Static Objects . 38

6 Road Construction 40
6.1 Splines . 40
6.2 Road Data . 42
6.3 Road Generation . 43

7 Rendering Methods 47
7.1 Triangulation . 47
7.2 Rendering the Scene . 48
7.3 GeoMipMap . 49

8 Conclusion and Future Work 50

A Tutorials 52
A.1 The AutoSimServer kick start guide . 52
A.2 Working with the AutoSimClient . 53
A.3 How to write a User Program . 54

A.3.1 Workings of the User Program . 54
A.3.2 The User Program API . 55
A.3.3 The Client User Program API . 56
A.3.4 A Simple Example . 56

A.4 Manipulate an OSM �le in 6 steps . 58

B The Configuration Files 59
B.1 General Syntax . 59
B.2 Customizing a World File . 60
B.3 General info on OSM Files . 60
B.4 The Robot File . 62
B.5 The Map Setup File . 64
B.6 The House File List . 68
B.7 General Model File Information . 69

Bibliography 70

List of Figures

1.1 Sojourner, Mars rover from Path�nder mission [29]. 1
1.2 Stanley, 2005 Grand Challenge winner from Stanford University [4] 3

2.1 Builder Design Pattern . 7
2.2 ROAM Method . 8
2.3 Geometrical MipMapping . 9
2.4 Geometry Clipmap . 9
2.5 OpenStreetMap . 10
2.6 RARS Screenshot [26] . 11
2.7 TORCS Screenshot [31] . 12
2.8 Racer Screenshot [25] . 13
2.9 The Subsim AUV Simulator [1] . 14

3.1 AutoSim during runtime . 17
3.2 Graphical User Interface of the AutoSim Server 18
3.3 AutoSimClient Graphical User Interface 19
3.4 User Program . 21
3.5 Main Window OsmManipulator . 22
3.6 AutoSimClient Software Design . 23

4.1 World Creation . 26
4.2 Robot Creation . 28

5.1 Bilinear Interpolation . 30
5.2 GPU data �ow [21] . 31
5.3 Tile Mesh Construction . 35
5.4 Terrain Gap . 35
5.5 Gap in rendered Terrain . 35
5.6 Terrain Mesh . 36
5.7 Wireframe Terrain . 36
5.8 Flipping Edges . 38

6.1 Hermite Basis Functions [36] . 41
6.2 Spline [33] . 42
6.3 Kochanek Bartels Parameters [37] . 42
6.4 Road Data . 43
6.5 Streets in Perth . 43
6.6 left handed and right handed coordinate system [35] 44

v

vi List of Figures

6.7 Road Construction . 45
6.8 Constructed Road Part . 45
6.9 O�set Fading . 46
6.10 T-junction after Road Generation . 46

7.1 Strip Index Calculation . 48
7.2 Triangle Strip . 48
7.3 Fan Index Calculation . 48
7.4 Triangle Fan . 48
7.5 GeoMipMap . 49

A.1 Graphical User Interface of the AutoSim Server 52
A.2 AutoSimClient . 53
A.3 User Program . 55
A.4 OsmManipulator . 58

B.1 Triangle Fan . 66

List of Tables

5.1 Example of prede�ned names for varying inputs 32

B.1 Highways . 61
B.2 Landuse . 62
B.3 House Node . 62

vii

List of Symbols

RCS Lehrstuhl für Realzeit-Computersysteme
UWA University of Western Australia
NASA National Aeronautics and Space Administration
DARPA Defense Advanced Research Projects Agency
US United States
AI Arti�cial Intelligence
RARS Robot Auto Racing Simulation
SDK Software Development Kit
IDE Integrated development environment
CPU Central Processing Unit
GPU Graphics Processing Unit
GUI Graphical User Interface
FLTK Fast Light Toolkit
XML Extensible Markup Language
HTML Hypertext Markup Language
OSM OpenStreetMap
UML Uni�ed Modeling Language
DLL Dynamic Link Library
IP Internet Protocol
GLSL OpenGL Shading Language
HLSL High Level Shading Language
PSD Position Sensitive Device

viii

Abstract

Due to the continuously growing amount of traffic on our roads, and with it, an increas-
ing risk of car accidents, the theory and design of robotic cars that take away the risk of
human driver errors has become an area of active research among car manufacturers,
suppliers and universities. Even if various competitions for autonomous driving cars have
introduced some excellent testing venues in real world environments, decent simulators for
testing the robotic programs without hardware do not exist. In the light of this an extensible,
modular and flexible open source component-based 3D driving simulator framework called
AutoSim is presented in this thesis. The framework enables rapid and interactive devel-
opment of robotic car algorithms and allows researchers to develop, test and experiment
with autonomous vehicle software without the need for a physical vehicle. Using a testing
environment like AutoSim can tremendously increase the speed of development and thus
save costs by reducing time to market.

Constructing a simulator framework includes meeting a large range of demands for creating
a high-level 3D environment. A large 3D scene has to be adapted for execution on limited
computer hardware and nevertheless provide the user all features desired for interaction
with the tested robots. This thesis follows the ideas of methods like GeoMipMap and Geo-
metric Clipmaps by applying them to the simulator’s requirements and performing parallel
operations on the graphics card. The road system in AutoSim is designed in order to display
an accurate representation of a real world street web, implemented through self-developed
methods for procedurally constructing road meshes out of 2D world road data and trans-
forming them by height data. Finally, the thesis introduces approaches for designing a 3D
simulator framework which includes concepts for transferring and managing data as well
as multiple rendering methods.

x

Zusammenfassung

Aufgrund einer beständig anwachsenden Verkehrsdichte auf unseren Straßen und eines
damit verbundenen immer größer werdenden Unfallrisikos, ist das Entwickeln von Roboter
Autos, welche die Fehler des menschlichen Fahrers als Unfallrisiko entfernen, ein aktiv um-
forschtes Gebiet von Fahrzeugherstellern, Lieferanten und Universitäten geworden. Auch
wenn verschiedene Wettbewerbe schon exzellente Testumgebungen für autonome Fahr-
zeuge bereitgestellt haben, gibt es noch immer keine geeigneten Simulatoren um Roboter
Programme ohne Hardware zu testen. Im Angesicht dessen wird in dieser Bachelorar-
beit ein erweiterbares, modular aufgebautes und flexibel anwendbares Open Source 3D
Fahrsimulator Framework mit dem Namen AutoSim präsentiert. Das Framework ermöglicht
schnelles und interaktives Entwickeln von Programmen für Roboter und erlaubt Forschern
ohne Gebrauch eines physikalischen Fahrzeugs zu entwickeln, zu testen und zu expe-
rimentieren. Eine Testumgebung wie AutoSim kann die Entwicklungszeit eines solchen
Programmes enorm beschleunigen und auch wegen eines verkürzten Time-to-Market’s
Kosten einsparen.

Das Entwickeln eines Fahrsimulator Frameworks erfordert einer großen Menge von An-
sprüchen einer hochwertigen 3D Anwendung gerecht zu werden. Eine große 3D Szene
muss an die Limitierungen der Computer Hardware angepasst werden und trotzdem alle
gewünschten Fähigkeiten zur Interaktion mit den Robotern bereitstellen. Diese Bachelor-
arbeit übernimmt dazu Ideen von Methoden wie GeoMipMap oder Geometric Clipmaps
um sie an die Anforderungen des Simulators anzupassen und dabei parallele Operationen
auf der Grafikkarte auszuführen. Das Straßensystem von AutoSim ist entworfen um das
echte Straßennetz möglichst genau wiederzugeben, indem aus 2D Weltdaten durch selbst
entwickelte Methoden prozedurale Straßenmeshes erstellt werden, um sie dann durch Hö-
hendaten zu verändern. Abschließend führt die Arbeit noch einige Ansätze auf die das
Entwickeln eines 3D Fahrsimulator Frameworks betreffen und geht dabei auf Konzepte wie
das Übertragen und Verwalten von Daten sowie mehrere Render Methoden ein.

xi

1 Introduction

This introductory chapter aims to show the underlying motivation of the thesis topic,
explains its objectives, and �nally gives a brief overview of the thesis outline.

1.1 Motivation

The Mars Path�nder mission, launched by the NASA on 4 December 1996 [20], was one
of the most successful NASA missions after landing on the moon. The Path�nder lander
reached Mars on 4th July 1997 and deployed a small rover (named Sojourner) that �rst
rolled onto Mars' surface on 6th July.

Figure 1.1: Sojourner, Mars rover from Pathfinder mission [29].

The Mars rover is a six-wheeled vehicle which is controlled by an Earth-based operator,
using images obtained by both the rover and lander systems. Because the time delay is
about 10 minutes to Mars, the rover requires some autonomous control. As the connection
of the Sojourner was done via the lander, it could only discover a small area. In 2003 the
NASA sent two new rovers to the planet that were now able to have direct contact with
the control center on Earth. These two robots are still operational, which demonstrates

1

2 1 INTRODUCTION

the huge success of the mission, as it had been expected they would be driving on Mars
for only a few months.

Throughout the whole history of NASA space missions and also throughout all its means
of transportation, the Path�nder mission initiated a new era of locomotion. For the �rst
time a nevertheless still mostly remote controlled NASA driving vehicle had to �nd its
own way for a short time on an unexplored terrain until it received further instructions
from the commander.

Even if the NASA Path�nder mission was one of the �rst applications of an autonomous
vehicle, already in 1980 Ernst Dickmanns and his group at Universität der Bundeswehr
Munich (UniBW) built the world's �rst robot car VaMoRs by using saccadic vision,
probabilistic approaches such as Kalman �lters, and parallel computers [3]. This team
continuously improved their vehicles and had highly recognized publications of their work
in the ongoing years. In 1995 a S-class mercedes benz (Figure 1.2(b)) of Dickmanns
and UniBW was autonomously driving 1678 km on public Autobahns from Munich to
Denmark and back, at up to 180 km/h by automatically passing other cars.

(a) First Robot Car VaMoRs [15] (b) VaMP 1995 [15]

As autonomous driving vehicles are already �nding their way into space missions and
more recently into some military operations, an active research among manufacturers,
suppliers and universities has started to bring these new means of transportation into our
daily life. In 2004 the United States Department of Defense started a sponsorship of the
DARPA Grand Challenge [9] and thus introduced a competition for driverless vehicles.
The Grand Challenge was set up at the Mojave Desert region and the teams from all over
the world had to show the navigation capability of their robotic cars on an obstacle �lled
desert track. While in 2004 no team could successfully complete the race, in 2005 �ve
teams managed the course. In 2007 the DARPA Urban Challenge was initiated, which
means the vehicles now have to drive through a street course �lled by urban obstacles.

1.1 MOTIVATION 3

As development of the autonomous driving cars continues, the wish to drive in a real city
moves more and more into the focus of the challenging teams. The aim is to replace the
driver, who is the biggest threat in daily tra�c. This could avoid more than 90% of all
the accidents on the streets today [24].

Figure 1.2: Stanley, 2005 Grand Challenge winner from Stanford University [4]

Teams who research in driverless vehicles have to spend a lot of time in testing their
programs. The Grand Challenge is already a good venue for testing today, as it pro-
vides very realistic conditions for the vehicles. However, a car that should compete in
a challenge has to be tested throughout the whole development process. Unfortunately
testing of programs that run on hardware are always dependent on the development of
that hardware. Vice versa those programs can obstruct the hardware development if they
produce damage to the newly built hardware by software errors (very likely to happen).

Testing environments for arti�cial intelligence (AI) developers need to visualize the reac-
tions of the AI as close to the real world as possible and provide sensor information for
evaluating the AI programs. Sensors could be, for example, camera pictures to do image
processing, PSD Sensors to specify the distance to a car in front or a Gyroscope Sensor
to measure the dihedral angle. To simplify and accelerate the work of the developers a
simulator that creates a reproduction of the world would be a desirable improvement.
The advance of faster testing could reduce the costs of development, increase development
speed and thus make the project more competitive to other teams.

4 1 INTRODUCTION

1.2 Objectives

This thesis is part of a project whose goal is to create an open source simulator for any
kind of robot, mainly focused on automobiles. A robot represents an interacting object
in the simulator's world that should be able to be controlled by programs developed by
the user. Therefore these control programs will need to obtain sensor information of the
simulated world and especially the robot. The AutoSim framework has to be �exible as
it should allow the user to create robots designed for custom requirements, which will be
limited by the underlying physics engine. To ensure this limitation is not an obstruction
in taking part in physics engines' future development progress AutoSim uses a Physic
Abstraction Layer (PAL) [6] to let the user easily swap to other physics engines.

Another objective is to display the simulated world in order to help the user debug their
user programs by introducing a further sensor, vision. The visualization is very important
in a testing environment like AutoSim, as it is usually the easiest and sometimes also the
only way to �nd errors in the simulation or in the created world. As the framework sets
itself the task to simulate a large testing area it requires an intelligent graphics scene that
recognizes which objects to render. Furthermore the underlying graphic engine has to be
fast in rendering speed, but also capable of providing the newest rendering technologies
for presenting a decent world.

As the major goal of the AutoSim framework is the testing of autonomous vehicles, the
simulator's world street system is constructed out of real world street data obtained by
the open source framework OpenStreetMap. The user can download one part of street
data, modify it in an editor, add height data and import terrain textures to the simulated
world. Every part of the earth with available data can be constructed.

A framework whose task is to simulate a real world should also be able to provide the
user's robots with unexpected actions of other robots in the world. Unforeseen events
occur most likely if the world contains many di�erent behaving objects. To perform
this task the AutoSim Framework is based on Networking to let many di�erent types of
testings be executed in the same simulation environment. A AutoSim server loads and
simulates the physics world and transfers the information to the clients that can display
the world and control their robots. The server as well as the client program are designed
to bene�t from the ongoing multi-core processor development, as they are multi threaded
and run on more than one CPU.

1.3 THESIS OUTLINE 5

1.3 Thesis Outline

The main work on the AutoSim framework is distributed into two theses where this
mainly concentrates on the client part of the networked simulator, the implementation of
the terrain and the construction of the roads. Torsten Sommer completes the description
of AutoSim in his thesis Physics for a 3D driving simulator [28] that is focused on the
server-side implementation and the integration of the user programs. However, as some
parts of the project apart from the terrain and the roads also do not need to distinguish
between server and client, those are included in this thesis as well.

For generating some AutoSim concepts this thesis endeavored to understand and evalu-
ate existing methods concerning the implementation of 3D applications and that's why
it includes many theoretical sections and chapters. Therefore implementation sections
explain why certain methods were chosen and related theory provides the user with the
necessary background knowledge.

The following chapter (2) will give a short explanation of related work concerning existing
3D driving simulators and review resources evaluated for AutoSim. The third chapter (3)
describes the framework, gives an overview of all framework forming programs and �nally
explains the client software design. Chapter 4 explains the world and robot creation
procedures of the AutoSimClient in detail. After that, chapter 5 describes the concept of
the terrain including its mesh creation, its implementation on the GPU in a shader and
its positioning of further static objects. The construction of the road meshes out of OSM
data �les is explained by chapter 6. Chapter 7 is concerned with rendering methods used
for visualizing the 3D scene and its objects. Finally, a conclusion of the achieved goals
and perspectives on future work are presented in chapter 8.

2 Related Work

During the 1990's processor speed in personal computers grew exponentially and for the
�rst time it was possible to create realtime 3D content without spending most of the
development costs into computer hardware. Bene�tting from the progress, companies
and universities started to create driving simulators used for entertainment as well as
driver's education courses. Meanwhile heaps of driving simulators can be found either in
research or commercial �eld. This chapter will give a short review of helpful literature for
developing the AutoSim software design and methods for implementation and present an
assortment of projects and products related to the simulator.

2.1 Literature Review

The following literature and researches have been evaluated and used in the AutoSim-
Client.

2.1.1 Design Patterns

Design Patterns: Elements of Reusable Object-Oriented Software [12] is a software en-
gineering book describing recurring solutions to common problems in software design.
The book's authors Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
describe a series of classic software design patterns and include examples in C++ and
Smalltalk. The book is a classic in the �eld of software design and even if some of the
examples are old and some design patterns are better described in newer articles, it is still
a good reference if it comes to search a solution for a software problem. During AutoSim
development this book was used for getting a general overview of how to design a software,
understanding techniques like the Model/View/Controller concept and adapting various
patterns to the AutoSim framework.

Thinking in C++, Vol2: Practical Programming [11] is a book of Bruce Eckel and Chuck
Allison that tries to emphasize on the most important practically used programming
topics by explaining them in every detail. The book is structured into 3 main parts:
Building Stable Systems, The Standard C++ Library and Special Topics. In this thesis
the book was helpful in order to prevent AutoSim from the most commonly occurring
errors in programs, applying helpful Standard Library functions to the framework and

6

2.1 LITERATURE REVIEW 7

implementing some of the explained software design patterns to the AutoSimClient.

The following passage explains the two most important design patterns used by the Au-
toSim software:

• Singleton: A Singleton design pattern ensures that a class has only one instance
and provides a global point of access to it. This is achieved by creating a template
class with a private constructor and a global de�ned pointer to a function returning
the Singleton's instance. The private constructor ensures the class cannot be created
from outside and the static Singleton return function either creates a new instance if
none is existing or simply returns a pointer to the object. Creating the new Singleton
instance on the heap and by using compiler instructions for not interrupting the
creation process makes the Singleton pattern thread safe. A singleton in AutoSim
is useful for classes like the controller, which should be accessible from all threads,
but only exist once. Therefore every class using this pattern simply has to inherit
from the Singleton template class.

• Builder: The goal of a builder design pattern is to separate the construction of a
complex object from its representation so that the same construction process can
create di�erent representations. Figure 2.1 visualizes this concept in AutoSim. The
abstract Builder class always provides an interface that can be called by the Loader
without knowing its actual implementation. Thus multiple Concrete Builders can
create particular implementations to one and the same Builder interface. This can
be used in order to ensure two di�erent implemented programs follow an equal
construction sequence by using the same Builder interface.

!"#$%& !"#$%&'()%*

'()*$%&

+",-&%.%/'()*$%&

+ ,

-.(/%&0)(112

34"1/%&054#)$".#26

34"1/%&7894"1/:(&$2;<=

>>>

Figure 2.1: Builder Design Pattern

2.1.2 Terrain Rendering

Terrain rendering is a di�cult problem for applications requiring accurate representa-
tions of large terrain datasets at high frame rates, such as �ight or car simulators. On
current graphics hardware, the problem is to maintain dynamic, view-dependent triangle

8 2 RELATED WORK

meshes and texture maps that produce good images at the required frame rate. Since
the visualization of 3D terrain is possible in computer hardware, the wish to enlarge and
accelerate the viewable area led to many researches in this topic. Heckbert and Garland
[14] presented their general treatment of multiresolution LOD control in 1994, which was
followed by a period of active research in terrain rendering.

One of the most recognized and successful algorithms was published by Mark Duchaineau
et al. In their method Real-time Optimally Adapting Meshes (ROAM) [18] they are
presenting an algorithm for constructing triangle meshes that optimizes �exible view-
dependent error metrics, produces guaranteed error bounds, achieves speci�ed triangle
counts directly and uses frame-to-frame coherence to operate at high frame rates for
thousands of triangles per frame. Following researches from Jonathan Blow [5] and An-
dreas Ögren [13] were based on the achievements of ROAM in modifying the number of
triangles of a terrain mesh during runtime while improving the method in some details.

(a) Algorithm [32] (b) Rendered Terrain [32]

Figure 2.2: ROAM Method

Willem H. de Boer [7] presented a simple method for Fast Terrain Rendering Using Ge-
ometrical MipMapping. Di�erent to his predecessors he is not concerned with optimizing
the number of rendered triangles through complex algorithms during runtime, but opti-
mizing the terrain meshes for the high parallelism of the meanwhile improved graphics
hardware. Through saving a lot of calculation speed by not changing the actual terrain
mesh, this terrain rendering method concedes the GPU with more time for rendering.
Before the rendering process is started the algorithm divides the terrain into tiles, con-
structs di�erent levels of detail for the meshes and at runtime changes the detail level
dependent on the distance to the point of view.

A totally di�erent idea is expressed by Frank Losasso and Hugues Hoppe [17] in using a
generated mesh gliding over an invisible terrain data skeleton while updating its vertices
from arrays every time shifting to a new position. The so called Geometry Clipmaps
method is very simple to implement and produces a good rendering output as the area

2.1 LITERATURE REVIEW 9

(a) Wireframe Terrain [16] (b) Rendered Terrain [16]

Figure 2.3: Geometrical MipMapping

next to the viewpoint is always highly detailed and the transitions to lower detail regions
are never reachable.

(a) Illustration [17] (b) View of Dataset [17]

Figure 2.4: Geometry Clipmap

2.1.3 Geometric Data Systems

In the last couple of years many geometric data systems like Google Maps arose and o�er
now everyone free rendered road maps together with satellite data. These services could
be very useful for AutoSim as it requires a lot of street, height and satellite image data.
Unfortunately the data these services use for creating their maps is usually not available
for free or sometimes cannot be retrieved at all.

Luckily in 2004 the OpenStreetMap project was founded, which collects and publishes
user created data similar to the web encyclopedia Wikipedia and makes it available for

10 2 RELATED WORK

download under a license that allows it to be used in other open source projects. Ev-
erybody can take part in the creation and modi�cation of road data by simply using
GPS devices to create new maps or edit the existing maps. Additionally to the data
OpenStreetMap provides rendering map images and route planning that can be obtained
directly from their website [23].

In the meantime OpenStreetMap has already formed a big community and the users
created some good tools for editing the road data. Above all a free Java editor, called
JOSM has been very useful during AutoSim development. JOSM can directly download
data from the OSM server and modify it. Changes on the street web are simply done
by dragging the street nodes through the 2D view to the desired new position (Figure
2.5(b)). If two users upload the same modi�cations of a map to the server, those will be
saved in the OpenStreetMap database and published on the server. A description of the
data structure is available from within the good OSM documentation [23].

(a) The Website [23] (b) JOSM [23]

Figure 2.5: OpenStreetMap

2.2 Simulators

Many 3D Driving Simulators have been developed in the last couple of years. The follow-
ing section presents some of the most interesting for AutoSim.

2.2.1 RARS

RARS is the Robot Auto Racing Simulation, a competition for programmers and an on-
going challenge for practitioners of Arti�cial Intelligence and real-time adaptive optimal
control. It consists of a simulation of the physics of cars racing on a track, a graphic

2.2 SIMULATORS 11

display of the race, and a separate control program (robot driver) for each car. RARS
was published in 1995, the year also the �rst RARS race was announced and performed.
From 1995 to 2003 many races and even complete racing seasons were carried out by
the RARS team. The robot programs of the participants were sent to a local machine,
simulated and published on the website [26].

Figure 2.6: RARS Screenshot [26]

Even if RARS has 3D graphics in the meantime, the graphic was �rst developed to
visualize a 2D racing track system. On that account it is still limited by the old 2D
system as the project was not completely restructured into a 3D system. The Physics
system is simple as well and thus gives the user only a few possibilities of obtaining and
processing data inside the robot programs. The simulator's capabilities of providing the
user with robot data are more related to writing AI programs for computer games than
for a real world. Almost no real world sensors exist.

2.2.2 TORCS

TORCS, The Open Racing Car Simulator is a racing simulator which allows users to drive
races against computer controlled opponents and to develop own computer-controlled
robots. The concept of TORCS is derived from RARS [26], but allows the user now
to control one of the robots by an input device like keyboard, mouse or steering wheel.
The Graphics system is in good shape and is able to visualize lighting, smoke, skidmarks
and glowing brake disks. In addition to a common physics model the simulator features
a simple damage model, collisions and copious car properties. The gameplay allows
di�erent types of races from the simple practice session up to a whole championship.

12 2 RELATED WORK

Just as RARS, TORCS has a racing board where race competitors meet, upload their
robot programs and view racing results. The software uses cross-platform libraries like
OpenGL, Mesa 3D and OpenGL Utility Toolkit, to be able to run on many platforms
(e.g. Linux, PowerPC Architectures, FreeBSD, Microsoft Windows).

Figure 2.7: TORCS Screenshot [31]

Similar to RARS, TORCS is intended for driving on a race course, rather than in a city
environment and in the light of this the physics model does not behave like reality. Fur-
thermore TORCS also does not have network capability, which means challenges between
robots have to be simulated on one local machine.

2.2.3 Racer

Racer is a free cross-platform car simulation project (for non-commercial use), using
professional car physics to achieve a realistic feeling and an excellent render engine for
graphical realism [25]. Racer's graphics engine is based on OpenGL and capable of dis-
playing e�ects like smoke, skid marks, sparks, sun, �ares and vertex-color lit tracks. The
physics system is able to simulate a large range of di�erent vehicles and these vehicles,
the tracks and the vehicle AI can be self-created by the user. Customizing and modifying
is well documented in the Racer project, which also provides a lot of tools and editors.
The package is available for Windows, Linux and Mac OS X platforms.

Unfortunately Racer is not open source and although developers can obtain the source
code from the author, they are not allowed to publish it in own projects. Furthermore

2.2 SIMULATORS 13

Figure 2.8: Racer Screenshot [25]

Racer aims mainly at arcade game fans and people testing race car physics rather than
simulating a whole city environment including sensors and actuators. Also the program is
not networked which limits the whole simulation and control programs to a single machine.

2.2.4 SubSim

SubSim [1] is a software framework for simulating autonomous underwater vehicles. With-
out the need for a physical hardware it allows researchers to develop robotic software,
controlling an autonomous vehicle in a virtual three dimensional underwater environ-
ment. The environment and the simulation can be customized through XML �les and the
application's programming interface is compatible with C and C++. The user can ex-
tend the simulator through a C++ plugin model and furthermore use the sensor outputs
for interconnection with an EyebotController (hardware device that controls motors and
servos [8]). Application design, controller tuning, mission simulation, and fault-tolerance
can all be tested with this simulator.

The Subsim framework features a realistic underwater simulation by using a physics engine
for calculating the actions in the scene and by having an adjustable noise system for the
sensors. Almost all realistic sensors for submarines can be obtained of the simulator and
additional debug information helps the researcher during development.
The downside to SubSim is that it is only capable of simulating a single robot on a single
machine. Also it is not networked and the visualization features are rather poor due to
the underlying graphics engine that only can load a simulation scenario out of a static 3D
�le.

14 2 RELATED WORK

Figure 2.9: The Subsim AUV Simulator [1]

3 AutoSim Framework

Regarding the driving simulators section in the previous chapter, there are numerous of
good driving simulators already in existence. Some of these driving simulators are really
good for testing arti�cial intelligence used in computer games, but among them there is
not a single one useful for simulating real world problems faced by autonomous driving
vehicles. AutoSim has the intention to �ll this gap and help people who are researching
in the driverless vehicle �eld (1). But why not use one of the existing simulators and
extend it with real world features? Because many of the existing simulators have still a
software structure that is not up to date and especially not the way AutoSim is meant to
be designed. The networking concept has been a major part of the AutoSim design from
the beginning of development. The simulation and visualization tasks are completely
decoupled and symbolize the server-client concept. The physics engine can be easily
replaced due to the usage of a Physic Abstraction Layer [6] and the visualization also
uses up to date open source graphics engine technology.

Most of the existing simulators and further 3D applications are written in the C++ pro-
gramming language. C++ combines low-level and high-level language features to form a
fast and extensible programming language that is easy to learn from a general or even
better C programming background [10]. For this reason the language was also chosen for
AutoSim as the framework wants to use all advantages of object oriented programming
by still focusing on a fast and resource saving underlying code system. Furthermore most
of the network, graphic or physic open source libraries have their priority in the C++
version or even only exist in C++.

This chapter will describe the AutoSim framework in detail by showing a general pre-
sentation of its functionality and pointing out the most important features. First a brief
overview and explanation of the used libraries is given, followed by a survey of the soft-
ware design.

3.1 Used Libraries

Irrlicht: The Irrlicht Engine [2] is an open source high performance realtime 3D engine
written and usable in C++ and also available for .NET languages. It is completely
cross-platform, using Direct3D, OpenGL and its own software renderer, and has all of the

15

16 3 AUTOSIM FRAMEWORK

state-of-the-art features which can be found in commercial 3d engines. Irrlicht is platform
independent and can be currently used on Windows, Linux, MacOS and Solaris/SPARC.
Compared with other open source engines it contains a big support of mesh and picture
�le types as well as a good documentation and community help.

Qt: Qt (pronounced cute) is a cross-platform application development framework, widely
used for the development of GUI programs (in which case it is known as a Widget toolkit),
and is also used for developing non-GUI programs such as console tools and servers. Qt
is most notably used in KDE, the web browser Opera, Google Earth, Skype, Qtopia and
OPIE. It is produced by the Norwegian company Trolltech.
Qt uses C++ with several non-standard extensions implemented by an additional pre-
processor that generates standard C++ code before compilation. Qt can also be used
in several other programming languages; bindings exist for Ada, C#, Java, Pascal, Perl,
PHP (PHP-Qt), Ruby (RubyQt), and Python (PyQt). It runs on all major platforms,
and has extensive internationalization support. Non-GUI features include SQL database
access, XML parsing, thread management, network support and a uni�ed cross-platform
API for �le handling.

RakNet: Raknet is a cross platform C++ network library designed to allow program-
mers to add response time-critical network capabilities to their applications. It is mostly
used for games, but is application independent. The major advantages of this package
comparing to other network libraries that it is easy to use, well documented, open source
and extremely fast which is absolutely essential for networked real time simulations. It
also adds very little overhead to the packages that are being sent.

PAL: The Physics Abstraction Layer (PAL) provides a uni�ed interface to a number of
di�erent physics engines. This enables the use of multiple physics engines within one
application. It is not just a simple physics wrapper, but provides an extensible plug-in
architecture for the physics system, as well as extended functionality for common simu-
lation components. PAL also has an extensive set of common features such as simulating
di�erent devices or loading physics con�gurations from XML, COLLADA and Scythe
�les. PAL supports a large number of physics engines among others Bullet, JigLib, New-
ton, ODE, Tokamak, TrueAxis and OpenTissue and also features an extensive testing
and benchmark suit for evaluating and visualizing dynamic simulation systems.

TinyXML: TinyXML [30] is a very small and simple open source XML parser for the
C++ language. It can be easily integrated into programs to parse an XML document
and build a Document Object Model (DOM) from it. The DOM can then can be read,
modi�ed, and saved. It also allows the users to construct their own XML documents
with C++ objects and write these to the harddisk or another output stream. As the
name already says, it is tiny and does not support Document Type De�nition(DTD) or
eXtensible Stylesheet Language(XSL) and in terms of encodings, it only handles �les

3.2 FRAMEWORK ARCHITECTURE 17

using UTF-8 or an unspeci�ed form of ASCII not entirely dissimilar from Latin-1.

3.2 Framework Architecture

The AutoSim framework is an open source 3D robot simulation software on the basis of
platform independent open source software libraries 3.1 and is formed by four programs:

• AutoSimServer: Program that is running the simulation by creating sensor data
through its included physic model and transfers it over the network.

• AutoSimClient: Network client that processes and visualizes the received data
through the graphic engine.

• UserProgram: Instance controlling a robot by using functions of the UserPro-
gramAPI and ClientUserProgramAPI.

• OsmManipulator: Tool changing the OpenStreetMap data by automatically
adding houses along the streets.

At runtime the AutoSimServer and AutoSimClient are the programs forming the simula-
tor and the UserProgram controls the robots. As the OsmManipulator is only changing
the OSM data and preparing it for the creation process it does not have any functionality
within the simulation part. Figure 3.1 gives a brief overview of the framework throughout
a running simulation.

!"#$%&'(%)*+)*
,)#-$*. !"#$%&'(/0&)1#

23)*4*$5*6'

!"#$%&'(/0&)1#

23)*4*$5*6'

!"#$%&'(/0&)1#

23)*4*$5*6'!47

/0&)1#23)*4*$5*6'!47

23)*4*$5*6'

23)*4*$5*6'
23)*4*$5*6'

23)*4*$5*6'

23)*4*$5*6'!47

Figure 3.1: AutoSim during runtime

Multiple clients can connect to the server through the network interface and receive,
process and visualize the broadcasted data. Instances of the UserProgram are loaded
as external DLL programs on both the server and the client side and control the robots

18 3 AUTOSIM FRAMEWORK

through the UserProgramAPI respectively ClientUserProgramAPI. The two APIs di�er
in the way they send and receive data. As the server-side UserProgramAPI can directly
ask for information from the data creating server the API on the client-side has to transfer
the data over the network.

3.3 Program Description

The following four sections give a brief overview of the four AutoSim programs.

3.3.1 AutoSimServer

The AutoSimServer is responsible for simulating all interaction between the simulation
objects in the underlying physics engine and preparing the data for the UserProgram and
the network transfer to the AutoSimClient respectively. It provides a user friendly and
easy to use graphical interface for the most common operations on the server such as
con�guration �le selection and tuning of the integration step size for the physics engine.
Figure A.1 shows the AutoSimServer after a simulation has been loaded.

Figure 3.2: Graphical User Interface of the AutoSim Server

On top there are buttons to load, start, pause and stop the simulation process. To the
right all loaded simulation objects such as the robots are displayed including all their

3.3 PROGRAM DESCRIPTION 19

parts and devices which is especially interesting for debugging purposes since it shows
all parts loaded from the XML �les and often reveals problems caused by corrupted
con�guration �les.

On the bottom of the window two boxes display all messages and warnings generated
during the loading process and runtime of the simulation. It can easily be hidden by
pulling on the bottom line of the Simulation Objects box to gain more space. The server
also runs all common user programs that control the robots representing dummy tra�c,
pedestrians and tra�c signals etc. Contrary to the client the server's UserPrograms are
set in the world con�guration �le instead of the GUI.

3.3.2 AutoSimClient

AutoSimClient provides the user with an easy to use graphical interface to load, run
and debug the client part of the networked simulation. Figure 3.3.2 shows the GUI of
AutoSimClient created with QT.

Figure 3.3: AutoSimClient Graphical User Interface

On the top of the GUI the user can access a menubar to select the world �le or User-
Program the client should load and run. Supplementary UserProgram settings can be
done in the input �elds of the UserProgram box. The network box to the lowest on the

20 3 AUTOSIM FRAMEWORK

right contains an IP address setting for the network. By default the IP address is set to
localhost to let the client try to connect to a server running on the same computer. A
press on the load button to the top left loads the graphic world into the AutoSimClient
program. In the Simulation Objects box of the interface appears a scrollable tree view of
the simulation objects when loading is completed. This tree contains debug information
of the objects like position and rotation and is updated during runtime. Pressing the
play button next to the load button connects the network client to the server, starts the
rendering process and executes the loaded UserProgram with the robot in the UserPro-
gram's properties box. Now the graphics window shows the rendered graphic scene. The
scene is always rendered when new data arrives from the server. Inversely that means
the graphics window will not be updated if no data from the server has arrived.

3.3.3 The UserProgram

UserPrograms are representing the control instance of every Robot inside the simulation.
They consist of a more or less complex C/C++ programs which are being compiled as a
DLL and dynamically loaded by either the server or the client. It can access all devices
of the robot it belongs to through an API to read data from sensors, process them and
control the actuators. Useful to for example obstacle avoiding programs might be that
UserPrograms are not limited to control a single robot, but can access devices on every
remote robot.

The UserProgram loaded by the AutoSimClient can be di�erent to the UserProgram
running on the AutoSimServer as it can access further client information through the
ClientUserProgramAPI. The ClientUserProgramAPI expands the UserProgram possibili-
ties by adding functions like getting a virtual camera image that are exclusively available
on the client, because the server does not store any simulation data and the visualization
process is only done on the client. UserPrograms only using the UserProgramAPI can be
executed by either the AutoSimClient or the AutoSimServer.

Figure A.3 shows a FLTK based graphical user interface of a UserProgram capable of
turning the rear and head lights on and obtaining images from various virtual cameras to
display them in the upper part of the window.

3.3.4 OsmManipulator

Figure 3.5 shows the user interface of the OsmManipulator program. The program cal-
culates positions for new houses in a line along the roads and adds these houses as new
OSM nodes into the OSM �le by consulting a house �le list for model �le paths and other

3.3 PROGRAM DESCRIPTION 21

Figure 3.4: User Program

necessary information.

Inside the main window the user can set up the manipulator and launch the application
by pressing the Generate OSM File button. The following XML �les have to be speci�ed:

• the original OSM �le downloaded from the OSM server

• the target to store the new created �le

• a map setup �le where the sizes of all road types are stored

• a house �le that includes the data of the houses (e.g. graphics model �le path and
type, house size)

Finally the distance of the house centers to the street and the distance between houses in
a row of houses are changeable in two further input �elds. After selecting all settings as
well as input and output �les, the generation process is started by pressing the Generate
OSM File button and �nishes with a message below the button.

22 3 AUTOSIM FRAMEWORK

Figure 3.5: Main Window OsmManipulator

3.4 Client Software Design

Software design is a process of problem-solving and planning for a software solution [38].
After the purpose and speci�cations of software are determined, software developers will
design a plan for a solution. A good software design prevents software from having errors
before the actual implementation process has started.

As the thesis was concentrated on the client part of the networked simulator, this sec-
tion will mainly focus on the design of the AutoSimClient. The software design of the
OsmManipulator and the UserProgram is not important for understanding the simula-
tor's functionality, while the AutoSimServer is explained in detail in Torsten Sommer's
thesis Physics for a 3D driving simulator [28]. The UML diagram of Figure 3.6 gives an
overview of the most important instances forming the AutoSimClient at runtime.

The main class of AutoSimClient is the controller named ClientController. As its name
implies, it controls all the parts, can start and stop threads and �nally shut down the
program. If one of the client threads wants to talk to another thread, it has to do this by
calling controller functions. Like some other client classes the ClientController uses the
Singleton design pattern by inheriting the Singleton template class (section 2.1.1). The
Singleton ensures the controller only exists once and is accessible from out of all other
threads through a globally accessible pointer.

The �rst task for the controller after starting the AutoSimClient program is to load and
build the simulation world. Loading the world by clicking on the load button in the GUI
calls a controller function for creating instances of the WorldLoader and ClientWorld-
Builder classes. Those create in turn all the particular builders necessary for constructing
the world and this process is explained in detail in World and Robot Creation (chapter
4). Once the world exists the client can establish the network connection, visualize the

3.4 CLIENT SOFTWARE DESIGN 23

!"#$%&'()"*+,-%&'()"*

,.)(/(01("2%&'()"*

!"#$%&'(

)""*&'%+

!"#$%&',#-#./"0*&/-+01-+"1**/"

3

3

211+!"#$%&'314/

3

3

51"*461#4/"

3

3

3

4

3 4

5#$6)(7"8)9

!"#$%&'314/

5#$6)(7"8)9

!"#$%&'314/

,#&-5&-417

89$$*&'#+&1-

3 3

3
3

:(/";"1."#<

:)6;0(<%&'()"*

3

3

2#=3/+0*&/-+

2#=;//")-+/">#'/

3

4

,.)(/(01("2=/-

,.)(/(01("2=/-

Figure 3.6: AutoSimClient Software Design

received data and execute the UserProgram. Pressing the run button in the GUI induces
this sequence in the mentioned order. For specifying the current phase of loading and
constructing, the ClientController possesses a member variable that indicates the status
of the program. Before the controller proceeds with a new loading task it waits for the
previous process to �nish, signalized by a change of the status variable. If for example
the network thread was started the controller has to wait until the network was correctly
initialized by connecting to the server.

The graphic rendering process during runtime is mainly executed by the two Singleton
derived classes GraphicManager and Graphics. While the GraphicManager's task is to
manage the data tree and provide a pointer and functions to access it, the Graphics
singleton performs the actual rendering process through its Irrlicht Engine [2] member.
Therefore it starts the rendering every time new data arrives from the server, which is
explained in detail by section 7.2.

The AutoSim simulation world consists of many di�erent objects which share features
like name, position and rotation in common. Apparently every kind of object is usually
visualized in a di�erent way and thus needs to execute particular operations for updating
its graphical representation when the simulation data changes. Therefore the object
representing classes are all deriving from an abstract GraphicNode class.

24 3 AUTOSIM FRAMEWORK

In C++ a class is abstract and thus called an interface when it has at least one pure
virtual function. A pure virtual function is declared but not implemented in the interface
class and must be implemented by every deriving class, or the inherited class becomes
abstract as well [10].

The abstract GraphicNode class represents an interface for all objects in the graphics
world. Every particular graphic node must always implement the update function, which
will be called by the graphic manager every time a new data package from the network
has arrived. As the update function is declared in the interface it can be called from the
graphic manager equally on every graphic node without knowing which operations are
executed by the node.

The GraphicManager class has also functions to create all di�erent kinds of graphic
nodes. For this reason the user does not have to know anything about the underlying
graphics engine, as the graphic manager takes over the task to create the engine's in-
stances for the graphical representation. All created graphic nodes inherit a software tree
structure that is also used by the server and provided by the SerializableTreeNode class
[28]. Furthermore they obtain necessary serialize and deserialize functions for the network
communication from that class. Besides the advantages for World Creation (section 4.1),
the tree model structure of the object data also accelerates the update process on the
nodes. To update the whole data tree the graphic manager simply calls a function on the
tree's root node that updates all its children and these children perform an update on all
of their children again. The root node is represented by the RootGraphicNode which de-
rives from the SerializableTree and thus has extended functionality compared to a normal
SerializableTreeNode [28]. Every graphic node has a boolean variable specifying if it is
currently visible or not. If a robot for example is not visible in the graphic world because
its position is too far away from the camera all robot connected devices like wheels and
lights also do not have to be updated (section 7.3). Robot Creation (section 4.2) makes
all device graphic nodes children of part graphic nodes and these again children of the
parent robot graphic node. If now for example the robot's chassis is invisible all the
children like wheels and lights will not be updated anymore. This method saves resources
by not calling super�uous updates.

As already mentioned before, the graphic manager always calls an update on the complete
graphic node tree when new data has arrived from the server and only when the update
is completed a new render process is started. The rendering can be done on either the
screen, a texture or on both of them. Render to a texture is provided to let the user do
image processing on the simulation's graphic scene. Section 7.2 elaborates the rendering
in chapter 7.

4 World and Robot Creation

The client software design section (3.4) of the previous chapter was mainly concerned with
explaining the AutoSimClient's software design at runtime. Additional to the runtime
actions this thesis took a big e�ort on the construction of the simulation world and its
objects. Therefore this chapter gives an overview of the AutoSimClient's world creation
concept and goes into further detail by describing the robot building process. As the
terrain creation is a large topic it is handled separately in chapter 5 although it is part of
the world creation.

4.1 World Creation

For being able of transferring the highest possible amount of object positions and other
object information from the server to the client, AutoSim uses a networking concept that
tries to avoid transmitting unnecessary information. However, the AutoSimClient needs
to know the object belonging to the data package received from the server. Sending name
information would solve this problem but increase the transmitted data a lot due to the
large byte size of a string. AutoSim uses a di�erent concept of synchronizing data. The
previous chapter (3) introduced the graphic nodes and their inherited serializable tree
concept. As its name implies the serializable tree representing class SerializableTreeNode
is able to serialize its attributes and also deserialize the data again into a tree structure
[28]. If the data tree structures on server and client are kept equal the SerializableTreeN-
ode can directly inscribe the received data from the server into the client's tree. If a
graphic node like for example a virtual camera does not need any data to receive from the
server, its appearance in the client's graphic node tree does not e�ect the deserialization.
The data arrays of every data transferring device are speci�ed in an XML �le, telling the
server how much data to transfer for every device and helping the client to construct the
data arrays for every graphic node derived class.

To meet the requirements of equally constructed data trees, the client and the server share
their concept for construction and use the same �les for reading out the information. The
UML diagram of Figure 4.1 visualizes the software structure of the AutoSimClient's world
creation, excluding classes not necessary for understanding the process.

25

26 4 WORLD AND ROBOT CREATION

!"#$%&'#()*+",

-"."*&'#()*+", /(##)+,&'#()*+",

!"##$%&'($)"#

0

0

*+%"&,!"##$%&-.%+)"#

0 0

/(#+)'($)"#

*+%"&,/(#+)-.%+)"#

0(1(,'($)"#

0

1

*+%"&,0(1(,-.%+)"#

0 0

2+,*(#3)4(5

/(#+)-.%+)"#

2+,*(#3)4(5

0(1(,-.%+)"#

2+,*(#3)4(5

!"##$%&-.%+)"#

Figure 4.1: World Creation

The AutoSim framework uses the builder concept introduced in section 2.1.1 for world con-
struction. Both the client and the server implement the virtual functions of the shared
Builder interfaces in order to meet their particular construction requirements. Their
shared Loader classes call the Builder functions without knowing which program they
belong to. Sharing the Loader classes also ensure the data is loaded equally into both
programs. The thesis will now enumerate the single steps of world loading in the Au-
toSimClient, as this is probably the best way for understanding the usage of the builder
pattern in AutoSim.

1. create a new WorldLoader instance.

2. call WorldLoader->loadWorld() and pass a new ClientWorldBuilder object as argu-
ment.

3. function loadWorld() loads all settings of the world �le into a data structure.

4. loadWorld() calls the WorldBuilder functions buildWorld(), buildGraphics(), build-
Physics(), buildTerrain() and buildObjects() of the ClientWorldBuilder implemen-
tation and passes therefore needed data to the builder.

The �ve WorldLoader functions mentioned in item 4 are declared as pure virtual within
the WorldBuilder interface and must be implemented by the deriving ClientWorldBuilder
and ServerWorldBuilder classes. Similar to that, the TerrainBuilder and RobotBuilder
contain pure virtual functions to be implemented by their deriving server and client
classes. In addition to interface declarations the builder classes may also contain build
functions for operating tasks that do not distinguish between server and client. Applying
height data to constructed road meshes is an example for this (section 5.3).

4.2 ROBOT CREATION 27

To complete the description of the client's world creation procedure the �ve main con-
struction functions will be explained now:

• buildWorld() and buildPhysics(): the AutoSimClient does nothing since these
functions are just needed on the AutoSimServer.

• buildGraphics(): initializes the Graphics instance with parameters for starting
Irrlicht, creating a new texture as render target and setting the current mode for
visualizing debug information.

• buildTerrain(): loads and builds the terrain by creating a new TerrainLoader with
a new ClientTerrainBuilder as argument. The terrain construction is explained in
chapter 5.

• buildObjects(): parses through all robots and creates a new ClientRobotBuilder
for each of them to be loaded by the RobotLoader 4.2.

4.2 Robot Creation

For every robot listed in the world �le AutoSimClient creates a new ClientRobotBuilder
responsible for building exactly one robot, a new RobotLoader responsible for loading
the robot's XML �le and �nally starts a new robot building process. As implied by the
names of the classes the builder pattern is used again. Because this concept was already
explained in world creation (section 4.1) and the robot's loading concept is similar to the
one of the world, the next parts will mainly focus on the characteristic client tasks in the
ClientRobotBuilder.

Every robot consists of parts and devices. Parts are always physic boxes with a size, a
mass and a visualizing graphic model. A car has for example a chassis part and could
carry a trailer as a second part. All devices have to be connected to one part of the
robot, meaning a robot cannot exist without at least one part. As the parts and also the
devices with a graphical representation are graphic nodes the ClientRobotBuilder has to
construct these nodes and add them into the tree structure. DummyGraphicNode's do
not have any functions for visualization during runtime, but they can establish an easier
understandable tree structure. One of them is constructed by every ClientRobotBuilder,
as a general graphic node for the robot to keep all robot parts as children of this node in
the tree. Figure 4.2 provides a graphical explanation of the robot tree.

All graphic nodes are created by the GraphicManager, as it simpli�es the construction
process by knowing how to construct every individual graphic node. Therefore it has
functions for creating every type of graphic node and a pointer to a parent node speci�es
the part of the tree the node will be added. The robot builder creates a list of all the
parts of a robot, as every device has to be added to its speci�ed part. Therefore the parts

28 4 WORLD AND ROBOT CREATION

!"#"$%

&'($)%

*+,-.+)%

./'))-)

!"#$%&!&'()*

$('-0+(

!"#$%&!&'()*

0+1$2/++0

!"#$%&!&'()*

("#"$

+,--.)*

333

333
$('-0+(.'4

/$01,2%32-&02)* 333

Figure 4.2: Robot Creation

of the robot are processed before the devices.

The following enumeration lists all graphic nodes the graphic manager can construct.

• BillboardGraphicNode: represents a static object that only consists of a texture
which always looks towards the camera

• DebugBoxGraphicNode: visualizes a physic box in the graphic world; used for
debugging

• DummyGraphicNode: GraphicNode used for keeping the tree structure; does
not have any functionality

• HeadLightDeviceGraphicNode: displays a HeadLightDevice: the light cone of
the head lights

• LightDeviceGraphicNode: displays a LightDevice: the light particles at the car

• MeshGraphicNode: visualizes any 3D graphic model

• MobileMeshGraphicNode: used for 3D models receiving position and rotation
updates from the server

• TerrainMeshGraphicNode: displays a terrain tile

• ThirdPersonCameraGraphicNode: camera �ying behind a graphic node; does
not rotate with the node

• VelocimeterGraphicNode: introduces the possibility to display a speedometer
with the current speed for every Velocimeter device.

• VirtualCameraGraphicNode: �xed camera attached to a graphic node; rotating
with the node

The di�erent types of graphic nodes mainly distinguish in the attributes they possess and
the way they react on a data tree update. Some of the most interesting update methods
are explained in chapter 7.

5 Terrain Modeling

Worlds of testing environments for autonomous driving vehicles should always be big
enough to confront the vehicles with di�erent unforeseen events. Rather than just going
around a block of houses, a world consisting of a whole street web is built by the AutoSim
simulator. Unfortunately the physics engine cannot simulate an unlimited world size
and the polygons drawn by the graphics card are limited as well. While the limitation
by the physics is still tolerable, as the loadable scene is highly su�cient for a testing
environment, the amount of drawable polygons for the graphic world is far from being
satisfactory. For that reason this chapter is primarily concerned with creating a terrain
meeting the low polygon requirements.

This chapter starts by explaining the theory behind Bilinear Interpolation and Shader
programming and continues with the AutoSimClient's implementation of these methods
in order to lift meshes, create a graphic terrain and create static objects.

5.1 Bilinear Interpolation

In mathematics, bilinear interpolation is an extension of linear interpolation for inter-
polating functions of two variables on a regular grid. The key idea is to perform linear
interpolation �rst in one direction, and then in the other direction [34]. If the 2D co-
ordinates of a desired value are more accurate than the resolution of the grid bilinear
interpolation has to be done between the 4 surrounding values. Figure 5.1 shows a point
P with the coordinates (x, y) whose location is between the existing data points with
coordinates Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1) and Q22 = (x2, y2). The regular
grid is shown by the dashed lines.

The �rst step is to obtain the values of the points R1 = (x, y1) and R2 = (x, y2) by linear
interpolation in x-direction:

f(R1) ≈
x2 − x
x2 − x1

f(Q11) +
x− x1

x2 − x1

f(Q21) (5.1)

f(R2) ≈
x2 − x
x2 − x1

f(Q12) +
x− x1

x2 − x1

f(Q22) (5.2)

29

30 5 TERRAIN MODELING

! ! !

"

"

"

#

#

$

$

%
##

%
$#

%
#$ %

$$

&
#

&
$

'

Figure 5.1: Bilinear Interpolation

f(R1) and f(R2) can now be used for performing linear interpolation in y-direction and
thus obtain the value of P :

f(P) ≈ y2 − y
y2 − y1

f(R1) +
y − y1

y2 − y1

f(R2) (5.3)

If distances between points are always 1 and (x1, y1) can be set in the origin (0, 0), the
equations above are reduced to:

f(P) ≈ a1 + a2x+ a3y + a4xy (5.4)

where

a1 = Q11

a2 = Q21 −Q11

a3 = Q12 −Q11

a4 = Q11 −Q21 −Q12 +Q22

and x and y are now distances relative to Q11.

5.2 SHADERS 31

5.2 Shaders

CPUs usually have only one programmable processor. In contrast, GPUs have at least two pro-
grammable processors, the vertex processor and the fragment processor, plus other non-
programmable hardware units. The processors and the non-programmable parts of the graph-
ics hardware are linked through data �ows. A common model of the GPU is illus-
trated by Figure 5.2 [21].

2 808-00504-0000-006
NVIDIA

Cg Language Toolkit

The Cg Language
!"!#$!%&$'(!)*!!+!%,-!.#-/!'*/&*0'1'*-$!&*(!1)(#2#0&-#)*$!-/&-!1&3'!#-!'&$4!
-)!.5#-'!65)"5&1$!-/&-!0)16#7'!-)!/#"/74!)6-#1#8'(!9:;!0)('<!!"!0)('!7))3$!
&71)$-!'=&0-74!7#3'!!!0)('+!.#-/!-/'!$&1'!$4*-&=!2)5!('07&5&-#)*$+!2,*0-#)*!
0&77$+!&*(!1)$-!(&-&!-46'$<!

>'2)5'!('$05#%#*"!-/'!!"!7&*",&"'!#*!('-+!#-!#$!#16)5-&*-!-)!'=67&#*!-/'!
5'&$)*!2)5!$)1'!)2!-/'!(#22'5'*0'$!-/&-!'=#$-!%'-.''*!!"!&*(!!<!
?,*(&1'*-&774+!#-!0)1'$!().*!-)!-/'!(#22'5'*0'!#*!-/'!65)"5&11#*"!1)('7$!
2)5!9:;$!&*(!2)5!!:;$<!

Cg’s Programming Model for GPUs

!:;$!*)51&774!/&@'!)*74!)*'!65)"5&11&%7'!65)0'$$)5<!A*!0)*-5&$-+!9:;$!
/&@'!&-!7'&$-!-.)!65)"5&11&%7'!65)0'$$)5$+!-/'!@'5-'=!65)0'$$)5!&*(!-/'!
25&"1'*-!65)0'$$)5+!67,$!)-/'5!*)*"65)"5&11&%7'!/&5(.&5'!,*#-$<!B/'!
65)0'$$)5$+!-/'!*)*"65)"5&11&%7'!6&5-$!)2!-/'!"5&6/#0$!/&5(.&5'+!&*(!-/'!
&667#0&-#)*!&5'!&77!7#*3'(!-/5),"/!(&-&!27).$<!!"C$!1)('7!)2!-/'!9:;!#$!
#77,$-5&-'(!%4!?#"< D<!

Fig. 1. Cg’s Model of the GPU
Figure 5.2: GPU data flow [21]

Shader languages allow us to write programs for both GPU processors. The vertex and
fragment programs are called vertex and pixel shaders respectively. As their name im-
plies, the vertex shaders are used for modifying the geometry data of the meshes, and
pixel shaders perform operations on the pixels. The ongoing data �ow on the graphics
card requires a provident design of the GPU programs to prepare data for the following
hardware units.

Today shaders can be written either in assembling language or in one of the several higher
level languages. Unfortunately many shader languages are speci�ed to either OpenGL
or Direct3D and exist only for one of those two APIs. Therefore the graphic cards
manufacturer nVidia established their shader language Cg to make it possible to write
a program for both APIs. The Cg syntax refers to the currently most used High Level
Shading Language (HLSL) by Microsoft in such a way that many HLSL programs are
understandable to the Cg compiler without any change of the code. Nevertheless the
shader programs are executed by one of the graphic APIs and have to meet the API's
requirements for shader programming.

On the basis of the data �ow model of the graphics card the programs are limited in the
way they receive and process data. More precisely GPU processor programs in HLSL and
Cg have two di�erent ways of receiving input values:

• Varying inputs are used for data that is speci�ed with each element of the stream of in-
put data. For example, the varying inputs to a vertex program are the per-
vertex values that are speci�ed in vertex arrays. This can be model space positions,
model space normal vectors or texture coordinates. Furthermore the number of

32 5 TERRAIN MODELING

varying inputs is limited by the graphics card and because of that they have to
use one of the prede�ned names (5.1) to specify their function and to keep the
limitations of the variables.

• Uniform inputs, also named constants, are used for values that are speci�ed sepa-
rately from the main stream of input data, and do not change with each stream el-
ement. For example, the AutoSimClient vertex shader requires an array of height
data to process a data update on every vertex of the mesh. The number of Uniform
inputs is limited by the graphics card. Nowadays graphics cards have about 256 of
the so called VertexShaderConstants. Constants have to be shader data types, but
need not use prede�ned names like the varying inputs.

POSITION BLENDWEIGHT
NORMAL TANGENT
BINORMAL PSIZE
BLENDINDICES TEXCOORD0 - TEXCOORD7

Table 5.1: Example of predefined names for varying inputs

The HLSL and Cg shaders only know two data types, �oat and int and both are 32
Bit. To de�ne a varying input the correct data type has to be combined with the chosen
prede�ned type. For example a POSITION variable requires a 3 or 4 dimensional �oat
vector. All the inputs have to be set as arguments of the shader's main function, as a
shader is started by a main function call.

As the vertex shader is executed before the pixel shader it has to prepare the data for
the pixel shader and also for the other following units. For example it has to transform
its input POSITION by the graphic engine's world view matrix in order to get pixel
coordinates. The data is passed to the GPU data �ow by a structure of variables set as
return value of the main function (Listing 5.1).

Listing 5.1: Output Structure
1 / / Vertex shader output s t r u c t u r e
2 struct VS_OUTPUT
3 {
4 f l o a t 4 Pos i t i on : POSITION ; / / ve r tex p o s i t i o n
5 f l o a t 4 D i f f use : COLOR0; / / ve r tex d i f f u s e co lo r
6 f l o a t 2 TexCoord : TEXCOORD0; / / tex coords
7 } ;

Listing 5.2: Preparing data
1 VS_OUTPUT vertexMain (VS_INPUT IN)
2 {
3 VS_OUTPUT Output ;
4

5.3 APPLYING HEIGHT DATA TO THE WORLD 33

5 Output . Pos i t i on = mul (IN . vPos i t ion , mWorldViewProj) ;
6
7 return Output ;
8 }

All CPU programs and programming languages support essentially the same set of ba-
sic capabilities. However, GPU programmability has not quite yet reached this same level of gen-
erality, as the vertex and fragment processors obtain more and more operation possibilities
during the ongoing hardware development process. For example newer vertex shader ver-
sions since 3.0 also support texture lookups which was reserved for pixel shaders before.
Regarding the functions a GPU program really needs, the chosen shader version should
be the oldest possible to support a large range of graphic cards.

5.3 Applying Height Data to the World

The AutoSim framework is able to load real world height data into the simulated world.
The height data is stored in a grayscale 8-bit image, named HeightMap. Independent
from its pixel size, the HeightMap is always expanded to the size of the world. To 10
meter accurate height data should for example be stored in an image with a pixel size of
a 10th of the world size.

Expanding height data to the world size is done via the bilinear interpolation (5.1)
method. The HeightMap image and the world are interpreted as areas relative to their
sizes. Meaning world coordinates are divided by the world size to get relative values from
0 to 1 and these are applied to the size of the HeightMap image. Bilinear interpolation
can now calculate a height value for all world coordinates.

Some 3D Meshes, like for example roads, should lie exactly on the terrain surface and
thus their meshes have to be transformed by using height data. This is done by iterating
through all mesh vertices, take their x and z-coordinates as input points and add the
interpolated height data value to their y-coordinate, which points upwards in the Au-
toSimClient coordinate system.

Objects like houses are lifted as a whole and not aligned along the terrain. For these kind
of meshes only the y-coordinate of the model's position is lifted.

34 5 TERRAIN MODELING

5.4 Graphics Terrain

During interactive visualizations, many types of geometric data compete for limited poly-
gon budgets. Terrain remains one of the most challenging types because it is not naturally
decomposed into parts whose complexity can be adjusted independently, and because the
qualities required of a triangulation are view dependent.

Evaluating the existing methods for rendering large terrain areas of section 2.1.2 con-
cludes in 3 good possibilities for constructing the AutoSimClient terrain. Regarding the
simplicity of construction, the elegance of implementation, the time of publication and
the promised rendering speed makes the Geometric Clipmaps more interesting than the
ROAM and Geometrical MipMapping algorithms. The advantage of Geometric Clipmaps
compared to ROAM is most of all the much simpler implementation and compared to
Geometrical MipMapping the visualized area does not have to be divided. The client
terrain rendering follows the idea of Geometric Clipmaps to have a mesh gliding over
the data, but implements its own version by bringing the data update of the mesh to
the graphics card and simplifying the algorithm by some not necessary features. The
following section explains the way of constructing the mesh and the subsequent section
Terrain Vertex Shader explains the operations processed during runtime on the graphics
card.

5.4.1 Terrain Mesh

Geometric Clipmaps enhanced terrain requires the construction of a speci�c mesh used
for gliding over the terrain data. To accelerate render speed this mesh should consist of
di�erent detailed parts, as the viewpoint will always be close to the mesh's center and
never reaches the outer lying parts. In general there are two di�erent ways of creating a
mesh:

1. use a 3D modeling program and obtain an irregular mesh

2. program the mesh in order to be regular

The graphic terrain does not necessarily need a programmed mesh but there are ad-
vantages in building one. A regular mesh can for example consist of multiple tiles and
the number of these tiles, and thus the range of vision, can be determined by the user
later on. The Irrlicht Engine's mesh representation is also built on a limited number
of MeshBu�ers which simply contain a list of vertices, a list of indices and a material.
As the engine cannot draw MeshBu�ers with more than 65536 triangles they have to be
divided into smaller parts in order to solve this limitation problem. Furthermore the level
of detail of the individual tiles can be changed very easily in a regular model and di�er-
ent versions of details can be made available for various computer hardware con�gurations.

5.4 GRAPHICS TERRAIN 35

Figure 5.3 shows the mesh construction for one tile. The starting point is the tile rectangle
with two outline de�ning vertices. This rectangle is divided into smaller rectangle parts
in every construction step. A rectangle is represented by the AutoSim class RectNode and
contains member functions for dividing itself and constructing new RectNode children.
During every step the information of the parent rectangle is dropped in such a way that
�nally a list of small rectangles exists. The fan method for triangulation (7.1) is used in
order to add new polygons to the MeshBu�er for every entry in the rectangle list.

!"#$!"#% &'()

(*+,- -.,/012+/-'

Figure 5.3: Tile Mesh Construction

The meshes of the tiles are now placed next to each other to form the terrain mesh. If tiles
of di�erent level of details are connected and the terrain is very hilly in the connecting
area, gaps in the terrain, caused by the change of triangle amounts may occur at the so
called T-junctions (Figure 5.4 and 5.5).

!"#!$%&'$()"*&("*$

+,$%&'$()"&("*$

-+..$-("+.&)%$)&).'&($%%)".&#)/

Figure 5.4: Terrain Gap Figure 5.5: Gap in rendered Terrain

A solution for this problem is to triangulate these gaps. The mesh with the lower level
of detail between two joining meshes adds triangles to achieve the same particularity
in the connecting area as the linking tile. Therefore the tile �rst has to search for the
boundary rectangles. These rectangles can split their edges through adding new vertices
between the old edge points. Triangulation is done in the same way as before, because
the mentioned triangle fan provides a method to construct the mesh independent from

36 5 TERRAIN MODELING

the amount of vertices.

Figure 5.6 shows a higher detailed mesh surrounded by meshes with a reduced amount of
triangles. The surrounding meshes added triangles at some of their edges to connect to
the center mesh.

Figure 5.6: Terrain Mesh Figure 5.7: Wireframe Terrain

5.4.2 Terrain Vertex Shader

The updating process of height data on the graphic terrain's vertices can be accelerated
by bringing it to the multiple parallel working vertex shader units on the GPU. This
requires to take notice of the graphic card's data �ow model during programming and
to send the needed data for transforming the vertices to the vertex processors (section 5.2).

Before starting to program a decision had to be made about which shader language and
what vertex shader version to use. The Irrlicht Engine currently supports the 2 languages
HLSL and GLSL (OpenGL Shading Language) and unfortunately the otherwise preferred
Cg language would demand a big change of the Irrlicht Engine's code. However, Cg
support is planned for coming Irrlicht versions and in the light of this the terrain vertex
shader was written in HLSL syntax to leave the door open for Cg in the future, as
HLSL syntax is also understandable for the Cg compiler. The quite new vertex shader
version 3.0 supports texture lookups by the vertex processor and would thus be useful
for transferring data through textures to the GPU. As by the usage of this, older graphic
hardware would not be supported by AutoSim anymore, vertex shader version 1.1 is

5.4 GRAPHICS TERRAIN 37

chosen involving a more di�cult method of sending data.

Height data now has to be brought to the vertex shader through VertexShaderConstants,
which are limited by the graphics card. Fortunately the transmitted data to the shader
is usually also reduced by unprecise measured height data, as for many world positions
height data not more accurate than one value per 10 meters can be obtained from ge-
ographical institutes. Nevertheless the size of a tile mesh is still limited, as the vertex
shader has to process data for every position of the tile. For example height data as
accurate as one value per 10 meter and the common VertexShaderConstants amount of
256 would limit the tile size to 130m ∗ 130m.

When the height map is loaded into the AutoSimClient program an array of height data
for the vertex shader is created (section 5.3). Due to the usage of bilinear interpolation
(5.1), height data can be obtained for every world position and a setting by the user
has to specify how accurate the data really is. The data array for the vertex shader is
created dependent on the world size and the distance between two data points. Before
rendering a frame a part of the array is cut out and send to the shader. Sometimes it
is not possible to cut out the current mesh's outline in the world from the vertex shader
data array, because the tile may lie somewhere between data points. In the account of
this the shader transmits an array expanded by the outlying data rows and information
of the mesh's actual world position is used to determine the needed array part on the
shader. The shader implements the bilinear interpolation method (5.1) and calculates
the height for all vertices of the mesh out of the received height data.

According to the idea of Geometric Clipmaps the terrain mesh always has to follow the
camera. The camera's world coordinates are sent as vertex shader constants to the GPU
and after transforming them by the Irrlicht Engine's world view matrix every vertex is
shifted by the camera's translation. Unfortunately in regions of lower detail this method
can produce unwanted �ipping of edges on the mesh, caused by a signi�cant change of
height data between two vertices. Due to the circumstance that a certain point in the
world is sometimes closer to a vertex than in another time step, this point will move up
and down as the terrain moves along the data. Figure 5.8 visualizes this e�ect in 2D. The
position of the point on the top of the height data hill moves along the green arrow while
the 2D lines (symbolizing the 2D version of the triangles) are continuously shifted from
right to left.

The �ipping edges e�ect can be avoided by waiting to a certain shifting point, dependent
on the lowest detailed part of the mesh, instead of following the camera directly. Acci-
dentally this leads to a popup e�ect of terrain at the borders of the mesh, which can be
made nearly invisible by a big terrain mesh.

38 5 TERRAIN MODELING

!

"

#

!

"

#

Figure 5.8: Flipping Edges

5.5 Creation of Static Objects

It often takes a long time to place houses or trees along a street, especially when the
result cannot be immediately considered by the creator. For setting up a new testing
environment, houses usually do not have to be exactly the same as in the real world,
because the house look should not make any signi�cant change for the robot controlling
program. On account of this the OsmManipulator can accelerate the world creation
process by automatically adding houses or trees along the streets. The manipulator
constructs the points for the static objects by creating a new lane via the construction
methods of the road generation process (chapter 7). The distances of the object's cen-
ter to the street and to the next object are changeable through the OsmManipulator GUI.

All house and tree models to use are read from a House File List XML �le. Before
selecting a model the manipulator searches for areas inside the world's OSM �le, which
are de�ned as circular ways with a speci�c OSM tag. Therefore it has to calculate if
the new house node is inside an area or not. The de�nition of the scalar product is the
outgoing point for this calculation, as it can be used to calculate an angle α between two
vectors:

α = arccos(
~a ·~b
|~a||~b|

) (5.5)

If two 2D vectors ~a and ~b are brought into 3D space, the sign of the 3rd coordinate of
their cross product implies the direction of the angle between them in 2D space. Meaning
by combining the angle calculation (equation 5.5) with a multiplication by the sign of
the cross product, results in a directional angle between two vectors. Using this method
makes it now possible to distinguish between inside an area or not. Lets assume the house
node lies inside the area, meaning all nodes of the way lie in a circle around it. Vectors are
constructed between every node and the house node and by going one direction around
the circle, all angles between two vectors next to one another are added. Concerning
the circle around the node, the angle should sum up to 360 degrees. On the other hand
if a node lies outside an area, the added positive angles will be neutralized by negative
angles that are added as the way goes down from the node's point of view. This method

5.5 CREATION OF STATIC OBJECTS 39

is applied to all areas and by an angle of 0 degrees the manipulator knows the node is
outside the area, whereas 360 degrees imply an area surrounding the node.

Having now detected the corresponding area of the static object node, the manipulator
program can choose one of the area dependent model �les to store it into the OSM �le
by creating a new OSM node at the object's world coordinates. Beside coordinates and
model �les these new entries include further information about the physics box and the
rotation of the node (B.3). As the output �le is again an OSM �le containing streets and
now also nodes for objects, it can be easily edited by one of the OSM programs from the
OpenStreetMap website.

6 Road Construction

One stated objective of AutoSim is to recreate a street web of the real world inside the
simulator. This could be done by creating the roads based on their real world illustrations
by using a 3D modeling program and placing them in the correct positions inside the
simulated world. However, creating large areas and even several cities would cause a lot of
work of modeling and positioning the roads. The PC game Midtown Madness published
by the Microsoft Game Studios was one of the �rst games to use a procedural method
for building roads automatically out of road data. AutoSim follows this approach and
constructs the roads and intersections in the simulator out of data obtained from the free
street data service OpenStreetMap and doing so reduces the work of building road models
whilst retaining the ideal of an exactly recreated world.

The section on Splines explains the theory of the mathematical spline functions used
during road generation and the section on RoadData gives information about the data
structure of the roads in AutoSim. Finally the section on Road Generation explains the
entire construction process.

6.1 Splines

Curves in computer graphics are often created out of mathematical spline functions, be-
cause of the simplicity of their construction, their ease and accuracy of evaluation, and
their capacity to approximate complex shapes [27]. A spline is a mathematical function
de�ned piecewise by polynomials and, in general, every polynomial can be used to create
a spline. However, functions like, for example, Hermite polynomials are making it easy
to create smooth curves through a number of points. An interval of the Hermite Spline
is de�ned between two control points, along a control variable t (equation 6.1):

p(t) = (2t3−3t2 +1)pi +(t3−2t2 + t)mi +(−2t3 +3t2)pi+1 +(t3− t2)mi+1 t ∈ [0; 1] (6.1)

The starting and ending points pi and pi+1 are margining the hermite interval and the
corresponding gradients mi respectively mi+1 take in�uence on the shape of the curve.
Figure 6.1 illustrates the in�uence of the four basis functions in the hermite interval
de�ned along control variable t.

40

6.1 SPLINES 41

h00(t) = 2t3 − 3t2 + 1

h10(t) = t3 − 2t2 + t

h01(t) = −2t3 + 3t2

h11(t) = t3 − t2

Figure 6.1: Hermite Basis Functions [36]

If t is 0 all basis functions except of h00(t) are 0, which means the hermite curve always
starts out of starting point pi. As at t = 1 only h01(t) is di�erent from 0 the Hermite
Spline also ensures the curve is ending at control point pi+1. De�ning number of points −1
intervals next to each other and each interval connecting two points constructs a spline
curve as visualized by �gure 6.2. As already mentioned the tangents at the control points
determine the smoothness of the curve and in the light of this it's important how they are
construction. Kochanek Bartels splines pursue the Hermite splines in adding formulas for
constructing the tangents:

mi =
(1− t)(1 + b)(1 + c)

2
(pi − pi−1) +

(1− t)(1− b)(1− c)
2

(pi+1 − pi)

mi+1 =
(1− t)(1 + b)(1− c)

2
(pi+1 − pi) +

(1− t)(1− b)(1 + c)

2
(pi+2 − pi+1) (6.2)

where

t = tension; t ∈ [−1; 1]
b = bias; b ∈ [−1; 1]
c = continuity; c ∈ [−1; 1]

Figure 6.3 shows the in�uence of the tension, the bias and the continuity parameter on
an interval of the curve.

Continuity regulates the transitions between the intervals and only a �xed set to 0 of
this value drives the transition to the usually desired tangent-continuous (C1). The bias
parameter b moves the curve a bit to either the starting or the ending point of an interval
and tension t acts upon the sharpness of the curve in the interval, because it has a�ect

42 6 ROAD CONSTRUCTION

Figure 6.2: Spline [33] Figure 6.3: Kochanek Bartels Parameters [37]

on the length of the tangent vector.

When splines are used in computer graphics their length is often required to, for example,
calculate the current position on the complete curve. The length of an interval can be
obtained by integrating over the curve along t from 0 to 1 and the di�erent intervals can
be summed up afterwards to result in the complete length of the spline.

Interval length =

∫
C

ds =

∫ b

a

√
ẋ(t)2 + ẏ(t)2dt (6.3)

where ẋ(t) and ẏ(t) are the x and y values of the derived spline equation ṗ(t).

6.2 Road Data

The data used for road generation can be downloaded as XML data �les from the OSM
server and contain a structure made of node and way XML sections. Nodes represent
points in a 2D world and ways contain a list of nodes. Furthermore both XML sections
have OSM tags specifying their usage. Figure 6.5 gives an overview of an already rendered
node and way system of the Perth suburb Crawley, containing area surroundings that
are also de�ned as ways.

AutoSim takes over the OSM �le structure and adds a new type named segment. A
segment is a part of a way and has two nodes de�ning the segment's starting and ending
point. For this reason a way in the simulator now contains a list of segments instead of a
list of nodes as before.

The class OsmParser parses all nodes and ways out of the OSM �le into the simulator's

6.3 ROAD GENERATION 43

data structure. As the usage of those can be di�erent the parser searches for ways and
nodes representing streets respective static objects to store them in arrays and thus pre-
pare them for the road generation. Due to the fact the OsmParser class is the only class
interacting with the OSM �le, a change of the OSM data structure would eventually only
e�ect a change of the OsmParser class.

As roads and intersections are generated by the same classes on the AutoSimServer and
the AutoSimClient, the constructed meshes are stored in order to be used for both the
physics engine and the graphics engine. Therefore a hierarchical structure called RoadData
was constructed, where the lowest parts contain the actual mesh represented by vertex
and index lists. The intersections only need a further 3D vector for their position, whereas
the roads are divided into segments storing multiple vertex and index lists for the di�erent
parts of the street. Listing 6.4 shows the structure for an Intersection and a Road. The
roads contain RoadSegments and those contain again a position and lists for all vertices
and indices of the street, the curbs and the pavements.

1 class Road
2 {
3 public :
4 Vertex m_Posit ion ;
5 VECTOR<RoadSegment∗> roadSegment ;
6 } ;
7
8 class I n t e r s e c t i o n
9 {
10 public :
11 Vertex m_Posit ion ;
12 VECTOR<Vertex > i n t e r s e c t i o n V e r t i c e s ;
13 VECTOR< int > i n t e r s e c t i o n I n d i c e s ;
14 } ;

Figure 6.4: Road Data Figure 6.5: Streets in Perth

Finally server and client use the lists of vertices and indices of the road data to bring
them into their mesh representation of the physics and graphics engine respectively.

6.3 Road Generation

Section 6.2 explained the OsmParser class parsing all OSM road data �les into a node,
way and segment structure and creating a separate list for the ways detected as roads.
The node, way and segment classes keep all information of their XML section matches
and additionally provide useful calculations for road generation. However, the main
class for road generation is the RoadFactory and a call to its function generateRoads()
is starting the construction process, which includes storing all the created meshes into a

44 6 ROAD CONSTRUCTION

road data structure. For simplifying the calculations the common righthanded x, y, z -
coordinate system, with z pointing upwards, is used and after construction the vertices
are transformed back into the lefthanded coordinate system of physics and graphics engine.

Figure 6.6: left handed and right handed coordinate system [35]

Iterating through the detected roads starts a new generation process for every road by
�rst of all creating a new 2D Kochanek-Bartels spline class instance (6.1). All coordinates
of the road belonging nodes are committed into the spline class. The spline is created
by setting the bias, the tension and the continuity parameter always to 0, which was
identi�ed as the best con�guration for creating a smooth and continuous curve.

The roads are divided into segments and every segment creation starts by checking both
connected nodes whether being an intersection or not. Eventually an intersection creation
is executed if the node is detected as an intersection by having more than two connecting
segments.

The segment's construction continues by shifting through the segment's corresponding
spline interval in a prede�ned step size while calculating vertices for the mesh on every
position. The spline is taken as the center of the road and new vertices are constructed
by moving from the current spline position along its normal until the desired distance to
the road center is reached. Figure 6.7 shows this proceeding inside the calculation view
and �gure 6.8 visualizes the corresponding road mesh created by AutoSim.

Apparently the vertices for the pavements and curbs have to be lifted by the desired
curb height value in order to obtain a proper road mesh for the segment. Every segment
generation step integrates over its current step size interval and adds the value to a sum,
representing the stridden length of the spline 6.1. The spline length is needed to calculate
the texture coordinates for the vertex, as the street texture must always be repeated after

6.3 ROAD GENERATION 45

!"#$%&

'()*+#

,+-&*&%.

!.)&&.

Figure 6.7: Road Construction Figure 6.8: Constructed Road Part

reaching its boundaries. Therefore one texture coordinate always stays at a �xed value
0 respectively 1 and the second texture coordinate moves with the spline position. For
example the �xed values for the lane texture are the street boundaries while the texture
is repeated at its end through a moving second coordinate.

If multiple segments strike each other at an intersection node, the constructed road seg-
ments cannot end all together at the same node, because their road meshes would overlap.
To avoid the overlap the node class has a function for calculating new connection points
for the road segments. The number of points are dependent on the number of roads
connected to the segment and the location of the points changes with the width of the
streets. A T-junction would for example require the calculation of three points for its
three connecting roads. Apparently the road segments must now be modi�ed in order to
end in the connection points of the intersection. First of all the calculated ending vertices
of the road segment are shifted into these connection points and to provide a smooth
transition of the road into the intersection, several other vertices should be in�uenced as
well. Therefore the o�set between the previous constructed ending vertices and the new
calculated ending points is taken as input of a fading function that calculates the o�sets'
in�uence among the points of the segment. Figure 6.9 illustrates the method of fading the
road into its new ending points and �gure 6.10 presents a �nished road generation junction.

As the o�set must have its entire in�uence on the intersection transition and should
completely disappear at the segment's connection to the next segment, the function must
either decrease from 1 to 0 or increase from 0 to 1 inside an input interval from 0 to
1. The easiest, but nevertheless for this problem, most suitable functions are shown in
equations 6.4 and 6.5.

Whereas the x2 function can be used for adding increasing o�sets to e�ect road fading
at the segment's end, function (x− 1)2 is excellent for applying decreasing o�sets to the

46 6 ROAD CONSTRUCTION

!"#$#%&'"#

()*+*,"-%&'"#

.,/$)0$1/*',

2',,$1/*',%3'*,/0

(440$/

Figure 6.9: Offset Fading Figure 6.10: T-junction after Road Genera-
tion

y(t) = (x− 1)2 (6.4) y(t) = x2 (6.5)

segment's beginning.

The o�sets for fading are calculated before the actual road segment construction process
has started and every time a new vertex is created the increasing and decreasing o�sets
are added to the vertex's coordinates. After constructing the vertex it is transformed
into the lefthanded coordinate system of graphics and physics engine and its position is
calculated relative to the position of the road segment. Finally the indices for the mesh
are created by the strip triangulation method explained in Rendering Methods (chapter
7) and all created road segment meshes are stored into the road data structure.

Creating the intersection meshes is simply done by taking the intersection node as center
vertex and all segment connecting nodes as further vertices for applying the Triangle Fan
method (7.1). Further nodes are added in between every two connection nodes to ensure
a seamless texture transition inside the intersections. Thus the number of triangles a
mesh consists of is now always of an even value and so the texture coordinates can be
calculated in a way to always make a seamless texture transition from one triangle to the
next one. Therefore the texture coordinates at the border of two connecting triangles are
always the same.

7 Rendering Methods

This chapter starts by explaining the theory behind Triangulation of meshes and continues
by giving an overview of the AutoSimClient methods for Rendering the Scene and applying
GeoMipMap to the graphic nodes.

7.1 Triangulation

A model in a 3D graphics world is usually build out of triangles and its mesh is a collection
of vertices and indices that form a 3D entity. Often, 3D models are created as irregular
meshes in a 3D modeling program, meaning they consist of unordered lists of vertices and
indices. Nevertheless it is sometimes necessary to program procedural meshes inside a
software and therefore it is recommended to use one of the already existing triangulation
methods. Furthermore graphic APIs often provide faster rendering and lower memory
use if vertex and index lists are passed in a certain order.

Two common methods of triangulating meshes are the triangle strip and the triangle fan
[19]. A strip is usually used if a series of connected triangles is desired, like for streets
or house walls. For example the strip in �gure 7.2 is visualized by using vertices v0, v1,
and v2 to draw the �rst triangle, v1, v3, and v2 to draw the second triangle, v2, v3, and
v4 to draw the third, v3, v5, and v4 to draw the fourth. It has to be noted that the
vertices of the second and fourth triangles are out of order. This is required to make sure
that all the triangles are drawn in a clockwise orientation as a convention in computer
graphics constitutes that triangles are only visualized if their indication is clockwise from
the spectator's perspective.

Constructing triangle strip meshes is made easier if the vertices are in a certain order.
Most common and also useful is the order used in �gure 7.2, where the numbers of the
strip's margin vertices are always vi and vi+1. The for loop of listing 7.1 constructs the
indices for the triangles out of such an ordered vertex list.

A triangle fan is similar to a triangle strip, except that all the triangles share one vertex.
This is shown in the illustration 7.4. The system uses vertices v1, v2, and v0 to draw
the �rst triangle, v2, v3, and v0 to draw the second triangle, v3, v4, and v0 to draw the
third triangle and so on. Triangle fans are useful if meshes have to be constructed for

47

48 7 RENDERING METHODS

1 for (i n t i =0; i <numberofver t ices −3; i +=2)
2 {
3 / / i nd i ces t r i a n g l e 1
4 i nd i ces . push_back (i) ;
5 i nd i ces . push_back (i +1) ;
6 i nd i ces . push_back (i +2) ;
7
8 / / i nd i ces t r i a n g l e 2
9 i nd i ces . push_back (i +2) ;
10 i nd i ces . push_back (i +1) ;
11 i nd i ces . push_back (i +3) ;
12 }

Figure 7.1: Strip Index Calculation

!
"

!
#

!
$

!
%

!
&

!
'

Figure 7.2: Triangle Strip

surfaces, where only points are available for the surface's outline. Listing 7.3 shows a
method of constructing indices for a triangle fan by assuming the main vertex is stored
at the beginning of the vertex list. After the loop another triangle is added to close the
fan to a circle, meaning now the mesh consists of a real center vertex surrounding by the
vertices of the surface's outline.

1 for (i n t i =2; i <numberofver t ices ; i ++)
2 {
3 / / i nd i ces t r i a n g l e 1
4 i nd i ces . push_back (i) ;
5 i nd i ces . push_back (0) ;
6 i nd i ces . push_back (i −1) ;
7 }
8 / / i nd i ces c los i ng t r i a n g l e
9 i nd i ces . push_back (1) ;
10 i nd i ces . push_back (0) ;
11 i nd i ces . push_back (numberofver t ices−1) ;

Figure 7.3: Fan Index Calculation

!
"

!
#

!
$

!
%

!
&

!
'

Figure 7.4: Triangle Fan

7.2 Rendering the Scene

The AutoSimClient program provides the user with two di�erent targets for rendering
the graphics scene. The scene can be either printed straight onto the screen or transferred
to a special render target texture, whereof it can be obtained through the ClientUserPro-
gramAPI. Therefore the user has to call the corresponding function with a world camera
as argument.

Every robot in the graphics world can have two di�erent types of connected cameras: A
VirtualCamera is �xed on the robot by moving and rotating with it and a ThirdPerson-

7.3 GEOMIPMAP 49

Camera is regarding the robot from a certain outside point of view. The third person
camera does not rotate and always keeps a speci�ed height relative to the robot.

Before rendering to the screen the AutoSimClient checks if a new data package has arrived
from the server since the last frame was rendered. If so the client starts rendering and
otherwise the graphics go into a sleep mode. Nevertheless a request for a new camera
image is processed immediately.

7.3 GeoMipMap

Visualization of huge graphic worlds is always connected to a reduction of world details
in the distance. If graphic objects are far away from the camera position a human's eyes
can hardly see any di�erence between detailed versions of graphic models and models
with a lower number of polygons. Of course, the graphic models have to be reduced in
a proper way. Methods like terrain following the camera or polygon reducing runtime
algorithms are very di�cult to apply on irregular meshes constructed by 3D modeling
programs. An alternate method to reduce the polygons of a mesh during runtime is to
load versions of di�erent detail-levels of the meshes and replace them if they are at a
certain distance. This method is called GeoMipMap and is used by the AutoSimClient
to reduce the number of polygons sent to the graphics card.

The GraphicNode derived class MeshGraphicNode implements the GeoMipMap method
and executes it when an update on the MeshGraphicNode is called. Therefore it has a
member pointer to the only camera existing in the 3D world and calculates the current
distance to it. Dependent on the distance of the node to the camera the representing 3D
mesh switches between higher and lower detail versions. If the node is too far away it is
set to invisible.

!"#$!"#% &''&''& ()*+,+-./

! "#$%&'()* +#$%&'()* ,#$%&'()*

#+,01)2/3

456/.'

#/01+.'3

Figure 7.5: GeoMipMap

The number of detail levels for a MeshGraphicNode is de�ned by the number of models a
user makes available for the program and a distance variable de�nes the size of one level
of detail area.

8 Conclusion and Future Work

This thesis introduced a new open source 3D driving simulator framework called AutoSim
which provides the user with a high level testing environment for autonomous driving
vehicles. The framework is based on open source libraries and open source data services
to accomplish the establishment of a software available for a wide audience by taking
bene�t of numerous existing free services. AutoSim is running the actual physics simu-
lation and its graphical representation completely separate through a networking based
concept of two disjoint working programs. Multiple additionally added user programs
allow external control of objects and the simulation environment while the API makes it
possible to observe and use simulation data in external running programs like for example
image processing frameworks. The biggest e�ort of this thesis was put into constructing
the graphical representation of the simulation world, which makes AutoSim now able
to visualize an almost unlimited world size. Furthermore the framework is capable of
reconstructing and editing real world street data, adding static objects like houses to
the scene and obtaining camera images from every camera in the world. Finally the
component-based software design makes AutoSim very �exible, modular and extensible
by giving developers the possibility to easily add custom requirements by modifying the
well documented disjoint software parts.

Currently AutoSim is only available for Microsoft Windows but as all used libraries are
cross platform, a version for Linux and possibly Macintosh will follow. Therefore the
compiler of the used shader programs will be changed to the cross-platform working Cg
compiler as soon as the Irrlicht Engine supports Cg shading language. An alternative,
but more e�ort taking approach is to rewrite the shaders into GLSL and use the OpenGL
version of the Irrlicht video driver for visualizing the graphics scene.

The graphical representation of the virtual environment in AutoSim was designed in order
to render a fast and large world. Therefore some of the best known today detail reducing
methods have been implemented and they make it now possible to place a huge amount
of graphic models into the simulation world. Future work will improve the graphical rep-
resentation by adding shader or normal map materials to the 3D models for ameliorating
their realism. As shader and normal maps are already provided by the graphic engine,
the only e�ort has to be put into creating the textures and writing the shader programs.
Additionally the lights in the world will be reworked by preparing the materials of the
models for lighting and changing the dynamic light system of the scene.

50

51

The AutoSim framework already delivers many tutorials and examples of how to create a
simulation world, observe simulation data and control the simulation robots, but future
work on more extensive and higher sophisticated user programs will give the user a better
entrance point for starting research in autonomous locomotion. Eventually preparing
further testing environments, either by loading and rebuilding particular real world parts
or by developing specially designed testing courses will be a future task and give the user
a quicker start to test the control programs.

For the purpose of bringing real world road data into the simulator, the road meshes
have been constructed by procedural road generation methods developed by the author
and its visualization is now on a high level for constructing decent street webs. The
models of roads and intersections and their lane markings will be improved to make them
look even more realistic and will accelerate their already fast rendering speed in future
versions. Road signs will be added for providing the image processing controlled robots
more criteria for decision making during autonomous driving.

A Tutorials

A.1 The AutoSimServer kick start guide

This tutorial gives a brief introduction to the AVSE Server. It shows how to get started
and explains the core features of the program. The following image shows the GUI.

Figure A.1: Graphical User Interface of the AutoSim Server

To setup and start the Server for your Simulation do the following:

1. From the File menu choose Select World File. An Open dialogue will show up.

2. Navigate to the worlds folder pick a World �le and click Open. This �le must be the
same on the server as well as on all clients in order to make the simulation work. If
you do not select a World File a default World File will be loaded.

3. To load the Simulation you can either click on the Load button or select Load from

52

A.2 WORKING WITH THE AUTOSIMCLIENT 53

the Simulation menu. This takes aproximately 10 sec depending on the computer
you use.

4. After the Load button poped up again the loading process is completed and the
Clients can be connected to the Server. You will also see the all the Robots de�ned
in the World File showing up in the Simulation Objects box.

5. To Start the Simulation simply hit the Run Button or click Run in the Simulation
menu. This starts the actual simulation process and makes the server start sending
updates to the clients through the network.

6. If you want to break the running simulation at any point just click the Pause Button.
This will stop updating the physics. To proceed press the Run Button again or
choose Run from the Simulation Menu.

7. The Slider inside the Simulation Control box can be used to adjust the integration
step size for the physics engine. Note that the number displayed is the fraction of a
second by which the physics will proceed in a single integration step. Pushing the
slider to the right gives you more accuracy but slows the simulation down - which
might not necessarily be bad.

A.2 Working with the AutoSimClient

Figure A.2: AutoSimClient

54 A TUTORIALS

To setup, start and use the AutoSimClient for your Simulation do the following:

1. From the File menu choose Select World File. An Open dialogue will show up.

2. Navigate to the worlds folder pick a World �le and click Open. This �le must be the
same on the server as well as on all clients in order to make the simulation work. If
you do not select a World File a default World File will be loaded.

3. To load the Simulation you can either click on the Load button or select Load from
the Simulation menu. This takes approximately 10 sec depending on the computer
you use.

4. After the Load button popped up again the loading process is completed and the
client can be connected to the server. You will also see all the robots de�ned in the
World File and additional objects showing up in the Simulation Objects box.

5. Set the IP address of the server you want to connect to in the Network box. The
default value connects to the localhost meaning to a AutoSimServer running on the
same pc as the AutoSimClient.

6. To set the robot you want to control by a UserProgram put your mouse cursor into
the Robot Name input �eld of the UserProgram box and enter the name. The cor-
responding UserProgram can be set in the UserProgram input �eld below. Clicking
on the Change button next to it opens a �le dialogue that makes it easier to locate
and select the UserProgram. This �le dialogue can also be reached by navigating
through File menu to Select User Program.

7. To Connect the client to the server, start the rendering process and execute the
UserProgram simply hit the Run Button or click Run in the Simulation menu.

8. If you want to quit your AutoSimClient program you can do this in 3 ways: You
can either navigate to File menu and choose Quit, hit the window's Closing Button
or press ESC on your keyboard.

A.3 How to write a User Program

This chapter gives an introduction on the User Program API and how to use it. It
also explains in short how to write compile and load a custom User Program into the
simulation.

A.3.1 Workings of the User Program

The User Program is basically a C or C++ program that makes use of the API provided
by the server and / or client to access sensors and actuators and is being compiled as a
DLL.

A.3 HOW TO WRITE A USER PROGRAM 55

Figure A.3: User Program

For convenience the main function is automatically being exported to provide an entry
point to the calling thread and to make it appear more familiar to beginners since it looks
like a "normal" C program.
Inside the main block the user program should enter a loop that controls the robot. This
loop is executed in a separated thread. As soon as main returns the belonging thread will
terminate as well.

A.3.2 The User Program API

The User Program API is available on both server and client. It provides in substance
two functions that are used to access all devices on all robots:

Listing A.1: Parts section of a robot configuration file
1 namespace UserProgramAPI
2 {
3 SimDeviceError setData (SimDeviceName device , DeviceData ∗data , i n t dataSize

) ;
4 SimDeviceError getData (SimDeviceName device , DeviceData ∗data , i n t dataSize

) ;

56 A TUTORIALS

5 } ;

Both functions take a SimDeviceName, a DeviceData pointer to the data that is going to
be set / read and the byte size as their arguments. For convenience there are two macros
de�ned in the include �le that wrap around the setData and getData functions and save
some typing and will be explained in the following example.

SimDevice: name speci�es the device that is being accessed. It is a typedef for a
std::string and has the following syntax: <RobotName>.<Part>.<Device>

DeviceData: typedef for void

dataSize: the byte size of the data

A.3.3 The Client User Program API

The User Program API is only available on the client and can be used to access the
cameras of all robots.

Listing A.2: Parts section of a robot configuration file
1 namespace ClientUserProgramAPI
2 {
3 typedef unsigned i n t ∗ VirtualCameraImage ;
4 i n t getImageHeight () ;
5 i n t getImageWidth () ;
6 VirtualCameraImage getImage (UserProgramAPI : : SimDeviceName camera) ;
7 void unlockImage () ;
8 } ;

The functions getImageHeight and getImageWidth return the size of the image that is
beeing rendered from the virtual camera when getImage is called which returns a pointer
to an array of the dimension 32bit * height * width. Every 32 bit value represents one
pixel with the following color format: alpha, blue, green, red (8 bit each).
In order to obtain a new VirtualCameraImage call the unlockImage function which unlocks
the internal mutex on the texture used by the rendering system.

A.3.4 A Simple Example

This example gives a short line by line introduction on how to use the API to obtain and
write data from within a user program.

Listing A.3: Parts section of a robot configuration file
1 #include " UserProgramAPI . h " / / i nc lude the user program API d e f i n i t i o n s
2 #include <windows . h> / / f o r the Sleep () f u n c t i o n
3

A.3 HOW TO WRITE A USER PROGRAM 57

4 / / f o r convenience : inc lude the UserProgramAPI namespace
5 using namespace UserProgramAPI ;
6
7 / / Ent ry po in t f o r the user program .
8 / / Do not change argument l i s t or r e t u r n value !
9 i n t main (i n t argc , char ∗argv [])
10 {
11
12 / / device names of an ac tua to r and a sensor t h a t are def ined
13 / / i n the corresponding robot d e s c r i p t i o n f i l e
14 SimDeviceName i n d i c a t o r = " chassis . i n d i c a t o r _ l i g h t _ b a c k _ l e f t " ;
15 SimDeviceName inc l i no me te r = " chassis . i n c l i n o 0 " ;
16
17 / / the robot name t h a t the user program belongs to i s
18 / / always the f i r s t argument s t r i n g
19 RobotName robot = argv [0] ;
20
21 / / v a r i a b l es to s to re the data from the devices
22 f l o a t i n t e n s i t y = 0.0 f ;
23 f l o a t angle = 0.0 f ;
24 f l o a t previousAngle = 0.0 f ;
25
26 / / get the cu r ren t angle from the inc l i nom e te r and make the
27 / / l e f t i n d i c a t o r l i g h t b l i n k i f the robot tu rns l e f t
28 while (true)
29 {
30 GET_DATA(robot+ " . "+ inc l i nomete r , angle) ;
31
32 i f ((angle − previousAngle) < 0.0 f | | i n t e n s i t y == 1.0 f)
33 i n t e n s i t y = 0.0 f ;
34 else
35 i n t e n s i t y = 1.0 f ;
36
37 previousAngle = angle ;
38
39 SET_DATA(robot+ " . "+ i n d i c a t o r , i n t e n s i t y) ;
40
41 Sleep (300) ;
42 }
43
44 return 0;
45 }

For more examples see the examples folder of the distribution: The Joystick example
shows how to use data from a joystick device to control a robot The VirtualCamera
retrieves images from a virtual camera and stores them on the The DemoUserProgram is
the most complicated example: It uses its own GUI to obtain and display virtual camera
images, control the robot and turn lights on and o�.

58 A TUTORIALS

A.4 Manipulate an OSM file in 6 steps

The OsmManipulator helps the user creating a world and is used before the simulation
is started. During the actual simulation process the OsmManipulator does not have any
functionality. This tutorial gives a quick start guide for using the OsmManipulator.

Figure A.4: OsmManipulator

1. Use your mouse to click on Change button next to the Original File input �eld. A
�le dialogue will show up. Navigate to the Osm �le you want to manipulate and
click Open. This �le must be an Osm �le of a version your OsmParser can handle
with. For further information go to General info on Osm Files B.3.

2. Go to the Target File input �eld an either enter the path and �le name or browse
through the �le dialogue by clicking on the Change button to specify where your
created Osm File will be stored.

3. Select a Map Setup File in the �le dialogue of the next input �eld. Information
about how a Map Setup File should look like can be obtained in the Map Setup File
description B.5.

4. Finally select a House File List. House File List description B.6 looks into these
�les.

5. Set the Distance to Street of the house centers and the Distance between Houses in
a house lane in the two corresponding input �elds.

6. Start and Create the new Osm �le by clicking on the Generate OSM File button.

B The Configuration Files

B.1 General Syntax

All con�guration �les used in the simulation framework conform to the XML 1.0 standard.
However, due to the way the data is being parsed into the internal generic object model,
every con�guration �le must stick to a certain structure.
Here I will take the robot description �le as an example:

Listing B.1: Examplary Configuration file structure
1 <?xml version=" 1.0 " ?>
2 <Robot name=" impreza ">
3
4 <Par ts>
5 <Box name=" chassis ">
6 < Pos i t i on x=" 0.0 " y=" 0.0 " z=" 0.0 " / >
7 <Size x=" 1.994999 " y=" 1.265000 " z=" 4.760004 " / >
8 <Mass value=" 1400.0 " / >
9 <CenterOfMass x=" 0.000000 " y=" 0.376204 " z="−0.764765 " / >
10 <Model path=" models / impreza / chassis " type=" 3ds " / >
11 < / Box>
12 < / Par ts>
13
14 <Devices>
15 <Camera name=" th i rd_person ">
16 <Par t name=" chassis " / >
17 <Type name=" th i rdpe rson " / >
18 < Pos i t i on x=" 0.0 " y=" 3.0 " z="−4.0 " / >
19 < / Camera>
20 <GyroscopeSensor name=" gyro0 ">
21 <Par t name=" chassis " / >
22 <Axis x=" 1.0 " y=" 0.0 " z=" 0.0 " / >
23 <Alpha value=" 0.05 " / >
24 < / GyroscopeSensor>
25 < / Devices>
26
27 < / Robot>

Every �le is surrounded by a tag (in this case the Robot tag) that can either contain
sections or BuildData blocks. Sections are simply used to group BuildData blocks that
belong together like the devices that belong to a robot in our example.

59

60 B THE CONFIGURATION FILES

The BuildData blocks are the actual heart of any con�guration �le: They contain a list of
parameters represented by their child tags that provide all information necessary to create
a speci�c object inside the simulation e.g. a Device of a Robot. Every parameter tag on
its part provides a list of either double or string attributes. In addition every BuildData
block needs a name attribute.
If you want to customize or create your own con�guration �les it is generally a good
approach to make a copy of an existing �le or �le structure and change it rather than
writing a new one from scratch. You will �nd a detailed description of all tags and
attributes inside the corresponding XML �le.

B.2 Customizing a World File

The World File includes all information needed to set up a simulation on the server as
well as on the client and should be located in the worlds folder. It is split up into four
major sections:

• Graphics: Parameters for the visualization

• Physics: Parameters for the physics engine

• Terrain: Path to the folder containing the terrain information

• Objects: All objects that appear in the simulation

Please note that all parameters have to be exactly the same on the server and client
systems except for the Graphics section. A good way to syncronize the world �le is to
keep it on the server and to share it with the clients (e. g. via Windows File Sharing).
All parameters are documented inside the XML �le.

B.3 General info on OSM Files

The AutoSim framework uses street data from the open source website OpenStreetMap
to construct roads for the simulated world. Actually OSM data can be downloaded in �le
version 0.5 and hence explanation of older versions is not provided any more. However, an
OsmParser for OSM data 0.4 still exists. This section gives a short description about the
�le structure whereas more detailed information can be obtained from the OpenStreetMap
website [23].

The Osm �le structure is very simple and only consists of nodes and ways. A node always
has a unique identi�cation number and represents a point in the world whose position
is given in GPS coordinates. A way also has a unique id but simply contains a list of
nodes represented by their ids. The nodes are ordered to form a continues way as they
are parsed by OpenStreetMap and AutoSim in the sequence they are listed. If two node

B.3 GENERAL INFO ON OSM FILES 61

ids would be �ipped, this would cause a complete change of the way!

Within the OSM �les Tags are used to store information about the type of a node or
way. Tags always consist of keys and values. A key declares the type of the Osm ele-
ment whereas the value gives a more detailed expression for the type. Common keys for
roads are for example highways. A highway can have values like residential, motorway, etc.

AutoSim tries to adopt the highway and landuse tags de�ned in the Map Features section
[22] of the OpenStreetMap webpage. However, custom tags can be de�ned as well. Table
B.1 shows the list of highways used by the demo world of AutoSim:

key value

highway motorway
highway motorway_link
highway trunk
highway trunk_link
highway primary
highway primary_link
highway secondary
highway tertiary
highway unclassi�ed
highway unsurfaced
highway track
highway residential
highway service

Table B.1: Highways

Regarding the Map Features of the OpenStreetMap website a lot more existing highway
tags can be obtained. To enable the simulator to load further street types they have to
be added to the Map Setup File B.5.

Creating new landuse areas can be done by constructing a new closed way with a landuse
tag in the OSM �le. If houses or trees are added by the OsmManipulator their models
are selected related to the landuse area they are surrounded by. By default, if no area is
de�ned, the manipulator uses residential house models. The landuse areas to use must
be declared within the House File List B.6 and an example of landuse tags is presented
by table B.2:

Additionally to using prede�ned OSM tags the user can also de�ne his own tags. The
OsmManipulator for example constructs house nodes that do not exist in the o�cial
OSM documentation. The tags of the house nodes tell the simulator the necessary data
for loading house models into the simulated world. An overview of the house node is given
by table B.3:

62 B THE CONFIGURATION FILES

key value

landuse residential
landuse retail
landuse commercial
landuse industrial
landuse forest

Table B.2: Landuse

key value

�lePath de�ning the �le path of the 3D model
�leType model type
landuse house area
name house name
rotY rotation angle for rotating the house around the up going Y-axis
sizeX size of the house in x dimension
sizeY size of the house in y dimension (up)
sizeZ size of the house in z dimension

Table B.3: House Node

B.4 The Robot File

The robot �les contain the description of all robots. It is split up into 2 major sections:
the parts describing all physical body parts and links of the robot and the devices section
containing the descriptions of all sensors and actuators attached to the robot.
A simulation may contain an arbitrary number of robots using the same description �le
and / or user program.

Listing B.2: Parts section of a robot configuration file
1 <Par ts>
2 <Box name=" chassis ">
3 < Pos i t i on x=" 0.0 " y=" 0.0 " z=" 0.0 " / >
4 <Size x=" 1.994999 " y=" 1.265000 " z=" 4.760004 " / >
5 <Mass value=" 1400.0 " / >
6 <CenterOfMass x=" 0.000000 " y=" 0.376204 " z="−0.764765 " / >
7 <Model path=" models / myrobot / chassis " type=" 3ds " / >
8 < / Box>
9 <Box name=" t r a i l e r ">
10 < Pos i t i on x=" 0.0 " y=" 0.0 " z=" 10.0 " / >
11 <Size x=" 1.994999 " y=" 1.265000 " z=" 4.760004 " / >
12 <Mass value=" 1400.0 " / >
13 <CenterOfMass x=" 0.000000 " y=" 0.376204 " z="−0.764765 " / >
14 <Model path=" models / myrobot / t r a i l e r " type=" 3ds " / >
15 < / Box>
16 <Spher i ca lL ink name=" towbar ">
17 <Parent name=" chassis " / >

B.4 THE ROBOT FILE 63

18 <Chi ld name=" t r a i l e r " / >
19 < Pos i t i on x=" 0.0 " y=" 0.0 " z=" 5.0 " / >
20 < / Spher i ca lL ink>
21 < / Par ts>

The only parts that are currently available in the physics are boxes and spherical links.
Please note that links must be de�ned after the body parts. In addition to the physics
parameters such as position, size, mass and center of mass you have to specify the path
and type of the graphics model that represents the body part, e. g. the chassis.

Listing B.3: Devices section of a robot configuration file
1 <Devices>
2 <Dr iveAc tua to r name=" dr i ve_chass is ">
3 <Par t name=" chassis " / >
4 <MotorForce value=" 5000.0 " / >
5 <BrakeForce value=" 10.0 " / >
6 < / Dr iveAc tua to r>
7 <WheelDevice name=" f r o n t _ l e f t ">
8 <Par t name=" chassis " / >
9 <Dr iveAc tua to r name=" dr i ve_chass is " / >
10 < Pos i t i on x="−0.80 " y="−0.45 " z=" 1.35 " / >
11 <Radius value=" 0.36 " / >
12 <Width value=" 0.245 " / >
13 <SuspensionRestLength value=" 0.1 " / >
14 <SuspensionKs value=" 200 " / >
15 <SuspensionKd value=" 23 " / >
16 <Powered value=" t r ue " / >
17 <Steer ing value=" t r ue " / >
18 <Brakes value=" f a l s e " / >
19 <Model path=" models / impreza / wheels / f r o n t _ l e f t " type=" 3ds " / >
20 < / WheelDevice>
21 <Camera name=" f ron t_v iew ">
22 <Par t name=" chassis " / >
23 <Type name=" f i x e d " / >
24 < Pos i t i on x=" 0.0 " y=" 1.0 " z=" 1.4 " / >
25 < D i r e c t i o n x=" 0.0 " y="−0.25 " z=" 1.0 " / >
26 <UpVector x=" 0.0 " y=" 1.0 " z=" 0.0 " / >
27 < / Camera>
28 <GyroscopeSensor name=" gyro0 ">
29 <Par t name=" chassis " / >
30 <Axis x=" 1.0 " y=" 0.0 " z=" 0.0 " / >
31 <Alpha value=" 0.05 " / >
32 <WhiteGaussianNoise range=" 0.01 " o f f s e t = " 0.0 " / >
33 < / GyroscopeSensor>
34 < / Devices>

In order to be able to attach wheels to a driving robot every body part needs a DriveAc-
tuator device. You also have to specify the part every sensor / actuator belongs to.
Moreover every device can have a list of noise sources that have an o�set and a range. All
noises are generated individually and added to the original sensor value every time step.
The following devices are available:

64 B THE CONFIGURATION FILES

Actuators:

• DriveActuator: Cotrols the wheels of a robot

• WheelDevice: Represents the wheel plus the belonging suspension and brake

Sensors:

• Camera: A virtual camera for the robot

• GyroscopeSensor: measures the angular acceleration of a body part

• VelocimeterSensor: measures the speed of a body part

• PSDSensor: Position sensitive device - measures distances to other physics bodies

• GPSSensor: Global Positioning System - returns a string containing the current
coordinates, velocity, time and a checksum

• CompassSensor: a compass

• InclinometerSensor: measures the di�erence between the current and an initial ori-
entation in relation to a give axis

• TimeDevice: returns the simulation time

• LightDevice: simple light

• HeadLightDevice: light with a cone

Noise:

• WhiteNoise: Adds white noise to the sensor value

• WhiteGaussianNoise: Adds white gaussian noise to the sensor value

For a more detailed description of all devices and parameters see the impreza.xml �le.

B.5 The Map Setup File

The Map Setup File is a XML �le storing settings for the terrain and road generation. Its
name must be setup.xml and it has to be located in the map folder speci�ed in the world
�le's Terrain section. To be used by the simulator the Map Setup File must ful�ll struc-
ture and naming conventions explained by this section. The AutoSim framework provides
the user a complete demo world to allow a simulator quick start and to give an example
of world construction. The exemplary Map Setup File used for this documentation is
available in the map folder of the demo world and includes many explaining comments.
In the light of this some self explaining sections of the Map Setup File are just copied out
of the actual XML code, whereas di�cult parts is given a more detailed consideration here.

B.5 THE MAP SETUP FILE 65

To meet the requirements of the AutoSim framework general XML syntax ?? all sections
of the setup �le must be children of the TerrainSetup main section. The �rst section Osm-
Setup holds the GPS coordinates of the map center used for converting the openstreetmap
nodes into the AutoSim world coordinates B.3.

Listing B.4: OsmSetup
1 <?xml version=" 1.0 " encoding=" u t f−8" ?>
2 <Setup name=" c i r c l e_ town ">
3 <Terra inSetup>
4 <OsmSetup name=" c i r c l e_ town ">
5 < !−− Lat and lon coord ina tes o f the s imu la t i on wor ld center−−>
6 <NodeOffset l a t = "−31.9728 " lon=" 115.827 " / >
7 < / OsmSetup>

The RoadDimensions section allows the user to take in�uence on the road generation
process. Explanation of the values is given by the comments above them.

Listing B.5: RoadDimensions
1 <RoadDimensions name=" c i r c l e_ town ">
2 < !−− Spec i f y ing how much (i n meters) the roads are l i f t e d above the t e r r a i n .

I f t h i s value i s set to low graph ic problems may occur .−−>
3 <HeightAboveTerrain value=" 0.03 " / >
4 < !−− Height o f the curbs i n d is tance to the road lanes i n meters .−−>
5 <CurbHeight value =" 0.15 " / >
6 < !−− Number o f l e v e l s o f d e t a i l cons t ruc ted f o r the roads . At l e a s t 1 l e v e l

o f d e t a i l i s cons t ruc ted . −−>
7 <Leve lsOfDeta i l value=" 3.0 " / >
8 < / RoadDimensions>

Within the OSM �le description B.3 many di�erent types of highways can be de�ned.
Constructing the highways the AutoSimServer and the AutoSimClient need to know the
highway types they should load and the size they will be represented in the world. All
the highways listed in the HighwayDimensions section are loaded into the world and
constructed in the speci�ed size.

Listing B.6: HighwayDimensions
1 <HighwayDimensions name=" c i r c l e_ town ">
2 <motorway width =" 16.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " / >
3 <motorway_l ink width =" 4.0 " lef tPavementWidth =" 0.0 " r ightPavementWidth =" 0.0

" / >
4 < t runk width =" 12.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " / >
5 < t r u n k _ l i n k width =" 4.0 " lef tPavementWidth =" 0.0 " r ightPavementWidth =" 0.0 " / >
6 <pr imary width =" 16.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " / >
7 < p r i ma ry _ l i n k width =" 4.0 " lef tPavementWidth =" 0.0 " r ightPavementWidth =" 0.0 "

/ >
8 <secondary width =" 8.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " / >
9 < t e r t i a r y width =" 6.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " / >
10 < u n c l a s s i f i e d width =" 6.0 " lef tPavementWidth =" 0.0 " r ightPavementWidth =" 0.0 "

/ >
11 <unsurfaced width =" 3.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " / >

66 B THE CONFIGURATION FILES

12 < t rack width =" 3.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " / >
13 < r e s i d e n t i a l width =" 8.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " /

>
14 <serv i ce width =" 3.0 " lef tPavementWidth =" 1.5 " r ightPavementWidth =" 1.5 " / >
15 < / HighwayDimensions>

The next two sections contain the �lenames for the road and terrain textures as well as
options concerning these textures. The intersection texture needs some more explanation:
As within a junction should not be a visible changeover caused by a seamed texture
the intersections are triangulated by a triangle fan B.1 in a way to provide a seamless
transition.

!

" #

$

%

&
'

(

Figure B.1: Triangle Fan

Thus every triangle has to be split up once again because the number of triangles for every
junction must be even. A T-crossing now consists of 6 triangles and a 4-Street crossing
out of 8 triangles. Each of these triangles has the same texture on it. The part cut out
of the given texture is a triangle with texture coordinates (0,0),(0,1),(1,1), where (1,1) is
the center of the intersection.

Listing B.7: Textures
1 <RoadTextures name=" c i r c l e_ town ">
2 <Road f i l e = " media / roads / road . jpg " / >
3 <LeftPavement f i l e = " media / roads / lane_withoutmarks .JPG" / >
4 <RightPavement f i l e = " media / roads / lane_withoutmarks .JPG" / >
5 <Lef tCurb f i l e = " media / roads / t e r r a i n−heightmap_gray .bmp" / >
6 <RightCurb f i l e = " media / roads / t e r r a i n−heightmap_gray .bmp" / >
7 < I n t e r s e c t i o n f i l e = " media / roads / lane_withoutmarks .JPG" / >
8 < / RoadTextures>
9 <Ter ra inTex tures name=" c i r c l e_ town ">
10 < !−− Texture f i l e name f o r the t e r r a i n t e x t u r e−−>
11 <Texture f i l e = "maps / c i r c l e_ town / t e x t u r e . jpg " / >
12 < !−− Spec i f y ing how of ten the t e x t u r e i s repeated on the t e r r a i n . Only has to

be changed to a value b igger than one

B.5 THE MAP SETUP FILE 67

13 i f no t e x t u r e f o r the complete t e r r a i n i s used . The used t e x t u r e should be
seamless then . −−>

14 <TextureRepeat value =" 300.0 " / >
15 < !−− Folder path and f i l e type of the skybox tex tu res .
16 I ns ide the f o l d e r have to be s i x t e x t u r e f i l e s o f the declared f i l e t ype :
17 1. l e f t .∗
18 2. f r o n t .∗
19 3. r i g h t .∗
20 4. back .∗
21 5. top .∗
22 6. bottom .∗ −−>
23 <SkyBox path =" media / t e r r a i n / skyboxes / g rass_and_h i l l s " type=" jpg " / >
24 < / Ter ra inTex tures>

The last section in a Map Setup File changes the terrain construction process by setting
dimensions and values for the detail level of the terrain mesh.

Listing B.8: TerrainDimensions
1 <TerrainDimensions name=" c i r c l e_ town ">
2 < !−− Size o f the loaded t e r r a i n i n meters . The t e r r a i n has to be at l e a s t b ig

enough to load a l l the s t r e e t data o f the OSM f i l e and to conta in a l l the
t i l e s the g raph i ca l rep resen ta t i on o f the t e r r a i n i s made of (can be set

i n the f o l l o w i n g values) . A Ter ra in b igger than 3000m∗3000m may e f f e c t
long load ing t imes and slow physics . −−>

3 <Size width =" 1000.0 " he igh t= " 1000.0 " / >
4 < !−− Size o f one t i l e o f the g raph i ca l t e r r a i n rep resen ta t i on i n meters .

T i l eS i ze has to be a m u l t i p l e o f HeightDataPerArea ! −−>
5 < T i l eS i ze value =" 64.0 " / >
6 < !−− D e t a i l value o f the graph ic t e r r a i n ’ s center t i l e . (maximum = 7) −−>
7 <MaximumLOD value ="6 .0 " / >
8 <!−− Number o f l e v e l s o f d e t a i l added to the d e t a i l l e v e l o f the center t i l e .

Each a d d i t i o n a l l e v e l o f d e t a i l w i l l be one step lower . (e . g . the
s imu la to r w i l l add t i l e s o f d e t a i l values 6 ,5 and 4 i f MaximumLOD = 7 and
Leve lsOfDeta i l = 3)−−>

9 <Leve lsOfDeta i l value ="3 .0 " / >
10 <!−− Layers o f one l e v e l o f d e t a i l .−−>
11 <LayersOfEachLOD value ="1 .0 " / >
12 <!−− Number o f meters to the next he igh t data . (i n meters per he igh t data

value) . T i l eS i ze has to be a m u l t i p l e o f HeightDataPerArea ! −−>
13 <HeightDataPerArea value ="8 .0 " / >
14 <!−− Spec i f y ing the s ize o f the steps the graph ic t e r r a i n f o l l o w s the camera .

The value i s r e l a t e d to the d e t a i l value o f a t i l e . (maximum = 7) . (e . g .
i f the value i s set to 7 the graphics t e r r a i n w i l l always move i n steps o f
T i l eS i ze / 7) . CameraStepsPerTile should usua l l y be set to the d e t a i l l e v e l
o f the lowest d e t a i l t i l e . A value o f −1.0 moves the t e r r a i n

s imu l taneous ly to the camera and does not make any steps . Un fo r tuna te l y
h i l l s w i l l bump up and down wi th t h i s s e t t i n g . −−>

15 <CameraStepsPerTile value ="2 .0 " / >
16 <!−− A heightmap p i c t u r e conta ins values from 0 to 255. Those values are

d iv ided through the H e i g h t D i v i s i o n C o e f f i c i e n t to be able to have a
17 d i f f e r e n t range of he igh ts . (e . g . range of he igh ts f o r

H e i g h t D i v i s i o n C o e f f i c i e n t value o f 10 i s from 0.0 to 25.5.−−>
18 < H e i g h t D i v i s i o n C o e f f i c i e n t value ="10.0" / >

68 B THE CONFIGURATION FILES

19 </ TerrainDimensions >

B.6 The House File List

The OsmManipulator automatically creates houses or trees along the streets and saves
them into the OSM �le B.3. The created nodes contain information like the path and
type of the 3D model B.3. For adding these kinds of information they have to be teached
to the OsmManipulator. This is done by a further XML �le, the House File List. A new
�le is created because it is only used during AutoSim world creation. Once the simulator
is running no parts are using the �le anymore.

The structure of a House File List is quite easy. It simply starts with the common XML
expression and a new houses section:

Listing B.9: File
1 <?xml version = " 1.0 " ?>
2 <houses version = " 0.01 " generator= "UWA">

After this entering the user can de�ne the many landuse sections he wants to. The name
of the sections represent the landuse they stand for. When the OsmManipulator has
decided to create a new house node it searches for a surrounding area de�ned in the OSM
�le whose landuse tag is matching one of the sections in the House File List.

Every landuse section contains a list of houses of arbitrary length. Each house is a new
section and consists of a name, a model �le folder path B.7, a �le type and a BoxSize in x,
y and z-coordinates. The BoxSize speci�es the representation of the house in the physic
world. The y-Coordinate always points up and symbolizes the height. The following
listing shows 2 landuse section examples residential and forest, representing that also
trees or other static objects can be created in place of houses:

Listing B.10: House List
1 < r e s i d e n t i a l >
2 <house name=" oldschoolhouse ">
3 < F i l e path=" models / b u i l d i n g s / oldschoolhouse " type=" 3ds " / >
4 <BoxSize x=" 5.0 " y=" 10.0 " z=" 5.0 " / >
5 < / house>
6 <house name=" modernhouse ">
7 < F i l e path=" models / b u i l d i n g s / r e s i d e n t i a l /2 " type=" ob j " / >
8 <BoxSize x=" 7.0 " y=" 8.0 " z=" 14.0 " / >
9 < / house>
10 < / r e s i d e n t i a l >
11 < f o r e s t >
12 < t ree name=" t ree0 ">
13 < F i l e path=" models / nature / t rees / t ree0 " type=" 3ds " / >

B.7 GENERAL MODEL FILE INFORMATION 69

14 <BoxSize x=" 0.5 " y=" 10.0 " z=" 0.5 " / >
15 < / t r ee >
16 < / f o r e s t >

B.7 General Model File Information

Storing 3D model �les has to be done in a speci�ed way to load them into AutoSim. The
center for robot boxes and wheels has to be set in the exact center position of the meshes
in order to achieve identical interpretation with the simulator. Static objects like houses
must have the center point in the center of their underpart.

In the descriptions for loading houses and vehicles the �le path is directing to a folder
containing the model �les. The structure of these folders must always be as follows: As
multiple level of detail versions can be loaded for a model these have to be inserted in
folders named LOD0, LOD1, ... LODn. The many of the folders are in here can be
decided by the user, as the AutoSimClient always searches these folders. Only LOD0 has
to exist. Inside the LOD directory must be the model �le named model.*.

Bibliography

[1] Adrian Boeing, Thomas Bräunl: SubSim: An autonomous underwater vehi-
cle simulation package. International Symposium on Autonomous Minirobots for
Research and Edutainment, AMiRE 2005:pp. 33�38, Sep. 2005. v, 13, 14

[2] al, Nikolaus Gebhardt et.: http://irrlicht.sourceforge.net/. 15, 23

[3] Artificial Intelligence, Dalle Molle Institute for:
http://www.idsia.ch/ juergen/robotcars.html. 2

[4] Blog, JCWinnie: http://jcwinnie.biz/wordpress/imageSnag/Stanley_Image13.jpg.
v, 3

[5] Blow, Jonathan: Terrain Rendering at High Levels of Detail. In GDC, 2000. 8

[6] Boeing, Adrian: Evaluation of real-time physics simulation systems. Technical
Report, School of Electrical, Electronic and Computer Engineering, University of
Western Australia, 2007. 4, 15

[7] Boer, Willem H. de: Fast Terrain Rendering Using Geometrical MipMapping.
E-mersion Project, page 7, 2000. 8

[8] Bräunl, T.: Embedded Robotics - Mobile Robot Design and Applications with Em-
bedded Systems Second Edition. Springer-Verlag, Heidelberg Berlin, 2006. 13

[9] DARPA: http://www.darpa.mil/grandchallenge/. 2

[10] Eckel, Bruce: Thinking in C++ 2nd edition Volume 1: Introduction to Standard
C++, chapter 16, page 814. Prentice Hall, 1999. 15, 24

[11] Eckel, Bruce: Thinking in C++ 2nd edition Volume 2: Practical Programming,
chapter 11, page 820. 1999. 6

[12] Erich Gamma, Richard Helm, Ralph Johnson John Vlisside: Design Pat-
terns, Elements of Reusable Object-Oriented Software. Addison-Wesly, 1994. 6

[13] Ögren, Andreas: Continuous Level of Detail in Real-time Terrain Rendering.
Master's thesis, Sweden Umea University, 2000. 8

[14] Heckbert, Paul S. and Michael Garland: Multiresolution modelling for fast
rendering. Proc. Graphics Interface '94, pages 43�50, 1994. 8

[15] Heidelberg, FH: Aerospace Engineering The Cognitive Autonomous Vehicles of
UniBwM. Elrob, 2007. 2

70

Bibliography 71

[16] Huwaldt, J.: http://homepage.mac.com/jhuwaldt/java/3DStu�/GeoMMap/GeoMMap.html.
9

[17] Losasso, F. and H. Hoppe: Geometry clipmaps: Terrain rendering using nested
regular grids. Siggraph, page 8, 2004. 8, 9

[18] M. Duchaineau, M. Wolinsky, D.Sigeti M. Miller C. Aldrich and
M. Mineev-Weinstein: ROAMing terrain: Real-time optimally adapting meshes.
IEEE Visualization, page 8, 1997. 8

[19] Microsoft: Microsoft DirectX SDK (November 2007) Documentation, 2007. 47

[20] NASA: http://nssdc.gsfc.nasa.gov/planetary/mesur.html. 1

[21] NVIDIA: Cg User's Manual, chapter 7, page 356. NVIDIA Corporation, 2005. v, 31

[22] OpenStreetMap: http://wiki.openstreetmap.org/index.php/Map_Features. 61

[23] OpenStreetMap: http://www.openstreetmap.org/. 10, 60

[24] Peden, Margie: World report on road tra�c injury prevention. Technical Report,
WHO, 2004. 3

[25] Racer: http://www.racer.nl/. v, 12, 13

[26] RARS: http://rars.sourceforge.net/, 1995. v, 11

[27] Richard H. Bartels, John C. Beatty, Brian A. Barsky: An Introduction to
Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann,
1987. 40

[28] Sommer, Torsten: Physics for a 3D Driving Simulator. Technical Report, RCS,
2008. 5, 22, 24, 25

[29] Things, The Future Of: http://64.202.120.86/upload/image/articles/2007/phoenix/mars-
path�nder.jpg. v, 1

[30] Thomason, Lee: http://www.grinninglizard.com/tinyxml/. 16

[31] TORCS: http://torcs.sourceforge.net/. v, 12

[32] webpage, ROAM: http://www.cognigraph.com/ROAM_homepage/. 8

[33] Wikipedia: http://de.wikipedia.org/wiki/Spline. v, 42

[34] Wikipedia: http://en.wikipedia.org/wiki/Bilinear_interpolation. 29

[35] Wikipedia: http://en.wikipedia.org/wiki/Cartesian_coordinate_system. v, 44

[36] Wikipedia: http://en.wikipedia.org/wiki/Cubic_Hermite_spline. v, 41

[37] Wikipedia: http://en.wikipedia.org/wiki/Kochanek-Bartels_spline. v, 42

[38] Wikipedia: http://en.wikipedia.org/wiki/Software_design. 22

	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivation
	Objectives
	Thesis Outline

	Related Work
	Literature Review
	Design Patterns
	Terrain Rendering
	Geometric Data Systems

	Simulators
	RARS
	TORCS
	Racer
	SubSim

	AutoSim Framework
	Used Libraries
	Framework Architecture
	Program Description
	AutoSimServer
	AutoSimClient
	The UserProgram
	OsmManipulator

	Client Software Design

	World and Robot Creation
	World Creation
	Robot Creation

	Terrain Modeling
	Bilinear Interpolation
	Shaders
	Applying Height Data to the World
	Graphics Terrain
	Terrain Mesh
	Terrain Vertex Shader

	Creation of Static Objects

	Road Construction
	Splines
	Road Data
	Road Generation

	Rendering Methods
	Triangulation
	Rendering the Scene
	GeoMipMap

	Conclusion and Future Work
	Tutorials
	The AutoSimServer kick start guide
	Working with the AutoSimClient
	How to write a User Program
	Workings of the User Program
	The User Program API
	The Client User Program API
	A Simple Example

	Manipulate an OSM file in 6 steps

	The Configuration Files
	General Syntax
	Customizing a World File
	General info on OSM Files
	The Robot File
	The Map Setup File
	The House File List
	General Model File Information

	Bibliography

