
INST ITUTE FOR REAL-T IME COMPUTER SYSTEMS

TECHNISCHE UNIVERS IT ÄT MÜNCHEN

P R O F E S S O R G. F Ä R B E R

Robot Control and Lane Detection
with Mobile Phones

Bernhard Zeisl

Bachelor’s Thesis

Robot Control and Lane Detection
with Mobile Phones

Bachelor’s Thesis

Executed at the Institute for Real-Time Computer Systems
Technische Universität München

Prof. Dr.-Ing. Georg Färber

Advisor: Assoc. Prof. Dr. rer. nat. habil. Thomas Bräunl

Author: Bernhard Zeisl
Arcisstraße 31
80799 München

Submitted in February 2007

Acknowledgements

I would like to thank my advisor, Associate Professor Thomas Bräunl for providing me with
such an interesting and challenging project and for all the assistance he has given to me.
Under his supervision I enjoyed the freedom to give own ideas and approaches a chance,
however he always supported me with helping advices.

A special thanks to Adrian Boeing, who always had an open ear, when I came up with some
problems or questions concerning my thesis. It was a pleasure to work with him and get his
point of view.

I want to thank the institute and its staff for the opportunity of writing this thesis as well as for
all the assistance I got.

Thanks to my parents for all the things they have done for me. They always supported me
and especially in the end helped me to manage both, thesis and preparation for my study
abroad year in Australia.

Laura, for all her kindness, help and tolerance over the semester and especially during the
writing of the thesis.

Finally, I would like to thank all my other friends for their assistance, patience and friendship
during the year.

Abstract

One cannot imagine daily life today without mobile devices such as mobile phones or PDAs.
They tend to become your mobile computer offering all features one might need on the way.
As a result devices are less expensive and include a huge amount of high end technological
components. Thus they also become attractive for scientific research.

This work addresses the exploration of mobile phone usage for robot control and lane
marking detection. Basis for the work was an already available controller for mobile robots,
named EyeBot. I developed an application, which allows to operate the controller from the
mobile phone via a Bluetooth link. The results are promising and facilitate the usage of the
mobile as remote control for other tasks. However, I detected some restrictions in terms of
communication as the mobile phone was not able to process a continuous video stream fast
enough.

On top of the communication between the robot controller and the mobile phone, there
are several applications possible, which might take over robot control. In this context I
developed a sophisticated algorithm for lane detection, which uses the input data from the
mobile phone’s camera. To address the special aspects of the lane marking appearance
- they exhibit a constant orientation over different parts of the recorded image - I used the
theory of steerable filters to get an optimized edge detection. Further on I developed a
line extraction and clustering algorithm, which separates the binary edge detected image
in several tiles. Lines in these tiles can then be described in terms of orientation of the
eigenvector by performing a principal component analysis.

The application was implemented platform independent to run on any system supporting
C++. The outcome was an application on the mobile phone, which lends itself to be
further used for lane tracking and direct or remote robot control.

Contents

List of Figures iii

List of Tables v

List of Symbols vi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Hardware Devices . 3

1.3.1 EyeBot Controller . 3
1.3.2 Mobile Phone . 4

2 Related Work 5
2.1 Embedded Controller and Vision System 5
2.2 Lane Detection . 7

2.2.1 Road Modeling . 7
2.2.2 Road Marking Extraction . 8
2.2.3 Postprocessing and Outlier Removal 9
2.2.4 Position Tracking . 10
2.2.5 Resulting Assumptions . 10

3 Software Development 13
3.1 Symbian and the Nokia S60 Platform . 13
3.2 Characteristics and Limitations of Symbian 15

3.2.1 Exception Handling and Stack Cleanup 15
3.2.2 Multi Tasking and Active Objects 17

3.3 Development Environment . 18
3.3.1 S60 SDK and Command Line Tools 18
3.3.2 Carbide.C++ IDE . 20

3.4 Application Programming Interfaces . 21
3.4.1 Bluetooth . 21
3.4.2 Mobile Phone Camera . 22

4 Bluetooth Communication Software 23

i

ii Contents

4.1 Design . 24
4.1.1 Transmission Protocol and Commands 24
4.1.2 User Interface . 26
4.1.3 Class Dependencies . 27
4.1.4 Finite State Machine for Connection Management 28

4.2 Output . 30

5 Lane Marking Extraction 33
5.1 Edge Detection and Noise . 34
5.2 First Approach: Sobel Filter . 36

5.2.1 Additional Requirements . 36
5.3 Second Approach: Steerable Filter . 38

5.3.1 Based on Second Derivative . 39
5.3.2 Based on First Derivative . 45

5.4 Threshold Computation . 46
5.5 Performance Evaluation . 48

6 Postprocessing of Edge Images 51
6.1 Line Representation . 51
6.2 Tile Segmentation . 52
6.3 Finding Global Line Parameters . 58
6.4 Plausibility Check for Detected Lines . 60
6.5 Clustering Detected Lines . 61
6.6 Dynamic Calculation of Vanishing Point 64
6.7 Review and Results . 65

7 Implementation of Lane Detection 69
7.1 Mobile Phone Implementation . 69
7.2 Output . 71

8 Conclusion 75

A Mathematical Background 77
A.1 Edge Detection . 77
A.2 Steerable Filters . 79

B Implementation Description 81
B.1 Communication Implementation . 81
B.2 Lane Detection Implementation . 85

C Project CD 89

Bibliography 91

List of Figures

1.1 Example robots at the lab using the EyeBot controller 1
1.2 Nokia 6260 mobile phone . 4

2.1 Causes for deadly traffic accidents (source [31]) 6
2.2 A common system structure for lane position detection systems, as it is

also suggested in [17] . 7
2.3 Predefined general lane marking orientation 11
2.4 System structure for the covered lane detection approach 12

3.1 Symbian OS and the S60 platform (taken from [7] and [25]) 14
3.2 S60 application relationship (from [22]) . 15
3.3 Interaction of build tools . 20
3.4 The Bluetooth stack (source: Symbian 7.0 developer documentation [23]) . 21

4.1 Eyebot controller LCD . 23
4.2 Transmission Protocol . 24
4.3 Mock-up of the designed user interface with possible view transitions . . . 27
4.4 Class chart of the application with partition in UI and engine 29
4.5 Finite state machine, which is implemented in the active object Remote-

Session and performs the connection management 31
4.6 Screenshots from the application on the mobile phone. 32

5.1 Captured video frame . 33
5.2 (a) A noisy image signal an its derivative; (b) the smoothed image signal

and its derivative . 34
5.3 A Gaussian and its first and second derivatives. The standard deviation σ

was set 1. 35
5.4 Example video frame filtered with Sobel filter for (a) horizontal gradient

and (b) vertical gradient; (c) displays the combination of both according
to equation (5.3) . 37

5.5 Sobel filter masks applied to the four different defined image areas to be
able to detect just the inner side of lane markings. The filtering result can
be seen in the image. 37

5.6 Steerable filter architecture . 39
5.7 Basis filter set for θ1 = 0◦, θ2 = 60◦, θ3 = 120◦ 41

iii

iv List of Figures

5.8 Basis set for separable steerable filters based on the second derivatives of
a two dimensional Gaussian. 42

5.9 (a) Separable steerable basis filter set for the second Gaussian derivative;
(b) result for a rotation of 30◦ . 43

5.10 Specified direction of steerable filters at dedicated parts of the image ac-
cording to the expected line orientation . 44

5.11 Image filtered with steerable filter based on 2nd Gaussian derivative; The
filter orientation was according to figure 5.10 44

5.12 Separable steerable basis set for the first Gaussian derivative 46
5.13 Separable steerable basis filter set for the first first Gaussian derivative, as

well as the result for a rotation of 60◦. 47
5.14 Modified filter orientation for the approach based on the first Gaussian

derivative . 47
5.15 Example video frame determined with steerable filter based on the first

derivative of a Gaussian . 47
5.16 Performance of steerable and Sobel filter, operating on a set of 250 frames

with a resolution of 320x120 and 160x60 pixels 49
5.17 Image frames filtered with Sobel filter on the left and steerable filter on the

right. 49

6.1 Sample binary image after edge detection 53
6.2 Calculated centroids for each tile . 54
6.3 Dashed line with center of mass . 54
6.4 Three sample tiles with center of mass and major principal axes 56
6.5 Result for principal component analysis with an eigenvalue ratio threshold

of 10 . 57
6.6 Correlation between tile and image coordinates 58
6.7 Distance from vanishing point for the detected lines 61
6.8 (a) Line parameters for the detected lines; (b) Displayed as points in terms

of their parameters . 62
6.9 Visualization of the clustering steps passed through by the clustering algo-

rithm . 63
6.10 Sequence of operations . 66
6.11 Detected lines in example image . 67
6.12 Results for the implementation in Matlab with a resolution of 320x120 pixels. 67
6.13 Results for the implementation in C++ for the mobile phone with a reso-

lution of 160x60 pixels. 67

7.1 The application design with separation in platform dependent and platform
independent parts. 70

7.2 Screenshots from the application performing the lane marking detection
algorithm. 73

A.1 First and second derivative of one dimensional image signal (slice through
image) . 78

List of Tables

4.1 EyeBot commands . 25
4.2 Additionally introduced commands . 26

5.1 9-tap filters for x-y separable basis set for the second derivative of a Gaussian 43
5.2 9-tap filters for x-y separable basis set for first derivative G1 46

6.1 Results for the three images in Figure 6.4 56

v

List of Symbols

API Application Programming Interface
CPU Central Processing Unit
FPU Floating Point Unit
GUI Graphical User Interface
IDE Integrated Development Environment
IO Input-Output
LAN Local Area Network
PC Personal Computer
PCI Peripheral Component Interconnect
RAM Random Access Memory
RCS Institue for Real-Time Computer Systems
ROM Read Only Memory
SDK Software Development Kit
SDL Simple Directmedia Layer
STL Standard Template Library
UI User Interface
USB Universal Serial Bus
UWA University of Western Australia

vi

Chapter 1

Introduction

1.1 Motivation

This work was conducted in cooperation with the Robotics and Automation Laboratory
at the University of Western Australia, Perth supervised by Prof. Dr. rer. nat. habil.
Thomas Bräunl [34]. Research in this lab concentrates on all types of autonomous mobile
robots, including intelligent driving and walking robots, autonomous underwater vehicles,
and unmanned aerial vehicles. The work also includes design of embedded controllers and
embedded operating systems, as well as simulation systems. In this context my challenge
was to analyze the use of inexpensive, high-end mobile phones as embedded controllers.

Figure 1.1: Example robots at the lab using the EyeBot controller

1

2 CHAPTER 1. INTRODUCTION

So far there exists a specialized embedded controller, named EyeBot for industrial and
robotics applications. It is a controller for mobile robots with wheels, walking robots or
flying robots (Figure 1.1).
Embedded controllers, such as the EyeBot controller are a necessity for building small mo-
bile robots. Unfortunately, low volume production makes these controllers quite expensive
and it is difficult to keep up with increasing hardware speed.

On the other hand the following points make the use of a mobile phones interesting as
alternative processing and control unit:

• A mobile phone offers high performance at a low price.

• Product live cycles are very short. Therefore new phones are always at the techno-
logical edge.

• Periphery like camera and Bluetooth are included by default.

• Development tools and compilers are already existent. In combination with a large
developer community this enables a quick development of new applications.

Therefore, the idea to use commodity consumer hardware, such as mobile phones or PDAs
is obvious.
Note that when using a mobile phone, still a small external board for sensor input and
actuator output (for example motor drivers) is required in order to drive a robot.

As a result it is reasonable to further explore two main features of a mobile phone. First,
there must be a communication possible between the mobile phone and the remaining
(low level) embedded controller. For this purpose the use of Bluetooth as communication
technology enjoys the advantages of a high speed link in combination with a wireless
interface.

Second, the processing capabilities of a mobile phone should be analyzed in more detail.
It would be convenient to be able to port already existing algorithms to the mobile device.
The choice to develop and implement a lane marking detection algorithm was due to the
following facts. One the one hand, the camera of the mobile phone is included in the
testing and its usability can be analyzed, too. On the other hand, the idea was to build a
lane detection and tracking application for a mobile phone that everybody is able to easily
install and use in his own car. Devices can be attached to the vehicle wind shield, as it is
possible with portable navigation systems. The communication with the car system may
then be possible via Bluetooth, e.g. for communication turn signals or drving speed.

1.2 Objectives

In order to test the communication capabilities an application has to be developed, which
allows a remote control of the EyeBot controller. The EyeBot controller already offers a
Bluetooth interface, which is prepared for a remote control. As a result the application

1.3. HARDWARE DEVICES 3

on the mobile phone has to receive data via an established Bluetooth link, interpret the
message and execute the sent commands. Moreover, it must also offer an opportunity to
control the EyeBot via the mobile phones buttons.

If this communication is possible the lane detection application can sit on top and send
appropriate driving commands via the Bluetooth link to the controller. However the task
was to develop and implement a lane detection algorithm with low computational effort.
Constraints as limited computing power, abdication of complex operations (e.g. Hough
transform) and scalability in terms of resolution, computing power and precision have to
be taken into consideration.

The programming language C++ was chosen instead of Java, because in image process-
ing tasks C++ was expected to have a more efficient execution. The closer hardware
programming of C++ offers an advantage over the interpreted Java language.

Moreover, the lane detection algorithm must be independent from the mobile phone plat-
form to be able to run on any system supporting C++. A further goal at the Robotics
and Automation Laboratory is to implement the algorithm on the next generation model
of the EyeBot.

1.3 Hardware Devices

The used hardware devices are the EyeBot controller and the mobile phone. They will be
shortly described in the following section in terms of their capabilities.

1.3.1 EyeBot Controller

The EyeBot consists of a powerful 32-Bit microcontroller board with a graphics display
and a digital grayscale or color camera. The camera is directly connected to the robot
board, hence no frame grabber is used. This allows to write powerful robot control
programs without a big and heavy computer system and without having to sacrifice vision.

It comprises following important features (from [28]):

• 25MHz 32bit Controller (Motorola 68332)

• 2MB RAM, 512KB ROM

• Large graphics display (LCD) with 128× 64 pixel

• Integrated digital color camera with 64bit and QCIF resolution of 176x144 pixels.

• Bluetooth communication module with emulation of serial communication

• Running self developed RoBIOS as operation system.

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Nokia 6260 mobile phone

A next generation EyeBot controller has been developed and released. It is based on
an ARM9 processor and includes Bluetooth, LAN, USB and two stereo cameras. An
embedded Linux distribution is used to operate the controller. This new controller will also
support remote control from the mobile phone. As mentioned before the lane detection
algorithm will be developed in a way that it will also work with this model. For this task
the mobile phone serves as a good performance reference, because it also based on an
ARM processor.

1.3.2 Mobile Phone

The used mobile phone was a Nokia 6260 [8]. It was announced on the 14th of June in
2004 and comprises the following features:

• ARM9 32-bit CPU with 123 MHz

• Shared memory for storage is 8MB

• Operating system Symbian OS v7.0s (stack size with 4 kb, unlimited heap size).
Programs are executed in place in ROM or flash RAM, rather than being loaded
into RAM

• Developer platform Nokia S60 2nd edition, feature pack 1

• 176x208 pixel display with 16 bit color depth

• Integrated digital camera with VGA resolution of 640× 480 pixels

• Bluetooth support

• Symbian API for Bluetooth and camera

Chapter 2

Related Work

In the following, I will present related work concerning the use of embedded controllers
and vision systems. The second part concentrates in more detail on approaches for lane
detection.

2.1 Embedded Controller and Vision System

At the Robotics and Automation Lab a family of small autonomous mobile robots has
been designed in the last years. All these robots share the EyeBot controller and a
common operating system. These robots are powerful enough to perform simple image
processing tasks on board and in real-time. Although the controller runs at moderate
speed, it is fast enough to compute basic image operations on a low resolution image in
real time. For example the whole process of image acquisition, Sobel edge detection and
display of the result for a 80x60 grayscale image can be performed at a rate of about
10 frames per second. This enables the robots to perform several complex tasks such as
navigation, map generation, or intelligent group behavior [2, 27].

Further, the robots are able to communicate with each other via a network, named the
EyeNet. In this continuously changing environment with mobile agents coming and going
a self-configured network is the only option [37]. Hence the EyeNet works without a
central control using a wireless token ring network. Schmitz extended the EyeNet in
his diploma thesis [29] to also operate with Bluetooth and wireless LAN. This offers the
advantages of higher data rates and existing protocols included in the network. He further
developed remote control and monitoring applications for both cases to run on a PC. My
work attaches to this remote control application for the EyeBot, but runs on a standard
mobile phone.

In terms of an embedded vision system Daimler-Chrysler developed a lane departure
warner and a lane-change assistant [3]. The formers alerts the driver to an unintentional
change on the motorway, whereas the latter warns against risky lane changes. As Figure

5

6 CHAPTER 2. RELATED WORK

2.1 shows, most accidents are caused as a result from inattention of the driver. Long
stretches of road covered at constant speed in monotonous surroundings can easily give
rise to inattentiveness. Therefore, the need for driver assistance systems is obvious.

5%

10%

15%

20%

25%

Mental
factors False estimation Unexpected

Behavior
Technical

issues

38% 46% 11% 5%

sle
ep

ina
tte

nti
ve

ne
ss

med
ica

l is
su

es
ve

hic
le

ah
ea

d

ve
hic

le
dy

na
mics

wea
the

r
ad

he
sio

n
sta

nd
ing

 ca
r

pe
de

str
ian

 / p
as

-

se
ng

er
 / a

nim
al

ac
cid

en
t

oth
er

tec
hn

ics

Figure 2.1: Causes for deadly traffic accidents (source [31])

The lane departure warner was designed especially for trucks. A miniature camera is
mounted behind the windscreen. Thereby the vehicle position within the traffic can be
determined by using lane markings as a guide, which are evaluated on real-time basis of
the provided images. A warning is issued if the driver fails to take evasive action within
a certain time. A special feature is that a stereo sound alerts the hazard in the direction
of the (crossed) lane marking. Thus a instinctive response of the driver shortens reaction
time. One year after market launch the system was installed in 600 Mercedes-Benz Actros
trucks [3].

A further development covers a steer-by-wire system based on a lane departure recog-
nition. Not only a acoustic warning is issued, but also the active lane assistant will
automatically intervene to initiate the necessary corrective steering movements.

2.2. LANE DETECTION 7

2.2 Lane Detection

In this section I will take a look at the current state of the art in lane detection. The
aim is to give a brief overview of the research which has taken place in the past 15 to 20
years. For these purposes it is useful to group the methods into categories in terms of
their contribution. My investigations in lane detecting methods have shown that there
exist similarities in the way algorithms work. Considered works were [1, 4, 5, 13, 14, 16,
18, 17, 19, 32, 35, 36, 38]. In fact all lane detection and lane position tracking systems
follow a similar flow. This common structure is illustrated in Figure 2.2.

feedback

Sensor inputs

Computational Models

Post processing Tracking

Camera RADAR Internal
vehicle state

Position /
GPS

Road feature
extraction

Road model Vehicle model

Figure 2.2: A common system structure for lane position detection systems, as it is also suggested in
[17]

2.2.1 Road Modeling

First, a model for the road is proposed. This can be as simple as straight lines or more
complex. An underlying road model in the whole approach of lane position detection will
heavily increase system performance. This is because the model supports in eliminating
false detected lines and presents the decision basis for further outlier removal.

A variety of different road modeling techniques have been established. An outline is given
in the following.

Due to the perspective distortion of the image all lane markings intersect in one point,
the vanishing point. With the same argumentation road markings form parallel lines in
the inverse perspective warped image. Both properties can be used to define the direction
of possible lane markings in the recorded video frame.

8 CHAPTER 2. RELATED WORK

However, this approach is only true if the road is almost straight. If the road is curved
like in urban areas a method of curve parameterization is needed. It is possible to model
roads with piecewise constant curvatures. In situations where this approximation is not
sufficient, a model with deformable contours such as splines can lead to better results[35,
36]. On the other hand a more detailed description of the road causes more expenses in
computational effort. Hence a trade-off between accuracy and complexity has to be made.

In a highly populated environment like towns, streets possess a complex shape and char-
acteristic. In such situations it is possible to use maps of the area in combination with
up to date GPS data to be able to have an idea what the road course looks like.

In all cases it is essential to choose the model according to the type of used system and
environment, which the system is intended for. For example a stable control system might
only require a look-ahead of about 10 meters. As the upper part of the recorded image
can be cut and only the close-up range is considered in the following calculation steps,
a linear road model is sufficient. However a lane departure warning system requires to
predict the vehicle trajectory a few seconds ahead. For driving on a motor-way with an
appropriate speed, this implies a look-ahead of 30 to 40 meters, or even more. In this
situation a linear road model is not enough. Hence a parabolic or spline based road model
will perform a lot better.

2.2.2 Road Marking Extraction

Next, a sensing system is used to gather information about the vehicle’s environment.
Other approaches of lane detection and tracking have used additional sensor informa-
tion like GPS or radar for an improved positioning to enhance lane position estimates.
However, in this paper I focus on information from a camera, because this is the sensor
available on the mobile phone.

Road marking extraction is a key component in lane position detection, because it gen-
erates the input for all following steps. With a bad performing image feature extraction,
the subsequent steps can be perfect, but the general outcome might not be satisfactory.
In general road and lane markings show a huge variety of shapes, thus making it difficult
to generate a single feature extraction technique.

Edge based techniques can work well with solid and segmented lines. However this
method will fail with the detection of irrelevant lines. If an image contains many
extraneous lines, the result will be unsatisfactory.
Edge detection might work unsatisfactory in a greater distance from the car, as
objects are smaller. Therefore, a separation of the image in close-up range and far
field is helpful. With emphasis on the near field, edges belonging to lane marking
boundaries can be extracted well. With an iterative approach it is possible to just
investigate an area in the range of previously detected lines (region of interest) [1].
A continuative method is also to take the direction of lane marking in the filtering
procedure into account. Steerable filters offer such a tool to tune the edge filter in

2.2. LANE DETECTION 9

direction of the expected lane orientation. The point is that a set of basis filters
is adequate to steer the filter in any arbitrary orientation. Moreover, the filters
are separable, which results in less computational effort. The application of steer-
able filters [16, 17, 18] has also shown that they deal well with different lightning
situations, as well as with shadows.

Frequency based techniques on the other hand deal effectively with additional edges,
but have problems with complex shadowing. The LANA system used in [14] more-
over is restricted to diagonal edges, limiting the efficiency during lane change ma-
neuvers.

Adaptive road templates build upon a matching of current road scenes with predefined
textures. Before matching, the recorded image is inverse perspectively warped. This
removes perspective distortion from the image and therefore reduces the number of
required templates. These methods generally assume a constant road surface texture
and therefore fail if this is not the case. However, the technique is useable for the far
field of a road scene, where lane markings are difficult to identify by other methods
[17].

Statistical criteria such as energy, homogeneity and contrast are also used to distinguish
between road and non-road area [13]. This approach of lane boundary detection
especially addresses the peculiarities of country road fields, where other methods
might fail, because of the loose road boundaries.

Similarly to road modeling, an appropriate choice of a feature extraction method also
depends on the environment and the type of system itself. A restriction to possibly
appearing types of roads and system environments in combination with the optimization
of the system to these situations will generate better results than trying to detect all
possible variations of road markings without any limitations.

2.2.3 Postprocessing and Outlier Removal

In postprocessing the previously extracted features are used in combination with the
defined road model to create and improve an estimate of the lane position. Moreover,
postprocessing is one of the most important steps, as it ties together the previous feature
extraction stage with the forthcoming tracking stage.

One of the most common used techniques is the Hough transform, which enables to
identify lines in an image [6, 19]. The underlying principle of the Hough transform is that
there exists an infinite number of potentially differently oriented lines, which pass trough
any image point. Points that form a straight line exhibit the same theoretical line. Hence
potential lines passing through most image points also represent a line in reality. The
Hough transform produces quite good results, but demands high computational effort.
Therefore, it is not suitable for my application, which requires low computational costs.

Another method is to validate extracted features [1, 32, 38]. This can be done by enhanc-

10 CHAPTER 2. RELATED WORK

ing features based on orientation or likelihood. As an example features with an orientation
in direction to the vanishing point are likely to represent lane boundaries. In the inverse
perspectively warped image, possible line markings will show a slope in just a very small
range, allowing to discard other detected features.

When using a second camera the additional depth information in stereo vision is applicable
for culling features on elevation. Moreover, features are investigated in the left and right
stereo image and a matching between them generates a more comprehensive statement
about possible lane markings.

Approaches with neural networks and statistical methods like dynamic programming or
Hidden Markov Models have also been developed [12]. As these techniques need an
advanced computational approach, they are not considered any further.

The outcome of the postprocessing step is always an estimate of the current lane position
based on the extracted features. To improve the performance, information from previous
detected lines are considered as well. Thereby, an estimate for future lines is included,
because lane position and orientation do not change rapidly between video frames. More-
over, this allows to limit the investigated region in the image to an area around already
detected lines. In combination with the concluding tracking stage and a closed loop
feedback, an improved estimation heavily supports the outlier removal in postprocessing.

2.2.4 Position Tracking

At last a vehicle model can be used to refine the gained estimates over time. The two
most common tracking techniques used in lane detection systems are Kalman filtering
and particle filtering.
The Kalman filter is a recursive estimator[6]. This means that only the estimated lines
from the previous time step and the current extracted features are needed to compute the
estimate for the current lines. It produces an ideal estimation under the assumption of
Gaussian noise.
Particle filters offer the advantage that, with sufficient input data, they approach the
Bayesian optimal estimate and, hence, can be made more accurate than the Kalman
filter.

Feature extraction and vehicle position tracking are often combined into a closed loop
feedback system. Hence, the tracked lane position defines an a priori estimate of the
location and orientation of subsequently extracted features.

2.2.5 Resulting Assumptions

A significant improvement to the accuracy of lane detection can be achieved by applying
some assumptions based on the road structure, lane shape and possible environment. The

2.2. LANE DETECTION 11

0°

-15°

-30°

-45°-60°-75°-90°-105°-120°-135°

-150°

-175°

-180°

Figure 2.3: Predefined general lane marking orientation

following definitions have been made and are used in the further steps of my algorithm
to detect possible lines and to remove outliers.

1. The automotive video sequences for which the algorithm will be tested, have been
recorded at motorways or similar streets that do not feature strong curves. Hence,
lane markings are represented as straight lines in the observed area. If curves occur
they will be neglected.

2. Lane markings are displayed as white lines or dashed white lines, as they can be
found on German roads.

3. The interesting part for lane position estimation lies only in the lower part of the
recorded video frame. Therefore each image is cropped so that it contains just the
recorded road.

4. All lines in the perspective distorted image are geared to predefined orientations as
displayed in Figure 2.3. Therefore, they will intersect in the vanishing point, which
is located for initialization in the middle of the upper image border, but will be
updated subsequently in progress.

5. Roads do not show a steep incline, but are almost plain. If roads would have a
rapid change in altitude difference, this would have impacts on the slope of lane
markings in the image, as well as on the position of the vanishing point. Moreover,
an adjusted part of the image would have to be cropped.

In comparison to the structure given in Figure 2.2 some parts are omitted for my approach.
As sensor input there is only the video from the camera. Additional sensor inputs were
not available for my development environment. In my approach there is no position
tracking included, because the goal was to implement and test a lane detection algorithm
and not to control a vehicle. Finally, the feedback of estimated lane markings was not
implemented as there does not exist a reliable prediction. However, previously detected
lane markings are taken into consideration in the postprocessing stage to support the
removal of outliers. The final structure for my approach is illustrated in Figure 2.4.

12 CHAPTER 2. RELATED WORK

In chapters 5 and 6 the remaining two stages for a lane marking estimation are discussed.

Sensor inputs

Computational Models

Post processing

Camera

Road feature
extraction

Road model

Figure 2.4: System structure for the covered lane detection approach

Chapter 3

Software Development

The operating system Symbian is intended to run on mobile phones. This profoundly
affects the design of its software system.

Symbian is based on techniques similar to the PC industry. It uses a device driver archi-
tecture and offers an abstract API for each device. However, there are some important
points, where Symbian OS is different from PC operating systems:

• Resources at a mobile phone are constrained. As an example the CPU is many
times slower and there is less memory available.

• A mobile phone features no hard disk. This means that there is no disk-backed
virtual memory. Therefore, the common assumption with PC operation systems
that there is an infinite amount of space in which to place program and data files,
does not hold true.

• Power management is critical, because the mobile phone is expected to function
several hours between recharges and there are other uses of power such as phone
calls.

As a result the operating system has to be compact and tackle errors such as out-of-
memory and others, as Symbian OS systems virtually never reboot.

3.1 Symbian and the Nokia S60 Platform

Symbian itself has a flexible architecture, which allows different mobile phone platforms to
run on top of the core operating system. The two most widely used are the S60 platform
from Nokia and UIQ, which was developed by Symbian itself and is licensed to several
phone manufactures, such as Sony Ericsson ans Motorola. The general system structure
is illustrated in Figure 3.1. It can be seen that the S60 platform builds on top of Symbian
OS. Hence all functionality of Symbian OS is useable when developing for a Nokia S60
platform plus a number of additional functions. These are provided through Avkon user

13

14 CHAPTER 3. SOFTWARE DEVELOPMENT

UI Layer

System Layer with Base & OS Services
such as serial communication, graphics, generic, telephony, networking and

connectivity services

Kernel Layer
kernel services & hardware interface incl. device drivers

Application Engine Layer with Application Services
such as messaging, office engines, data synchronisation support,

application framework, Internet & web application and printing
support

Java J2ME

Hardware Adaption Layer
licensee customisation

Hardware
provided by licensee

UI Framework

UI Toolkit UI Application Framework
Uikon, UI LAF, CONE, FEP Base

Licensee Platforms

S60 UIQ
AVKON QIKON

Figure 3.1: Symbian OS and the S60 platform (taken from [7] and [25])

interface layer added to the underlying Uikon application framework. Beside the mobile
phone itself, a hardware adaption layer is also provided by Nokia, as it implements the
interface between the specific hardware and the Symbian OS.

Once an application is running, “events” are channeled to it via the control environment
CONE, another part of the Symbian OS framework. This component notifies an appli-
cation of key presses, as well as more advanced events like machine shutdown or focus
changes.

The Avkon layer on top of Uikon provides functionality specific to the S60 platform. A
number of key base classes are provided for creating a S60 application. These include
CAknApplication, CAknDocument and CAknAppUi. All S60 applications are derived from
these three base classes.

3.2. CHARACTERISTICS AND LIMITATIONS OF SYMBIAN 15

CAknApplication

CAknDocument CAknAppUi / CAknViewAppUi View

Model / engine

1

1

1 1 1 *

1

*

Application UI

Application engine

S60 application

Figure 3.2: S60 application relationship (from [22])

Moreover, an S60 application is normally split into two parts, the engine and the user
interface (UI), as a reason of aiding maintainability, flexibility and portability. The appli-
cation engine (or also named the application model) deals with the algorithms and data
structures needed to represent the applications data. The application UI deals with the
on-screen presentation of the application data and the overall behavior of the applica-
tion [11, 22]. In Figure 3.2 this relationship is illustrated, which hold true for every S60
application.

A more detailed description of Symbian and the Series 60 Platform can be found on
Forum Nokia, which is a very good point to get started with Symbian development. In
the following only important limitations of Symbian are mentioned, which affected the
design of my applications. To be able to further extend my written applications, basics
of configuring and compiling a Symbian project are discussed.

3.2 Characteristics and Limitations of Symbian

3.2.1 Exception Handling and Stack Cleanup

Instead of C++ exceptions, which were not part of the C++ standard when Symbian
OS was designed, the operating system uses a lightweight exception-handling mechanism,
called a leave. Leaves may occur as a result of an error condition or abnormal event,

16 CHAPTER 3. SOFTWARE DEVELOPMENT

such as insufficient memory to complete a request. The leave propagates the error to a
point in the calling code where it can be handled, called a TRAP harness, which is mostly
provided by the UI framework. Therefore, the function transfers control directly to the
statement following the TRAP macro under which it was invoked. This is carried out by
setting the stack pointer to the context of the original TRAP harness and, hence, jumping
to the desired program location.
However, because of the jump any local resources, such as memory allocated on the heap,
will be orphaned. This potentially leads to memory or resource handle leaks, because the
destructor of instanciated objects will not be called, and any resources they claim cannot
be recovered.

This key aspect of Symbian OS exceptions has far-reaching implications. It forces a clear
distinction between objects, which can be safely orphaned, and those which cannot. Such
a differentiation can be seen in the naming convention. All types beginning with T can
be freely allocated on the stack, because their data is contained internally. Pointers to
objects are not used as members.
Objects beginning with a C cannot safely be orphaned. They must be accessible some-
where so they can be cleaned up, when an error occurs.

The cleanup stack is the Symbian OS mechanism for handling this problem. It is used
to keep track of resources to which the only pointer is a local variable. In the event of a
leave, the cleanup stack will destroy each of the resources placed upon it.

There are some important places in code which should never leave. These are C++
constructors and destructors. Therefore, Symbian OS classes typically use a two-phase
construction to avoid leaves occurring in construction code.

When creating an object of class CDemoClass in C++ this would look like

CDemoClass* objPointer = new CDemoClass ();

In Symbian this is not applicable, if during the construction an error can occur. The
pointer objPointer would be lost and, hence, the instantiated object as well. As a result
a two phase construction is used, which behaves as follows. The object is created by

CDemoClass* objPointer = CDemoClass ::NewL ();

The L at the end of NewL() shows that this function may leave. NewL() is implemented
with the usage of the cleanup stack:

CDemoClass* CDemoClass ::NewL()

{

CDemoClass* self = new CDemoClass ();

CleanupStack ::PushL(self);

self ->ContructL ();

CleanupStack ::Pop(self);

}

3.2. CHARACTERISTICS AND LIMITATIONS OF SYMBIAN 17

In the first phase the object is created with the normal C++ operand new. However, the
constuctor must not contain any code that can leave. Then the pointer is saved on the
cleanup stack. Afterwards code with possible memory leaks, which implicate a leave, is
execute in the method ConstructL(). If everything went right during construction, the
pointer is deleted from the cleanup stack and the object has been created successfully.

3.2.2 Multi Tasking and Active Objects

In Symbian OS, every process can have one or more threads. The main thread of a process
is created when the process is started.
Moreover Symbian OS implements preemptive multitasking, so that it can run multiple
applications and servers simultaneously. It is optimized for thread switching. This means
that every thread is allowed to execute for a limited period of time until the system
scheduler passes execution to another thread.

Active objects are used to implement nonpreemptive multitasking within the context of
a single thread. Under cooperative multitasking the running task decides when to give
up the CPU. Active objects and the active scheduler provide a framework to program
cooperative tasks. In both cases the scheduler is responsible for selecting the thread with
the highest priority being ready to run next.

Note that Symbian OS is optimized for single-threaded applications, and the use of active
objects is preferred instead of multi-threading. A general rule is to always use single-
threading in Symbian OS programs, unless there is an absolute need for mulit-threading.

Some advantages of single-threading compared to multi-threading are:

• Using multiple threads increases memory consumption as each thread has its own
stack allocated.

• A context switch between threads is slower than switching between active objects
in the active scheduler loop.

• Some resources can only be used from the main thread. For example, dynamic
arrays are not thread-safe.

• Because there is no need for mutual exclusion from concurrent access, the use of
active objects increases performance and makes the application less error-prone.

Active objects can be thought of as subtasks for the thread with the fact that an active
object that is executing is not interrupted (like thread execution is). The active object
itself makes the decision when it has completed its task and returns control to the ac-
tive scheduler. Then the active scheduler is able to select another active object under
execution.

The user interface application, which is a basis for every Symbian GUI application, has
a main thread with an active scheduler automatically installed. However, when writing
servers or creating own threads, the active scheduler must be installed before the active

18 CHAPTER 3. SOFTWARE DEVELOPMENT

objects can be used. To make a class an active object it is sufficient to inherit from
the class CActive and implement the abstract function CActive::RunL(). The active
object can then make an asynchronous request for a service and process the request. This
is done in CActive::RunL(), which is called by the active scheduler when the request
has completed. The member TRequestStatus iStatus of CActive consequently informs
about the status of the performed request.

A more detailed description of multitasking in Symbian OS and the concept of active
objects can be found at [21, 24].

3.3 Development Environment

3.3.1 S60 SDK and Command Line Tools

To test and run developed applications a software development kit provided by Nokia is
necessary. The SDK delivers all the tools, which are required to build C++ for Symbian
OS projects. Furthermore the package contains a S60 device emulator, documentation
and sample applications.

Emulator

With the emulator it is possible to test applications without a real device. This is con-
venient because the application does not have to be installed on the mobile device every
time. Moreover the emulator allows debugging the program, which is possible on the
phone only with additional commercial equipment.

A tough problem I faced, was running an application on the emulator with Bluetooth
support. To the date of my development Nokia only supported PCI Bluetooth adapters,
which must be mapped to a COM-port of the PC. The emulator can then be configured
to use this COM-port as IO interface. The widespread USB Bluetooth dongles were not
officially supported. However, after some research I found a method to get Bluetooth
running on the emulator with a USB dongle.
Nokia provides an additional tool named Nokia Connectivity Framework “to visualize,
construct, maintain, and modify emulation or testing environments that utilize Nokia
SDK emulators” [20]. After same configuration the framework installs a special driver for
the Bluetooth device and maps it to the emulator. To get the whole setup running, at first
the configuration of Bluetooth dongle and emulator in the connectivity framework must be
started. If the emulator and only the emulator is stopped, the application can be executed
and debugged with a working Bluetooth connection out of the IDE. A disadvantage of
this method is that the Bluetooth dongle is exclusively used by the framework and not
useable for other programs anymore. To install the developed application on the mobile
device via a Bluetooth connection, the framework must be shut down and the original
device driver installed beforehand.

3.3. DEVELOPMENT ENVIRONMENT 19

Command Line Tools for Building a Project

All important settings for a Symbian C++ project are stated in the component definition
file, always called blf.inf. In this file all sub-projects with their project specification
files are listed. For small projects this may be only one file, as in my case.

The single project specification file identifiable at the ending *.mmp, contains all the in-
formation for building the project. For example it includes information about target
type, sources, include files and libraries the project should be linked against. The project
specification is generic, so that it allows building the project for different target platforms.

To build the project from the command line makefiles for the different target platforms
have to be generated at first. This is done by the command

bldmake b l d f i l e s

After this step a file named abld.bat is generated. This batch file offers the different
variants for building the project. For example

abld bu i ld winscw udeb

will generate the project for the emulator, while

abld bu i ld armi u r e l

will generate build specific files. winscw and armi specify the different target platforms,
while udeb and urel state, if the build tools shall generate a debug or release version of
the project.

To be able to install the project on the mobile phone a device package has to be created.
The rules for storing the application on the mobile phone must be stated in a *.pkg file.
Finally calling

makesis ∗ . pkg

generates a *.sis file, which is a device readable file format and allows the installation
of the application..

Current ARM processors, as used in the Nokia 6260, have two different instruction sets.
ARM4 with 32 bit length and THUMB with 16 bit length. ARM4 has a slightly richer
instruction set and a compiled program will be faster compared to THUMB. On the other
hand THUMB mode is more compact, thus has a smaller size. However this is not true
for all mobile phones. Devices with a 16 bit memory bus will use the THUMB mode. A
program compiled for THUMB will then be smaller and run faster.
ARMI is the solution for this uncertainty what to use. This is the fastest choice to use
since a ARMI program can be linked with THUMB and ARM4 libraries, while the others
cannot.

Figure 3.3 illustrates the interaction of the described tools.

20 CHAPTER 3. SOFTWARE DEVELOPMENT

bldmake

abld.bat

emulator .app
or .exe file

target .app
or .exe file

bld.inf

*.mmp

creates (bldmake bldfiles)

uses

uses

points to

creates
(abld build winscw udeb)

creates
(abld build armi urel)

Figure 3.3: Interaction of build tools

3.3.2 Carbide.C++ IDE

Carbide is a new generation of mobile development tools from Nokia. The tools focus on
tree primary development areas.

Crabide.j is the development environment for the Java Platform, Micro Edition.

Carbide.vs is a plug-in for Microsoft Visual Studio that allows to develop C++ code for
Symbian OS platforms.

Carbide.C++ is the recommended choice for C++ development according to Nokia.
This tool as based on the open source project Eclipse and is provided int three
different editions, which are Professional, Developer Edition and Express.

I chose Carbide.C++ in version 1.0 for development, as it is the only edition, which is
available for free. A big disadvantage of all IDEs was, that there has been no GUI designer
included. This resulted in a lot of effort in writing the GUI for my applications, as I had
to code it myself. However, at the end of my Bachelor’s Thesis I noticed that Nokia
released an UI designer for Carbide.C++, which is available in editions Developer Edition
and Professional. I would suggest to use this tool for furthher development, as building
the GUI “by hand” is a lot of work and slows development heavily.

Carbide.C++ offers a convenient project wizard to get started with the development of
applications. Thereby a program stub is provided to meet the restrictions of a Symbian
application. Moreover it is possible to import projects via the previous described compo-
nent definition file (blf.inf) and the project specification file (*.mmp). Project specific
settings like includes and libraries can then easily be handled with the IDE.

3.4. APPLICATION PROGRAMMING INTERFACES 21

Note that the appropriate SDK must be installed to be able to build applications for the
emulator or the target device

3.4 Application Programming Interfaces

The following mentioned APIs have been used for this project. Therefore, their functional
range is described in more detail.

3.4.1 Bluetooth

Like many other communications technologies, Bluetooth is composed of a hierarchy of
components, referred to as a stack. This stack is shown in figure 3.4.

SDP RFCOMM protocol

L2CAP protocol

HCI driver

HCI firmware

Link Manager Protocol (LMP)

Baseband Link Controller (LC)

Bluetooth Radio

Packing Layer

Host Controller
Transport Layer – RS232

Emulation
offers RS2232 like API
multiple serial port

Segment and
reassemble groups,
protocol muxing

BT Host
(SW)

BT Host
Controller

(HW)

Figure 3.4: The Bluetooth stack (source: Symbian 7.0 developer documentation [23])

The Bluetooth Host Controller components provide the lower-level of the stack, which are
typically implemented in hardware, and to which applications do not have direct access.

The Bluetooth Host components allow applications to send or receive data over a Blue-
tooth link, or to configure the link. RFCOMM allows an application to treat a Bluetooth
link in a similar way as if it were communicating over a serial port. I used this method for
communicating with the Eyebot controller. The Logical Link Control And Adaptation
Protocol (L2CAP) allows a more detailed control of the link. It controls how multiple

22 CHAPTER 3. SOFTWARE DEVELOPMENT

users are multiplexed, handles packet segmentation and transmits quality of service in-
formation. The Service Discovery Protocol (SDP) is used for locating and describing
services available through a Bluetooth device. The Host Controller Interface (HCI) driver
combines the higher level components to communicate with the hardware.

Symbian provides a number of APIs for these different layers.

• There are Bluetooth sockets, which encapsulate access to L2CAP and RFCOMM
through a socket interface.

• For a service discovery two APIs are provided. First a Bluetooth Service Discovery
Database with which an application is able to advertise its services and second a
Bluetooth Service Discovery Agent, which allows to discover the services, which are
available on a remote device.

• These two APIs are enclosed in a relatively simple Bluetooth UI. It provides a dialog
by which a remote device can be chosen and a link can be established.

• A Bluetooth Security Manager enables services to set appropriate security require-
ments that incoming connections must fulfill. In my developed application there are
no security directives, hence, I have not used this API.

More information about the Bluetooth API can be found in the documentation enclosed
in the SDK [7]. For a illustration of the usage of the different APIs in the program code
the online documentation of my developed application is a good reference.

3.4.2 Mobile Phone Camera

The camera API is an open, generic API for controlling simple on-board digital camera
devices. The API offers three main functions, which can be used by an application. These
are methods to control camera settings as flash mode, contrast and brightness of the
image, as well as a digital zoom level. Functions for capturing still images, which involves
transferring the image from the camera to the application, where the image format and
size are adjustable. Finally it includes the possibility to capture videos, which requires
the use of a frame buffer.

The API provides a view finder, with whose help it is possible to transfer view finder
data to a specific portion of the screen using direct screen access. Hence, the frames
from the camera are directly transferred to the display memory. This is a lot faster than
capturing the image, saving and then displaying it on the screen. I used a slightly modified
functionality of the view finder in my lane detection application, where the view finder
data is transferred as a bitmap.

As before more information is provided in my online documentation of the application or
in the SDK documentation [7].

Chapter 4

Bluetooth Communication Software

The aim of this section is to describe the requirements, the design and the implementation
of the developed application enabling a remote control of the controller via a Bluetooth
connection.

The Eyebot controller has a LCD, which informs the user about the current controller
state. Figure 4.1 illustrates an image of this display.

Figure 4.1: Eyebot controller LCD

Below the LCD there are four white buttons, which are used for user input. The overlaid
functions for the buttons can be seen from a menu in the last row of the displayed data.

The goal for the application on the mobile phone is to reproduce this appearance on its
own screen. Moreover, control has to be possible with the phone buttons. As a result, a bi-
directional communication from and to the controller has to be established. Furthermore,
the application has to provide an opportunity to choose which remote device to connect
to.

23

24 CHAPTER 4. BLUETOOTH COMMUNICATION SOFTWARE

4.1 Design

In the design phase I have considered three important parts, which are connection de-
pendent on the one side and affect the application design on the other side. They are
discussed in more detail in the follwing.

4.1.1 Transmission Protocol and Commands

The operating system on the controller already defines a transmission protocol to use.
Moreover, there are several commands available for accessing the display on the controller.
These commands are also used for a remote control and transmitted via the Bluetooth
link.

Start-
byte Type To ID From ID Length

highbyte
Length
lowbyte Code Data …

Header Payload

Figure 4.2: Transmission Protocol

Figure 4.2 illustrates the used protocol. The individual parts and their meaning are
explained in the following.

Start byte The start byte is always of value 0xC6 and signalizes the beginning of an new
datagram.

Type The Type byte specifies the type of the current datagram. Possible values are 1, 2
and 3, which stand for OS, User and Synchronization. In my application only type
OS is used.

To ID This determines the ID of the receiver of the message. The mobile phone or a PC
always has an ID value of 0. The device ID at the Eyebot controller can be set
manually. The ID is important if more than one controller is sending data, because
thus it is possible to differentiate which message belongs to whom.

From ID It indicates who has sent the message. Possible values are the same as for To
ID.

Length highbyte & lowbyte The length of the sent payload is specified by these two
values. As a result the maximum length for data to transmit is 216− 2, because one
byte is used to state the command code.

Code is the first byte of the payload data and determines which action to perform on
the device. Possible values are listed in Table 4.1. These commands have to be
interpreted on the mobile phone.

4.1. DESIGN 25

Code Parameter Function

Clear - Clears the display.
Line x1, y1, x2, y2,

color

Draws a line from (x1, y1) to (x2, y2) in color
color

Area x1, y1, x2, y2,

color

Draws an are with (x1, y1) as top left corner
and (x2, y2) as bottom right corner in color
color

SetPixel x, y, color Sets the pixel at position (x, y) to color color
InvertPixel - Is not implemented - use SetPixel instead.
Menu string Sets the command menu of the controller. 4

character are used for each of the four menu
entries.

PutChar char Writes the character char at the current
position to the display.

PutString string Writes the null terminated string sting at the
current position to the display.

SetPos row, col Sets the current position to (row, col).
SetString row, col, string Same as PutString, but the position is

updated to (row, col) before.
KeyPressed keyCode Informs about an occurred keystroke.
CodeImage code, depth, data Transmits an image. Data contains the RGB

values.
VWPosition position Transmits the current position of the robot on

the playground.

Table 4.1: EyeBot commands

Data The data field in the protocol contains the parameters for the specifc command
code.

For compatibility with a newer version of the Eyebot controller I have introduced five
more commands, which are displayed in Table 4.2. They allow a flexible adaption of the
display size. Because the size of the display can be greater than 256 pixel in one direction,
it was required to split some parameters into high and low bytes. Moreover, there is an
additional variant for functions containing pixel positions as parameters, which allows
values greater the size of one byte.

In my developed application messages are received via a Bluetooth link. If the header is
correct, the command is extracted from the payload and appropriate executed.
Before the structure of the developed application is discussed in more detail, I want to
give an overview of the user interface, which was planned to implement.

26 CHAPTER 4. BLUETOOTH COMMUNICATION SOFTWARE

Code Parameter Function

ResGraphics widthH, widthL,

heightH, heightL

Informs about resolution of the controller
display. The size is in pixel. Both, for width
and height are two parameters necessary, as
the size can be greater than 256 pixel.

ResText rows, cols Informs about the resolution of the controller
display for displaying text.

SetPixelL x1H, x1L, y1H, y1L,

color

New function for setting pixels with 16bit
position values.

LineL x1H, x1L, y1H, y1L

x2H, x2L, y2H, y2L,

color

New function for drawing a line with 16bit
start and end point values.

AreaL x1H, x1L, y1H, y1L

x2H, x2L, y2H, y2L,

color

New function for drawing an filled area, again
with 16 bit position values for the top left and
bottom right corners.

Table 4.2: Additionally introduced commands

4.1.2 User Interface

I decided to develop an application with different views. One main view, which is displayed
after launching the program and serves as overview for the other views created in further
steps. Additionally, there can be several so-called remote views, where each of them
displays the output from one remote Eyebot controller. As a result, the user interface
was designed to support several simultaneous connections to different controllers. Each
of them with its personal view and the possibility to change quickly between the different
views.

Figure 4.3 illustrates the possible navigation through my application. After start-up the
main view is shown, but no connection is established so far. To initiate a connection to
a remote device, the ’Options’ menu offers an appropriate entry. After selecting to create
a new remote session, a device inquiry is started. The result of the inquiry is displayed
as soon as there are devices discovered. If there is no controller in range, a message is
displayed, which allows to retry the inquiry or to navigate back to the main view. Note
that such erroneous situations are not shown in the illustration to keep track of the correct
workflow.

Having chosen the desired remote controller, a connection is established, which is signalled
with an acoustic tone on success. The phone screen is updated, if the display on the remote
controller changes and, hence, commands via the Bluetooth link are received. Moreover,
the controller can be operated by the number buttons 1 to 4 on the mobile phone. This
is illustrated via four white boxes in the lower part of the screen. The corresponding
assignment of functions to these buttons is shown in the menu row of the simulated
controller display.

4.1. DESIGN 27

Options Exit

Remote Bluetooth

Device 1

Connected Devices

Options Exit

Remote Bluetooth

Exit

New Session

Close Session

OK Cancel

Remote Bluetooth

Device 1

Choose Device

Device 2

Device 3

Options Back

Remote Bluetooth

RoBios v6.5
Name:..

Battery Status

Options Exit

Remote Bluetooth

Connected Devices

none

(I) Hrd Usr Demo
1 2 3 4

New selection Device inquiry Connection established

Back to main view

Options Back

Remote Bluetooth

RoBios v6.5
Name:..

Battery Status

(I) Hrd Usr Demo
1 2 3 4Exit

Disconnet

Disconnect from device

Figure 4.3: Mock-up of the designed user interface with possible view transitions

By selecting to ’Disconnect’ from the remote device, the session is closed and the applica-
tion returns back to the main view. Otherwise it is possible to navigate back to the main
view without canceling the connection via the function ’Back’. The main view changes
then a little bit and displays in a list the currently open sessions, which is shown in the
lower image part of figure 4.3. Thus, it would be possible to open a further connection to
another controller. By choosing one of the currently available session out of the list, the
according remote view is displayed. Of course the display is also updated if not in focus
and therefore is always up to date.

4.1.3 Class Dependencies

To be able to implement the designed user interface structure, I developed a sophisticated
class structure, which is displayed in figure 4.4. I stuck to the convention of Symbian
OS to cleanly separate user interface and application engine. Furthermore I designed the
connection specific part of the application in a generic way, so that it is possible to add
additional types of connections beside Bluetooth. These borders in the class design are
illustrated in colors green, blue and orange.

Back to the user interface part, the Application, the Document and the Application UI
classes are predetermined by Symbian, as mentioned in 3.1. In my application there

28 CHAPTER 4. BLUETOOTH COMMUNICATION SOFTWARE

exists one MainView and none, one or more RemoteViews, depending on the state of
the application. The corresponding Containers to these views manage the belonging
data and serve to update the views corresponding to changes caused by the application
engine. Therefore, these containers own a dependence to the data representing classes
RemoteSessionList and Display of the engine.

The engine itself mainly consists of several RemoteSessions, which are combined together
in the RemoteSessionList. This class keeps track of the currently established sessions to
remote controllers. A RemoteSession is inherited from CActive, the Symbian provided
class to create an active object. This is necessary, as the RemoteSession has to perform
several asynchronous commands for establishing a connection. The function RunL(),
which is called from the active scheduler on changes of the request status implements a
state machine. This finite state machine is discussed in more detail in the next section .

The RemoteSession owns beside the already mentioned RemoteView some more classes.
These are the Parser, which parses incoming messages an extracts appropriate commands.
The class Message is a container for storing a received message and for sending messages
according to the protocol introduced in section 4.1.1. In addition, RemoteSession contains
a class SoundPlayer, which is used to play-back sounds for specific events.

The lowest part of the class chart shows classes implementing all functions concerning the
connection. I paid attention to establish a border between the connection dependent parts
and the rest of the engine. Thus there exists an abstract class ConnectionEngine. The
blue marked part of the engine, therefore, implements functions defined in this generic
class. As a matter of fact this offers the opportunity to create any connection dependend
class by inheriting from ConnectionEngine and implementing the virtual methods. As an
example it would be possible to extend my application by the functionality of an serial
communication with minimum effort.

However, my aim was to carry a Bluetooth connection out. Thus BTConnection imple-
ments the methods for connecting, disconnecting, sending and receiving. The BTDiscov-
erer is additional required to perform a device inquiry for Bluetooth devices in range.
Both classes make use of BTDeviceParameter, which stores connection depend data for
the current established link.

A more detailed description of the mentioned classes is given in appendix B.1. However,
implementation specific details can be found in my online documentation located on the
enclosed CD.

4.1.4 Finite State Machine for Connection Management

As connection management is a complex process, I decided to use an finite state machine.
All possible states together with their transitions are shown in Figure 4.5. The states also
show the specific functions that are called.

After the creating of a new session, a device inquiry is performed. If devices have been

4.1. DESIGN 29

RemoteSession

RemoteView

RemoteViewContainerConnection Engine

Bluetooth Connection

Application

Document Application UI

1

1

1 1

MainView

MainViewContainer

1

1

1

1

Parser

1
1

1

1

RemoteSessionList

1

1

1 1

1

*

1

1

Display

Message

SoundPlayer 11 11

1

*

Bluetooth Discoverer

1

1

BTDeviceParameter 11

1

1

CActive

1

1

Application User Interface

Implementation of
specific connection

Application Engine

Figure 4.4: Class chart of the application with partition in UI and engine

30 CHAPTER 4. BLUETOOTH COMMUNICATION SOFTWARE

found, one of them can be chosen and a connection will be established. If an erroneous
device has been selected or it does not provide the required service the control navigates
back to the device selection. Note that the service check is considered in the state diagram,
however, it is not implemented for the Bluetooth connection, as all Eyebot controllers offer
the required RFCOMM interface.

If the connection has been established successfully and a corresponding view and parser
for the remote session has been instantiated, the application starts to receive and parse
incoming data. It remains in that state until the connection is closed or the session is
terminated.

Sending back data, like keystrokes for controlling the Eyebot controller is not included
in the state machine. This is realized via an event handling mechanism. An appropriate
function is directly called from the framework when a keystroke emerges. The state
machine cycle is shortly interrupted and the data can be sent over the link.

The concept of active objects offers for the purpose of state control a convenient solution.
The active object owns one member variable, which keeps track of the current status
of the object. This variable can be used to implement state transitions. For example
in state ’Select device’ the function SelectDeviceL() is called with this status variable as
parameter. Once the asynchronous request completes, an error code is stored in the status
variable. The active object automatically recognizes the change of its status member and
calls the function RunL(). The only thing to implement in RunL() is a check for the
status variable. If there was no error, a transition to the next state ’Check service’ can be
performed, otherwise, the execution terminates and for this example the remote session
is closed.

Asynchronous framework functions automatically offer the functionality to report their
status via a status variable. Own functions can easily implement a similar behavior in
saving an error code in the status variable explicitly. The call to SetActive() in the
example source code is necessary to activate the active object to react on status changes
of its status member.

4.2 Output

The images in Figure 4.6 have been taken from the developed application. The screenshots
illustrate the different views in combination with possible user interaction.

4.2. OUTPUT 31

Disconnected
or exit

Disconnected
or exit

Error receiving
data

Error establishing
connection

Services do
not match

No device
found / cancel

Inquiry error

Parsing completed

Select device
SelectDeviceL()

Check Service
ChechService()

Connect
ConnectL()

Connected
Create View and

Parser

Receive data
Receive()

Parse data
Parser::ParseL() &

ProcessCommandL()
UpdateView()

Device selected

Start of new
remote session

Available service okay

Connected successfully

Remote View &
Parser created

Data received

Device inquiry

Device(s) found

Figure 4.5: Finite state machine, which is implemented in the active object RemoteSession and
performs the connection management

32 CHAPTER 4. BLUETOOTH COMMUNICATION SOFTWARE

(a) (b) (c)

(d) (e)

Figure 4.6: Screenshots from the application on the mobile phone.
(a) Main view with options menu to create a new session.
(b) Found Bluetooth devices after inquiry.
(c) and (d) EyeBot display emulation on the mobile phone’s screen.
(e) Main view showing that one remote session to ’SocBot1’ is currently active.

Chapter 5

Lane Marking Extraction

This and the following chapter concentrate on the developed algorithm for lane marking
detection considering the limited capabilities of the mobile phone.

Figure 5.1 shows an ordinary road scene on a highway. The lane boundaries are marked
with solid white lines, while the two lanes are separated by a dashed line. Lane markings
like these will be extracted and further on detected in described process.

A first step to extract features of a video frame is to have a look at points in the image
where brightness changes particularly sharply. This edge points can be associated with
boundaries of objects and other kinds of meaningful changes. Therefore, it will be useful
to perform a filtering, which exactly identifies these intensity changes.

Figure 5.1: Captured video frame

At first the problem of noise in images in combination with edge detection is addressed.
Note that a short mathematical background behind edge detection is presented in Ap-
pendix A.1. Afterwards two kinds of edge filters are discussed. First the elementary Sobel

33

34 CHAPTER 5. LANE MARKING EXTRACTION

filter and second a more sophisticated approach with steerable filters. Modifications for
the use in my implementation are as well treated as a performance comparison between
the two different peculiarities of edge filters. In the end the final results of the edge
filtering step are presented, which are used for detecting and parameterizing the lines.

5.1 Edge Detection and Noise

A primary problem in edge detection is image noise. Noise in the image for example
results from temperature noise of the camera or arises from the lens. The disadvantage
of simple edge detectors like the Prewitt filter is, that they respond strongly to sharp
changes. Moreover an edge detection filter can be seen as a high-pass filter, emphasizing
high spatial frequencies and suppressing low ones. As noise is said to be uncorrelated and
therefore possesses uniform energy at each frequency, it makes finite difference estimates
of image derivatives unusable. Figure 5.2 (a) illustrates an image line containing noise.
It can be seen that a maximum evaluation in the first derivative will not lead to sufficient
results.

100 150 200 250 300 350 400
0

20

40

60

80

100
noisy image

100 150 200 250 300 350 400
−30

−20

−10

0

10

20

30
first derivative

(a)

100 150 200 250 300 350 400
20

40

60

80

100
smoothed image

100 150 200 250 300 350 400
−10

−5

0

5

10
first derivative

(b)

Figure 5.2: (a) A noisy image signal an its derivative; (b) the smoothed image signal and its derivative

By first smoothing the image and then calculating the derivative needed for edge detection
suppresses noise and leads to a better result, as shown in (b). An appropriate way to
smooth an image is to use a Gaussian filter mask. Since the Fourier transform of a
Gaussian is another Gaussian in the frequency domain, applying a Gaussian blur has the
effect of low pass filtering the image and hence reducing noise in the image. Moreover a
Gaussian operator implicates a number of convenient properties. Some of them will be
useful for two dimensional filtering and are explained in the following.

5.1. EDGE DETECTION AND NOISE 35

−2

0

2

−2

0

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Gaussian

−2

0

2

−2

0

2

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

1st derivative

−2

0

2

−2

0

2

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

2nd derivative

Figure 5.3: A Gaussian and its first and second derivatives. The standard deviation σ was set 1.

Smoothing an image is mathematically expressed by a convolution of the original image I
with the Gaussian mask G. Calculating derivatives of the blurred image is a convolution
with the filter mask D. The operation can be written as Iedge detected = I ∗ G ∗ D. Both
these operations are linear, thus enabling to combine them in a more efficient way to

Iedge detected = I ∗ (G ∗D) .

This equation looks quite the same as before, but the main point behind is to calculate at
first the derivative of the Gaussian, which can be done beforehand, and then just apply
this filter mask on the image. Whit this approach just one filtering instead of two is
necessary. Figure 5.3 displays a Gaussian and its first and second derivatives like they
would be applied to an image. (Note that the first derivative is directionally sensitive,
while the Laplacian of Gaussian filter kernel is not).

A filter mask with n×n entries would require n2 multiplications and n2− 1 additions per
pixel, leading to a high computational effort. However the two dimensional Gaussian

G(x, y, σ) =
1

2π · σ2
· exp

(
−x2 + y2

2 · σ2

)
(5.1)

can be rewritten as

G(x, y, σ) =
1√

2π · σ
· exp

(
− x2

2 · σ2

)
× 1√

2π · σ
· exp

(
− y2

2 · σ2

)
, (5.2)

which is a separation in terms of the image coordinates. This means that the two-
dimensional filter mask can mathematically also be written as dyadic product of two
vectors of length n. As a result the filtering is separable in two one-dimensional kernels in
x and y direction. Note that the first or second derivative does not change the separability
of the filter mask. Therefore, only n multiplications and n−1 additions per direction plus
an operation for combining both are needed. The computational effort thereby is reduced
from n2 to the order of n.

36 CHAPTER 5. LANE MARKING EXTRACTION

5.2 First Approach: Sobel Filter

In my approach I tried several filter types to find the one fitting best to my demand in
terms of quality but also in low computational effort. The easiest one to try is of course
the Sobel filter. Its filter mask for vertical edges is

-1 0 1
-2 0 2
-1 0 1

which is very similar to the elementary Prewitt kernel (stated in Appendix A.1), but
emphasizes the direct neighboring pixels. This can be seen as a very rough approxima-
tion of an Gaussian filter, but indeed performs some kind of smoothing. The kernel for
horizontal edges is as well gained by rotation the mask by 90◦. Note that a coefficient of
1/8 is needed to get the right gradient value. However, this does not make a difference
for edge detection and therefore integer values are used.

Keeping in mind that the edge strength is given by the gradient magnitude and the edge
orienation is in direction of the most rapid change in intensity, the whole edge filtered
image is calculated by the norm of the two individual parts for x and y orientation

G =
√

Gx + Gy. (5.3)

The direction of the steepest increase of intensity is as then defined by

Θ = arctan

(
Gy

Gx

)
.

The application of the Sobel filter to the example image, leads to the result shown in
Figure 5.4. It can be seen that the lane edges are detected quite well, but there is a
very thick edge resulting from the boundary of trees. As the interesting part with lane
markings lies only in the lower field of the video frame, the images are appropriately
cropped by discarding the upper half of the video frame. Of course this is done before
filtering the image.

5.2.1 Additional Requirements

As seen in Figure 5.4 (c), there are two edges detected for every lane marking. However,
in the end just one line should be detected per lane marking. To avoid an expensive
clustering of left and right edges belonging together to one line, it would be convenient to
detect just the inner side of a lane marking. For changes from low to high level sections
in the image the result is a maximum positive value, but for changes the other way
around from high to low level the outcome is a maximum negative value (see Figure A.1
in Appendix A.1). Therefore, it is possible to detect the left side of a lane marking by
taking the maximum positive values as an detected edge. For determining the right side
of a lane marking it would be sufficient to consider just the maximum negative values

5.2. FIRST APPROACH: SOBEL FILTER 37

(a) (b) (c)

Figure 5.4: Example video frame filtered with Sobel filter for (a) horizontal gradient and (b) vertical
gradient; (c) displays the combination of both according to equation (5.3)

of the first derivative. The same effect is obtained by multiplying the filter mask with
-1. This results in an inverted first derivative, where the maximum values describe the
wanted right side of a lane marking now. The same procedure holds true for detecting
upper and lower borders of a horizontal lane marking.
As a result the image was split up in different parts and has been filtered with the masks
shown in figure 5.5.

horizontal vertical
1 0 -1
2 0 -2
1 0 -1

1 2 1
0 0 0
-1 -2 -1

horizontal vertical
-1 0 1
-2 0 2
-1 0 1

1 2 1
0 0 0
-1 -2 -1

horizontal
1 0 -1
2 0 -2
1 0 -1

horizontal
-1 0 1
-2 0 2
-1 0 1

Figure 5.5: Sobel filter masks applied to the four different defined image areas to be able to detect
just the inner side of lane markings. The filtering result can be seen in the image.

Especially in my situation when detecting lines, it is not necessary and moreover not
wanted to detect all edges in the image, but only the one in direction of possible lane
markings. As previously displayed in Figure 2.3 lane markings run dependent on the

38 CHAPTER 5. LANE MARKING EXTRACTION

image area with a certain degree due to the perspective distortion of the image. Hence it
would only be necessary to detect edges in direction of the shown red lines, which radially
turn around an expected vanishing point.

Therefore the lower part of the image was just filtered with a vertical sensitive filter mask
to omit horizontal edges. This is sufficient, because the filter mask is also sensitive to
diagonal edges. In the upper part both horizontal and vertical filter masks were used as
line markings tend to show every possible direction. A more detailed partitioning was
tried as well, but did not generate better results.

To already consider this specific characteristic of the lane markings in the filtering step,
I decided to build and test an edge filter which is direction sensitive. Of course a Sobel
filter has a sensitivity to a certain direction as well. However, the goal was to build a
filter, which is sensitive to every arbitrary orientation in the image, but without a higher
computational effort. The approach to this aim is explained in the following section.

5.3 Second Approach: Steerable Filter

One approach to finding the response of a filter at many orientations is to apply many
versions of the same filter, each different from the other by some small rotation angle.
A more efficient approach is to apply a few filters corresponding to a few angles and
interpolate between the responses. One then needs to know how many filters are required
and how to properly interpolate between the responses. With the correct filter set and the
correct interpolation rule it is possible to determine the response of a filter of arbitrary
orientation without explicitly applying the filter. This is the main concept and intention
behind steerable filters, as stated in [10].

At Computer Vision and Robotics Research Laboratory, University of California, San
Diego steerable filters have already been successfully used for detecting lane markings.
In [16, 17, 18] they argue that steerable filters have a number of desirable properties and
therefore are excellent for a lane detection application.

First, each filter can be created to be separable which speeds up processing. By separating
the filter into an x and y component, the two-dimensional convolution of the filter with
an image splits up into two one-dimensional convolutions. Second, only a finite number of
rotation angles of a specific steerable filter are needed to form a basis set for all possible
angles, as mentioned before. The number of basis filters depends on the degree of the
Gaussian derivative used for smoothing. This will enable me to tune the filter to a
continuous range of possible orientations and calculate the response of the filtering for
different parts of the image, but with applying the set of basis filters just once to the
image. Moreover, steerable filters are robust against poor lighting conditions as well
as they appear to be capable for complex shadows, where many other edge detection
approaches fail.

Beside the good edge detection results, these properties of steerable filters are also very

5.3. SECOND APPROACH: STEERABLE FILTER 39

Input image

 k1(θ)

Basis filter set

 k2(θ)

 kn(θ)

. . .

. . .

Gain maps

Adaptively filtered
image

Figure 5.6: Steerable filter architecture

important for my implementation, as processing power is limited on the target device and
I have to keep computational effort low.

Figure 5.6 shows a general architecture for using steerable filters. The front end consists of
a bank of permanent, dedicated basis filters, which always convolute the image as it comes
in. The outputs are multiplied by the appropriate interpolation functions individually for
each position and time. The finishing summation builds the adaptively filtered image.

5.3.1 Based on Second Derivative

Publications [16, 17, 18] followed the approach to use a second derivative of a Gaussian
as initial input and further on built a steerable set of basis filters. So I decided to start as
well with this attempt and compare the results with the one obtained via the Sobel filter.

With the theory given in A.2 it is easy to derive the required basis functions, as well as
their interpolation coefficients. However, for the further understanding it is not required
to know exactly how the filters are derived. In short, every function that can be expressed
as a Fourier series is steerable.

The interpolation functions kj(θ) are independent from the Fourier coefficients an(r).
Therefore, the leading term 1

2π·σ2 in the definition of a Gaussian like in Equation (5.1) can
be left out as it just scales the function, but does not change anything in its radial and
angular characteristics. Hence, for deriving a steerable basis set based on the frequency
response of the second derivative of a Gaussian the function

G(x, y) = e−
x2+y2

σ2

is sufficient. Setting the variance σ2 to 1, which does not affect the further result, the

40 CHAPTER 5. LANE MARKING EXTRACTION

second derivative, named G2 becomes

G2(x, y) =
∂2

∂x2
G(x, y, σ2 = 1) = 2

(
2x2 − 1

)
· e−(x2+y2). (5.4)

Substituting the Cartesian coordinates x and y with the corresponding polar coordinates
r and φ, (5.4) can be written as

G(r, φ) = 2
(
2r2 cos2 φ− 1

)
· e−r2

.

With the substitution cos φ = eıφ+e−ıφ

2
this can be stated as

G(r, φ) =
(
r2

(
eı2φ + eı(φ−φ) + e−ı2φ

)
− 2

)
· e−r2

= r2e−r2︸ ︷︷ ︸
a−2(r)

· e−ı2φ +
(
r2 − 2

)
e−r2︸ ︷︷ ︸

a0(r)

· eı0 + r2e−r2︸ ︷︷ ︸
a2(r)

· e−ı2φ.

Because only the coefficients for n = [−2, 0, 2] are nonzero, a minimum of three basis func-
tions is needed to steer the second Gaussian derivative (see A.2 for further explination).
As a result the following equation can be stated

(
1

eı2θ

)
=

(
1 1 1

eı2θ1 eı2θ2 eı2θ3

)
·

 k1(θ)
k2(θ)
k3(θ)

 . (5.5)

Taking both the real and imaginary part of (5.5) into consideration and requiring that
they equal, gives a system of three linear independent equations, which can be easily
solved for kj(θ) 1

cos (2θ)
sin (2θ)

 =

 1 1 1
cos (2θ1) cos (2θ2) cos (2θ2)
sin (2θ1) sin (2θ2) sin (2θ3)

 ·

 k1(θ)
k2(θ)
k3(θ)

 . (5.6)

The final solution for the steerable filter at an arbitrary angle θ of the second derivative
of a Gaussian is

Gθ
2 = k1(θ) ·Gθ1

2 + k2(θ) ·Gθ2
2 + k3(θ) ·Gθ3

2 .

θj has to be chosen in the range between 0 and π. With equally distributed values in the
domain this becomes θ1 = 0◦, θ2 = 60◦, θ3 = 120◦. According to (5.6) the interpolation
functions become

kj(θ) =
1

3
[1 + 2 cos (2 (θ − θj))] .

Figure 5.7 shows the obtained three basis filters.

With this approach the obtained basis filters are not separable. However, to reduce
computational effort in the leading filtering step it is preferable to design the three basis
filters to be separable in x and y direction. For all functions that can be written as a

5.3. SECOND APPROACH: STEERABLE FILTER 41

Figure 5.7: Basis filter set for θ1 = 0◦, θ2 = 60◦, θ3 = 120◦

polynomial in x ans y, there exists and x-y separable basis. The initial second derivative
of a Gaussian in Equation (5.4) fulfills this condition. With Equation (5.2) it has already
been shown that a Gaussian is separable, so the term 2 (2x2 − 1) remains for further
investigation. In [10] it is demonstrated how to split this up to a notation like

Gθ
2 = G(r) ·

3∑
j=1

kj(θ) ·Rj(x) · Sj(y).

For the interpolation functions following

kj(θ) = (−1)j

(
N
j

)
cos(N−j) (θ) sinj (θ)

the results

k1(θ) = cos2 (θ)

k2(θ) = −2 · cos (θ) sin (θ)

k3(θ) = sin2 (θ) (5.7)

are calculated.

There is also a way given to calculate the terms Rj(x) and Sj(y) of the separable basis
functions. However, in [16] is an easier way used to obtain a set of separable steerable
basis filters. The three second derivations of a Gaussian are exactly the wanted filters.
They are

Gxx(x, y) =
∂2

∂x2
G(x, y)

=
(
4x2 − 2

)
· e−(x2+y2)

Gxy(x, y) =
∂

∂x

∂

∂y
G(x, y)

= 4xy · e−(x2+y2)

Gyy(x, y) =
∂2

∂y2
G(x, y)

=
(
4y2 − 2

)
· e−(x2+y2) (5.8)

42 CHAPTER 5. LANE MARKING EXTRACTION

With the interpolation functions from (5.7) the response of any rotation of the second
derivative G2(x, y) can be computed using the final result

Gθ
2(x, y) = cos2 (θ) ·Gxx(x, y)− 2 · cos (θ) sin (θ) ·Gxy(x, y) + sin2 (θ) ·Gyy(x, y). (5.9)

The three basis filter now look like the ones displayed in figure 5.8

(a) Gxx (b) Gxy (c) Gyy

Figure 5.8: Basis set for separable steerable filters based on the second derivatives of a two dimen-
sional Gaussian.

So far only continuous functions in space have been considered. However, for discretely
sampled functions, as used when it comes to a computer-aided implementation, the meth-
ods are applicable as they are. This is because the order of spatial sampling and steering
are interchangeable. Hence, the derived basis function from (5.8) are sampled for x and
y values in the domain from −3σ to 3σ to sufficiently cover the filter function. In [10] a
range between -2.68 and 2.68 with a sample spacing of 0.67 is suggested, which I applied
in my approach. This resulted in an filter with size 9 × 9. Note that the window size
should always be an odd number to ensure that the computed filter result can be assigned
to one pixel.

The one-dimensional components in which the filter is separable are easily obtained by
taking the middle row as filter in x direction, further denoted as f1. The filter for the y
direction f2 is then the middle column divided by the the middle value of f1. This method
is applicable for the basis filters Gxx and Gyy. Filter Gxy has a middle column and row
respectively, with all zero entries. However, as the filter is symmetric, the one-dimensional
kernel f3 is the same for x and y direction and is calculated via the square root of the
diagonal entries.

The so determined filter values are shown in Table 5.1 as well as the composition of the
basis filter set. The underlying functions are normalized so that the integral over all space
of their square equals one. For the functions in (5.8) this ends up in a coefficient of 0.9213
for Gxx and Gyy and 1.843 for Gxy, with which the functions are multiplied.

In Figure 5.9(a) the filters finally obtained separable steerable basis filter set is illustrated.
With application of Equation (5.9) the filter in (b) is calculated for θ = 30◦. It can be
seen that indeed this results in a rotation of 30◦ of the first basis filter (left most one in
the figure).

5.3. SECOND APPROACH: STEERABLE FILTER 43

f1 0.0094 0.1148 0.3964 -0.0601 -0.9213 -0.0601 0.3964 0.1148 0.0094
f2 0.0008 0.0176 0.1660 0.6383 1.0 0.6383 0.1660 0.0176 0.0008
f3 -0.0028 -0.0480 -0.3020 -0.5806 0 0.5806 0.3020 0.0480 0.0028

G2 basis filter filter in x filter in y

Gxx f1 f2

Gxy f3 f3

Gyy f2 f1

Table 5.1: 9-tap filters for x-y separable basis set for the second derivative of a Gaussian

−2
0

2

−2

0

2

−0.8

−0.6

−0.4

−0.2

0

0.2

xy −2
0

2

−2

0

2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

xy −2
0

2

−2

0

2

−0.8

−0.6

−0.4

−0.2

0

0.2

xy

(a)

−2
0

2

−2

0

2

−0.8

−0.6

−0.4

−0.2

0

0.2

xy

(b)

Figure 5.9: (a) Separable steerable basis filter set for the second Gaussian derivative; (b) result for a
rotation of 30◦

44 CHAPTER 5. LANE MARKING EXTRACTION

90°

75°

60°

45°30°15°0°-15°-30°-45°

-60°

-75°

-90°

-80°

-65°

-50°

-75°

-55°

-35°

-55°

-35°

-20°

-25°

-10°

80°

65°

50°

75°

55°

35°

55°

35°

20°

25°

10°

0°

Figure 5.10: Specified direction of steerable filters at dedicated parts of the image according to the
expected line orientation

For the application of the filter set to the current video frame, the image is split up into
several parts. To each of this parts one dedicated orientation is defined. The angles have
been evaluated according to the orientations found, as displayed in Figure 2.3. The result
can be seen in Figure 5.10 as well as the resulting orientation of the applied filter. Note
that the angles are shifted by -90◦ in comparison to the predefined orientations, because
now the angles define the rotation of the first basis filter Gxx, which is oriented to detect
vertical lines. Of course this does not mean that all this oriented filters have been applied
to the image. Instead only the interpolation functions were adjusted accordingly. The
outcome of this filtering procedure with steerable filters is illustrated in figure 5.11.

Figure 5.11: Image filtered with steerable filter based on 2nd Gaussian derivative; The filter orienta-
tion was according to figure 5.10

5.3. SECOND APPROACH: STEERABLE FILTER 45

5.3.2 Based on First Derivative

The filtering performance looks quite promising. However, as with the Sobel filter, it
would be convenient to just detect the inner part of a lane marking. If this is already
achieved in the filtering step, effort can be reduced in terms of clustering found lines.

The so far derived steerable filter is based on the second derivative of a Gaussian. As
mentioned in Appendix A.1 and illustrated in A.1 this method of edge detection tries to
find zero crossings in the second derivation of an image. For a differentiation of inner and
outer lane marking edges, it would be necessary to check the function’s slope. It would
be negative for the left and positive for the right border. In an image like in 5.11 this
would require to check for every pixel if it is an edge by evaluating against a threshold.
If so, a further analysis of the neighboring pixels in the original image frame will give a
statement if the edge is associated with a low-high or high.low transition. This procedure
implicates more processing effort than desired.

Therefor, I decided to base the steerable filter on the first derivative, where simply an
application of threshold to the filtered image leads to the desired differentiation of inner
and out lane boundaries.

The first derivative of a Gaussian in x direction is

G1(x, y) =
∂

∂x
G(x, y) =

∂

∂x

(
e−

x2+y2

σ2

)
= −2x

σ2
· e−

x2+y2

σ2 ,

which can be stated in polar coordinates as

G1(r, φ) = − 2

σ2
· r cos φ · e−r2

= − r

σ2
e−r2 ·

(
eıφ + e−ıφ

)
.

As a consequence only a minimum of two basis filters are required to steer the filter. The
formula for the interpolation functions becomes (according to Equation (A.6))(

cos θ
sin θ

)
=

(
cos θ1 cos θ2

sin θ1 sin θ2

) (
k1(θ)
k2(θ)

)
.

To determine a separable steerable basis set it is sufficient to sample the two derivatives
in x and y direction, which are

Gx = −2x · e−(x2+y2)

Gy = −2y · e−(x2+y2).

Because Gy is rotated by -90◦ compared to Gx the interpolation functions yield in

k1(θ) = cos θ

k2(θ) = − sin θ,

and the complete solution for the separable steerable first derivative of a Gaussian is

Gθ
1(x, y) = cos (θ) ·Gx(x, y)− sin (θ) ·Gy(x, y).

46 CHAPTER 5. LANE MARKING EXTRACTION

(a) Gx (b) Gy

Figure 5.12: Separable steerable basis set for the first Gaussian derivative

f1 0.0026 0.0450 0.2833 0.5445 0 -0.5445 -0.2833 -0.0450 -0.0026
f2 0.0008 0.0176 0.1660 0.6383 1 0.6383 0.1660 0.0176 0.0008

G1 basis filter filter in x filter in y

Gx f1 f2

Gy f2 f1

Table 5.2: 9-tap filters for x-y separable basis set for first derivative G1

The one-dimensional kernels for the two basis filters are obtained in the same way, as
described in the approach for the second derivative. Again they where normalized so that
the integral of their square equals one, which resulted in a coefficient of 0.6366 for both
Gx and Gy. Table 5.2 lists the finally used filters and their usage for a two-dimensional
filtering. In Figure 5.13 the basis filters are displayed, as well as the outcome for a rotation
of 60◦.

When applied to a video frame, the filter showed a rather good performance. However,
to detect the inner boundary of lane markings, the filter orientation as listed in Figure
5.10(a) does not hold true anymore. For the right hand part of the image the outer
boundaries are detected. Therefore, the filter orientation was modified by 180◦ leading to
the orientations in Figure 5.14. The result finally obtained for the edge detection step in
my approach is displayed in Figure 5.15.

5.4 Threshold Computation

To gain an explicit image of the detected edges, it is appropriate to convert the image into
a binary representation, where the value 1 specifies an edge and value 0 is background. For
this purpose it is necessary to define a threshold. All values greater than this threshold
are set to 1, all smaller this threshold are set to 0.

For developing and testing my algorithm I used Matlab and for the computation of a
threshold explicitly the function graythresh, which is an adaptive method. It uses Otsu’s

5.4. THRESHOLD COMPUTATION 47

−2
0

2

−2
−1

0
1

2

−0.5

0

0.5

x
y −2

0
2

−2
−1

0
1

2

−0.5

0

0.5

x
y −2

0
2

−2
−1

0
1

2

−0.4

−0.2

0

0.2

0.4

x
y

Figure 5.13: Separable steerable basis filter set for the first first Gaussian derivative, as well as the
result for a rotation of 60◦.

90°

75°

60°

45°30°15°0°-15°-30°-45°

-60°

-75°

-90°

-80°

-65°

-50°

-75°

-55°

-35°

-55°

-35°

-20°

-25°

-10°

260°

245°

230°

155°

235°

215°

235°

215°

200°

205°

190°

0° 180°

180°195°
210°

225°

250°

265°

Figure 5.14: Modified filter orientation for the approach based on the first Gaussian derivative

Figure 5.15: Example video frame determined with steerable filter based on the first derivative of a
Gaussian

48 CHAPTER 5. LANE MARKING EXTRACTION

method [26], which chooses the threshold to minimize the intraclass variance of the black
and white pixels. This also means that it maximizes the between class variance. Hence,
the threshold is always set in a way, that that all important edges are represented as a
binary 1 and are perfect separated from the background.

Indeed, this method is not practical for my implementation on the mobile phone. It
simply produces too much computational effort. However, I found that the threshold
keeps quite constant over the frames of a video. For an original gray level input image
with an value range from 0 to 255, the computed threshold was balanced about a value of
50. Therefore, I tried to implement a constant threshold and figured out, that the result
was not much worse than with the dynamicly calculated threshold. For this reason in my
mobile phone application the threshold is set to a constant value.

5.5 Performance Evaluation

The Sobel filter and the finally derived steerable filter G1 were applied to a number of
different video frames and compared to each other. It turned out that the steerable filter
performs better in certain situations. While lane markings are detected similarly well, the
Sobel filter additionally detects edges of passing cars or other similar objects. Because the
steerable filter is tuned in direction of the lines, it is possible to suppress such interferences.
The images in Figure 5.17 illustrate results for several video frames.
The Sobel filter can be seen as a very rough approximation of the first derivative of a
Gaussian. Hence, it would also be possible to orient the Sobel filter like the steerable
filter with S = cos θ · Sx − sin θ · Sy. However, the result is not sufficiently improved.
This comes from the small filter size of the Sobel filter. It simply is not big enough to
satisfactorily steer the filter.

Performing both filters on a set of 250 video frames it turned out that the steerable filter is
hardly slower than the Sobel filter. The diagram in Figure 5.16 illustrates measurements
for a resolution of 320× 120 and 160× 60 pixel, performed on the development PC.

Because of the better detection results and the small difference in processing time, it is
more promising for the following line extraction to use an image filtered with the steerable
filter G1.

5.5. PERFORMANCE EVALUATION 49

5

10

15

13
.5

10
.5

6.
1

4.
9

160x60

ste
er

ab
le

filt
er

Sob
el

filt
er

ste
er

ab
le

filt
er

So
be

l fi
lte

r

320x120
t [s]

E
dg

e
de

te
ct

io
n

tim
e

fo
r 2

50
 fr

am
es

Figure 5.16: Performance of steerable and Sobel filter, operating on a set of 250 frames with a
resolution of 320x120 and 160x60 pixels

Figure 5.17: Image frames filtered with Sobel filter on the left and steerable filter on the right.

50

51

Chapter 6

Postprocessing of Edge Images

In this section the approach is described how the edge filtered image from Chapter 5 is
processed further on. The goal of the postprocessing is to find and extract lines in the
filtered image. Attention was payed to a robust and fast algorithm, which works properly
for different kinds and shapes of roads.

First a mathematical representation of lines is given, which is used further on to describe
the detected lines in the image. After that sections are following about the main concept
behind finding and parameterizing lines in the image. Some methods are presented to
locate outliers and discard incorrectly detected lines. Afterwards an algorithm is described
to cluster potential lines. At the end a short recapitulation is given about the discussed
line detection and graphical results of the method are illustrated.

6.1 Line Representation

There are a few ways to describe a line in an image plane. One way is to express the
coordinate y with respect of x, like y = k · x + d, where k denotes the slope and d the
point where the line intercepts with the y-axis. The disadvantage of this representation is
that vertical lines would need an infinite slope. However, a parametrization with k = ∞
is not suitable for further computation.

Another way to parametrize a line is using a implicit form with

a · x + b · y + c = 0, (6.1)

where the parameters a, b and c are defined only up to scale. Multiplying both sides of
the equation by a constant still describes the same line, but with different parameters a,
b and c.

Writing this representation in vector notation(
a b

)
·
(

x
y

)
+ c = nT ·

(
x
y

)
+ c = 0

52 CHAPTER 6. POSTPROCESSING OF EDGE IMAGES

leads to the normal form equation of a line with the normal vector n perpendicular to the
line. n has the two entries a and b.
Dividing both sides by the norm of n eliminates the problem with multiple parameter
sets for one and the same line as stated above. The equations become

nT ·
(

x
y

)
+ c

‖n‖
= 0

and further on

nT
0 ·

(
x
y

)
= d.

This representation is nothing else than the Hesse normal form, where

n0 =

(
a
b

)
√

a2 + b2

and
d = − c√

a2 + b2
.

Note that d is the distance from the line to the origin. Later on this correlation will be
used to compute the distance of a line to an arbitrary point like the vanishing point.

Every point r on the line may also be described in parameter form with

r = r0 + λ · u, (6.2)

where r0is an arbitrary point on the line and u is a vector pointing into the direction of
the line.

While the first parametrization with k and d is useless for my further approach, both,
parameter set

[
a b c

]
and parameter representation with r0 and u will be used.

6.2 Tile Segmentation

After edge detection an image might look like the one in Figure 6.1 and is represented
via a binary image with

b(x, y) =

{
1 for pixels belonging to a line
0 for background pixels

.

The idea behind detecting lines in the binary image is to split up the image in several
square tiles. With an appropriately chosen size each tile will contain just one part of
a line. Experiments have shown that a segmentation in 16 × 6 tiles leads to the best

6.2. TILE SEGMENTATION 53

Figure 6.1: Sample binary image after edge detection

results. For a used image size of 320×120 pixel this results in an tile size of 20×20 pixel.
For an image size of 160 × 60 pixel as used for the mobile phone and explained in the
implementation part this results in a tile size of 10 × 10 pixel. Note that the following
representation is shown with twice the size of the tiles than used in the algorithm, as it
is more meaningful for demonstration and explanation.

For each tile a point lying on the line and the direction vector of the line are calculated.
Referring to Equation (6.2) the found line is completely parametrized.
For this reason the image area is calculated first via

A =
∑

x

∑
y

b(x, y).

To exclude tiles with insufficient features from further calculations, the ones with an area
smaller a constant threshold are skipped. It is pointed out that a value of 5 is well
performing.

To get an arbitrary point on a line I decided to calculate the tile’s center of mass. If a
tile contains just one line, its centroid matches exactly with the centroid of the illustrated
line. Therefore, it is possible to calculate one point on a line by computing the image’s
centroid, which is given by the 1st moment of the object. The equation for the x and y
coordinate are

xM =

∑
x

∑
y

x · b(x, y)∑
x

∑
y

b(x, y)
=

∑
x

∑
y

x · b(x, y)

A

and

yM =

∑
x

∑
y

y · b(x, y)∑
x

∑
y

b(x, y)
=

∑
x

∑
y

y · b(x, y)

A
.

The result for this step can be seen in Figure 6.2. In the last row there are some tiles with
interferences, which do not belong to lines representing a lane. It can also be noticed that
there are some tiles, where the center of mass does not lie on any line. This is the case,
if two or more discontiguous features have been extracted in one tile. In the following
process such outliers have to be detected and discarded.

54 CHAPTER 6. POSTPROCESSING OF EDGE IMAGES

Figure 6.2: Calculated centroids for each tile

Figure 6.3: Dashed line with center of mass

One might think that it is sufficient to evaluate the pixels in the neighborhood of the
centroid. If the value of at least some of the pixels is 1 and, therefore, characterizing a
detected feature, the center of mass is lying on a line. If not, there are some interferences
in the tile and the tile can be rejected. Although this might be correct in the majority
of cases, there is one situation where the method fails. Imagine a dashed line like in
Figure 6.3. The center of mass is calculated correctly and is lying on the extension of the
lane marking, but the neighborhood pixels are all of value 0. As it would be incorrect to
skip that tile, a neighborhood evaluation is not promising and other actions are required
later-on.

To be able to find the direction vector of the line, I decided to perform a so called Principal
Component Analysis. This computation of the principal axes of a binary object can be
easily done, implementing an eigenvalue decomposition of the covariance matrix for every
tile. The ratio of the eigenvalues says something about the shape of the extracted feature
and the eigenvector belonging to the greater eigenvalue is showing in direction of the
greatest variance.

For the following calculation the coordinate system origin is shifted into the detected
center of mass, leading to the substitutes

x′ = x− xM

y′ = y − yM . (6.3)

The covariance matrix is built upon the three 2nd image moments, which are σ2
xx, the

variance of the binary image for the x-direction, σ2
xy, the correlation between the x and y-

6.2. TILE SEGMENTATION 55

directions, and σ2
yy, the variance of the binary object for the y-direction. These variances

can be computed as

σ2
xx =

∑
x′

∑
y′

x′2 · b(x′, y′)

σ2
xy =

∑
x′

∑
y′

x′ · y′ · b(x′, y′)

σ2
yy =

∑
x′

∑
y′

y′2 · b(x′, y′)

and are combined to form the covariance matrix

C =

(
σ2

xx σ2
xy

σ2
xy σ2

yy

)
.

In the 2 × 2 covariance matrix C there are two eigenvalues λ1 and λ2 as well as two
eigenvectors q1 and q2. The general eigenvalue decomposition is

QDQT =
(

q1 q2

)
·
(

λ1 0
0 λ2

)
·
(

qT
1

qT
2

)
= C.

For extracting these values the following derivation holds true:

C · q = λ · q
(C− I · λ) · q = 0̃ (6.4)

The eigenvalues can be calculated by working out the well known characteristic polynomial

λ2 −
(
σ2

xx + σ2
yy

)
· λ +

(
σ2

xx · σ2
yy −

(
σ2

xy

)2
)

= 0

where the roots are the solution for the eigenvalues

λ1,2 =
σ2

xx + σ2
yy

2
±

√(
σ2

xx + σ2
yy

2

)2

−
(
σ2

xx · σ2
yy −

(
σ2

xy

)2
)
. (6.5)

Because the covariance matrix is symmetric (c12 = c21), the solution for (6.5) are two
different positive real eigenvalues.

With the knowledge of the eigenvalues, the two eigenvectors can be computed by inserting
λ1 and λ2 respectively in (C− I · λ) and solving the linear equation (6.4) for q. Note that

56 CHAPTER 6. POSTPROCESSING OF EDGE IMAGES

the matrix (C− I · λ) does not have full rank, therefore q can be determined by solving
just one row. The eigenvectors are

q1 =

(
λ1 − σ2

yy

σ2
xy

)
= k1 ·

(
σ2

xy

λ1 − σ2
xx

)
q2 =

(
λ2 − σ2

yy

σ2
xy

)
= k2 ·

(
σ2

xy

λ2 − σ2
xx

)
(6.6)

k1 and k2 are just constants. The eigenvectors can be computed by either one expression.
If normalized to length 1, both terms are the same and k equals to1.

Suppose that λ1 > λ2. These eigenvalues describe the variances of the binary tile along the
major and minor principal axes, i.e. q1 and q2. The greater eigenvalue λ1 is identical to
the maximum intensity, while λ2 stands for the minimum intensity in the tile. As a result,
a tile like the top left in Figure 6.2 showing just one part of a line has got a high variance
in direction of the line and a low variance in direction normal to the line. Therefore, the
ratio λ1

λ2
will be a high value, enabling to skip all tiles where the ratio is below a certain

threshold. I found out, that a threshold between 5 and 10 leads to the best results,
skipping areas with no lines in it, but still taking tiles into account where a thick line
(lower ratio) has been determined. Figure 6.4 shows an example containing three different
tiles with the center of mass marked in red and the direction of the eigenvector belonging
to the greater eigenvalue in blue. The second eigenvector would lie perpendicular on the
one shown.

x

y

(a) (b) (c)

Figure 6.4: Three sample tiles with center of mass and major principal axes

tile (1) (2) (3)

eigenvalues λ1,2 =

{
6890
9.2

λ1,2 =

{
5515
979

λ1,2 =

{
8604
57

eigenvalue ratio 745.4 5.63 150.9

major eigenvector q1 =

(
−0.98
0.2

)
q1 =

(
−0.95
0.32

)
q1 =

(
−0.92
0.39

)
Table 6.1: Results for the three images in Figure 6.4

6.2. TILE SEGMENTATION 57

In tile (a) the line has been perfectly detected. In tile (b) there are some interferences
caused by imperfect edge detection. However, a look in Table 6.1 shows, that the eigen-
value ratio for this image is less compared to the first one, enabling to discard the line
found. Inspecting the results for tile (c) shows an interesting problem of the method.
There are two small features detected in the image causing a high variance in direction
of the computed major principal axis. However, the detected line does not match with a
real line in the image at all. Analyzing the eigenvalue ratio with an value of 150.9 demon-
strates that this detected line cannot be rejected by a simple eigenvalue ratio threshold.
Thus, there are further actions required for evaluating the computed lines. This is done
in the next step of my algorithm, where the distance of the line to the vanishing point is
calculated (see section (6.4)).

Figure 6.5 shows the result for sample image in Figure 6.1 for the principal component
analysis. The threshold for eigenvalue ratio was set to 10 in this example.

Figure 6.5: Result for principal component analysis with an eigenvalue ratio threshold of 10

The covariance matrix is symmetric and positive semi-definite, which means that all eigen-
values are positive or zero. Therefore, the eigenvalues and eigenvectors are identical to the
singular values and singular vectors. Instead of performing an eigenvalue decomposition,
it is also possible to implement a singular value decomposition

USVT = C,

with

U =
(

q1 q2

)
S =

(
λ1 0
0 λ2

)
V = U.

U and V are orthogonal matrices, which must not be the case for Q in the principal
component analysis. S contains the singular values in decreasing order. The last statement
V = U holds true, because C is a symmetric matrix.

For matrices of greater size the singular value decomposition can be computed faster than
the eigenvalue decomposition. In my case with a 2 × 2 covariance matrix, computing

58 CHAPTER 6. POSTPROCESSING OF EDGE IMAGES

the eigenvalues and eigenvectors with the Equations (6.5) and (6.6) cannot be done more
efficiently.

6.3 Finding Global Line Parameters

For every tile where the eigenvalue ratio was not below the defined threshold, the calcu-

lated line is described by the center of mass

(
xM

yM

)
and one eigenvector q in direction

of the line. For clarity this eigenvector is written as v further on. Referring to the line
parametrization in section 6.1 in parameter form (Equation (6.2)) the line is completely
described by

l(k) =

(
xM

yM

)
+ k · v.

However, this parametrization is not suitable for further calculations and is just valid
inside the tile. To express the lines in the coordinate system of the whole image a param-
eterization is necessary.

y im
g

ximg

image origin

center of mass
(xM, yM)

eigenvector
q = v

subimage origin

(n-1)*resolution xM

(m
-1

)*
re

so
lu

tio
n

y M

size s

si
ze

 s

y

x

nn-1... n+1

m

m-1

m+1

detected line

y’

x’

n0

Figure 6.6: Correlation between tile and image coordinates

Figure 6.6 illustrates the correlation between the tile coordinates considered so far and
the image coordinates. Note that in an image the coordinate origin is in the top left
corner with the y-axis facing downwards. In Figure 6.6 the y-axis faces upwards for a

6.3. FINDING GLOBAL LINE PARAMETERS 59

more familiar representation. All the following derivations are valid just as they are, hence
horizontally flipping the image results in the shown coordinate system.

Let x′ and y′ be a coordinate system with its origin in the center of mass, as previously

denoted and illustrated in Figure 6.6. A line in direction of the eigenvector v =

(
v1

v2

)
can than be described as y′ = v2

v1
· x′ or in an implicit notation with

v1 · y′ − v2 · x′ = 0.

Referring to the substitution from Equation (6.3) this becomes

v1 · (y − yM)− v2 · (x− xM) = 0. (6.7)

A further investigation of the schema in Figure 6.5 yields to the relation

ximg = (n− 1) · s + x

yimg = (m− 1) · s + y

or solved for x and y

x = ximg − (n− 1) · s
y = yimg − (m− 1) · s, (6.8)

where the variable s states the size of one tile in pixels.

Values m and n in Figure 6.6 describe the two-dimensional index of the tile in relation to
the whole image. Their range is from 1 to image width

size
or image height

size
respectively. Equation

(6.8) inserted in (6.7) results in the final line parameterization in dependence of the image
coordinates

v1 · (yimg − (m− 1) · s− yM)− v2 · (ximg − (n− 1) · s− xM) = 0

−v2 · ximg + v1 · yimg + v2 · ((n− 1) · s + xM)︸ ︷︷ ︸
x−offset

− v1 · ((m− 1) · s + yM)︸ ︷︷ ︸
y−offset

= 0.

Compared to Equation (6.1) the three parameters a, b and c have got the following values

a = −v2

b = v1

c = v2 · ((n− 1) · s + xM)− v1 · ((m− 1) · s + yM) . (6.9)

Thess three parameters are further used to describe a line. If ensured that the eigenvalues
are normalized, i.e. their length equals 1, the above parametrization is unique. Moreover,
it is exactly the Hesse normal form with the normal vector

n0 =

(
a
b

)
=

(
−v2

v1

)
.

Because the second eigenvector belonging to the smaller eigenvalue always lies perpendic-
ular to the detected line, n0 equals q2, with ‖q2‖ = 1.

60 CHAPTER 6. POSTPROCESSING OF EDGE IMAGES

6.4 Plausibility Check for Detected Lines

The previous steps of my algorithm provided a robust and fast method for detecting lines
in an edge filtered image. However, it cannot be assured that all lines detected belong
to lane markings, but represent some other features. In Figure 6.4 tile (c) is an example
given, where a line is detected by the algorithm, which does not exist in reality.
As the recorded image of the road shows a perspective distortion, all lines proceed to one
point called the vanishing point. To be able to detect wrong lines I decided to measure
the distance from every line to the vanishing point, enabling to discard lines where the
distance is greater than a certain set threshold.

A distance measurement can be easily done, if the line is parametrized in Hesse normal
form. With the parameter set

[
a b c

]
this is

(
a b

)
·
(

ximg

yimg

)
+ c = 0. (6.10)

Equation (6.10) only holds true if the image point lies on the line. However, if this is
not the case, the result equals the distance of the point to the line. Therefore, a distance
measurement is done by inserting the vanishing point noted as

vp =

(
xvp

yvp

)
in (6.10), which leads to the final formula

d =
(

a b
)
· vp + c,

with d being the distance to the vanishing point.

If the norm of
(

a b
)

does not equal to 1 (the length of the eigenvector was not equal
to 1) the formula must be normalized as

d =

(
a b

)
· vp + c

√
a2 + b2

.

Also note that c has to be divided by the therm
√

a2 + b2, because c includes a and b in
its calculation (see Equation (6.9)).

Figure 6.7 illustrates the different distances, which have been calculated for the sample
image. Lines detected in tiles provided with a distance value in red will be skipped in
the further computation. A distance threshold between 10 and 30 has generated the best
performance.

So far it has not been stated how the coordinate values of the vanishing point are evaluated
and set. In most images the vanishing point lies in the middle on the top border, but this
might be a rough approximation. Thus, the vanishing point is calculated dynamically for

6.5. CLUSTERING DETECTED LINES 61

every frame with the information of the previously found lines. Actually for initialization,
coordinates of the middle of the top image border are assigned to the vanishing point.
Note that the vanishing point does not have to lie inside the image. As it is just used for
computation, the coordinates may also have negative values if situated outside the image
area.

Figure 6.7: Distance from vanishing point for the detected lines

6.5 Clustering Detected Lines

After analyzing each tile, a set of potential lines has been found. Despite the exploration
of image area, eigenvalue ratio and distance from the vanishing point to reject wrong
detected lines, there still may be some outliers which do not match with a lane marking
in reality. Moreover, for one and the same lane marking multiple parameter sets can be
existent. This is because features of a lane marking filtered by edge detection are likely
to be present in more than just one tile.

Figure 6.8(a) displays the parameter sets [a b c] as introduced in Equation 6.9 for the
lines detected in the example image used throughout this paper. It can be seen that line
1 and 3 almost have got the same parameters. The same holds true for lines 2 and 4, as
well as for line 5 and 6. The parameter set of line 7 just occurs once.

For the clustering a simple distance measurement in the three-dimensional space will be
used. Parameter a and b lie in the range from -1 to 1, as the are the components of the
line’s normal vector, which lengths equals 1. It turned out that the range of parameter c
is about 100 times greater. A distance evaluation with this parameters would not make
sense, as parameter c is weighted a lot stronger. To equally weight the three parameters
and get the distance between the different parameter sets, their values would have to
be scaled considering their statistical distribution. A perfect approach would require to
choose the weights so that the variance of the different parameters is the same. However,
this would need more computational effort, but does not improve my clustering, I decided
to scale the fist two parameters by a predefined constant of value 100. The illustrations
in Figure 6.8 already include this scaling.

62 CHAPTER 6. POSTPROCESSING OF EDGE IMAGES

1 2 3 4 5 6 7
−120

−100

−80

−60

−40

−20

0

20

40

60

80

detected lines

parameter a
parameter b
parameter c

(a) (b)

Figure 6.8: (a) Line parameters for the detected lines; (b) Displayed as points in terms of their
parameters

Having a look at the seven parameter sets display in three-dimensional space, as shown
in Figure 6.8(b) makes clear which lines have to be merged. The distance between the
clustered lines (assigned with a circle) in relation to the distance between the lines inside
such a cluster, demonstrate that a predefined scaling value is sufficient.

To enable an easier understanding of the developed clustering algorithm, Figure 6.9 shows

the different steps. The algorithm starts with the first line l1 =
(

a1 b1 c1

)T
(marked

with a red number in the drawing) determining the distance d to all other lines with the
general formula

d = (l1 − ln)T · (l1 − ln) = (a1 − an)2 + (b1 − bn)2 + (c1 − cn)2 .

If the distance is below a certain threshold, the lines will be clustered. After the first
iteration all found line parameters that belong together are reduced to one parameter set
by calculating the mean value. In the example lines 1 and 3 are merged. The next iteration
of the algorithm observes the remaining lines, again performing a distance measure form
the first (remaining) line to the other (remaining) lines. In the example lines 2 and 4 are
clustered. This procedure is performed until no more lines are left over. Of course it can
happen that no similar line with a low distance is found, as in step 4. If this is the case
the line is discarded and not added to the parameter set of clustered lines. Hence, it is
necessary to find at least two similar lines in the different tiles.

With this additional restriction wrong lines or outliers are rejected, but it might also
happen that correct lines are lost, especially when the lane marking is dashed or in a poor
condition. To work against this loss, lanes found in the previous frame are also taken

6.5. CLUSTERING DETECTED LINES 63

into account in the clustering algorithm. This is possible as the lane markings do not
change abruptly between one frame and the following one, but show a smooth transition.
Therefore, just one line has to be found in the image to follow up an already detected
line, but at least two lines must be located to take a new line into consideration.

Figure 6.9: Visualization of the clustering steps passed through by the clustering algorithm

64 CHAPTER 6. POSTPROCESSING OF EDGE IMAGES

6.6 Dynamic Calculation of Vanishing Point

The vanishing point of the recorded road image always lies in a special area, but changes
dynamically depending on the course of the road. To get better results when evaluating
the currently found line parameters (see 6.4), the vanishing point is recalculated in every
frame.
The detected lines in the previous frame are taken to perform the calculation. With a
least square optimization the intersection of the lines becomes the new vanishing point.
For computing an intersection at least two lines must have been found, otherwise the
previous vanishing point is kept.

Assuming that n lines have been detected and they do not intersect exactly in one point,
a central point is the best approximation for the vanishing point. I use a least square
optimization, which minimizes the sum of the square of distances from all the lines to the
central point. Mathematically a line is represented by the three parameters

[
a b c

]
.

For every point (x, y) on the line the equation

a · x + b · y + c = 0

holds true. In vector notation this becomes

(
a b c

)
·

 x
y
1

 = 0.

Note that
(

x y 1
)T

can be interpreted as a representation of the point in homogeneous
coordinates. With n lines, n parameters sets must be taken into consideration, leading to
the matrix vector notation

a1 b1 c1

a2 b2 c2
...

...
...

an bn cn

 ·

 x
y
1

 = 0. (6.11)

(
x y 1

)T
represents the vanishing point, as it is the only point which lies on all of the

lines and therefore is situated in the intersection of the considered lines. Equation (6.11)
can be rewritten as

a1 b1

a2 b2
...

...
an bn

 ·
(

x
y

)
= −

c1

c2
...
cn

 , (6.12)

leading to the final optimization equation. Expressing the equation as A · x = b, x can
be determined directly via the inverse of A, if A is a 2× 2 matrix. Otherwise the set of
linear equations is overdetermined and x must be calculated by minimizing the norm of
(6.12) via

arg min
x
‖A · x− b‖2 ,

6.7. REVIEW AND RESULTS 65

leading to the well known solution

x = A+ · b =
(
AT ·A

)−1 ·AT · b,

where x is is new vanishing point with the coordinates

(
x
y

)
and A+ is the Moore-

Penrose pseudoinverse. It is easy to show that this calculation also holds true for A
being of size 2 × 2. With the inserted parameters of the previously found lines my final
equation for the vanishing point vp is

vp =

(
x
y

)
=

a1 b1

a2 b2
...

...
an bn

+

·

c1

c2
...
cn

 .

As A has only two columns the term
(
AT ·A

)
always leads to a 2 × 2 matrix, hence

reducing the computational effort for the inversion to a minimum.

To prevent a too intense movement of the vanishing point, the vanishing point of the
previous frame is incorporated as well. The equation for the final smoothed vanishing
point is

vp =
2

3
· vp +

1

3
· vpprev.

6.7 Review and Results

All the discussed steps of my line detection algorithm are shown in Figure 6.10 for a better
understanding of the relation between the different steps. The outcome of the sequence
of operations is a set of parameters describing the detected lines. These lines found are in
combination with the new edge filtered video frame the input parameters for the following
run of the algorithm. For initialization purposes or if no lines have been found, the line
parameter input is empty.

For the example used throughout this paper the lines found and the calculated vanishing
point are illustrated in Figure 6.11. It can be seen that the lane markings are detected per-
fectly and all outliers and incorrectly found lines during this process have been discarded
correctly. Note that only the lower half of the video frame is used for the algorithm, as
the upper part does not contain any lane markings. Therefore, it is not necessary for the
calculation, but shown here for a better demonstration of the road scene.

Figure 6.12 and 6.13 illustrate several road scenes and the detected lines. For the former
the algorithm was implemented in Matlab and video frames had a resolution of 320x120
pixel. The latter shows results obtained from the implemented algorithm on the mobile
phone. Note that the resolution of the images for this reason was 160x60 pixel.

66 CHAPTER 6. POSTPROCESSING OF EDGE IMAGES

Split up image in
multiple tiles

Image after edge
detection

Calculate tile
area

Calculate center
of mass and
eigenvalues

Calculate
eigenvectors

for every tile

no
yes

Eigenvalue ratio greater
threshold?

Tile area greater
threshold?

yes

no

Measure
distance to

vanashing point

Update vanshing
point from previous

detected lines

Distance smaller threshold?

yes

Cluster lines

no

Skip tile /
Skip line

More than one line in
cluster?

Previous
detected lines

no

yes

Paramter set of
detected lines

Figure 6.10: Sequence of operations

6.7. REVIEW AND RESULTS 67

Figure 6.11: Detected lines in example image

Figure 6.12: Results for the implementation in Matlab with a resolution of 320x120 pixels.

Figure 6.13: Results for the implementation in C++ for the mobile phone with a resolution of 160x60
pixels.

68

69

Chapter 7

Implementation of Lane Detection

The implementation of the previously described lane marking detection algorithm has
been split up into two iterations. For the development of the algorithm, the numerical
computing environment Matlab [33] was used. This was advisable, as Matlab offers an
appealing and easy to use development environment. Programming errors occur less often
compared to an implementation in C++. As a result a faster development of the algorithm
was possible combined with the opportunity to give more different approaches a change
and to run a higher number of tests. In addition Matlab provides an image processing
toolbox, which makes it convenient to test different edge filtering techniques.

Nevertheless the implementation in C++ is still important, because the goal was to
use integer operations only. This is because the target platform on the mobile phone
provides no floating point unit (FPU). Instead, such floating point operations are emulated
witch the normal central processing unit (CPU), which increases the computation effort
enormously. Therefore, the attention was to describe values as fixed point numbers in
integer representation, when required.

An explanation of the different developed Matlab scripts can be found in appendix B.2.
The implementation design on the mobile phone is discussed in the following and its
output is presented.

7.1 Mobile Phone Implementation

The implementation in C++ addresses two requirements. Firstly, it has to run smoothly
on the mobile phone. Secondly, it has to be designed in a generic way so that it can be
used on any other platform supporting a C++ compiler. This is necessary, as a further
goal is to implement a lane detection application on the next generation model of the
embedded controller. This controller has an embedded Linux distribution as operating
system. Therefore, the long-term aim is to port the computer vision library OpenCV to
this platform. I have examined, if major functions of OpenCV can be ported to the mobile

70 CHAPTER 7. IMPLEMENTATION OF LANE DETECTION

DocumentApplication

ApplicationUIContainer Camera

ApplicationUI CameraAdapterEngine LaneDetector

1 1

1

1

1

1

1 1

1

1

1 1

CwMtx

Symbian OS
independent part

Figure 7.1: The application design with separation in platform dependent and platform independent
parts.

phone. Because the library uses platform specific commands to obtain for example single
clock ticks, it would be required to write a software layer between Symbian and OpenCV,
which offer these interfaces. One solution could be to use the cross platform multimedia
library SDL [30], where a Symbian port is in development. As this could be the task for
another research project, I had to go for a different solution. After some investigations
I decided to write the core functions for image processing myself, as no adequate library
was available which would also run on Symbian.

Because the GUI programming for the mobile phone is very restricted and absolutely
platform dependent, only the algorithm for detecting lanes has been implemented ab-
stractly. For the representation of image and matrix calculations I used an open source
library for matrix and vector math, called CwMtx [15]. The library provides classes for
matrix and vector operations that are used extensively in engineering and science prob-
lems. Because the library itself is small and just the header files with the methods really
used for calculations can be included and compiled, the program size keeps small as well.
This is important as memory is rare on the mobile device. Moreover, the library does not
make use of the C++ STL, which is absolutely essential, as Symbian does not provide an
appropriate support. To address the restrictions of Symbian, a few methods using C++
input-output operations via iostream have been modified to use the standard C functions
included in stdio.h.

To address the different goals of the implementation I chose the design illustrated in figure
7.1.

On the left side all the classes are restricted to Symbian. They implement the interface to
the Symbian / Series 60 framework and provide methods for operating the mobile phone’s

7.2. OUTPUT 71

camera as well as for user interaction and a graphical output. On the right side is the
independent class LaneDetector, which comprises the algorithm described so far.

To consider a fixed point representation of small values I multiplied them with a constant
factor before computation and adjusted the result later on. For example the line parame-
ters a and b as mentioned in 6.3 are obtained from the calculated eigenvectors, which are
normalized to length 1. Therefore, both parameters lie in the range of -1 to 1, which is
not suitable for my implementation. The internal representation has been adjusted that
both parameters are 100 times greater leading to a normalized length of 100. With a
strict consideration of scaling in the program code like the one mentioned, the result is
the same as using floating point representation but with a strong speed-up on the device.
For the calculation of eigenvalues the computation of a square root is required. Because
the C library math.h implements this function with a double value, only here a floating
point representation is used.
The interface between the class LaneDetector and an enclosing application is provided
via the use of the CwMtx library. Thus for using the lane detector every image has to be
converted in this format.

A characterization of the developed classes and their functionality is given in Appendix
B.2. An even more detailed description can be found in the online documentation on the
enclosed CD.

7.2 Output

The mobile phone application for lane marking detection works quite satisfactory. How-
ever, there are some restrictions.

The implementation in Matlab operates with an input image size of 320x240 pixels. I
have also tested the implementation on the mobile phone with this resolution, but had
to figure out that the computational effort was too high. The final application works
with half the resolution of 160x120 pixels. This means that only an image of size 160x60
pixels is used for detecting lane markings, because just the lower part contains interesting
information about lane markings and is therefore used.

This results in a tile size of 10x10 pixels, which has to be sufficient for calculating the
eigenvalues and eigenvectors. Compared to the implementation in Matlab, the result is
less accurate. This is especially noticeable in the attempt to detect dashed lane markings.
Because of the small size, eigenvectors may vary more and the distance for clustering lines
belonging together is too large. An increase of the threshold for the distance calculation in
the parameter space does not solve the problem, because then lines not belonging together
would be clustered. This results in a worse output and is therefore not applicable.

In Figure 7.2 screenshots from the different possible views are displayed. Image (a) shows
the applications menu, where the different working and display modes can be chosen. The
following images (b) to (e) illustrate the different outputs on the display.

72 CHAPTER 7. IMPLEMENTATION OF LANE DETECTION

Nevertheless the result of lane detection on the mobile phone is remarkable. The appli-
cation performed perfectly in a long time test without any errors or memory overflows.
However, I found that the application uses quite a lot battery power. After one day of
testing and developing the application, the battery was low again. This is because the
back light of the phone was always turned on. On the other hand a mobile device normally
remains in a suspended mode using almost no power and allows a standby time of about
one week. As my application has a high computational effort for a mobile phone, the
power consumption is automatically a lot higher. A professional usage of such a system
in a car would, therefore, require additional external supply of electrical power.

7.2. OUTPUT 73

(a) (b) (c)

(d) (e)

Figure 7.2: Screenshots from the application performing the lane marking detection algorithm.
(a) Applications menu
(b) Direct video input
(c) Detected edges in the road scene
(d) Binary image of the edge detected image
(e) Detected lane markings drawn in the original frame

74

75

Chapter 8

Conclusion

This thesis presents an approach for robot control and lane detection with mobile phones.
An application to remotely control an EyeBot controller has been developed. The atten-
tion was put on a clear design and an abstract implementation of the connection specific
parts. As a result, the application is reusable for other possible connections, e.g. a serial
communication.
The chosen Bluetooth link performed well. It is possible to easily connect to devices in
range and control them via the mobile phones buttons. The application was designed to
operate with several remote controllers at a time.
However, there appeared some limitations. The Nokia 6260 mobile phone is not capable
of establishing more than one Bluetooth link with the available API. Problems occurred
with receiving a continuous large stream of data. I figured out that the mobile phone
was not fast enough to read out the connection buffer. Furthermore, displaying text and
graphics at the phone’s screen implicates a high computational effort. As a result, in-
dividual images sent from the EyeBot to the mobile phone can be handled, but not a
continuous image stream.

Developing applications for Symbian OS and the Nokia S60 platform is a challenging task.
Symbian is an open platform for the mass-market covering a variety of different mobile
phones. With the consequence of several limitations and restrictions concerning program
design. But with proper use of the coding conventions and APIs, Symbian offers a lot
possibilities for further development and the mobile phone can be used as an embedded
system alternative.
For small projects a development in C++ for Symbian OS is not recommended in my
opinion. However, there is an open source project with the intention to provide a Phyton
interpreter for the Nokia S60 platform [9]. Support for Bluetooth and a camera API
are already included so far. This is promising for the future, as it tends to enable rapid
application development and the ability to create stand-alone S60 applications written in
Python.

This thesis evaluated several approaches for lane marking detection and investigated an ef-
ficient, low computational algorithm, which was finally implemented on the mobile phone.

76 CHAPTER 8. CONCLUSION

To take the specific orientation of lane markings in a recorded image into consideration,
an edge detection based on steerable filters was investigated. Only the inner side of lane
markings was detected to prevent a costly clustering of detected lines belonging together.
The finally chosen separable steerable filter was based on the first Gaussian derivative.
As expected the output was more accurate compared to the simple Sobel filter, however
it required about 30% more calculation time.
For the extraction of line parameters the edge image was separated into several tiles. A
separation in 16× 6 tiles performed best. Each tile was evaluated in terms of its variance
by performing an principal component analysis of the covariance matrix.
To discard outliers not representing a line in reality, four conditions were defined which
had to be met. Hence, the image moment and eigenvalue ratio had to lie above inves-
tigated thresholds. The distance of the detected lines to the vanishing point and the
number of possible clustered lines were evaluated to reject false lines.
A dynamic vanishing point update was performed by a least square optimization. It was
shown that the included inversion was just applied to a 2× 2 matrix, thus not leading to
an increase in computational effort.

The lane detection algorithm was implemented independent from the Symbian platform
using standard C++ and an additional matrix library to run on any platform. All com-
putations were performed with a fixed point integer representation. This was advisable,
as embedded devices usually do not include a floating point unit.

The algorithm works reliably to detect solid lane markings. Dashed lane markings are
detected most of the time. Possibilities for further improvements of the detection rate
could be considered.
Optimization of edge filtering would automatically lead to better results. An adaptive
threshold combined with non-maxima suppression would increase the accuracy of the bi-
nary image. As a result the orientation of eigenvectors would exactly match the lane
marking direction.
Enhancemet of the detection of dashed lines could be achieved by involvement of already
detected lines over a longer period of time in the algorithm. With the additional infor-
mation an estimation of possible lines can be stated, even if there is no line detected in
the current iteration.
Of course all these adaptations lead to a higher computational effort. Indeed, the mobile
phone application already faces the restriction that the image size was set to 160x60 pixels
to run smoothly, compared to twice the size of 320x120 on the PC. The processing speed
may be improved by using a smaller filter size for edge detection or by using an optimized
image processing or matrix library, rather than using hand-written code. Finally newer
mobile phones will offer a more powerful processor.
In any case a tradeoff between accuracy and processing speed has to be made to find the
optimal performance.

Appendix A

Mathematical Background

A.1 Edge Detection

A problem encountered is the definition what an edge in an image really is. The usual
approach, which is also used in this paper is to define edges by means of discontinuities
in the image signal, which is similar to a steep intensity gradient. The method used
for detecting this discontinuities often becomes one of finding local maxima in the first
derivative of the image signal, or zero-crossing in the second derivative as shown in figure
A.1.

To calculate the intensity gradient of an image with intensity function f(x, y), the first
derivative in both directions has to be calculated. Thus the gradient is a vector composed
of partial derivatives

∇f(x, y) =

(
∂f

∂x
,

∂f

∂y

)
= (fx, fy) .

The gradient vector points in the direction of most rapid change in intensity and its
direction is given by

Θ(x, y) = arctan

(
fy

fx

)
. (A.1)

Related to edge detection in an image, the edge strength is given by the gradient magni-
tude

M(x, y) = ‖∇f(x, y)‖ =
√

f 2
x + f 2

y . (A.2)

For the second derivative, the Laplace operator is used on the image. It is a scalar
composed of second order partial derivatives

∇2f(x, y) =
∂2f

∂x2
+

∂2f

∂y2
.

77

78 APPENDIX A. MATHEMATICAL BACKGROUND

Im
ag

e
si

gn
al

x

x

x

1st
 d

er
iv

at
iv

e
2nd

 d
er

iv
at

iv
e

maximum

zero
crossing

minimum

low low

high

Figure A.1: First and second derivative of one dimensional image signal (slice through image)

In discrete images, partial derivatives are approximated by finite differences

∂f

∂x
[x, y] ≈ f [x + 1, y]− f [x, y] .

Thus it is obvious to calculate the gradient by simply taking the difference of intensity
values between adjacent pixels. The easiest way to this is to convolute the image with a
discrete filter, like [−1, 1]. Note, that with this convolution mask it is not clear, where
to save the result, because it is not possible to place it between the pixels. To overcome
this problem, it is preferable to use a filter mask with an odd number of entries, hence
the result can be assigned to the middle pixel.

By approximating the second derivative via

∂2f

∂x2
[x, y] =

∂f

∂x
[x + 1, y]− ∂f

∂x
[x, y]

≈ f [x + 2, y]− 2f [x + 1, y] + f [x, y] ,

an odd filter mask like [1, −2, 1] is calculated automatically.

An example convolution mask for the approximated gradient in x direction would be the
Prewitt operator

-1 0 1
-1 0 1
-1 0 1

It is the simplest and fastest operator. Its mask for the y direction is obtained by a 90◦

rotation of the given one. Note that for every operator the sum over all entries has to be
zero, since it should not react to flat regions in the image.

A.2. STEERABLE FILTERS 79

Once the derivative is calculated the next stage is to apply a threshold to determine where
the result suggests and edge to be present and saving the result as a binary image. Setting
the threshold at a low level allows to detect more lines, but the outcome gets increasingly
sensitive to noise. On the other hand setting the threshold at a high level may result in
missing important edges or in segmented lines. Thus choosing the right threshold is an
important step to get a suitable image representing the detected edges.

A.2 Steerable Filters

An edge located at different orientations in an image can be detected by splitting the image
into orientation sub-bands obtained by basis filters. The final filter, generally donated as
two dimensional function f(x, y) can then be written as linear sum of rotated versions of
itself. Hence f(x, y) is said to be steerable if it can be expressed at an arbitrary rotation
θ with

f θ(x, y) =
M∑

j=1

kj(θ) · f θj(x, y). (A.3)

f θj(x, y) is a rotated version of f(x, y) at angle θj and kj(θ) for 1 ≤ j ≤ M are the
interpolation functions as well dependent from θ. In the following analysis it will be
shown what functions f(x, y) can satisfy (A.3), how many terms M are needed and what
the interpolation functions kj(θ) are.

In polar coordinates with r =
√

x2 + y2 and φ = arg(x, y) for function f can be expanded
into the Fourier series

f(r, φ) =
N∑

n=−N

an(r) · eınφ. (A.4)

Substituting terms in equation (A.3) by their Fourier decomposition according to (A.4)
results in the relation

N∑
n=−N

an(r) · eınθ =
M∑

j=1

kj(θ) ·
N∑

n=−N

an(r) · eınθj (A.5)

The exponent is not any more dependent on φ, but on the steering and basis angles θ and
θj, because both sides have been projected onto the complex exponential eınφ. Extracting
the sum over n on the right side of (A.5) leads to

an(r) · eınθ =
M∑

j=1

kj(θ) · an(r) · eınθj ,−N ≤ n ≤ N.

If an(r) 6= 0 both sides are divided by an(r), otherwise the constraint for that specific n
is removed for the set. The equations for −n and n are redundant, therefore it is possible

80 APPENDIX A. MATHEMATICAL BACKGROUND

to consider just positive frequencies int the range of 0 ≤ n ≤ N . The resulting

eınθ =
M∑

j=1

kj(θ) · eınθj , 0 ≤ n ≤ N and an(r) 6= 0

can be written is matrix vector notation like
1
eıθ

...
eıNθ

 =

1 1 · · · 1

eıθ1 eıθ2 · · · eıθM

...
...

. . .
...

eıNθ1 eıNθ2 · · · eıNθM

 ·

k1(θ)
k2(θ)

...
kM(θ)

 . (A.6)

Theorem: The steering condition (A.3) holds for functions expandable as Fourier series
if and only if there exists a set of interpolation functions kj(θ) satisfying the matrix
equation (A.6).

As mentioned before, if for any an(r) = 0 with −N ≤ n ≤ N , then the corresponding
nth row will be removed. Therefore the number T of nonzero Fourier coefficients an(r)
gives the minimum number of basis functions required for steering condition. That is that
M ≥ T in (A.6). A detailed derivation of this conclusion id given in [10].

The resulting T basis function orientations θj must be chosen in order to provide that the
columns of matrix in equation (A.6) are linearly independent. To achieve this requirement,
it is sufficient to take angles between 0 and π. Moreover for reasons of symmetry and
robustness against noise they should be spaced equally in the domain. All functions,
which are bandlimited in angular frequency are steerable, hence a finite Fourier series
can be expressed. In practice the most useful functions are those which require a small
number of basis filters.

Appendix B

Implementation Description

B.1 Communication Implementation

User interface specific classes

Class name Description

RemoteBTApp This is the application class, predetermined by the S60
application design. It creates the applications document.

RemoteBTDocument Describes the applications document. The class is also
predetermined by the S60 application structure for GUI
applications. Its purpose is to create the application UI.

RemotBTAppUI The class for the application user interface provides support
for user input handling, the Symbian own control architecture
and for view management. Moreover, RemotBTAppUIencloses
a connection to the socket server. This is necessary to be able
to create further connections to a remote device via a socket
architecture. It also creates the MainView and a
RemoteSessionList, where all currently active
RemoteSessions are stored.

MainView MainView represents the start screen and handles user inputs
as well as activation and deactivation of this view. It creates
the MainViewContainer to enable updates of the view.

MainViewContainer MainViewContainer includes all component controls of the
main view and updates them on changes. As a result it
handles occurring control events. A session can be created or
closed by selecting the corresponding list box entry, the class
provides functions for RemoteSession construction and
deletion. However, if a remote session is instantiated
successfully the ownership is transferred to the
RemoteSessionList of the application engine.

81

82 APPENDIX B. IMPLEMENTATION DESCRIPTION

Class name Description

RemoteView The RemoteView simulates the EyeBot controller LCD. It
displays exactly the same data. For this reason it includes
functions which execute the commands extracted from the
received messages. To be able to also update data in the
background, if the view is not active the class contains a class
Display, which stores the content of the display.

RemoteViewContainer RemoteViewContainerupdates the RemoteView on changes.
It reads data to show from Display and writes them to the
remote view. For this reason there are several functions to
update text and graphics independent and only the parts,
which have really been changed. Further, it converts positions
in the coordinate system of the EyeBot LCD into the
coordinate system on the mobile phone’s screen.

B.1. COMMUNICATION IMPLEMENTATION 83

Engine specific classes

Class name Description

RemoteSession RemoteSessionis the main class for every new created session
to a EyeBot controller. It includes the finite state machine
mentioned in 4.1.4.

RemoteSessionList RemoteSessionListsubsumes all currently active
RemoteSession objects and manages them. It offers methods
for adding and deleting sessions. It is also an active object to
enable a RemoteSession to delete itself. For this purpose a
session can call RemoteSessionList::DeleteSession() and
the session will be marked to be deleted next. With the next
call of RunL() of the active object RemoteSessionList the
session will be finally destroyed, thus allowing the
RemoteSession to go into a save state before destruction.

Message Messagerepresents the message protocol structure, which is
used for communication. It offers methods for creating and
modifying a message.

Parser The Parser parses the received message and executes the
appropriate extracted command immediately. If it looses
synchronization the beginning of the next start message
signalized via the unique start bit is awaited. Hence data
from the current erroneous received message is lost.

Display Displaystores the current content of the EyeBot’s LCD to
write it to the mobile phones screen. It is also updated if the
according remote session view is not in focus. As a result the
view is always up to date, when in focus. Directly writing to
the mobile phones screen would not make this feature
possible.

Soundplayer Soundplayerenables to play-back a defined sound file on the
mobile phone.

84 APPENDIX B. IMPLEMENTATION DESCRIPTION

Connection specific classes

Class name Description

ConnectionEngine ConnectionEngineis an abstract calls an defines all the
necessary functions to operate with a connection to a remote
controller. These include establishing the connection, sending
and receiving data an closing the connection.

BTConnection This class is inherited from ConnectionEngine. Hence it
implements all the virtual functions for the specific Bluetooth
link.

BTDiscoverer BTDiscovereris called from BTDiscoverer and offers
functions for device inquiry, device selection and a possible
check for available Bluetooth services at the remote
controller. As all EyeBot controller offer the needed serial
connection service for a remote controller, this functionality is
implemented exemplary only.

BTDeviceParam Class to store device specific parameter, as device address,
name and port number. The major device and service class
according to the Bluetooth standard are also included.

B.2. LANE DETECTION IMPLEMENTATION 85

B.2 Lane Detection Implementation

Matlab Files

This section discusses the different developed Matlab scripts to get the lane marking
detection running. The files can be found on the enclosed CD in the directory \matlab.
In the following is the purpose of the main files explained, which have been created

File name Description

extract lines.m function [param, vanishingpoint] =

extract_lines(binaryImg, oldparam, oldvp)

This function contains the line detection and clustering
algorithm as previously explained. Input parameters are
the binary image with the detected edges, the parameter
set of the previously detected lines and the corresponding
previous vanishing point. Return values are the set of
currently detected lines and the undated vanishing point
used for the calculation.

lane detection.m function detectLanes()

This is the main Matlab file. It defines the video where
the lane markings should be extracted. Further on all
necessary initialization for the edge and line detection
steps are done. For a better comparison between the
result of the first and second Gaussian derivative
steerable filter, both tyes can be tested and. Note that
for extracting lines, only the 1stderivative makes sense,
because with the 2nd derivative filter both inner and
outer lane marking boundaries are detected. The edge
filtering with a Sobel filter is as well implemented to
allow a further comparison.

steerable filter basis.m This script generates and displays the basis filters for the
first and second Gaussian derivative.

steerable 1st derivative.m The script includes the generation of the filter coefficients
for the separable filter as well as several illustrations and
an animation of so the gained filter.

display all oriented filters.m The script finally displays the different oriented steerable
filters used for the edge detection.

86 APPENDIX B. IMPLEMENTATION DESCRIPTION

Mobile Phone Implementation Classes

Class name Description

CLaneDetectionApp This class is compulsory for a Symbian GUI application
and comprises the application entry point. It creates the
CLaneDetectionDocument object.

CLaneDetectionDocument This class is compulsory for a Symbian GUI application.
It represents the model of the Model-View-Controller
concept and creates the application UI on start up.

CLaneDetectionAppUi This class is compulsory for a Symbian GUI application.
It is the view in the MVC concept and constructs the
application container as well as the camera adapter
engine. Moreover the application user interface is
responsible for handling user inputs as keystrokes and
menu selections.

CLaneDetectionContainer This class is compulsory for a Symbian GUI application
and implements the controller of the MVC concept. It is
appropriate for the dynamic handling of components on
the view.

MCaemraListener The camera listener is an abstract class for the
communication between Camera and
CCameraAdapterEngine. It specifies only one method
FrameReady(), which is called by Camera, when a
recorded video frame is ready for further processing.

CCameraAdapterEngine CCameraAdapterEngine is inherited from
MCaemraListener. Hence the adapter engine provides an
interface to the Camera object. It implements the
abstract virtual method FrameReady() and thus handles
the further processing of the recorded image. For this
reason the class has an object of LaneDetector as
member, which is called to perform the lane marking
extraction. In combination to this it handles the display
of the video frame on the screen as well as .
To be able to address the mobile phones camera a Camera

object is created on instantiation. Further, a number of
convenient functions are offered to control the Camera

object and hence the mobile phone’s camera. Moreover,
the class provides methods for manipulating the screen
display. This is used to show the recorded image directly
or with detected edges, as binary image and with found
lane markings. Finally the class includes two methods for
increasing and decreasing the image brightness. This is
helpful to generate a balanced recording, where the
following edge detection can work on.

B.2. LANE DETECTION IMPLEMENTATION 87

Class name Description

Camera This class provides an direct access to the mobile phones
camera and therefore inherits from MCameraOvserver, a
Symbian intern abstract class with methods that are called in
combination with asynchronous request to the phones camera.
For example the class provides methods, which specify the
behavior of the application in situations like power on, image
ready and reservation and release of the camera.
The Symbian provided class CCamera finally is instantiated to
take control over the hardware camera.

LaneDetector This class contains the whole power of the lane detection
algorithm. It just offers one public function to start the
algorithm. Internally there are several functions called
iteratively to perform and edge detection with steerable filter,
to generate a binary image, to find lines in the binary image,
to cluster found lines and finally to draw the found lines back
into the image frame.
The class makes extensive use of the CwMtx library. I have
implemented the functions in a way that most matrices
needed for computations are members of the class and
therefore just created on instantiation of the object. This
result in an optimized memory allocation, because most
variables are reused.

88

89

Appendix C

Project CD

90 APPENDIX C. PROJECT CD

Bibliography

[1] Bellino, M., Y.L. de Meneses, P. Ryser and J. Jacot: Lane detection algo-
rithm for an onboard camera. Proc. SPIE, 5663:102–111, 2004. 7, 8, 9

[2] Bräunl, Thomas.: EyeBot: a family of autonomous mobile robots. Neural Infor-
mation Processing, 1999. Proceedings. ICONIP’99. 6th International Conference on,
2, 1999. 5

[3] DaimlerChrysler: Innovations in the commercial vehicle - moving down the
road towards the fail-safe truck. Website. http://www.daimlerchrysler.com/dccom/

0-5-75472-1-77526-1-0-0-0-0-0-36-7165-0-0-0-0-0-0-0.html. 5, 6

[4] Dellaert, F., D. Pomerlau and C. Thorpe: Model-based car tracking integrated
with a road-follower. Robotics and Automation, 1998. Proceedings. 1998 IEEE In-
ternational Conference on, 3, 1998. 7

[5] Dickmanns, ED and BD Mysliwetz: Recursive 3-D road and relative ego-state
recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
14(2):199–213, 1992. 7

[6] Forsyth, D.A. and J. Ponce: Computer Vision: A Modern Approach. Prentice
Hall Professional Technical Reference, 2002. 9, 10

[7] Forum Nokia: Symbian Developer Library Documentation, 2006. http://www.

symbian.com/Developer/techlib/v70sdocs/doc_source. iii, 14, 22

[8] Forum Nokia, Nokia Corporation: Nokia 6260 Mobile Phone. Website. http:
//forum.nokia.com/devices/6260. 4

[9] Forum Nokia, Nokia Corporation: Python for S60. Website. http://

opensource.nokia.com/projects/pythonfors60/. 75

[10] Freeman, W.T. and E.H. Adelson: The design and use of steerable filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991. 38,
41, 42, 80

[11] Harrison, R. and P. Northam: Symbian OS C++ for Mobile Phones. John
Wiley & Sons, Inc. New York, NY, USA, 2003. 15

91

http://www.daimlerchrysler.com/dccom/0-5-75472-1-77526-1-0-0-0-0-0-36-7165-0-0-0-0-0-0-0.html
http://www.daimlerchrysler.com/dccom/0-5-75472-1-77526-1-0-0-0-0-0-36-7165-0-0-0-0-0-0-0.html
http://www.symbian.com/Developer/techlib/v70sdocs/doc_source
http://www.symbian.com/Developer/techlib/v70sdocs/doc_source
http://forum.nokia.com/devices/6260
http://forum.nokia.com/devices/6260
http://opensource.nokia.com/projects/pythonfors60/
http://opensource.nokia.com/projects/pythonfors60/

92 Bibliography

[12] Kang, D.J. and M.H. Jung: Road lane segmentation using dynamic programming
for active safety vehicles. Pattern Recognition Letters, 24(16):3177–3185, 2003. 10

[13] Kaske, A., D. Wolf and R. Husson: Lane boundary detection using statistical
criteria. International Conference on Quality by Artificial Vision, QCAV9, pages
28–30, 1997. 7, 9

[14] Kreucher, C. and S. Lakshmanan: LANA: a lane extraction algorithm that
uses frequency domainfeatures. Robotics and Automation, IEEE Transactions on,
15(2):343–350, 1999. 7, 9

[15] Kuiper, Harry: The CwMtx library for matrix, vector and quaternion math. Web-
site. http://www.xs4all.nl/~hkuiper/cwmtx/cwmtx.html. 70

[16] McCall, JC and MM Trivedi: An integrated, robust approach to lane marking
detection and lane tracking. Intelligent Vehicles Symposium, 2004 IEEE, pages 533–
537, 2004. 7, 9, 38, 39, 41

[17] MCCALL, J.C. and M.M. TRIVEDI: Video-based lane estimation and tracking
for driver assistance: Survey, system, and evaluation. IEEE Transactions on intelli-
gent transportation systems, 7(1):20–37, 2006. iii, 7, 9, 38, 39

[18] McCall, J.C., D. Wipf, M.M. Trivedi and B. Rao: Lane Change Intent Anal-
ysis Using Robust Operators and Sparse Bayesian Learning. To Appear: IEEE In-
ternational Workshop on Machine Vision for Intelligent Vehicles in Conjunction with
IEEE International Conference on Computer Vision and Pattern Recognition, 2005.
7, 9, 38, 39

[19] Mc Donald, J.B., J. Franz and R. Shorten: Application of the Hough Trans-
form to Lane Detection in Motorway Driving Scenarios. Proc. of the Irish Signals
and Systems Conference, 2001. 7, 9

[20] Nokia Corporation: Nokia Connectivity Framework 1.2. Website. http://

forum.nokia.com/info/sw.nokia.com/id/8b7443ac-66ee-4d47-9f25-1da664b23c9c/

Nokia_Connectivity_Framework_1_2.html. 18

[21] Nokia Corporation: Symbian OS: Acive Objects And The Active Scheduler. 2004.
18

[22] Nokia Corporation: Symbian OS: Application Framework Handbook. 2005. iii,
15

[23] Nokia Corporation: Symbian OS: Desinging Bluetooth Applications in C++.
2005. iii, 21

[24] Nokia Corporation: Symbian OS: Threads Programming. 2005. 18

[25] Nokia Corporation: Symbian OS Basics Workbook. 2.0, 2006. iii, 14

[26] Otsu, N.: A threshold selection method from gray level. IEEE Transactions on
Systems, Man, and Cybernetics, 9(1):62–66, 1979. 48

http://www.xs4all.nl/~hkuiper/cwmtx/cwmtx.html
http://forum.nokia.com/info/sw.nokia.com/id/8b7443ac-66ee-4d47-9f25-1da664b23c9c/Nokia_Connectivity_Framework_1_2.html
http://forum.nokia.com/info/sw.nokia.com/id/8b7443ac-66ee-4d47-9f25-1da664b23c9c/Nokia_Connectivity_Framework_1_2.html
http://forum.nokia.com/info/sw.nokia.com/id/8b7443ac-66ee-4d47-9f25-1da664b23c9c/Nokia_Connectivity_Framework_1_2.html

Bibliography 93

[27] Petitt, J.D. and T. Bräunl: A Framework for Cognitive Agents. International
Journal of Control, Automation, and Systems, 1(1):229–235, 2003. 5

[28] Robotics & Automation Lab, The University of Western Australia:
The EyeBot Controller. Website. http://robotics.ee.uwa.edu.au/eyebot. 3

[29] Schmitz, C. and D.I.E. FH: Wireless Networks for Mobile Robots. 2005. 5

[30] SDL project: Simple Directmedia Layer. Website. http://www.libsdl.org. 70

[31] Siemens: Der Blick ins Gehirn des Fahrers, 2002. iii, 6

[32] Taylor, CJ, J. Malik and J. Weber: A real-time approach to stereopsis and
lane-finding. Intelligent Vehicles Symposium, 1996., Proceedings of the 1996 IEEE,
pages 207–212, 1996. 7, 9

[33] The MathWorks: Matlab product webpage. Website. http://www.mathworks.com/
products/matlab/. 69

[34] The University of Western Australia: Robotics & Automation Lab. Website.
http://robotics.ee.uwa.edu.au. 1

[35] Wang, Y., D. Shen and E.K. Teoh: Lane detection using spline model. Pattern
Recognition Letters, 21(8):677–689, 2000. 7, 8

[36] Wang, Y., E.K. Teoh and D. Shen: Lane detection and tracking using B-Snake.
Image and Vision Computing, 22(4):269–280, 2004. 7, 8

[37] Wilke, P.: Flexible wireless communication network for mobile robot agents Peter
Wilke, Thomas Bräunl The Authors. Industrial Robot: An International Journal,
28(3):220–232, 2001. 5

[38] YIM, Y.U. and S.Y. OH: Three-feature based automatic lane detection algo-
rithm(TFALDA) for autonomous driving. IEEE Transactions on intelligent trans-
portation systems, 4(4):219–225, 2003. 7, 9

http://robotics.ee.uwa.edu.au/eyebot
http://www.libsdl.org
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://robotics.ee.uwa.edu.au

94 Bibliography

	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivation
	Objectives
	Hardware Devices
	EyeBot Controller
	Mobile Phone

	Related Work
	Embedded Controller and Vision System
	Lane Detection
	Road Modeling
	Road Marking Extraction
	Postprocessing and Outlier Removal
	Position Tracking
	Resulting Assumptions

	Software Development
	Symbian and the Nokia S60 Platform
	Characteristics and Limitations of Symbian
	Exception Handling and Stack Cleanup
	Multi Tasking and Active Objects

	Development Environment
	S60 SDK and Command Line Tools
	Carbide.C++ IDE

	Application Programming Interfaces
	Bluetooth
	Mobile Phone Camera

	Bluetooth Communication Software
	Design
	Transmission Protocol and Commands
	User Interface
	Class Dependencies
	Finite State Machine for Connection Management

	Output

	Lane Marking Extraction
	Edge Detection and Noise
	First Approach: Sobel Filter
	Additional Requirements

	Second Approach: Steerable Filter
	Based on Second Derivative
	Based on First Derivative

	Threshold Computation
	Performance Evaluation

	Postprocessing of Edge Images
	Line Representation
	Tile Segmentation
	Finding Global Line Parameters
	Plausibility Check for Detected Lines
	Clustering Detected Lines
	Dynamic Calculation of Vanishing Point
	Review and Results

	Implementation of Lane Detection
	Mobile Phone Implementation
	Output

	Conclusion
	Mathematical Background
	Edge Detection
	Steerable Filters

	Implementation Description
	Communication Implementation
	Lane Detection Implementation

	Project CD
	Bibliography

