
INST ITUTE FOR REAL-T IME COMPUTER SYSTEMS

TECHNISCHE UNIVERS IT ÄT MÜNCHEN

P R O F E S S O R G. F Ä R B E R

Operating System Components
for an Embedded Linux System

Martin Hintermann

Studienarbeit

ii

Operating System Components
for an Embedded Linux System

Studienarbeit

Executed at the Institute for Real-Time Computer Systems
Technische Universität München

Prof. Dr.-Ing. Georg Färber

Advisor: Prof.Dr.rer.nat.habil. Thomas Bräunl

Author: Martin Hintermann
Kirchberg 34
82069 Hohenschäftlarn

Submitted in February 2007

iii

Acknowledgements

At first, i would like to thank my supervisor Prof. Dr. Thomas Bräunl for giving me the
opportunity to take part at a really interesting project.

Many thanks to Thomas Sommer, my project partner, for his contribution to our good work.

I also want to thank also Bernard Blackham for his assistance by email and phone at any
time.

In my opinion, it was a great cooperation of all persons taking part in this project.

Abstract

Embedded systems can be found in more and more devices. Linux as a free operating system
is also becoming more and more important in embedded applications. Linux even replaces
other operating systems in certain areas (e.g. mobile phones).

This thesis deals with the employment of Linux in embedded systems. Various architectures
of embedded systems are introduced and the characteristics of common operating systems
for these devices are reviewed.

The architecture of Linux is examined by looking at the particular components such as kernel,
standard C libraries and POSIX tools for embedded systems. Furthermore, there is a survey
of real-time extensions for the Linux kernel.

The thesis also treats software development for embedded Linux ranging from the prerequi-
sites for compiling software to the debugging of binaries.
More precisely it describes the assembly of a cross-compiling toolchain for developing em-
bedded software on a Windows system. Additionally means for cross-platform remote de-
bugging of embedded software from both Linux and Windows hosts were implemented and
are introduced in this thesis.

In addition to that some software for EyeBot M6 was developed in this context. A Linux
framebuffer library and several user interface routines were implemented and are presented
in the following.

v

vi

Contents

List of Figures

List of Tables

List of Symbols

1 Introduction 1

2 Common CPU-Architectures for Embedded Systems 5
2.1 x86 . 5
2.2 PowerPC . 6
2.3 MIPS . 7
2.4 ARM . 7
2.5 Cell Architecture . 8
2.6 Microcontrollers . 8
2.7 DSPs or FPGAs as Co-processor . 9

3 Common Operating Systems for Embedded Systems 11
3.1 Linux . 11
3.2 Microsoft Windows Systems . 12
3.3 Symbian . 13
3.4 Real-Time Operating Systems . 14

4 Embedded Linux - Kernel and Standard Libraries 15
4.1 Structure of Linux (UNIX) . 16

4.1.1 Kernel . 17
4.1.2 Kernel Configuration . 18
4.1.3 The Linux Process Model . 20
4.1.4 Connections Between Kernel Space and User Space 22

4.2 Standard C-Library . 23
4.2.1 GNU C Library . 23
4.2.2 uClibc . 23
4.2.3 Dietlibc . 24

4.3 Real-Time Extensions for the Linux Kernel 24
4.4 BusyBox - User Space Utilities for Embedded Linux 26

Contents

5 Cross Development 27
5.1 Components of a Cross-Compilation-Toolchain 27

5.1.1 Binary Utilities (binutils) . 27
5.1.2 C/C++ Library . 28
5.1.3 Compiler . 28

5.2 Cross-Development on a Linux-Host . 29
5.3 Developing on a Windows Machine . 29

5.3.1 CygWin . 30
5.3.2 MinGW . 30
5.3.3 Building a Toolchain for a Windows-System 30

5.4 Debugging Tools . 34
5.4.1 The GNU Debugger gdb . 35
5.4.2 Hardware Tools . 38

6 Libraries and Binaries for EyeBot M6 41
6.1 API for the Display of EyeBot M6 . 41

6.1.1 The Linux Framebuffer Device . 41
6.1.2 Software Routines . 42

6.2 GUI for Running and Managing User Programs 45

7 Conclusion 47

A The EyeBot M6 API 49
A.1 Finished Components . 49

A.1.1 Display Library . 49
A.1.2 Audio Library . 56
A.1.3 Key Library (Touchscreen) . 57
A.1.4 OS Library . 58
A.1.5 Misc Library . 58
A.1.6 FPGA Functions . 58
A.1.7 GPIO Functions . 59
A.1.8 PSD Functions . 59

A.2 Components to Be Implemented . 59

B EyeBot M6 Hardware Issues 61

C Contents of the CD 63

Bibliography 65

List of Figures

1.1 Setup of an embedded system (based on [25] Fig. 1.1)) 2
1.2 Temperature requirements in cars (source: Daimler Chrysler AG) 3

2.1 x86 System-on-Chip (source: STMicoreletronics) 6
2.2 The Cell architecture (source: IBM Research [18]) 8

4.1 Architecture of a UNIX system . 16
4.2 Configuration of the Linux kernel - make config 18
4.3 Configuration of the Linux kernel - make menuconfig 19
4.4 Configuration of the Linux kernel - make xconfig 19
4.5 Configuration of the Linux kernel - make gconfig 20
4.6 Processes and threads (based on: [20] Figure 2-5) 21
4.7 Architecture of a Linux system with real-time extensions 25

5.1 DDD - Data Display Debugger running on Windows XP 37
5.2 DDD - register view and plots - (source: gnu.org - Free Software Founda-

tion, Inc.) . 37
5.3 Insight - another gdb frontend - (source: sourceware.org/insight) 38
5.4 JTAG interface and debugging software - (source: Lauterbach Datentechnik

GmbH) . 39

6.1 Architecture of the framebuffer library . 43
6.2 Execution screen with menu . 45

List of Figures

List of Tables

2.1 CPU Architectures - Key Data . 5

5.1 Tools in the Binutils Package . 28

6.1 Routines in the Framebuffer Library - LCD Handling 43
6.2 Routines in the Framebuffer Library - Text Output 44
6.3 Routines in the Framebuffer Library - Graphics 44
6.4 Routines in the Framebuffer Library - Menu 44

List of Symbols

ARM Advanced RISC Machine or Acorn RISC Machine
BSD Berkeley Software Distribution
CAN Controller Area Network
CISC Complex Instruction Set Computer
CPU Central Processing Unit
DDD Data Display Debugger
DSP Digital Signal Processor
DVD Digital Versatile Disc or Digital Video Disc
EMC ElectroMagnetic Compatibility
EULA End-User License Agreement
FPGA Field-Programmable Gate Array
FS FileSystem
gcc GNU Compiler Collection
gdb GNU DeBugger
GNU GNU’s Not Unix
GPL GNU General Public License
I/O Input/Output
I2C Inter-Integrated Circuit (bus)
IC Integrated Circuit
IPC Inter-Process Communication
kB kiloByte
LCD Liquid-Crystal Display
LED Light-Emitting Diode
LGPL GNU Library General Public License or GNU Lesser General Public License
LIN Local Interconnect Network
MB MegyByte
MinGW Minimalist GNU for Windows
MIPS Microprocessor without Interlocked Pipeline Stages
MIPS Million Instructions Per Second
OS Operating System
PC Personal Computer
PDA Personal Digital Assistant
POSIX Portable Operating System Interface for uniX

POWER Performance Optimization With Enhanced RISC
RAM Random Access Memory
RCS Lehrstuhl für Realzeit-Computersysteme
RISC Reduced Instruction Set Computer
ROM Read Only Memory
RT Real-Time
RTOS Real-Time Operating System
SIMD Single Instruction Multiple Data
SoC System on Chip
SPI Serial Peripheral Interface (bus)
SRAM Static Random Access Memory

List of Symbols

Chapter 1

Introduction

”I think there is a world market for maybe five computers.”
Thomas Watson, chairman of IBM, 1943

”There is no reason anyone would want a computer in their home.”
Ken Olson, president, chairman and founder of Digital Equipment Corp., 1977

Several years ago, computers were huge expensive machines doing things that were unin-
teresting for almost everyone. Only very few people were able to operate them and even
fewer were able to access such a machine.

Nowadays almost everyone has a desktop computer at home and/or at work. Most people
even have more than one computer without knowing about it. They are hidden in all
kinds of devices as embedded devices. You can find them for instance in TV sets, washing
machines or even in microwave ovens.
Every new car is equipped with a multitude of embedded systems, they control the engine
(to reduce emissions and fuel consumption while maximising the output power), the anti-
lock brakes, headlights, power windows and so on.

What Is an Embedded System?

An embedded system is a combination of computer hardware and software residing in a
bigger device. It is completely encapsulated by that device, in several cases you do not
even recognise that there is an embedded system in an appliance. Mostly the embedding
device is controlled by these systems. Other tasks are doing the communication between
multiple pieces of equipment or forming a man-machine interface for machines. Embedded
systems perform only one or a few strictly predefined tasks, quite contrary to a desktop-
computer.

1

2 CHAPTER 1. INTRODUCTION

The manufacturer of a general purpose computer (desktop) does not know, what the
customer will do with it, possibly it is used as a server, a workstation or simply for
playing. In contrast to that, both hardware and software of an embedded system are
usually designed for only one specific application.
Surprisingly a desktop-system consists of several embedded systems. In almost every
component works a small computer - keyboard, mouse, (hard-)drives, even in the monitor.

Embedded systems, which are used for controlling purposes, typically have stringent tim-
ing constraints. If an important calculation is not completed within a certain deadline,
the controlled device (machine) or the part it is working on can be damaged or even
people can get harmed. For example, it can end in disaster if the real-time system of an
aeroplane’s flight control system misses a deadline.
So real-time systems must reliably meet timing constraints within random asynchronous
events (e.g. unpredictable values of environmental sensors). The more severe the con-
sequences, the ”harder” are these constraints (deadlines) and the device requires a hard
real-time system. In reverse, weak timing constraints allow a soft real-time system.

By definition, embedded systems contain a processor and software. But there are more
components that are mandatory. The software has to be stored permanently (e.g. in a
ROM or a flash chip) and there has to be some RAM for storing runtime data. Depending
on storage size requirements of the system, Memory can be on chip (microcontroller) or
in additional circuits or external devices (hard-disk). Small devices may have less than
1kB of RAM and ROM, whilst more extensive systems may have several megabytes of
these.
Besides memory, an embedded system needs in- and outputs as seen in Figure 1.1, e.g.
to get sensor data, to interact with the user or to trigger actuators.

Figure 1.1: Setup of an embedded system (based on [25] Fig. 1.1))

Additional to these common features, the rest of the embedded hardware is usually unique
to meet the particular requirements of the appliance. Some embedded systems have to
communicate with other embedded systems or, for instance, with a control centre. This
is typically done by using some kind of network. Automotive devices often use CAN, LIN
and FlexRay in newer systems, in a industrial domain, there are field buses like LON
(LonWorks) or Ethernet applied amongst others.

3

Other design requirements are:

• Processing power: Not only the number of operations per second (MIPS) are
important. The register width also has to fit the requirements. Processors from 4
to 64 bit register width are currently used in embedded systems. For example a
window lift controller is satisfied with 4 bit, an electronic engine control unit needs
more, usually 16 or 32 bit.

• Development cost and number of units: These are costs of the hardware and
software design process. As it is a fixed cost, it is not very important for high-
volume products, on the other hand it may be the biggest expense factor if only a
small number of units is produced.

• Expected lifetime and reliability: How long does the product have to continue to
function - only some days or weeks or several years? How reliable does it have to
be during this period?
These questions have a big influence on all sorts of design decisions - from the selec-
tion of the components to the amount of expenses for development and production.

• Electromagnetic compatibility (EMC): Due to the close connection to the embed-
ding device, an embedded device has particular requirements to the emission and
susceptibility of electromagnetic disturbances.

• Environmental requirements: Embedded systems in so-called extreme hostile en-
vironments have to be resistant against several harmful influences. These may be
humidity, dust, temperatures, vibration and shock. Particular in automotive uses,
these factors are very important. You can see some temperatures that can occur in
an ordinary car in figure 1.2.

Figure 1.2: Temperature requirements in cars (source: Daimler Chrysler AG)

4 CHAPTER 1. INTRODUCTION

These general Requirements are expanded by detailed functional requirements of the
system itself. For example portable devices have strong constraints concerning size, weight
and electric power consumption (if it has to run on battery).

Chapter 2

Common CPU-Architectures for
Embedded Systems

Normally the CPU for an embedded system is selected to meet the specific needs of
the application. A processor’s architecture has great influence in the aforementioned
requirements - particularly in computing power and costs.

Some characteristic attributes of the architectures are listed in table 2.1.

2.1 x86

The x86 family was introduced by Intel and is typically known as architecture for desktop
computers. But there are several x86-CPUs especially designed for embedded systems.
A ”standard” x86-CPU needs an external chipset that typically consists of North- and
Southbridge in order to communicate with the memory or peripheral devices. This is too
much dissipation of resources like space and power to use these standard x86 CPU for an
average embedded device.
But there are special embedded x86 processors that combine the CPU, the chipset and
some additional glue-logic in a single IC-package (cf. Figure 2.1). These devices are called

x86 PowerPC MIPS ARM Cell

Instruction Set CISC RISC RISC RISC RISC
Max. Clock Rate > 3.2 GHz 2.7 GHz 1 GHz 1.25 GHz > 3.2 GHz
Implementation 16 - 64 bit 32 - 64 bit 32 - 64 bit 32 bit 64 bit (PPE)

128 bit (SPE)
Endianess little big *) arbitrary *) little *) arbitrary *)

*) switchable

Table 2.1: CPU Architectures - Key Data

5

6 CHAPTER 2. COMMON CPU-ARCHITECTURES FOR EMBEDDED SYSTEMS

Figure 2.1: x86 System-on-Chip (source: STMicoreletronics)

System-on-Chip (SoC). Using a SoC, you will need almost no external circuitry to set up
an embedded computer.

The x86 architecture is the most widely documented architecture around [30]. There are
many books and online documents about the intricacies of this architecture. Development
for x86 is rather easy - no cross development is needed when working on an Intel PC (like
most developers do). Almost everyone has a computer of this architecture at work or at
home.
However this architecture represents only a small fraction of the traditional embedded
system market. One reason for this is the high cost of the x86-CPUs, another one is the
relatively high power consumption compared to other architectures.

2.2 PowerPC

The PowerPC architecture is the result of collaboration between IBM, Motorola and
Apple. While it has its origins in personal computers (Apple computers using Motorola
68k CPUs) and mainframes (IBM’s POWER Architecture), PowerPC CPUs were also
intended for the use as embedded and high-performance processors as well. [29]
PowerPC is largely based on IBM’s earlier POWER architecture, and retains a high
level of compatibility with it. These two architectures have remained close enough that
the same programs and operating systems will run on both - if some care is taken in

2.3. MIPS 7

preparation. Newer chips in the POWER series implement the full PowerPC instruction
set.

PowerPC processors are known as CPU for Apple Macintosh computers, but they can
also be found in many other devices, for example in the first edition of the TiVo hard-disk
recorder or in several set-top boxes.

Similar to x86, this architecture is also very well documented and supported by various
operating systems. [30]

2.3 MIPS

The MIPS Platform is the result of the Stanford ”Microprocessor without Interlocked
Pipeline Stages” project. The CPU core is licensed by MIPS Technologies Inc. as intel-
lectual property to several manufacturers [30]
This architecture has many instruction set implementations, hence operating systems and
software programs have to be built for a specific target board.

MIPS CPUs can be found in Sony’s PlayStation 1 and 2, Nintendo 64, servers and work-
stations from SGI and many other devices like routers and other networking equipment.
According to MIPS technologies, MIPS products can be found in 72% of VoIP appli-
cations, 76% of cable set-top boxes, 70% of DVD recorders and 95% of cable modems
(source http://www.mips.com/).

2.4 ARM

The ARM (Advanced RISC Machine - formerly Acorn RISC Machine) architecture is sold
as intellectual property to chip manufacturers just like the MIPS architecture. [30]
ARM Ltd. only designs CPU cores and licenses them to manufacturers such as Samsung,
Atmel and many others. Intel sold its XScale family quite recently to Marvell Technology
Group.

In difference to the MIPS architecture all ARM CPUs have the same instruction set, so
all processors are fully software compatible (assembly and binary code).
Almost all current ARM CPUs are based on ARMv5TE and ARMv4 architectures. They
only differ in clock rate, cache and additional features. [1]

Due to their power saving features, ARM CPUs are dominant in the mobile electronics
market, where low power consumption is a critical design goal.
ARM Limited states that ARM’s market share of the embedded RISC microprocessor
Market is approximately 75%. Until January 2005, ARM Partners have shipped more
than 2.5 billion ARM core-based microprocessors. [19]

8 CHAPTER 2. COMMON CPU-ARCHITECTURES FOR EMBEDDED SYSTEMS

Contrary to other vendors, ARM does not provide free manuals for its chips. There
are only reference manuals available, which are sufficient in most cases. As individual
chip manufacturers are responsible for the development of the chips, some information is
available from them.

2.5 Cell Architecture

The Cell Architecture was developed by an alliance formed by Sony, Toshiba and IBM
(STI) to provide power-efficient and cost-effective high-performance processing for a wide
range of applications, especially the most demanding consumer appliance: game consoles
[18]. For instance Sony employs Cell-processors for its new PlayStation 3 console.

Figure 2.2: The Cell architecture (source: IBM Research [18])

As seen in Figure 2.2, a current cell CPU consists of an 64-bit Power Architecture core
(Power Processor Element - PPE) and 8 specialised co-processors based on a novel single-
instruction multiple-data (SIMD) architecture called Synergistic Processor Unit (SPU).
These cores are connected to each other and to the outside (RAM, I/O) through an on-
chip bus (EIB).
This configuration combines the flexibility of a normal CPU core with the functionality
and performance of parallel optimized SIMD cores.

2.6 Microcontrollers

There are reams of different microcontroller-architectures available on the market. Some
of them are based on one of the architectures mentioned above, but typically a microcon-

2.7. DSPS OR FPGAS AS CO-PROCESSOR 9

troller has a small CPU core with 4, 8 or 16 bit register width, only a few MHz clock rate
and only some kilobytes of RAM and ROM.

Due to these limits, microcontrollers are usually programmed directly, without the assis-
tance of an operating system. Only in very special appliances a small real-time OS is
used, e.g. if multi-tasking is needed.

These chips are virtually always integrated in embedded systems, as there are no real
applications for stand-alone microcontrollers.

Microcontrollers are usually equipped with additional peripheral devices on chip such
as signal converters (A/D, D/A), timers and counters (that may be used for PWM),
watchdogs and various interfaces (e.g RS-232, SPI, CAN and I2C).
Due to these extensions the chip-count in an embedded appliance and thus the system’s
size may be reduced.

A very popular microcontroller family is the Freescale MC68300 (formerly from Motorola).
The CPU core is based on the 32-bit Motorola 68k architecture. For instance EyeBot M5
utilises an MC68332 which is equipped with 2kB internal SRAM and numerous I/O-
facilities; non-volatile memory has to be added externally.
An interesting feature of this controller is ”fully static operation” [7], i.e. it can operate
on any clock frequency from 0 Hz up to the maximum of about 20 MHz. This feature may
be used for debugging purposes - you may run your program slowly (or step through the
program) and show the status of the system with a few LEDs or a numeric LED display
connected to the microcontroller.

2.7 DSPs or FPGAs as Co-processor

In some cases, more processing power is needed than a single embedded CPU can de-
liver. Simply using more than one processor in parallel possibly bears conflicts with the
requirements of an embedded system. Two identical processors on one board doubles the
processing power in ideal case, but also doubles power consumption and increases the size
of the board.
Using even more processors certainly increases computing power but also increases the
disadvantages of this concept.

A different approach is to support the main processor of an embedded system with a
specialised processing unit such as a DSP or a FPGA. The combination of a ”normal”
and a ”specialised” CPU has several benefits. While the DSP or FPGA is used for
signal processing, the main CPU is available for other tasks like communicating with the
embedding hardware, other embedded systems or the user.

In contrast to a DSP that usually can only be used for sequential signal processing, a
(re)configurable FPGA can be used in many different ways. [23, 22]
You may load a CPU core into the FPGA, so it can act as a full-featured CPU. Such
cores (also referred to as ”softcores”) are available as intellectual property and may be

10 CHAPTER 2. COMMON CPU-ARCHITECTURES FOR EMBEDDED SYSTEMS

bought for varying amounts of money (depending on the complexity). Another resource
is OPENCORES (opencores.org), an open source project providing numerous CPU cores
for many different applications.

Digital image processing is an ideal task for parallelisation. Common Procedures of im-
age processing like filtering and resizing involve the same simple mathematical operation
repeatedly on every pixel. By doing these operations in parallel, the time needed for the
computation can be heavily reduced.
While a DSP or a normal CPU fetches and processes one part (pixel) of the image per
time unit, a FPGA can do several of these operations in parallel by using several process-
ing units. The number of parallel ”processing units” depends on the number of logic cells
in the FPGA and the complexity of the operation which affects size of each ”softcore”.
Employing a FPGA allows complex image processing in real-time without generating any
CPU load on the main processor of the system.

The Eyebot M6 makes use of a common Xilinx FPGA from the Spartan 3E family for
supporting the main processor in image processing tasks.
Another FPGA family from Xilinx is called Virtex-4. These devices combine the benefits
of ”usual” processors and FPGAs by combining one or two PowerPC CPU ”hardcores”
and a FPGA in the same package. [13]

Chapter 3

Common Operating Systems for
Embedded Systems

Embedded systems are becoming increasingly complex. Simple microcontroller circuits
may be programmed easily with an assembly language or C. But if you wish to use
advanced features like multitasking, you will soon face the limitations of this approach.
Implementing more advanced features by hand is elaborate and maybe error-prone. So
using an operating system that provides these features is reasonable. Most operating
systems have already absolved comprehensive tests, because typically they are already in
use in many other projects.

In the following sections, there is a survey of the most common operating systems for
embedded systems.

3.1 Linux

Almost everyone in the computer business knows the history of Linux - started in 1991 by
Linus Torvalds as a simple hobby project, grown-up to a full-featured UNIX-like operating
system.
The name Linux is interchangeably used in reference to the Linux kernel, a Linux system
or a Linux Distribution. Strictly speaking, Linux refers only to the kernel, but in colloquial
language use Linux means usually a Linux system. Such systems may be custom built
(from the sources) or can be based on an already available binary distribution such as
Debian or Novell SUSE.

Linux developed as a (more or less) POSIX-conform general purpose operating system.
Due to the immense cost if a POSIX certification, only very few distributions are certi-
fied [6]. There are still some issues that do not fully comply POSIX standards such as
threading.
Linux is a multi-user system, which is suitable for any kind of application (multi-func-

11

12 CHAPTER 3. COMMON OPERATING SYSTEMS FOR EMBEDDED SYSTEMS

tional). Thus it is a big system that needs lots of resources in terms of memory and
processing power and the scheduler is based on ”fairness” instead of real-time aspects. It
seems to be the direct opposite of an operating system for embedded systems.

A typical desktop Linux installation usually needs several hundreds of megabytes of disk
space and at least 32 MB RAM. Embedded targets are often limited to very few megabytes
of flash or ROM and only some megabytes of RAM. But due to the modularity and
scalability of Linux it can be adapted to fit almost any embedded system.
Much of the several hundred megabytes of the desktop distribution are composed of
documentation, desktop utilities etc. and can be omitted as they are unnecessary for
an embedded target. It is absolutely possible to build a fully-functional Linux system
needing less than 2 MB of non-volatile memory.
Even the kernel itself is highly configurable and it is possible to remove unneeded kernel
functionality with the assistance of several built-in frontends.

Linux is available for almost every 32-bit architecture and many 64-bit architectures. For
a list you may look in the directory arch/ in the Linux sources.
Even some 16-bit x86-processors (e.g. 8086 and 286) are supported by a project called
ELKS (http://elks.sourceforge.net/).

Traditional embedded systems operating systems have three components of software cost:

• initial development setup - purchase of development licenses from the OS vendor
(often ”per seat” - one license for each developer)

• additional tools - if the tools provided by the basic developer package are insufficient

• runtime royalties - per-unit royalty when deploying the system

With Linux, all development tools and OS components (including the sources) are avail-
able free of charge and any royalties are prevented by the licenses.

3.2 Microsoft Windows Systems

At present, there are two operating systems for embedded systems from Microsoft - Win-
dows CE and Windows XP Embedded. [5, 15, 16]
Windows CE (WinCE) is an operating system for minimalistic computers and embedded
systems. It is not a smaller version of a desktop Windows, instead, it is a distinctly dif-
ferent kernel. It supports Intel x86 and compatibles, MIPS, ARM, and Hitachi SuperH
processors.
Windows CE is optimized for devices that have minimal storage - a Windows CE kernel
may run in under a megabyte of memory.
Windows CE conforms to the definition of a real-time operating system, with determin-
istic interrupt latency. It supports 256 priority levels and uses priority inheritance for
dealing with priority inversion.
Similar to Linux, Windows CE forms only the kernel of the OS. By adding extra software

3.3. SYMBIAN 13

such as a graphical user interface, it becomes a ”complete” operating system called e.g.
Windows Mobile.

Windows XP Embedded, or XPe, is a modularised variant of Microsoft Windows XP
Professional. It runs normal Windows (resp. Win32) applications and device drivers. It
is only compatible to x86 processors and needs at least 32MB Flash, 32MB RAM and a
200 MHz CPU.
XPe is not related to Windows CE. They target completely different devices. Windows
XPe will not run on other architectures or with as little resources as CE. But the latter
does not have the Win32 API and needs its own software and drivers.

Windows XPe is used for instance in ATMs and Thin Clients, whilst CE is normally used
in mobile phones and PDAs.

3.3 Symbian

Symbian OS is the successor of 32-bit EPOC Platform from Psion. Symbian is currently
owned by Ericsson (15.6%), Nokia (47.9%), Panasonic (10.5%), Samsung (4.5%), Siemens
AG (8.4%), and Sony Ericsson (13.1%). All of the owners are (or were) manufacturers of
mobile phones. [12]

Symbian is structured like many desktop operating systems with pre-emptive multitask-
ing, multithreading and memory protection. Its kernel is a microkernel architecture, which
means that only the minimum necessary is within the kernel. Things like networking or
file system support have to be provided by another layer called base layer. Between base
layer and user software are system libraries.
The most important user interfaces based on Symbian are S60 (Nokia) and UIQ (Sony
Ericsson).

The major advantage of this operating system is the fact that it was built for handheld
devices with limited resources that may be running for months or years. It has program-
ming idioms such as descriptors and a cleanup stack and other techniques in order to
conserve RAM and avoid memory leaks. There are similar functions to save disk space
(flash memory).

All Symbian OS programming is event-based and the CPU is switched off when appli-
cations are not directly dealing with an event. This is achieved through a programming
idiom called active objects. Correct use of these techniques helps ensure longer battery
life.

Today, Symbian OS is solely employed in mobile phones (i.e. smartphones).

14 CHAPTER 3. COMMON OPERATING SYSTEMS FOR EMBEDDED SYSTEMS

3.4 Real-Time Operating Systems

Real-time operating systems (RTOS) are operating systems intended for real-time appli-
cations. That is to say, a RTOS guarantees deadlines to be met generally (soft real-time)
or deterministically (hard real-time).

An RTOS facilitates the creation of a real-time system, but does not guarantee the final
result will be real-time - this requires correct development of the software. An RTOS will
typically use specialised scheduling algorithms in order to provide the real-time developer
with the tools necessary to produce deterministic behaviour in the final system.

There are numerous proprietary and free RTOSes available. See the following list for some
examples.

• VxWorks is the most popular commercial RTOS [4]. Like most other RTOSes it
includes a multitasking kernel with pre-emptive scheduling and fast interrupt re-
sponse, extensive inter-process communications, synchronization facilities and a file
system. [14]
Major distinguishing features of VxWorks include efficient POSIX-compliant mem-
ory management, multiprocessor facilities, a shell for user interface, symbolic and
source level debugging capabilities and performance monitoring.

• QNX is a commercial POSIX-conform RTOS [10]. It uses a microkernel, enabling
the user (developer) to turn off any functionality he does not require. It offers
features such as fault tolerance, pre-emptive multitasking and runtime memory pro-
tection. The system is quite fast and small, in a minimal fashion it fits on a single
floppy disk.

• RTEMS is a free RTOS designed to support various open API standards including
POSIX and uITRON. It was originally planned to be used for missiles and other
military systems. RTEMS closely corresponds to POSIX Profile 52 which is ”single
process, threads, file system” [9] - it does not provide any form of memory manage-
ment or processes. There is only a single process with multiple threads running on
an RTEMS system. No services like memory mapping, process forking, or shared
memory are offered.

• RTAI, Xenomai and RTLinux are extensions to the Linux kernel in order to allow
Linux to meet real-time requirements. These systems run the Linux kernel as a
low-priority task, so higher priority real-time tasks can interrupt the execution of
the Linux kernel. The architecture of these real-time extensions is described in 4.3.

Chapter 4

Embedded Linux - Kernel and
Standard Libraries

You may ask yourself: ”What’s the difference between Linux and embedded Linux?”
Paradoxically there is none. It is the same Linux - the difference is founded in the
configuration. An embedded Linux is typically aligned to the hardware and the application
it is intended to be used with, while a ”normal” Linux system is commonly more generic.
In most cases, a ”normal” Linux kernel is able to run on different machines; an embedded
Linux kernel may get into difficulties when doing so.

Linux has been developed under the philosophy of Open Source software pioneered by
the Free Software Foundation (http://www.fsf.org/). So it is freely available to use, to
modify and to copy. Free does not necessarily free of copyrights and free of charge. There
are several companies that sell packaged Linux distributions. The customer pays for the
services of the vendor (e.g. technical support, data mediums) and maybe for some vendor
specific closed-source Software, but not for Linux itself.

When released under the terms of the GNU General Public License (GPL), Open Source
code is copyrighted by its author who has released it. Unlike most End User License
Agreements (EULA) that restrict rights, the GPL guarantees rights to the users and
developers.
The onliy restriction is, if you modify and distribute software covered by the GPL, you
have to make public the modified source code. This also applies if your code is based
on GPL’ed software. Your code becomes ”derivative work”, which is also covered by the
GPL.
If you want to write a proprietary application using GPL libraries, you will have to use
libraries, which are subject to the ”Library GPL” (LGPL - also ”Lesser GPL” termed).
Programs linked to a LGPL library are not considered as derivative work, so there is
no requirement to publish the source of the program, but the library’s source has to be
distributed.

One benefit of freely available sources is the possibility to analyse erroneous software.

15

16 CHAPTER 4. EMBEDDED LINUX - KERNEL AND STANDARD LIBRARIES

That eases correcting the code or finding workarounds. With traditional embedded oper-
ating systems, the code is not available or has to be purchased for large sums of money.
Developers have to wait for fixes or spend a lot of money.

More reasons to employ Linux are:

• Hardware support - Linux supports most different types of hardware platforms of
all operating systems. Linux also supports all kinds of devices such as controllers,
network interfaces or graphics cards. There are only few manufacturers not provid-
ing Linux drivers, but there are a number of developers caring about that by reverse
engineering drivers from other operating systems.

• Communication - Linux can interact with a huge variety of different systems off-
the-shelf (Windows and UNIX systems via Ethernet; I2C, SPI etc.)

• Numerous freely available tools

• Community support - if you have issues with some Linux software or driver, you
can get support by posting in the development and support mailing lists. Often the
developers themselves are present in these mailing lists and the level of expertise
found there often surpasses what can be found over expensive support hotlines of
vendors.

• Vendor independence - you are not bound to a specific vendor of an operating
system.

4.1 Structure of Linux (UNIX)

Linux has a protected mode architecture using the protected mode memory implemen-
tation in contemporary Intel processors since 80386. The processor can operate in four
privilege levels. A program running at the highest level (0) can do anything it wants (I/O
Instructions, enable and disable interrupts, modify descriptor tables). Lower privilege
levels prevent programs from performing operations that might be ”dangerous”.
Linux uses the highest and the lowest level (0 and 3). In Linux context, level 0 is called
”kernel space” and level 3 is called ”user space”.

Figure 4.1: Architecture of a UNIX system

4.1. STRUCTURE OF LINUX (UNIX) 17

Figure 4.1 shows the typical architecture of a UNIX system. The two aforementioned
layers are subdivided each into two different layers.
The bottom layer consists of the hardware controllers. This subsystem is comprised of all
the possible physical devices in a Linux/UNIX installation. For instance, CPU, memory
hardware, hard disks and network hardware are all parts of this subsystem).
The layer above is the kernel (e.g. Linux, BSD, etc.), which abstracts and mediates access
to the hardware resources including the CPU. Possible kernels are Linux, BSD and so on.
The user space is composed of the OS-services and user applications. The OS- services are
services that are typically considered part of the operating system (a windowing system,
command shell, etc.). Also, the programming interface to the kernel (compiler tool and
C-library) is included in this subsystem.

4.1.1 Kernel

The Linux kernel is a monolithic kernel; the tight internal integration of components make
a monolithic kernel highly efficient. It runs solely in kernel space in supervisor mode. It
defines a high-level virtual interface for accessing the computer’s hardware.

The kernel’s primary purpose is to manage the computer’s resources and allow other
programs to run and to use these resources. Typically, these resources consist of:

• The CPU is the most central part of a computer system, responsible for running
or executing programs. The kernel takes responsibility for deciding which of the
running processes should be allocated to the processor. Because Linux is a pre-
emptive multitasking system, a scheduling algorithm is used for task selection.

• Memory is used to store program instructions and data. Both need to be present
in memory in order for a program or process to execute. The kernel is responsible
for deciding which memory each process can use, and determining what to do when
not enough memory is available (swapping).

• Any Input/Output (I/O) device that is present in the computer, such as disk drives,
printers, displays, etc. The kernel allocates requests from applications to perform
I/O to an appropriate device and provides convenient methods for using the device.

To enable processes to access the services provided by the kernel, the C-Library of the
kernel offers routines for the kernel’s system calls. All kernel functions are being invoked
by using these system calls.
The kernel also provides methods for synchronization and communication between pro-
cesses called inter-process communication or IPC.

It is possible to dynamically load and unload executable kernel modules at runtime. So it
is possible to easily extend the kernel’s capabilities when required. For instance hardware
modules may be loaded just before the hardware is required.
Kernel modules add a small overhead as opposed to code being directly built into the
kernel. Despite that fact, only loading modules when they are needed helps to keep the

18 CHAPTER 4. EMBEDDED LINUX - KERNEL AND STANDARD LIBRARIES

amount of code running in kernel space to a minimum.
Typically kernel modules can only be loaded into kernels they have been built for. So it
is necessary to have the sources of all kernel modules that are needed for your system in
order to build a stable Linux kernel.
Some manufacturers only offer closed-source drivers for their hardware making it difficult
to build a kernel that is perfectly adapted to your system. Pre-built kernel modules often
cause stability issues, though there is a kernel feature allowing you to load modules that
were built for a different kernel.

4.1.2 Kernel Configuration

The Linux kernel is highly configurable. It is possible to select the features supported by
your processor, device drivers, file systems, buses and so on. In this way, you can build a
kernel that is ideally customised for your appliance.

In most cases you can decide whether a kernel component should be integrated into the
kernel or if it should be compiled as a module.
There are several user-friendly tools to ease the configuration process. They can be
invoked by executing make config (Figure 4.2), make menuconfig (Figure 4.3 - ncurses
based), make xconfig (Figure 4.4 - QT frontend) or make gconfig (Figure 4.5 - GTK
frontend) in the kernel source top directory.

Figure 4.2: Configuration of the Linux kernel - make config

4.1. STRUCTURE OF LINUX (UNIX) 19

Figure 4.3: Configuration of the Linux kernel - make menuconfig

Figure 4.4: Configuration of the Linux kernel - make xconfig

When using make config, there are three or four choices for each kernel option. They are
”y” (yes - build the option into the kernel image), ”n” (no - do not build the option), ”m”
(build as loadable module - not for all options) and ”?” (print help text). The default
selection is printed in a capital.

20 CHAPTER 4. EMBEDDED LINUX - KERNEL AND STANDARD LIBRARIES

Figure 4.5: Configuration of the Linux kernel - make gconfig

With make config you can only change one option after the other; there is no possibility
to go back. So usually several passes are needed - that is tedious.
Fortunately the other methods are menu-based and at least one of them runs on almost
every computer.
All of these tools create or change the .config file in the kernel-source’s top-level-directory.

After the configuration is completed the new kernel can be built by invoking the make

command.

When you are building a kernel for a different target platform (than your host system),
you will have to pass additional arguments such as the name of the architecture and the
prefix of the toolchain programs to the make commands.
For instance to build a kernel for an ARM-based gumstix board the command to run
is: make ARCH=arm CROSS COMPILE=arm-linux- target , where target is either one of
config, menuconfig, xconfig, gconfig or nothing when starting the build process.

4.1.3 The Linux Process Model

The basic structural element in Linux is a process. It consists of executable code and
resources like data, file descriptors and so on. These resources are fully protected; one
process cannot access or manipulate the resources of another. So a erroneous process
cannot harm any other running processes.

4.1. STRUCTURE OF LINUX (UNIX) 21

Due to that, communication between processes can only be done by using inter-process
communication (IPC) mechanisms provided by the kernel as seen in Figure 4.6. IPC means
are for instance shared memory regions and named pipes. The creation of processes and
using inter-process communication bares an excessive overhead compared to the threading
model.

Threads are an alternative to processes - threading is also called ”lightweight multitask-
ing”. In contrast to a process, a thread is only code; it only exists within the context of
the invoking process and shares its resources. All threads of a process have equal access
to data memory and file descriptors. Communication between threads is much more effi-
cient (e.g. simply by using global variables), but the drawback is: Any thread can damage
another thread’s data.

Figure 4.6: Processes and threads (based on: [20] Figure 2-5)

Linux starts with one process, the init process, which is created at boot time. Every other
process in the system is a child of that process. The creation of a child process is done
by the system call fork().
fork() makes a copy of the parent process and gives a new process id (PID) to the
child process. To save memory and to reduce overhead, the data of the processes is only
duplicated when it is accessed.

In most cases, the child process invokes a new program by calling execve() to load an
executable file image from disk. execve() overwrites the calling process’s code, data and
stack segments. If execve() succeeds it does not return, as control is transferred to the
newly loaded program.

If the child process is a foreground process, the parent process (usually the command
interpreter) has to wait for its completion. This is accomplished with waitpid() which

22 CHAPTER 4. EMBEDDED LINUX - KERNEL AND STANDARD LIBRARIES

blocks the calling process until the child process has completed.
If the child process is a background process, nevertheless waitpid() has to be invoked by
the parent process after completion. When omitted, the child process will reside in the
system as a ”zombie” process.

4.1.4 Connections Between Kernel Space and User Space

Because of the absolute detachment of kernel Space and User Space, there are communi-
cation means necessary in order to connect user processes to the kernel.
Therefore the kernel provides virtual filesystems and special files. These can be found on
any Linux system (anyway since Linux version 2.6). Device nodes are usually located in
/dev/, the proc filesystem is typically mounted in /proc and the sys filesystem in /sys.

Device-Nodes

A device node is a special file facilitating communication between user space applications
and computer hardware. A device node corresponds to hardware resources that have
already been allocated by the kernel. The resources are identified by a major number
representing the device driver and a minor number representing the device (e.g. major
number 4 → serial port; minor number 64 → first port, 65 → second port and so on).
A device node is treated like any other file, and is accessed by using standard system
calls. There are three kinds of device files corresponding to different device types.

• Character devices transmit only single characters per time unit. These device nodes
are used e.g. for serial ports, modems or virtual terminals. Character devices are
usually unbuffered.

• Block devices transmit data in data blocks. For instance hard drives are represented
by block device nodes. The kernel allocates input and output buffers for this kind
of device. User programs write into and read out of these buffers. When a buffer is
full, the complete buffer (block) is transmitted and the buffer is cleared.

• Pseudo devices are devices that do not represent hardware. They are used for vari-
ous functions handled by the kernel. The best known pseudo-devices are /dev/null,
/dev/random and /dev/zero.

For the Linux 2.6 kernel series the device nodes are handled by the device manager udev.
It invokes all necessary actions when adding or removing devices. In a traditional Linux
system there is a static set of device nodes in the /dev directory. With udev these special
files are dynamically created (and removed) according to predefined rules. So there are
only device nodes for all devices that are actually present on the system.

4.2. STANDARD C-LIBRARY 23

Proc - Filesystem

The /proc directory contains virtual files that are windows into the current state of the
running Linux kernel. The proc filesystem is a pseudo-filesystem residing in system mem-
ory usually mounted at /proc. It supplies information on the kernel, the modules and the
running processes (in /proc/PID). In /proc/sys dynamically configurable kernel options
can be accessed (e.g. enable network packet forwarding). Some additional information
about the system state is also available (e.g. in /proc/meminfo or /proc/cpuinfo).

Sys - File System

SysFS is a virtual file system provided by the Linux 2.6 kernel. Information about devices,
drivers and relations between both are exported to this file system. It is used by several
utilities such as udev to collect information about the hardware and its drivers (kernel
modules).

4.2 Standard C-Library

The standard C library is a collection of header files and library routines that are used
to implement common operations like input, output or string handling and it provides an
interface to the kernel’s system calls.
Almost all C programs need a standard C library to function.

4.2.1 GNU C Library

The GNU C library (or glibc) is a standard C library released in subject to the LGPL. It
provides functionality required by the Single UNIX Specification, POSIX, ISO C99 and
some additional extensions for the GNU development. It supports many different kernels
and numerous hardware architectures.
It is the most common libc for Linux systems.

Unfortunately it is very large and considered being slow. So there are several approaches
implementing a small more effective libc, especially in the view of embedded Linux sys-
tems.

4.2.2 uClibc

The uClibc (or µClibc) is a C library developed especially for embedded Linux systems
(uC stands for microcontroller). It is has its origins in the uCLinux project that provides
a Linux distribution for processors without an MMU. It was composed from parts of libc4,

24 CHAPTER 4. EMBEDDED LINUX - KERNEL AND STANDARD LIBRARIES

glibc and many other sources.
The library has become a project of its own and supports many architectures with or
without MMU and FPU. The developers go for maintaining compatibility with C89, C99
and SUSv3 (Single UNIX Specification Version 3).

The library provides most of the functionality the glibc does. Although it is not as
complete as the glibc, most applications that compile with glibc also run in combination
with uCLibc.

For instance, a ”Hello World” program linked with uClibc uses only 4 kB of disk space,
while it uses more than 200 kB when linked with glibc. [24]

Like glibc, uClibc is released in subject to the GNU LGPL. So it is possible to publish
proprietary software that uses this library.

4.2.3 Dietlibc

Dietlibc is another C library for embedded systems. It is released under the GNU General
Public License Version 2, so there is nor room for using it in proprietary applications. It
aims to be compliant to SUSv2 and POSIX standards.

Dietlibc was developed from scratch with an emphasis in minimizing size and optimizing
performance. Thus it implements the most important and commonly used functions -
”implement stuff because it’s needed, not because it’s there”. [27]
For example all modules (e.g. stdio and unistd) are strictly separated and most functions
are compiled into separate object files, allowing the linker to reduce the size of an appli-
cation by only linking the used functions into the binary. Another very important point
is that the dietlibc developers reused code wherever possible. Because of these techniques
the resulting binaries are about 17 to 20 times smaller and contain almost no redundancy
compared to binaries produced with glibc.

But there are several drawbacks using this library besides the licensing issue. Once,
there are some known, but still unfixed bugs in this library. Furthermore, there is a lot
of functionality missing compared to the aforementioned libraries and thus it is not an
all-purpose library at all.

4.3 Real-Time Extensions for the Linux Kernel

In embedded systems, real-time capabilities are required in many cases. Unfortunately
Linux is everything but a real-time operating system.
There are two different approaches to provide real-time performance when using Linux as
operating system [28]:

• Improving the Linux kernel preemption.

4.3. REAL-TIME EXTENSIONS FOR THE LINUX KERNEL 25

• Adding a new software layer beneath Linux kernel with full control of interrupts
and processor key features (cf. Figure 4.7).

”The Linux kernel preemption project” is working on the first item. The developers are
still faced wit ”a few” unacceptable latencies. [4]
A commercial project called TimeSys Linux is also working on this approach. TimeSys
adverts with needing only a very small size of 500 kB - 1.2 MB for its operating system,
the scheduler offers more priority levels and enforced CPU reservations and a better timer
resolution than standard Linux does.

The other approach has been taken by RTAI, Xenomai and RTLinux. These projects differ
in licensing issues, supported hardware platforms and kernel versions, the development
status and the API. For instance RTAI and Xenomai are being actively developed, while
the free variant RTLinux stalled at version 3.1 in 2001.

Figure 4.7: Architecture of a Linux system with real-time extensions

Within the additional layer that can be seen in Figure 4.7, there is a real-time kernel
with its own scheduler. The Linux kernel is started as lowest priority real-time task - it is
safe to say, it runs as idle process. The real-time layer is inactive until the corresponding
module is loaded into the Linux kernel. So real-time functionality can be started and
suspended as needed.

In the following RTAI is taken as an example, but Xenomai and RTLinux are very similar.
The execution of tasks in RTAI is controlled by a timer which can operate in two modes.
In the periodic mode, the timer is restarted automatically after generating an interrupt.
In the one-shot mode the timer has to be set manually. The latter is more extensive but
the timer can be set to alternating intervals.
RTAI provides all usual means for inter-task communication such as mailboxes, sema-
phores, messages and remote procedure calls. Mailboxes allow asynchronous communica-
tion; a task can send a message to another task’s mailbox. The other task can read out
the messages after the FIFO-principle when it is ready to do so. The other means are
used for synchronous communication.

Interaction with Linux processes is possible through a FIFO buffer. Real-time tasks can
write into or read from this buffer by invoking rtf put() or rtf get(). Linux processes
can access this buffer through ordinary device nodes.

26 CHAPTER 4. EMBEDDED LINUX - KERNEL AND STANDARD LIBRARIES

RTAI also allows the usage of shared memory between real-time tasks and Linux processes.
Hence it is possible that multiple processes and tasks communicate with one another at
the same time.

4.4 BusyBox - User Space Utilities for Embedded Linux

BusyBox melds small versions of numerous UNIX-tools together to one single binary.
It provides minimalist replacements for most of the utilities you usually find in GNU
coreutils, util-linux, and so on. The utilities in BusyBox generally have fewer options
than their full-featured GNU cousins. But the options that are included provide the
expected functionality. [11]
In this way a fairly complete POSIX environment is provided by only one quite small file.
Particular commands are represented by symbolic (or hard) links to the BusyBox binary.
BusyBox determines the function to be invoked by checking the name of the calling link.

The developer may select, which utilities the BusyBox-binary should contain. Several
utilities (e.g. vi) can even be configured in their functionality.
Thus it is possible to create an ideally adapted set of commands for an embedded system
and a lot of disk space or ROM can be saved.

An entire list of the commands, BusyBox supports, can be found at
http://www.busybox.net/downloads/BusyBox.html.

Chapter 5

Cross Development

Like mainstream software developers, embedded system developers need compilers, link-
ers, interpreters and other development tools. Embedded developing tools are different
from normal developing tools, as they typically run on one platform while building appli-
cations for another. For this reason these tools are often called cross-platform development
tools, or in short ”cross development” tools. As there is always a bunch of tools required
and these tools are used one after the depending on each other, a set of those tools is also
called ”toolchain”.

There are several commercial cross-development environments that cost depending on
their complexity and debugging facilities a lot of money.
In this context we are developing for a free platform - so why pay for the development
tools. All of the tools needed are available as free software.

Any modern PC will work as development host. Using a Linux system for development
is the easiest way to develop software for embedded Linux targets. The tools used in a
cross-development toolchain are virtually the same tools that already reside on the system
- they only differ in the target for which code is compiled for.

5.1 Components of a Cross-Compilation-Toolchain

In order to build software for an embedded Linux system, there are several tools and a
standard library needed besides the compiler. All of these components are specific for
both target (the embedded system) and host (the computer used for development).

5.1.1 Binary Utilities (binutils)

The binutils package includes the utilities that are most often used to manipulate binary
object files (cf. table 5.1).

27

28 CHAPTER 5. CROSS DEVELOPMENT

as The GNU assembler
ld The GNU linker
gasp The GNU assembler pre-processor
ar creates and manipulates archive content
nm Lists the symbols in an object file
objcopy Copies and translates object files
objdump Displays information about the content of object files
ranlib Generates an index to the content of an archive
readelf Displays information about an ELF format object file
size Lists the sizes of sections within an object file
strings Prints the strings of printable characters in object files
strip Strips symbols from object files
c++filt Converts low-level mangled assembly labels resulting from overloaded

c++ functions into their user-level names
addr2line Converts addresses into line numbers within

Table 5.1: Tools in the Binutils Package

5.1.2 C/C++ Library

As mentioned before, almost every C program needs a standard C library to be functional;
so this library is also needed for our toolchain. Due to the fact that this library is an
interface to the running kernel, it has to be built based on the current kernel headers.
Typically if you develop an embedded system, you compile your own kernel and thus you
already have the headers for the kernel you want to use.

You have to deliberate, which libc is best for your application. When size does not matter
the glibc might be best choice as it is the most compatible one.
uCLibc is possibly the best choice for an ”average” embedded system. In my opinion, it
is an ideal trade-off between compatibility and size.
Even smaller C libraries (dietLibc or stripped down variants of the two libraries above)
sometimes will cause issues with some programs. They should only be employed, when
size and speed do really matter.
For instance if you plan to build a cgi-enabled web server that might run several thousand
instances of a program, size and speed really matter, but you have to handle possible
incompatibilities.

5.1.3 Compiler

The most important program in a toolchain is the compiler. It translates the source code
to executable binary code for our target architecture.

Typically gcc is a good choice. ”gcc” is an abbreviation for GNU Compiler Collection -
previously it was GNU C Compiler, but since more than just the C language is supported

5.2. CROSS-DEVELOPMENT ON A LINUX-HOST 29

the name was changed.
It supports more than 60 platforms (more than any other compiler) and several program-
ming languages such as C, C++, Objective-C, Java, FORTRAN and Ada. It is possible
to build gcc to run on one architecture while generating code for another architecture -
i.e. it can be used as a cross-compiler.
It is the standard compiler for most Linux distributions as well as for BSD, Mac OS X,
BeOS and so on.

5.2 Cross-Development on a Linux-Host

The easiest way doing cross-development is of course using a pre-built toolchain. There
is a project called Buildroot that is simply a set of Makefiles and patches that allow to
easily generate both, a cross-compilation toolchain and a root filesystem for the target.
There are many target platforms being supported by Buildroot, such as x86, PowerPC,
MIPS and ARM. It utilises the BusyBox package in order to generate the root filesystem.

Surely you can build your own toolchain by compiling gcc, binutils, uClibc and all the
tools by hand. But dealing with all configuration options, with all problems of every gcc
or binutils version is very time-consuming and frustrating.
Buildroot automates this process through the use of Makefiles, and has a collection of
patches for each gcc and binutils version it supports to make them work.

Buildroot is configured with an ncurses-based menu giving you the possibility to customise
the toolchain and the root system in an all embracing way. You can choose between many
versions of every part of the toolchain. You can select which packages shall be in your
target’s root filesystem.
Almost everything you can configure when building the toolchain ”by hand” is also mod-
ifiable in the Buildroot environment.

5.3 Developing on a Windows Machine

Unfortunately there is no development environment running on Windows freely available
that is as flexible as Buildroot. Although there are several cross-compiling toolchains all-
around in the Internet. Most of them are for a very specific platform (e.g. Ipod-Linux)
or outdated (gcc version < 3.0) or both of them.

If you want to omit buying an expensive cross-development environment, you still have
some alternatives. One of them is running Linux in a virtual machine (e.g. VMware) and
using the Buildroot environment within this VM. But this has a big disadvantage; it is
rather circumstantial and very slow. You can find other possibilities in the following.

30 CHAPTER 5. CROSS DEVELOPMENT

5.3.1 CygWin

CygWin is an emulation of the Linux-API for several Microsoft Windows operating sys-
tems. CygWin was developed by Cygnus Solutions, which was taken over by RedHat.
Recently, it is subject to the GNU GPL. It enables you to port applications for POSIX
operating systems (e.g. gcc) to Windows in an easy way.

Unfortunately there is a compatibility layer required to run applications that are compiled
with/for CygWin. This layer is formed by a dynamic link library called cygwin1.dll.
Without that file in the same path like the program or in the search path, the program
will not run. So you always have to bundle this dll with your Software. If there is more
than one application using CygWin on the same system, compatibility issues are in all
probability.

A big benefit of CygWin is offering an X11 emulator enabling you to build and run
graphical applications like DDD (Data Display Debugger - see 5.4.1).

5.3.2 MinGW

MinGW is a native port of gcc to Microsoft Windows Systems. The name is an abbrevi-
ation for ”Minimalist GNU for Windows”.
Theoretically it is possible to build a MinGW cross-compiler, but that seems to be rather
difficult. I have not seen any functional one in my enquiries.
A MinGW based compiler would be a great convenience, as in contrast to CygWin it does
not need any compatibility layer.

Usually MinGW comes with MSYS that supplies a UNIX-like shell making it possible to
run shell-scripts like configure-scripts or execute native UNIX-Makefiles.

5.3.3 Building a Toolchain for a Windows-System

For building a toolchain running on a Windows machine with CygWin, first of all you
need a Linux system and CygWin of course.

The components of a toolchain have to consort. As they are available in numerous ver-
sions, lots of experiments have been necessary to find matching versions. In my toolchain,
gcc has version 3.4.6, binutils are version 2.17 and the kernel headers are from the Linux
kernel version 2.6.18. The latter have been taken from a Linux Buildroot environment.

Installing CygWin

Setting up a CygWin environment is rather simple. You have to download the setup
program from http://cygwin.com/setup.exe and start it. After selecting a mirror near
your location, just follow the suggestions of the setup routine.

5.3. DEVELOPING ON A WINDOWS MACHINE 31

When finished, you can find a CygWin icon on your desktop. When invoking this icon, a
bash shell is started offering almost the same functionality a bash on Linux does.

Building The Kernel Headers

Setting up the kernel headers is the first step in building a cross-development toolchain.
Unfortunately this step fails in most cases on a windows machine. So you need to have a
Linux system.
If there is only Windows running on your machine, Linux may be installed to a virtual
machine using VMware or VirtualPC. VMware player is available for free and there are
several pre-built virtual machines running Linux freely available on the internet (e.g. at
http://www.thoughtpolice.co.uk/vmware/).

After selecting a kernel, a kernel package has to be downloaded (e.g. from www.kernel.org
or a mirror site) and extracted to an arbitrary directory. In this case a common directory
$PROJECTROOT with a subdirectory kernel is used.

$ mkdir $PROJECTROOT/kernel

$ cd $PROJECTROOT/kernel

$ wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.17.tar.bz2

$ tar xjfv linux-2.6.18.tar.bz2

$ ln -s linux-2.6.18 linux

After these steps, the kernel has to be configured to meet your application’s requirements.
This is done by invoking one of the commands mentioned in 4.1.2.

$ cd linux

$ make ARCH=arm CROSS_COMPILE=$TARGET_PREFIX- menuconfig

The values of ARCH and CROSS COMPILE are dependent on the target’s architecture.
ARCH stands for architecture and CROSS COMPILE names the target-prefix of the
compiler with an additional ”-” (e.g. arm-linux- or arm-xscale-linux-uclibc-).

You do not have to build the kernel as the headers are already generated during configu-
ration. Now you may create the include directory in your target directory and copy the
kernel headers to it.

$ cd $PROJECTROOT

$ mkdir -p $TARGET_PREFIX/include

$ cp -r kernel/include/linux $TARGET_PREFIX/include

$ cp -r kernel/include/asm-arm $TARGET_PREFIX/include/asm

$ cp -r kernel/include/asm-generic $TARGET_PREFIX/include

It is possible to reconfigure the kernel later without having to change the headers for your
toolchain. The toolchain only needs one valid set of headers for your target, which is
provided by the procedure mentioned above.

32 CHAPTER 5. CROSS DEVELOPMENT

Only changing processor architecture or kernel version will make it necessary to build a
new toolchain.

The resulting include directory may be copied to your Windows computer. This can be
done with
$ cd $PROJECTROOT and
tar cjvf includes.tar.bz2 $TARGET PREFIX/include/* on the linux machine and
$ cd $PROJECTROOT and
tar xjvf includes.tar.bz2 within the CygWin shell.

Alternatively the kernel headers may also be taken from a Linux Buildroot environment.

Binutils Setup

Binutils may be obtained from http://ftp.gnu.org/gnu/binutils/. The build process looks
like the following.

$ mkdir -p $PROJECTROOT/build-tools

$ cd $PROJECTROOT/build-tools

$ wget http://ftp.gnu.org/gnu/binutils/binutils-2.17.tar.bz2

$ tar xjfv binutils-2.17.tar.bz2

$ mkdir $PROJECTROOT/build-binutils

$ cd $PROJECTROOT/build-binutils

$../build-tools/binutils-2.17/configure \

--prefix=$PROJECTROOT/$TARGET_PREFIX --target=$TARGET_PREFIX \

--with-cpu=armv5te --with-arch=armv5te --with-tune=xscale \

--disable-nls --enable-interwork --disable-multilib

$ make

$ make install

After this process has been completed, the tools named in 5.1.1 can be found in
$PROJECTROOT/$TARGET PREFIX/bin.

Setting Up a Bootstrap Compiler

In contrast to the binutils package, the gcc package contains only one utility - the GNU
compiler.
At this stage we will build a bootstrap compiler, which will support only the C language.
This ”small” compiler is needed in order to compile the C library. After compiling the C
library, we are able to build a gcc with full C and C++ support.

The build process is similar to the build process before.

$ cd $PROJECTROOT/build-tools

$ wget ftp://ftp.gnu.org/gnu/gcc/gcc-3.4.6/gcc-3.4.6.tar.bz2

$ tar xjfv gcc-3.4.6.tar.bz2

5.3. DEVELOPING ON A WINDOWS MACHINE 33

$ mkdir $PROJECTROOT/build-gcc-bootstrap

$ cd $PROJECTROOT/build-gcc-bootstrap

$../build-tools/gcc-3.4.6/configure \

--prefix=/$PROJECTROOT/$TARGET_PREFIX --target=$TARGET_PREFIX \

--disable-nls --enable-interwork --disable-multilib \

--without-headers --with-newlib --enable-languages=c

$ make all-gcc

$ make install-gcc

Now you can find the gcc for your target in
$PROJECTROOT/$TARGET PREFIX/bin.

Compilation of the C Library

The Next step is the compilation of the C Library. Probably uClibc is the best choice for
an embedded system.

Like before, the build process consists of downloading, configuration, compilation and
installation.

$ cd $PROJECTROOT/build-tools

$ wget http://uclibc.org/downloads/uClibc-0.9.27.tar.bz2

$ tar xjfv uClibc-0.9.27.tar.bz2

$ cd uClibc-0.9.27

$ make CROSS_COMPILE=$TARGET_PREFIX- menuconfig

Configure uClibc to your needs. You will have to select CPU type, endianess, destination
path, etc.

$ make CROSS_COMPILE=$TARGET_PREFIX-

$ make PREFIX=\$PROJECTROOT/$TARGET_PREFIX install

Building The Final Compiler

Now we are ready to install the full compiler for the target with C and C++ support.

$ mkdir $PROJECTROOT/build-gcc-final

$ cd $PROJECTROOT/build-gcc-final

$../build-tools/gcc-3.4.6/configure \

--prefix=/$PROJECTROOT/$TARGET_PREFIX --target=$TARGET_PREFIX \

--with-arch=armv5te --with-tune=xscale --with-float=soft \

--disable-nls --enable-interwork --disable-multilib \

--enable-threads=posix --disable-__cxa_atexit \

--enable-languages=c,c++

$ make all

$ make install

34 CHAPTER 5. CROSS DEVELOPMENT

Building a Debugger

Building the GNU debugger gdb is relatively easy. You can find some more information
about this tool in 5.4.1.

$ cd $PROJECTROOT/build-tools

$ wget http://ftp.gnu.org/gnu/gdb/gdb-6.6.tar.bz2

$ tar xjfv gdb-6.6.tar.bz2

$ mkdir $PROJECTROOT/build-gdb

$ cd $PROJECTROOT/build-gdb

$../build-tools/gdb-6.6/configure \

--prefix=/$PROJECTROOT/$TARGET_PREFIX --target=$TARGET_PREFIX

$ make

$ make install

The Easier Way

The build process of the toolchain is relatively complex and error-prone. There is a way
to simplify this process by taking a large part from a Linux Buildroot environment.

First of all, you need a Linux machine, where you configure and build a Buildroot envi-
ronment as described in
http://docwiki.gumstix.org/Buildroot or in
http://Buildroot.uclibc.org/Buildroot.html.

Then you may take the system includes and libraries from
$BUILDROOT DIR/build $PREFIX/staging dir

to build the final compiler. In this way, you can omit building the kernel headers, the
bootstrap compiler and the C library.

Build the binutils like described above and then the final compiler using the following
additional options:

--with-sysroot=$STAGING_DIR \

--with-headers=$STAGING_DIR/include \

--with-libs=$STAGING_DIR/libs

Replace $STAGING DIR with the path to (the copy of) your Buildroot’s staging dir.

5.4 Debugging Tools

If all of the development tools mentioned above have been built successfully and you are
able to compile your applications, a powerful debugging facility is necessary, because also
the best program has bugs. A good debugging tool enables you to localise and eliminate
at least some of them.

5.4. DEBUGGING TOOLS 35

To simplify debugging, it is recommended running the application being analysed from a
NFS mount. You can save a lot of time not having to copy binary files manually and you
possibly make fewer errors (for instance: copy the wrong file). NFS also allows debugging
output (like performance data) to be available on the host system instantly.

There are two kinds of debugging solutions - debugging using special software and us-
ing special debugging hardware. The latter is used commonly with microcontrollers not
having an operating system, but there are also devices for debugging ”bigger” embedded
Systems running Linux or other operating systems.

For Linux software, there are several debugging solutions like Valgrind (Open Source) or
UndoDB(commercial). The latter stands out from the crowd as it is able to step forward
and backwards through a program. Thus it allows the programmer to view the program’s
state at any point in the program’s execution history.
However, the GNU Debugger (gdb) is the most important debugging tool for any Linux
system.

5.4.1 The GNU Debugger gdb

The Gnu Debugger is a very common debugging tool for Linux and non-Linux systems.
Remote debugging is possible by the use of so called gdb stubs. These stubs are a set
of hooks and handlers in the target’s operating system kernel or firmware that allow
interaction with the remote debugger.

There are no gdb stubs needed to debug Linux software remotely, because the system call
ptrace() is implemented in the Linux kernel. For remote debugging gdb provides a server
(gdbserver) that makes use of this system call. gdbserver is a small application running
on the target that executes the commands it receives from the gdb debugger running on
the host.

Any application can be debugged on the target without having the gdb debugger running
on the target. This is very beneficial, as the gdb binary is pretty large.

Using gdb

Before an application can be debugged using gdb, it has to be compiled with the appro-
priate flags. With gcc, you need to add the -g option to the command line. This option
makes gcc add some debugging information to the object files. Using -ggdb will add even
more debugging information.
Though the resulting binary is larger, you can use a stripped version on the target with
gdbserver. Only the binary to be used with gdb on the host has to contain the complete
debugging information.
Even though these two gdb components are using different binary files, the gdb running on
the host is able to find and use the debug symbols, because it has access to the unstripped
binary.

36 CHAPTER 5. CROSS DEVELOPMENT

There are two possibilities for a gdbserver to communicate with a gdb debugger on the
host. The first one is through a serial connection between host and target, the other one
uses a TCP/IP network connection. The gdbserver may be started by invoking one of the
following commands (depending on the type of connection)

• gdbserver localhost:1234 program

Runs gdbserver with the application program to be debugged using a network con-
nection. The server listens to port 1234, the hostname (localhost) is ignored.

• gdbserver /dev/ttyS0 program

Starts gdbserver using the first serial port /dev/ttyS0 as communication means.

Once the gdbserver is started on the target, you can connect to it from the gdb debugger
on the host using the target remote command. if you are connected to the target using
TCP/IP networking, use the following command:

$ arm-linux-gdb program

(gdb) target remote target:1234

The first command starts the debugger (which was built for an arm-linux target) with the
application program to be debugged. In this case the binary has to contain the debugging
information mentioned above. The command invokes the gdb prompt.
At the gdb prompt the target is connected using the second command. The gdbserver that
runs on the device with the hostname target and listens to port 1234, will be connected.
Instead of a hostname an IP-address can be stated too.
When connecting through a serial line, target:1234 has to be replaced by the name of the
host’s serial port.

Graphical Frontends to gdb

It is rather difficult to debug using the plain gdb command line. Fortunately there are
some graphical frontends for gdb providing user-friendly mechanisms for doing most com-
mon debugging tasks such as setting breakpoints, viewing variables and so on.

The Data Display Debugger namely DDD is a free frontend for gdb provided by the GNU
project. It is available in probably every Linux distribution and for Windows (using Cyg-
Win).
Besides usual front-end features such as viewing source texts, register contents and vari-
ables, DDD has become famous through its interactive graphical data display, where data
structures are displayed as graphs (Figure 5.2).

You do not have to compile it yourself, because it is target independent. You only have
to provide a gdb for your host/target combination by adding the --debugger option to
the ddd command.

You may start DDD to debug your application program by executing:

$ ddd --debugger arm-linux-gdb program

5.4. DEBUGGING TOOLS 37

Figure 5.1: DDD - Data Display Debugger running on Windows XP

You can see a screenshot of DDD in figure 5.1. The largest part of the window is used by
the source. Below is the debugger console, where you can enter gdb commands directly.
For instance if you want to connect your target, you have to enter the corresponding
command (target remote ...) in this console.

Figure 5.2: DDD - register view and plots - (source: gnu.org - Free Software Foundation, Inc.)

38 CHAPTER 5. CROSS DEVELOPMENT

Using DDD is rather simple, most functions you will need are self-explanatory and there
are numerous tutorials available on the internet.

Another possibility avoiding gdb’s console is Insight (Figure 5.3). It is not a frontend
to gdb, but another version of GDB that uses Tcl/Tk to implement a graphical user
interface. As it is not separable from gdb, it has to be built specifically for every target.

In my opinion, Insight’s handling is much more complicated compared to DDD’s. The
documentation is not as extensive either.

Figure 5.3: Insight - another gdb frontend - (source: sourceware.org/insight)

5.4.2 Hardware Tools

In addition to software tools, there are some hardware tools available for debugging em-
bedded software. Hardware tools are sometimes more effective than software tools to
eliminate software problems, but they have a great disadvantage: they are almost always
really expensive.

There are several means of hardware debugging such as in-circuit emulation (ICE) or
using BDM or JTAG interfaces.
For in-circuit emulation the CPU of an embedded system is replaced by an emulator,

5.4. DEBUGGING TOOLS 39

which uses either a modified CPU of the same type where all needed signals can be picked
up from the debugger (bond-out CPU) or it emulates the whole CPU (in another CPU
or by the use of FPGAs). The latter emulation method is only available with slow CPUs.

Figure 5.4: JTAG interface and debugging software - (source: Lauterbach Datentechnik GmbH)

The usage of BDM or JTAG interfaces is usually cheaper, but your target CPU has to
provide one of these interfaces. Figure 5.4 shows a JTAG interface and the corresponding
debugging software.

There was even an open source project developing a BDM debugger called BDM4GDB.
The project offered hardware schematics and patches for gdb. But during the writing of
this text, the project (formerly hosted at sourceforge.net) was not available anymore.

40

41

Chapter 6

Libraries and Binaries for EyeBot M6

One aim of this thesis was the implementation of some software routines to easily access
the display of the EyeBot M6 (actually a Linux framebuffer device). Another task was
building a user interface using display and touchscreen of this appliance in cooperation
with Thomas Sommer.

6.1 API for the Display of EyeBot M6

The EyeBot M6 can be equipped with different displays connected via the Linux frame-
buffer driver. As the resolution of these displays may vary, the library functions must be
flexible to adjust the size of its buffers, length and count of text lines and so on.

Due to the Linux framebuffer device being almost the same an different systems the library
may be used on any system with a Linux-supported linear framebuffer device. Only few
framebuffer devices do not work, for instance not-linear framebuffers (like some nvidia
and older ATI devices) display wrong colours or odd patterns. Due to the multitude
of implementations and the lack of documentation there is no plan to support non-linear
framebuffer. Fortunately most framebuffer devices may be addressed linear - so the library
is applicable in most cases.

6.1.1 The Linux Framebuffer Device

Unfortunately there is no documentation about programming the linux framebuffer de-
vice available. All of the facts mentioned below were collected by reverse-engineering
existing framebuffer implementations such as DirectFB (www.directfb.org/) and EZFB
(http://www.akrobiz.com/ezfb/).

Like most other hardware in Linux, the framebuffer device is accessed through a device
node. It may be opened and written like any regular file using open().

42 CHAPTER 6. LIBRARIES AND BINARIES FOR EYEBOT M6

To use the framebuffer in a sensible way, we need some information about the hard-
ware - such as screen resolution, colour-depth and size of the framebuffer memory. This
information can be obtained by invoking:

ioctl(fbdev, FBIOGET_VSCREENINFO, *var_screeninfo);

ioctl(fbdev, FBIOGET_FSCREENINFO, *fix_screeninfo);

These functions return structures with different pieces of information.

• var screeninfo contains data that is changeable by the user such as screen resolu-
tion (not needed with an LCD), virtual resolution, colour-depth and timing values.

• fix screeninfo contains fixed screen information like starting address and length
of the framebuffer in the memory.

The complete break down of these structures can be found in linux/fb.h in the include-
directory of any Linux system.

If you want to change framebuffer settings, you have to obtain the information like above,
then you can apply your changes to the data structure. Finally you have to send your
changes to the device by invoking:

ioctl(fbdev, FBIOPUT_VSCREENINFO, *var_screeninfo);

After the initial setup, the framebuffer device is mapped to User Space memory using
mmap:

mm_data = (unsigned short*) mmap(NULL, fix_screeninfo.smem_len, \

(PROT_READ|PROT_WRITE), MAP_SHARED, fbdev, 0);

Now you may write your data to the device using memcpy() or pixel-by-pixel by derefer-
encing mm data.

memcpy(mm data, screenbuffer, bufsize); or mm data[i] = color;

In order to release the framebuffer device you should unmap the device from memory and
close the file handle to the device node.

If you are using virtual terminals on your Linux system, you will have to add functions
to change to a free terminal, as instead you will have a mix of your framebuffer-output
and the console text overwriting each other.

6.1.2 Software Routines

The software routines for EyeBot M6 support virtual terminals, various resolutions, text
and graphic output.

Before any of the operations can be used, LCDInit() has to be invoked. This function
initialises the buffers and global variables, prepares the access to the framebuffer device
and sets all default values (e.g. text colours).

6.1. API FOR THE DISPLAY OF EYEBOT M6 43

Due to the use of several buffers, it is possible to change the text without destroying the
graphics on the display and vice versa. You can see the buffers and their combination in
Figure 6.1.

Figure 6.1: Architecture of the framebuffer library

When a text operation like LCDPrintf() is invoked, the provided string is copied to the
textbuffer at the current cursor position. Additionally the current text-colours are stored
to this buffer at the corresponding places as well. Graphic operations alter the content of
the graphicbuffer.

Each text or graphic operation calls LCDRefresh() when it has finished - this may be
switched off if you want to print/display multiple items and refreshing the screen amongst
would only be a waste of time.
LCDRefresh() copies the contents of the graphic buffer to the framebuffer device, renders
the textbuffer (with a given font) and outputs the rendered text to the framebuffer too.

During this thesis, all LCD Output-functions mentioned in the documentation of RoBIOS
for EyeBot M5 have been implemented for EyeBot M6. You can find a complete list of
the newly implemented routines in tables 6.1 to 6.4.

LCD Handling Routines

LCDInit(); Initialize the framebuffer-device
LCDRelease(); Release the framebuffer-device
LCDGetFBInfo(); Get various information about the display
LCDClear(); Clear the LCD
LCDMode (...); Set LCD mode (Autorefresh, Menu, etc.)
LCDGetMode(); Returns the current mode
LCDRefresh(); Refresh the screen (copy graphic- and textbuffer to screen)
RGB2FBColor(...); Convert a 3x8-bit RGB value to 16-bit palette-index

Table 6.1: Routines in the Framebuffer Library - LCD Handling

44 CHAPTER 6. LIBRARIES AND BINARIES FOR EYEBOT M6

Text Operations

LCDPrintf(...); Print text or numbers or combination of both onto LCD
LCDSetPrintf(...); Print formatted string at given position
LCDPutChar(...); Write character
LCDSetChar(...); Set Cursor to given position, write character
LCDPutString (...); Print string
LCDSetString (...); Print string to given cursor-position
LCDPutHex (...); Print hexadecimal number
LCDPutHex1 (...); Print single hexadecimal digit
LCDPutInt (...); Print an integer value
LCDPutIntS (...); Print an integer value with leading spaces (if necessary)
LCDPutFloat (...); Print a float value
LCDPutFloatS (...); Print a formatted float valu
LCDSetPos (...); Set the cursor to given position
LCDGetPos (...); Returns current cursor position
LCDSetColor (...); Set colours (Textcolour, Background colour

and Flags)

Table 6.2: Routines in the Framebuffer Library - Text Output

Graphical Operations

LCDSetPixel (...); Set a pixel to the given color
LCDInvertPixel (...); Invert the pixel at the given position
LCDGetPixel (...); Return the colour of the addressed pixel
LCDLine(...); Draw a line using the Bresenham Algorithm
LCDLineInvert(...); Draw a line using the Bresenham Algorithm

inverting the pixels
LCDFrame(...); Draw a rectangular
LCDArea(...); Fill rectangular area
LCDAreaInvert(...); Invert rectangular area
LCDPutImage(...); Output an image with 16-bit depth
LCDPutRGBImage(...); Output an image with 24-bit depth

(RGB - each 8 bit)
LCDPutGSImage(...); Output an 8-bit greyscale image
LCDPutBWImage(...); Output an 1-bit black-and-white image
LCDLoadFBImage(...); Load an image in FB format and shows it

Table 6.3: Routines in the Framebuffer Library - Graphics

Menu Routines

LCDMenu (...); Fills the menu with the given entries and enables menu
LCDMenuI(...); Changes a menu entry

Table 6.4: Routines in the Framebuffer Library - Menu

6.2. GUI FOR RUNNING AND MANAGING USER PROGRAMS 45

6.2 GUI for Running and Managing User Programs

This GUI is able to start user programs, terminate them and manage running programs. A
pre-defined directory is scanned for executable files, afterwards, the list of files is displayed
using a user-friendly menu. Any program in that directory may be selected and executed
by simply touching the screen.

When a program is started, the menu line changes to show those possibilities (cf. Fig.
6.2:

• BACK returns to the selection screen.

• LIST shows a list of all user programs currently running.

• KILL terminates the program.

Figure 6.2: Execution screen with menu

If the ”list” command is invoked and there are user programs running, a list similar to the
one aforementioned is shown. But this time the menu shows PID and name of the user
programs that are currently running. You have the possibility to select one and terminate
it.

To enable running more than one program at the same time, a kind of process management
is needed. When a program is started, this happens in a new process that uses execv()

to run the binary. At the same time PID and name of this new process is enlisted in a
process list and a new thread is started waiting for the termination of this process and
removing it from the list afterwards. In the meanwhile, the main program is responsible

46 CHAPTER 6. LIBRARIES AND BINARIES FOR EYEBOT M6

for displaying the menu as seen in Figure 6.2.

Unfortunately, there is one problem in Linux’ process-handling. Only the parent-process
can use waitpid() to wait for a child-process to terminate. Another child-process or a
thread cannot.
So we check whether the newly started process is still running by sending a signal 0 to
the process using the kill() function and evaluate the response to see if the PID is
still valid. But there is a huge disadvantage in this workaround: if a process terminates
itself regularly, the parent is not able to call waitpid() instantly as it does not notice
the termination. So the child-process becomes a ”zombie” process and the PID remains
valid. Thus the thread waiting for the termination of the child-process does not notice the
termination either and the program remains in the process list. There is also no possibility
to send a signal from the child process, because the execv() call does not return.
By doing a non-blocking waitpid() call to all processes that are currently in the process
list, the list is cleaned up. This procedure is accomplished every time the user invokes
the process list.

The only alternative that solves this issue would be the creation of a PID-file representing
the status of the user program. This file has to be created when the user program is
invoked. After its regular termination, the PID-file has to be deleted by the user program
itself, as the termination is unobservable by the GUI routines.
The GUI could check for the existence of this file to evaluate whether the program is still
running or not.
The disadvantage of this approach is that the user program has to delete the file itself.
Thus the program cannot be an arbitrary binary an more; it has to be coded especially
for this appliance.

Chapter 7

Conclusion

In conclusion the project EyeBot M6 was promoted one step forward. It was extended by
a library to handle the display of the EyeBot enabling a programmer to

• print strings, characters and numbers (in numerous formats)

• set the printing position

• set text colours, transparency and colour-inversion

• enable/disable features like text-scrolling, automatic linefeed etc.

• draw pixels, lines and frames

• fill areas with colour

• load and display images

• draw a menu to the screen

in an easy way.

Besides this work, a frontend for the EyeBot M6 was developed, of course employing these
library functions. The frontend allows the user to gather information about the current
status of the EyeBot and to exert influence on this status.

The user may run arbitrary user programs in the foreground or in the background. There
is also a possibility to manage all running programs. Additionally, there is a number of
demo programs showing some of the functionality that was newly implemented.

Also new means for software development for the EyeBot were created. A cross-compiling
toolchain that runs on a Windows host computer compiling binaries for Linux on ARM
processors was built.

Furthermore remote debugging facilities were implemented. These enable the software
developer to debug software running on the EyeBot M6 remotely from his development

47

48 CHAPTER 7. CONCLUSION

workstation running either Windows or Linux. Even graphical frontends are available
now to ease this job.

Now it is possible to code, compile and debug software for the EyeBot M6 on both
Windows and Linux machines.

Unfortunately the RoBios-library EyeBot M6 is still far away from completion, but it is
well on the way to getting an even bigger functional range than the previous version for
EyeBotM5 has.

Appendix A

The EyeBot M6 API

Basically the EyeBot M6 API is based on the previous version for EyeBot M5. Because
of some additional functionality (e.g. color display) the syntax is sometimes slightly
different, but it is preferably matched.

A.1 Finished Components

This section lists the RoBIOS routines that are currently implemented for EyeBot M6.
Actually display, audio and touchscreen libraries are available. Also some OS and misc
routines have been implemented.

A.1.1 Display Library

In the following, you can see the documentation of the RoBIOS display functions imple-
mented during this thesis. Each function is listed with its specific input an output data
and the semantics.

Framebuffer Handling

int LCDInit();

Input: none
Output: none
Semantics: Initialise the framebuffer-device

int LCDRelease();

Input: none
Output: none
Semantics: Release the framebuffer-device

49

50 APPENDIX A. THE EYEBOT M6 API

fbinfo t LCDGetFBInfo();

Input: none
Output: struct fbinfo t
Semantics: Gather information such as cursor, textcolors and LCDMode

fb var screeninfo, fb fix screeninfo → see linux/fb.h
cursor → actual position and max. values
textattr → current fore-/background-colors, color-flags
mode → see LCDMode()

int LCDClear();

Input: none
Output: none
Semantics: Clear the LCD

int LCDRefresh();

Input: none
Output: none
Semantics: Refresh the Screen (copy graphic- and textbuffer to screen)

unsigned short RGB2FBColor(unsigned char R, unsigned char G, unsigned char B);

Input: (R) (G) (B) 8-bit RGB-values
Output: (return value) 16-bit palette-index
Semantics: Convert 3x8-bit RGB value to 16-bit palette-index

int LCDMode (int mode);

Input: (mode) the display mode(s) you want
multiple modes may be added or ’OR’ed)

Output: none
Semantics: Set the display to the given mode

(defaults set by LCDInit() are marked with (*))
Modes:
M6FB AUTOREFRESH (*) enable/disable automatic refresh of
M6FB NOAUTOREFRESH the screen after a command was invoked
M6FB SCROLLING (*) enable/disable scrolling
M6FB NOSCROLLING when last row is exceeded
M6FB LINEFEED (*) enable/disable automatic linefeed
M6FB NOLINEFEED when last column is exceeded
M6FB SHOWMENU (*) show/hide menu
M6FB HIDEMENU
M6FB ROOTMENU color of menu (red-blue/yellow-blue)
M6FB NORMMENU (*)
M6FB FB ROTATE (*) rotate screen by 180 degrees/don’t rotate
M6FB FB NOROTATION

A.1. FINISHED COMPONENTS 51

int LCDGetMode (void);

Input: none
Output: (return value) current display mode
Semantics: Gather current display mode

Text Routines

int LCDPrintf(const char *format, ...);

Input: format string and parameters
Output: none
Semantics: Prints text or numbers or combination of both onto LCD

(and refresh LCD if AUTOREFRESH is enabled)

int LCDSetPrintf(int row, int column, const char *format, ...);

Input: print position, format string and parameters
Output: none
Semantics: Print formatted string at given position

(and refresh LCD if enabled)

int LCDPutChar(char c);

Input: (char) the character to be written
Output: none
Semantics: Write character to current cursor-position and increment

cursor-position
(and refresh LCD if enabled)

int LCDSetChar(int row, int column, char c);

Input: the desired position and the character to be written
Output: none
Semantics: Set Cursor to given position, write character and increment

cursor-position
(and refresh LCD if enabled)

int LCDPutCharBuffer (char c);

Input: character
Output: none
Semantics: Print character to current cursor-position

(without refreshing the LCD)

52 APPENDIX A. THE EYEBOT M6 API

int LCDPutString (char *string);

Input: (string) the string to be written
Output: none
Semantics: Print string to the current cursor-position

(and refresh LCD if enabled)

int LCDSetString (int row, int column, char *string);

Input: (string) the string to be written
Output: none
Semantics: Print string to given cursor-position

(and refresh LCD if enabled)

int LCDPutHex (int val);

Input: (val) the number to be written
Output: none
Semantics: Print hexadecimal number to current cursor-position
(and refresh LCD if enabled)

int LCDPutHex1 (int val);

Input: (val) the number to be written (single byte 0..255)
Output: none
Semantics: Print single hexadecimal digit to current cursor-position

(and refresh LCD if enabled)

int LCDPutInt (int val);

Input: (val) the number to be written
Output: none
Semantics: Print an integer value to current cursor-position

(and refresh LCD if enabled)

int LCDPutIntS (int val, int spaces);

Input: (val) the number to be written
(spaces) the minimal number of spaces

Output: none
Semantics: Print an integer value with leading spaces (if necessary)

to current cursor-position
(and refresh LCD if enabled)

int LCDPutFloat (float val);

Input: (val) the number to be written
Output: none
Semantics: Print the given number as floating point number

to current cursor-position
(and refresh LCD if enabled)

A.1. FINISHED COMPONENTS 53

int LCDPutFloatS (float val, int spaces, int decimals);

Input: (val) the number to be written
(spaces) the minimal number of spaces
(decimals) the number of decimals to be written

Output: none
Semantics: Print the given number as floating point number with leading

spaces (if necessary) and specified number of decimals
to current cursor-position
(and refresh LCD if enabled)

int LCDSetPos (int row, int column);

Input: (row) the number of the row (valid: 0 - fb->cursor.ymax)
(column) the number of the column (valid: 0 - fb->cursor.xmax)

Output: none
Semantics: Set the cursor to the given position

int LCDGetPos (int *row, int *column);

Input: none
Output: (*row) the number of the row (valid: 0 - fb->cursor.ymax)

(*column) the number of the column (valid: 0 - fb->cursor.xmax)
Semantics: Return current cursor position

int LCDSetColor (unsigned short fgcol, unsigned short bgcol, char flags);

Input: (fgcol) text foreground color
(bgcol) text background color
(flags) text color flags
multiple flags may be added or ’OR’ed

Output: none
Semantics: Set given colors and flags for the following text operations

(defaults set by LCDInit() are marked with (*))
Flags:
M6FB BGCOL TRANSPARENT Set/unset transparent background
M6FB BGCOL NOTRANSPARENT (*)
M6FB BGCOL INVERSE Set/unset background color to
M6FB BGCOL NOINVERSE (*) inversion of graphic buffer
M6FB FGCOL INVERSE Set/unset foreground color to
M6FB FGCOL NOINVERSE (*) inversion of graphic buffer

54 APPENDIX A. THE EYEBOT M6 API

Graphics Routines

int LCDSetPixel (int x, int y, unsigned short color);

Input: (x, y) coordinates of the pixel
(color) color to be assigned to pixel

Output: none
Semantics: Set the pixel at the given position to the given color

int LCDInvertPixel (int x, int y);

Input: (x, y) coordinates of the pixel
Output: none
Semantics: Invert the pixel at the given position

unsigned short LCDGetPixel (int x, int y);

Input: (x, y) coordinates of the pixel
Output: (return value) color of the pixel
Semantics: Return color value of selected pixel

int LCDLine(int x1, int y1, int x2, int y2, unsigned short color);

Input: (x1, y1), (x2, y2) coordinates of the endpoints
(color) color of the line

Output: none
Semantics: Draw a line from (x1, y1) to (x2, y2) with the given color

using the Bresenham Algorithm

int LCDLineInvert(int x1, int y1, int x2, int y2);

Input: (x1, y1), (x2, y2) coordinates of the endpoints
Output: none
Semantics: Draw a line from (x1, y1) to (x2, y2) with inverting the

background using the Bresenham Algorithm

int LCDArea(int x1, int y1, int x2, int y2, unsigned short color);

Input: (x1, y1), (x2, y2) coordinates of the corners
(color) filling color

Output: none
Semantics: Fill a rectangular area from (x1, y1) to (x2, y2) with

the given color

int LCDAreaInvert(int x1, int y1, int x2, int y2);

Input: (x1, y1), (x2, y2) coordinates of the corners
(color) filling color

Output: none
Semantics: Invert a rectangular area from (x1, y1) to (x2, y2)

A.1. FINISHED COMPONENTS 55

int LCDFrame(int x1, int y1, int x2, int y2, unsigned short color);

Input: (x1, y1), (x2, y2) coordinates of the corners
(color) line color

Output: none
Semantics: Draw a rectangle (frame) from (x1, y1) to (x2, y2) with

the given color and a line width of 1 pixel

int LCDPutImage(int xpos, int ypos, int xsize, int ysize, unsigned short

*data);

Input: (xpos, ypos) coordinates of the top-left corner
(xsize, ysize) size if the image
(*data) array of 16-bit values (image data)

Output: none
Semantics: Draw a 16-bit image data to the given position

Image data format: 5 bit red, 6 bit green, 5 bit blue
(large images will be cropped)

int LCDPutRGBImage(int xpos, int ypos, int xsize, int ysize, char *data);

Input: (xpos, ypos) coordinates of the top-left corner
(xsize, ysize) size if the image
(*data) array of 24-bit values (image data)

Output: none
Semantics: Convert a 24-bit image to 16-bit and put it at given position

Image data format: array of chars - alignment: RGBRGBRGB...

int LCDPutGSImage(int xpos, int ypos, int xsize, int ysize, char *data);

Input: (xpos, ypos) coordinates of the top-left corner
(xsize, ysize) size if the image
(*data) array of 8-bit values (image data)

Output: none
Semantics: Display a 8-bit grayscale image at given position

int LCDPutBWImage(int xpos, int ypos, int xsize, int ysize, char *data,

char threshold);

Input: (xpos, ypos) coordinates of the top-left corner
(xsize, ysize) size if the image
(*data) array of 8-bit values (image data)

Output: none
Semantics: Display a black-and-white image at given position

values: 0..(threshold-1) → black, threshold..255 → white

56 APPENDIX A. THE EYEBOT M6 API

int LCDLoadFBImage(char *filename);

Input: (*filename) filename of the image
Output: none
Semantics: Load and display a FB image (file of 16-bit values)

see ppm2fb for conversion to this format

Menu

int LCDMenu (char *string1, char *string2, char *string3, char *string4);

Input: (*string1) 1st menu entry
(*string2) 2nd menu entry
(*string3) 3rd menu entry
(*string4) 4th menu entry
valid values are
- a string (will be word-wrapped if so - new-line-char is supported)
- ”” leave the menu entry untouched
- ” ” clear the menu entry

Output: none
Semantics: Fill the menu line with the given menu entries and activate menu

int LCDMenuI(int pos, char *string);

Input: (pos) number of menu entry to be changed (valid: 0..3)
(*string) new entry

Output: none
Semantics: Change the selected menu entry to given string

A.1.2 Audio Library

int AUPlaySample (char* sample, long length);

Semantics: Plays an audio sample.

int AURecordSample(char* buf, long len);

Semantics: Records an audio sample.

int AUPlayFile(char* file);

Semantics: Plays an audio file.

int AURecordFile(char* file, long len, long freq);

Semantics: Records to a file.

A.1. FINISHED COMPONENTS 57

int AUCheckSample (void);

Semantics: Checks for audio playback end.

int AUCheckRecord (void);

Semantics: Checks for audio recording end.

int AUCheckTone(void);

Semantics: Checks for beep or tone end.

int AUTone(int freq, int msec);

Semantics: Outputs a tone.

int AUBeep(void);

Semantics: Outputs a beep.

int AUCaptureMic(void);

Semantics: Get microphone input value

A.1.3 Key Library (Touchscreen)

int8 t KEYGetBuf (keycode t *buf);

Semantics: Wait for a keypress and store the keycode into the buffer.

keycode t KEYGet (void);

Semantics: Wait for a keypress and return keycode.

keycode t KEYRead (void);

Semantics: Read keycode and return it. Function does not wait.

keycode t KEYWait (keycode t excode);

Semantics: Wait for a specific key

coord pair t KEYGetXY (void);

Semantics: Return coordinates of a keypress.

int8 t KEYSetTM (int8 t mode, ...);

Semantics: Setup the key region map (for the touchscreen)

void *KEYGetTM (int8 t mode);

Semantics: Get a string representation of the key region map

58 APPENDIX A. THE EYEBOT M6 API

A.1.4 OS Library

info cpu t *OSInfoCPU (void);

Semantics: Collects infos about the CPU.

info mem t *OSInfoMem (void);

Semantics: Collects infos about the memory.

info proc t *OSInfoProc (void);

Semantics: Collects infos about processes.

info misc t *OSInfoMisc (void);

Semantics: Collects miscellaneous infos.

char* OSVersion (void);

Semantics: Returns a string containig the current RoBIOS version.

A.1.5 Misc Library

int iround div (int dividend, int divisor);

Semantics: Divide integers and round the result.

int scale index (int old, int old max, int new max);

Semantics: Scales an index (starting from 0).

A.1.6 FPGA Functions

volatile u16* FPGA map(FPGA addr t address, unsigned long bytes);

Semantics: Map FPGA to given memory address.

int FPGA memcpy from(void *dest, FPGA addr t src, int bytes);

Semantics: Read data from FPGA

int FPGA memcpy to(FPGA addr t dest, void *src, int bytes);

Semantics: Send data to FPGA

A.2. COMPONENTS TO BE IMPLEMENTED 59

A.1.7 GPIO Functions

int GPIO set bank direction(int bank, GPIO dir t direction);

Semantics: Set GPIO direction

int GPIO set state(int bank, int gpio, int state);

Semantics: Set GPIO-pin to given value

int GPIO get state(int bank, int gpio);

Semantics: Get current state of GPIO pin

A.1.8 PSD Functions

void PSD enable();

Semantics: Enable PSD sensors

void PSD disable();

Semantics: Disable PSD sensors

void PSD set update period(int ms);

Semantics: Set sampling rate of the PSD sensors

int PSD read(int number);

Semantics: Read value from PSD sensor [number]

A.2 Components to Be Implemented

There are many routines of the RoBios Library still to be implemented. Unfortunately,
there is adequate programming of the FPGA needed, as many of these routines use
hardware connected to this device. The features of Robios for EyeBot M5 still to be
developed for EyeBot M6 are listed below.

• Camera, Image Processing

• Servos and Motors

• Parallel Port

• A/D Converter

• TV Remote Control

60

61

Appendix B

EyeBot M6 Hardware Issues

There were several problems getting the hardware of the EyeBot M6 platform running with
all its components. Some of them were founded in undocumented or poorly documented
connections on the board and GPIO-pins being untimely in the wrong state.

Some problems appear, due to the setting of GPIO-pins to the wrong state in some
modules while loading.

The following list contains the GPIO-pins to be set ideally just before the corresponding
module is loaded:

• For most parts the 5V-Enable line has to be set
echo out set > /proc/gpio-ac97/UCB1400-0-2

• LCD shutdown-line
echo GPIO out set > /proc/gpio/GPIO84

• Ethernet needs toggling of its reset line
echo out clear > /proc/gpio-ac97/UCB1400-0-8

echo out set > /proc/gpio-ac97/UCB1400-0-8

• USB reset line
echo GPIO out set > /proc/gpio/GPIO52

• FPGA
echo out set > /proc/gpio-ac97/UCB1400-0-0

• Camera 2
echo out set > /proc/gpio-ac97/UCB1400-0-5

The USB-gadget module for emulating a serial port (g serial) still has some problems due
to errors in the module. A terminal session using this port hangs when too many data is
transmitted in a very short time. Setting the baud rate to a minimum did not put things
right.

62

63

Appendix C

Contents of the CD

The contents of the CD belonging to this thesis are listed below:

/code code.tgz - tarball of the sources in the subdirectories
/code/filemenu user program management routines for the main program
/code/libm6fb EyeBot M6 framebuffer library
/code/libm6fb/test EyeBot M6 framebuffer library test program for all routines
/code/ppm2fb tool to convert PPM-images to FB-format

/cygwin CygWin setup

/gserial serial gadget driver for Win32 platforms

/RobLin Windows cross-compiling environment

/sources sources.tgz - tarball of the sources used to compile the Windows-
toolchain in CygWin

/thesis this thesis as pdf file

/VMware VMware Player setup and virtual Linux machine with a buildroot
- user: vmware
- pass: vmware
- root access with ”sudo bash” and user password

64 APPENDIX C. CONTENTS OF THE CD

Bibliography

[1] ARM architecture. Wikipedia.org,
http://en.wikipedia.org/wiki/ARM architecture. 7

[2] Embedded Linux. Wikipedia.org,
http://en.wikipedia.org/wiki/Embedded Linux.

[3] Embedded Systems. Wikipedia.org,
http://en.wikipedia.org/wiki/Embedded Systems.

[4] Homepage. The Linux kernel preemption project,
http://kpreempt.sourceforge.net/. 14, 25

[5] ”I will NEVER use Windows CE or Windows XP Embedded!”. msdn,
http://msdn2.microsoft.com/en-us/embedded/aa731327.aspx. 12

[6] Kapitel 3 - Kompatibilitätsfragen. Debian GNU/Linux-FAQ,
http://www.us.debian.org/doc/manuals/debian-faq/ch-compat.de.html. 11

[7] MC68832 Product Summary Page, ff. Freescale Semiconductor,
http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=MC68332. 9

[8] Notable CPU architectures ff. Wikipedia.org,
http://en.wikipedia.org/wiki/Notable CPU architectures.

[9] Open Group pilots embedded real-time POSIX conformance testing. LinuxDe-
vices.com,
http://www.linuxdevices.com/news/NS3992179355.html. 14

[10] QNX. Operating System Documentation Project,
http://www.operating-system.org/betriebssystem/ german/bs-qnx.htm. 14

[11] The Swiss Army Knife of Embedded Linux. BusyBox,
http://www.busybox.net/downloads/BusyBox.html. 26

[12] Symbian OS. Wikipedia.org,
http://en.wikipedia.org/wiki/Symbian. 13

[13] Virtex-4 Capabilities. Xilinx,
http://www.xilinx.com/products/silicon solutions/fpgas/virtex/virtex4/
capabilities/index.htm. 10

65

66 Bibliography

[14] VxWorks. Wikipedia.org,
http://en.wikipedia.org/wiki/VxWorks. 14

[15] Windows CE. Wikipedia.org,
http://en.wikipedia.org/wiki/Windows CE. 12

[16] Windows XP Embedded. Wikipedia.org,
http://en.wikipedia.org/wiki/Windows XP Embedded. 12

[17] First Steps with Embedded Systems. Byte Craft Limited, Waterloo, Canada, 2002.

[18] The cell architecture. The Cell Project at IBM Research,
http://www.research.ibm.com/cell/,
http://domino.research.ibm.com/comm/research.nsf/pages/r.arch.innovation.html,
2005. , 8

[19] Product backgrounder. ARM,
http://www.arm.com/miscPDFs/3823.pdf, 2005. 7

[20] Abbott, Doug: Linux for Embedded and Real-time Applications. Newnes - Elsevier
Science, Burlington, USA, 2003. , 21

[21] Barr, Michael: Programing Embedded Systems in C and C++. O’Reilly, Waterloo,
Canada, 1999.

[22] Blackham, Bernard: The Development of a Hardware Platform for Real-time
Image Processing. The University of Western Australia, Final Year Project Auflage,
2006. 9

[23] Chin, Lixin: FPGA Based Embedded Vision Systems. The University of Western
Australia, Final Year Project Auflage, 2006. 9

[24] Engel, Michael: Klein, aber Linux. Linux Community,
http://www.linux-community.de/Neues/story?storyid=889, 2001. 24

[25] Färber, Univ.-Prof. Dr.-Ing. Georg: Eingebettete Systeme - Manuskript zur
Vorlesung. Lehrstuhl für Realzeit-Computersysteme - TU München, 2005. , 2

[26] Hallinan, Christopher: Embedded Linux Primer: A Practical, Real-World Ap-
proach. Prentice Hall, 2006.

[27] Leitner, Felix von: diet libc. Linux Kongress 2001,
http://www.fefe.de/dietlibc/talk.pdf, 2001. 24

[28] Ripoll, Ismael: Rtlinux versus rtai. RTLinux Portal at Valencia,
http://rtportal.upv.es/comparative/rtl vs rtai.html, 2002. 24

[29] Stokes, Jon: Powerpc on apple: An architectural history. Ars Technica,
http://arstechnica.com/articles/paedia/cpu/ppc-1.ars/1, 2004. 6

[30] Yaghmour, Karim: Building Embedded Linux Systems. O’Reilly, 2003. 6, 7

	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Common CPU-Architectures for Embedded Systems
	x86
	PowerPC
	MIPS
	ARM
	Cell Architecture
	Microcontrollers
	DSPs or FPGAs as Co-processor

	Common Operating Systems for Embedded Systems
	Linux
	Microsoft Windows Systems
	Symbian
	Real-Time Operating Systems

	Embedded Linux - Kernel and Standard Libraries
	Structure of Linux (UNIX)
	Kernel
	Kernel Configuration
	The Linux Process Model
	Connections Between Kernel Space and User Space

	Standard C-Library
	GNU C Library
	uClibc
	Dietlibc

	Real-Time Extensions for the Linux Kernel
	BusyBox - User Space Utilities for Embedded Linux

	Cross Development
	Components of a Cross-Compilation-Toolchain
	Binary Utilities (binutils)
	C/C++ Library
	Compiler

	Cross-Development on a Linux-Host
	Developing on a Windows Machine
	CygWin
	MinGW
	Building a Toolchain for a Windows-System

	Debugging Tools
	The GNU Debugger gdb
	Hardware Tools

	Libraries and Binaries for EyeBot M6
	API for the Display of EyeBot M6
	The Linux Framebuffer Device
	Software Routines

	GUI for Running and Managing User Programs

	Conclusion
	The EyeBot M6 API
	Finished Components
	Display Library
	Audio Library
	Key Library (Touchscreen)
	OS Library
	Misc Library
	FPGA Functions
	GPIO Functions
	PSD Functions

	Components to Be Implemented

	EyeBot M6 Hardware Issues
	Contents of the CD
	Bibliography

