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Abstract

Embedded micro-controller systems are becoming increasingly popular in image pro-

cessing applications. Imaging algorithms can consume large amounts of the process-

ing time on a CPU, which also needs to handle other tasks such as I/O. A significant

amount of research has been performed in recent years into the acceleration of image

processing algorithms using reconfigurable hardware logic devices such as FPGAs

(Field Programmable Gate Arrays). This project combines the two, presenting an

embedded controller with an on-board FPGA for real-time image processing.

In addition, this project investigates the implementation of several imaging algo-

rithms in hardware logic. FPGA implementations of algorithms for performing

colour space conversion, image thresholding and object location are presented and

analysed.

Finally, this project outlines the design and implementation of a new hardware

divisor for performing 8-bit division. The error probability function of this division

algorithm is fully characterised and contrasted against existing hardware division

algorithms.
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ADC/DAC Analog-to-Digital / Digital-to-Analog Converter

ARM Acorn RISC Machine

ASIC Application Specific Integrated Circuit

CPLD Complex Programmable Logic Device

DMA Direct Memory Access

DSP Digital Signal Processor / Processing

FPGA Field Programmable Gate Array

GPIO General Purpose Input Output

HDL Hardware Description Language

HSI Hue, Saturation, Intensity

HSL Hue, Saturation, Lumience

HSV Hue, Saturation, Value

JPEG Joint Photographic Experts Group

LUT Lookup Table

MMIO Memory Mapped Input Output

RISC Reduced Instruction Set Computer

RGB Red, Green, Blue

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit
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Chapter 1

Introduction

This paper is one of three [1, 2] describing a new embedded controller for performing

real-time image processing using a Field Programmable Gate Array (FPGA). Em-

bedded systems are increasingly used for applications demanding computationally

expensive image processing. Despite the increasing power of embedded controllers,

imaging algorithms can consume a large amount of a CPU’s processing time. At

the same time, much research has been undertaken into accelerating graphics and

imaging using reconfigurable hardware logic devices such as FPGAs [3]. This project

combines the two to create an embedded controller with an integrated FPGA for

real-time image processing.

The current generation of robots used at the Mobile Robot Lab1 at the University

of Western Australia are controlled using the EyeBot controller EyeCon [4]. The

EyeBot platform has been through several revisions, the current being the EyeBot

M5. The EyeBot has proven to be both flexible and powerful, driving not only

simple wheel and track driven robots, but also omni-directional robots, balancing

and walking robots, and autonomous planes. Additional work is currently in progress

on an AUV (autonomous underwater vehicle) and a semi-autonomous wheelchair.

Many of these applications rely heavily on processing images from an on-board

camera. A disadvantage of the current EyeCon hardware is that it lacks a dedicated

1The Mobile Robot Lab in the Centre for Intelligent Information Processing Systems, the
School of Electrical, Electronics and Computer Engineering, Faculty of Engineering, Computing
and Mathematics.
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CHAPTER 1. INTRODUCTION

processor for images, hence all imaging algorithms have to be performed by the

CPU. Since the CPU also needs to handle all I/O operations as well as executing

user applications, this places a significant burden on the processor. In order to solve

these problems, a new hardware platform needed to be built to replace the existing

EyeBot M5. This new EyeBot M6 is fully described in this thesis, (Blackham,

2006) [1] and (English, 2006) [2].

1.1 Project Scope

The aims of this project were:

1. To design and build an embedded micro-controller platform capable of per-

forming real-time image processing using an on-board FPGA.

2. To investigate and implement various image processing algorithms for inclusion

in the FPGA.

3. To produce a hardware/software platform capable of replacing the current

EyeBot M5 controller. The new platform needed to be powerful and extensible

enough for users to be able to design their own mobile robotics applications.

1.2 Major Contributions

The major contributions of this project were:

1. The design and implementation of VHDL modules for performing colour object

location on the University of Western Australia’s newly designed EyeBot M6

platform. The implemented modules include modules for performing colour

space conversion, and subsequent processing modules for image thresholding

and object location.

2



1.3. THESIS OUTLINE

2. In order to perform the colour space conversion in hardware, this project also

included the design and implementation of a hardware division unit optimised

for fast, highly accurate, 8-bit division.

3. A full analysis of the new hardware divisor architecture, as well as an in-depth

comparison against existing hardware divisors.

4. Contributions towards the design of the EyeBot M6 hardware, as well as soft-

ware testing on the platform.

1.3 Thesis Outline

This thesis is divided into the following chapters

Embedded Platforms: A background description of embedded and programmable

logic systems. This chapter presents an overview of current micro-controller

platforms, and a review of FPGA accelerated image processing systems.

Hardware Design: An overview of the hardware of the newly developed EyeBot

M6 platform.

Computer Vision: An overview of the theory behind the location of coloured

objects from images as well as the methods of representing coloured images,

and the functions for converting between one representation and another.

Fixed Point Arithmetic: This chapter presents a means of representing and op-

erating on fractional numbers using only integer storage and integer operators.

Division Algorithms: Presents an architecture for performing 8-bit division, along

with a full analysis and comparisons to existing division algorithms.

FPGA Implementations and System Performance: An overview of the FPGA

implementations of the object location and colour space conversion algorithms.

This chapter also presents an evaluation of the performance of the implemented

modules, along with the FPGA resources consumed.

3



CHAPTER 1. INTRODUCTION

Conclusion: A summary of the work accomplished during this project, as well as

suggestions for future work.
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Chapter 2

Embedded Platforms

The steady progression of Moore’s Law, combined with the improvements in man-

ufacturing techniques have enabled increasing sophistication in embedded systems

controllers. The increase in processing power has reached the point where current

embedded CPUs are comparable in performance to the desktop CPUs of a decade

ago. With better manufacturing techniques, these new embedded CPUs are also

cheaper and more power efficient than the previous generation of processors. This

increased capability has enabled the application of embedded systems to tasks which

in the past would have been performed by much larger systems. In particular, there

is increasing interest in the use of small, portable, imaging devices. In the auto-

motive industry for example, there is interest in using embedded image processing

devices to analyse driving conditions and detect objects on the road [5]. Despite the

power of embedded processors, the volume of information contained in image data

can swamp a CPU executing complicated algorithms.

In recent years there has been a significant amount of research into the use of FP-

GAs to accelerate computing tasks. FPGAs (Field Programmable Gate Arrays) are

semiconductor devices containing programmable logic and programmable intercon-

nects. A FPGA is essentially a hardware processing unit that can be reconfigured at

runtime [6]. FPGAs evolved out of the older CPLD (Complex Programmable Logic

Device) chips. Compared to CPLDs, FPGAs typically contain a much higher num-

ber of logic cells. Additionally the architecture of FPGAs includes several higher

5



CHAPTER 2. EMBEDDED PLATFORMS

level embedded function blocks, such as multipliers and block RAMs. This allows

FPGAs to implement much more complicated functions than the older CPLDs.

The speed of a FPGA is generally slower than that of an equivalent ASIC (Ap-

plication Specific Integrated Circuit) chip, however an ASIC’s functionality and

architecture are fixed on manufacture, whereas a FPGA can be reconfigured as nec-

essary. This leads to substantially lower development and manufacturing costs, and

also allows the final system a greater degree of flexibility.

On a FPGA, algorithms are constructed from blocks of hardware logic, instead of

instructions interpreted and executed by a processor. In addition, the architecture

of FPGAs allows for the simultaneous, parallel execution of multiple tasks. All these

factors mean that certain algorithms can be executed much, much faster on a FPGA

than they could on a CPU [3, 7].

2.1 Hardware Description Languages

To configure a FPGA, users first provide a description of the desired functional

modules in the form of either a schematic, or hardware description language (HDL).

This description is then synthesised to produce a binary file (usually using software

provided by the FPGA manufacturer) used to configure the FPGA device.

The advantage of using a hardware description language is that it allows the user

to both describe and verify the functioning of a system before it is implemented

on hardware. HDLs also allow for the succinct description of concurrent systems,

with multiple subcomponents all operating at the same time. This is in contrast to

standard programming languages, which are designed to be executed sequentially

by a CPU. Using a HDL also allows for a more flexible and powerful expression of

system behaviour than simply connecting components together using a schematic.

Common HDLs used in FPGA design are VHDL [8] (VHSIC (Very High Speed

Integrated Circuit) Hardware Description Language) and Verilog [9]. VHDL devel-

oped from the Ada programming language, and has a relatively verbose syntax. In

6



2.2. MICRO-CONTROLLER PLATFORMS

addition, VHDL is both strongly typed and case insensitive [8]. By contrast, Ver-

ilog evolved out of the C programming language, and as such is a much more terse

language than VHDL. Verilog is also more weakly typed than VHDL, and is case

sensitive [9]. The two languages are highly similar in functionality, and both are

widely supported by software synthesis tools [10].

This project has chosen to use VHDL for describing and synthesising the FPGA

modules. The stronger typing in VHDL means certain errors will be caught during

synthesis which might otherwise be missed in Verilog.

2.2 Micro-controller Platforms

In recent years, the availability of powerful, low cost, micro-controllers and cameras

has led to the development of several micro-controller platforms for mobile vision

applications. This project investigated several of these platforms to determine their

suitability as a base on which to build the next generation EyeBot controller.

The MDP Balloon Board is one such platform recently developed by the Cambridge-

MIT Institute as part of the Multidisciplinary Design Project [11]. The current

Balloon Board (version 2.05 at the time of writing) is based around a 206Mhz

StrongARM CPU. Version 3 of the MDP board has been in development since 2004,

and is currently nearing production. The MDP board v3 is based around the Intel

XScale CPU and comes in two versions, one with a FPGA, and the other with a

CPLD. The Balloon Board v3 is technically impressive, combining a fast processor (a

630MHz Intel PXA270, ARM9 architecture CPU), large amounts of RAM (128MB)

and a 400K gate FPGA. The board supports a number of peripherals, including

Bluetooth, serial, USB host and slave, and several GPIOs. It is also very small and

light, slightly larger than a credit-card and about 30g in weight [11]. Despite the

MDP board’s notable specifications, its lack of availability made it unsuitable for

use in this project.

Another similar platform is the Qwerk Robot Controller, developed by the Carnegie

Mellon Robotics Institute [12]. Unfortunately the available documentation is much

7



CHAPTER 2. EMBEDDED PLATFORMS

less comprehensive than that available for the Balloon Board. The Qwerk is known

to contain a 200Mhz ARM9 processor with a hardware floating point unit, a Xil-

inx Spartan-3E FPGA, 32MB RAM and 8MB Flash memory. Peripheral support

includes Ethernet, USB Host and Wireless LAN, WebCam video input support, mo-

tor and servo controllers, and GPIOs. The Qwerk board is notable for two reasons.

Firstly it is one of the very few micro-controller platforms available with a hardware

floating point unit. Secondly is its advertised support for “sensorless feedback,”

measuring the back-emf (voltage) of a DC motor to estimate the current speed of

the motor — the Qwerk seems to be the only platform with this feature [12]. Much

like the Balloon board, the Qwerk has only been in production since August 2006,

and thus was unavailable for consideration at the commencement of this project.

The CMUCam Vision System is another micro-controller system also developed by

Carnegie Mellon [13, 14]. It is a very small, focused, device, consisting only of a

camera, micro-processor, and serial interface. The second revision of the system

added a frame-buffer chip, allowing the device to store an entire camera frame. The

processor is an 8-bit Ubicom running at 75MHz, and the camera is an OmniVision

OV6620. The entire device is very small, 45mm × 57mm × 50mm in size [13].

The CMUCam is a very specialised system, more a “smart camera” than a general

purpose micro-controller platform. The system is notable for the amount of func-

tionality that has been packed into such a small device, but its lack of peripheral

support and processing power also makes it unsuitable for this project’s needs.

In the end the lack of a suitable, available, micro-controller platform at the com-

mencement of this project meant that a new platform had to be developed. This

platform, the EyeBot M6 is detailed in Chapter 3.

2.3 Image Processing Systems

FPGAs hold several advantages over CPUs when it comes to image processing.

While they often run at much lower clock speeds, the parallel nature of hardware

logic allows FPGAs to execute certain algorithms much faster than a regular CPU.

8



2.3. IMAGE PROCESSING SYSTEMS

Several researchers have reported speedup factors from 20 to as much as 100 from

FPGAs as compared to standard processors [3, 15].

Zemcik [16] outlines the basic hardware architecture often used by researchers —

a simple hardware board incorporating a FPGA, processor and RAM all linked

by a central bus. The FPGA performs time critical computation tasks, while the

processor performs non-critical but algorithmically complex tasks. Zemcik uses a

DSP (Digital Signal Processor) instead of a CPU, but the basic architecture is the

same as those used in the micro-controller platforms in Section 2.2. The paper

also outlines FPGA architectures for performing volume rendering and raytracing.

Zemcik demonstrates the use of FPGAs for performing output processing (graphics

rendering), but the same hardware could easily be used to perform input processing

(computer vision) instead. This illustrates the flexibility available from FPGA based

systems.

Borgatti [17] proposes a similar architecture for using a FPGA as a co-processor

to accelerate DSP applications. Unlike Zemcik, Borgatti proposed an integrated

device incoporating both FPGA and processor on a single chip. This is the same

concept shown in the Xilinx Virtex series FPGAs which combine embedded pro-

cessor cores and FPGA logic blocks into a single chip [18]. This demonstrates the

increasingly prevalent desire to integrate the capabilities of FPGAs with general

purpose computation units.

Other researchers have focused their attention on the different algorithms which

may be accelerated by FPGAs. Krips [19] outlines an FPGA implementation of a

neural network based system for real-time hand tracking. A neural network consists

of multiple neurons connected together, where the output of each neuron is the sum

of the inputs to the neuron multiplied by an associated weighting. The neuron’s

output is then processed by a (in general) non-linear “activation function” before

becoming the input to the next layer of neurons. The function and performance of

a neural network can be adjusted by tuning the input weightings of each neuron

through some sort of training process. A neural network is an example of a spatial

computing alogrithm — many calculations needing to be performed in parallel. This

9



CHAPTER 2. EMBEDDED PLATFORMS

is contrasted with time sequential algorithms where tasks are executed in series. The

parallelism of hardware logic means FPGAs are well suited for spatial computing,

whereas CPUs are oriented towards time sequential computing.

Torres-Huitzil [20] outlines a related system, an image processing architecture based

on a neurophysiological model for motion perception. Biologically inspired vision

models provide good accuracy, but perform poorly on regular CPUs since they

are oriented towards spatial computing instead of time sequential computing. The

FPGA implementation was found to be approximately 100 times faster than a Pen-

tium IV desktop CPU performing the same function, however it still was not fast

enough for real-time applications. The researchers suspect that this could be rec-

tified by using a faster or larger FPGA [20]. Unfortunately the algorithm used by

the researchers is unsuitable for implementation in this project, since it consumed

the majority of the resources available on a FPGA much larger than the one used

in this project.

A much simpler vision system was proposed by Garćıa-Campos [21]. The paper

outlines a FPGA based system for colour image tracking. The system first converted

the input RGB image data into HSI colour space. The converted image was then

thresholded to produce a bitmap which was fed into a row/column accumulation

module to locate the coloured object in the source image. Notably, the system did

not perform the colour conversion directly. Instead the 8-bits per channel RGB

data was sampled by the cameras, then decimated down to 5-bits per channel.

The resulting 15-bit combined channel data was then used as an index into a pre-

computed lookup table to perform the HSI colour space conversion. Given that

the output HSI data contained 8-bits per channel, the lookup table would have

required 3 × 215 = 3 × 32 kB of space. This approach was probably chosen due

to the difficulty of performing the RGB to HSI conversion directly, as it requires

several division operations. Chapter 4 examines this problem in more detail. The

system proposed by Garćıa-Campos was conceptually very simple, but nevertheless

produced quite good results [21]. A modified version of this system has been chosen

for implementation in this project.
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Figure 3.1: Hardware block diagram of the new EyeBot M6 platform
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Chapter 3

Hardware Design

The hardware side of the final project design is fully described in (Blackham,

2006) [1], but is given a brief overview here. The block diagram of the new hardware

platform is shown in Figure 3.1. This architecture is similar to that implemented by

other researchers [16], with the FPGA acting as a co-processor to the CPU. Both

have their own RAM, allowing them to perform calculations independent of each

other.

The Gumstix Connex 400m-bt [22] platform, shown

Figure 3.2: Image of the Gum-

stix embedded plat-

form [22]

in Figure 3.2, was chosen to form the core of the

new EyeBot M6 platform. The Gumstix features

a 400MHz Intel XScale PXA255 (ARM9 archi-

tecture) CPU, bluetooth, USB slave and an LCD

controller. It also features 64MB of RAM and

16MB of Flash memory storage. The platform

is extensible via expansion boards plugged into

the two Hirose connectors on the Gumstix. This

platform was chosen because it provides the de-

sired features of speed, low power consumption

and I/O support, at a reasonable price. The

Gumstix also comes with an embedded Linux operating system, which is advan-

tageous, since it means that the system can be programmed using freely available
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CHAPTER 3. HARDWARE DESIGN

development tools.

Using this platform as a starting point, this project then designed and built an

expansion board attached to the Hirose connectors. This board contains connectors

for all of the robot’s I/O devices — servo and motor controllers, encoders, position

sensing devices (PSDs), and general purpose I/O pins (GPIO). It also contains

two camera interfaces, USB host, ethernet, an ADC/DAC (the AC’97 shown in

Figure 3.1), and a FPGA. The main board also contains an additional connector for

an expansion board. This second expansion board mounts the LCD, touchscreen

and speaker. Having a second board in this fashion means it is possible to replace

the LCD or speaker without disturbing the other components on the main board.

The FPGA chosen for this project was the Xilinx Spartan3-500E [18]. This is

the largest FPGA available in a non-ball-grid-array (BGA) configuration [1]. The

choice was made to avoid BGA components due to the cost and complexity of

manufacturing and soldering PCBs with BGA chips. Additionally, the Spartan3-

500E is readily available at a low price, and the Xilinx FPGA development tools are

freely available at their website. This is important, since it means that programming

for the EyeBot M6 platform does not require expensive development environments.

Software optimisations have reduced the FPGA configuration time down to≈ 100ms [1].

This allows for the possibility of implementing multi-core FPGA algorithms. If a

particular algorithm is too large to fit on a single FPGA core, the possibility ex-

ists to implement the algorithm in multiple stages using multiple FPGA cores, and

dynamically switch between them on the fly.

As compared to Cambridge’s Balloon Board v3 [11], the EyeBot M6 possesses less

CPU power and RAM, but has a larger FPGA. The new EyeBot also has a faster

CPU than the Qwerk board [12], though it lacks the Qwerk’s floating point unit.

And while notably larger than the CMUCam system, the EyeBot M6 has consid-

erably more processing power and I/O support. In addition, while all of the other

micro-controller platforms include support for cameras, none of them support stereo

cameras. This allows the EyeBot M6 to be used for stereo vision applications, which

none of the other platforms can achieve [2].
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Chapter 4

Computer Vision

The primary function of vision is to extract enough information from an image, or

series of images, to provide guidance to a host system [23]. This applies not only

to organic vision systems, but also to artificial vision systems. Much research has

been undertaken in the study of techniques and algorithms for extracting useful data

from pictures. Since the beginning of computer vision in the late 1950s/early 1960s

several methods have emerged for obtaining pertinent information from images and

exposing it to the host system in an understandable format.

In more recent years, the development of reconfigurable hardware logic devices

(CPLDs and FPGAs) have prompted research into implementing and accelerating

image processing algorithms in hardware logic. Most image processing algorithms

are both data-parallel and computation-intensive, making them well suited for im-

plementation on FPGAs. Research has shown that the use of FPGAs in computer

vision systems can lead to sizeable performance benefits [15, 24]. A number of these

algorithms have been implemented in the FPGA of the new EyeBot M6.

4.1 Binary Images

The analysis of binary images is one of the simplest ways to extract meaningful data

from pictures. It is particularly useful when trying to determine the location or
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CHAPTER 4. COMPUTER VISION

orientation of an object within an image. This method of object location has shown

itself to be amenable to FPGA acceleration, although the implementation on the

EyeBot M6 differs in several ways from that proposed by previous researchers [21].

A binary image is first constructed from the original picture by marking all the

pixels which correspond to the object of interest.

p(x, y) =


1 if (x, y) ∈ object,

0 if (x, y) 6∈ object.

(4.1)

4.1.1 Object Location

Once the bitmap has been constructed, it is a simple matter to calculate the centre

of mass or centroid of the object [25]. This gives the relative position of the object

with reference to an origin, usually defined as the top left corner of the picture. It

may also be useful to calculate the two dimensional standard deviation, as this gives

a measure of the width or spread of the object.

x̄ =

xmax∑
x=0

xhistrow(x)

xmax∑
x=0

histrow(x)
ȳ =

ymax∑
y=0

yhistcol(y)

ymax∑
y=0

histcol(y)
(4.2)

σx =

√√√√√√√
xmax∑
x=0

(x− x̄)2histrow(x)

xmax∑
x=0

histrow(x)
σy =

√√√√√√√√
ymax∑
y=0

(y − ȳ)2histcol(y)

ymax∑
y=0

histcol(y)
(4.3)

In Equations (4.2) and (4.3), the terms histrow(x) and histcol(y) refer to the row and

column counts of the pixels in the binary image. Essentially these are the row and

column histograms of the number of pixels in each row and column which belong to

the object of interest.

histrow(x) =
ymax∑
y=1

p(x, y) histcol(y) =
xmax∑
x=1

p(x, y) (4.4)

16



4.1. BINARY IMAGES

(a) Test Image (b) Bitmap of the Red Triangle

(c) Arithmetic Mean of the Red Triangle (d) Standard Deviation of the Red Triangle

Figure 4.1: Example of the Object Location Algorithm

Due to the computations required in calculating the arithmetic mean, it may be

preferable to sacrifice accuracy for processing speed. For the purposes of object

location, it is often sufficient to simply find the (x, y) point corresponding to the

largest number of matching pixels in the row and column histograms.

xmode = x|histrow(x)=max (histrow(x)) ymode = y|histcol(y)=max (histcol(y)) (4.5)

This simplifies the object location algorithm to a series of simple iterate-and-compare

operations across the row and column histograms.
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Figure 4.1 demonstrates the use of the object location algorithm to obtain the loca-

tion of the red triangle in the test pattern.

4.1.2 Object Orientation

Another useful calculation which can be applied to binary images is to locate the

axis of minimum inertia. This will give a measure of the orientation of the object

in the image. Or phrased another way, it gives a measure of the amount by which

an image must be rotated to orient the object to a known axis of reference.

Let θ be the angle as measured anticlockwise from the horizontal axis to the axis

of minimum inertia. Let x̃ = x − x̄ and ỹ = y − ȳ, shifting the coordinate system

to centre around the centroid of the object of interest. The second moments of the

image are then given by [26]

a =
∑
x̃

∑
ỹ

x̃2p(x̃, ỹ) =
∑
x̃

x̃2
∑
ỹ

p(x̃, ỹ) =
∑
x̃

x̃2histrow(x̃) (4.6)

b = 2
∑
x̃

∑
ỹ

x̃ỹp(x̃, ỹ) (4.7)

c =
∑
x̃

∑
ỹ

ỹ2p(x̃, ỹ) =
∑
ỹ

ỹ2
∑
x̃

p(x̃, ỹ) =
∑
ỹ

ỹ2histcol(ỹ) (4.8)

The angle of the axis of minimum inertia can then be expressed as functions of the

second moments.

sin(2θ) =
b√

b2 + (a− c)2
(4.9)

cos(2θ) =
a− c√

b2 + (a− c)2
(4.10)

tan(2θ) =
sin(2θ)

cos(2θ)
=

b

a− c
(4.11)
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4.1. BINARY IMAGES

4.1.3 FPGA vs. CPU

This method of object location has the advantage of being simple, and thus easy to

implement and test. More importantly, its simplicity and repetitive nature make it

well suited for acceleration via a FPGA.

Consider the calculation of the row and column histograms. On a CPU these are

calculated sequentially, along with any other tasks the CPU needs to perform. This

means that the frame rate of the algorithm depends not only on the complexity of

the algorithm and the speed of the processor, but also on the processor load. A

heavily loaded processor will produce a lesser frame rate. By contrast, a FPGA is

able to parallelize its operations. The construction of the row/column histograms is

thus independent of any other algorithms executed by the FPGA. Not only that, but

since all algorithms on the FPGA are constructed from hardware logic blocks, the

FPGA is able to accomplish more per clock cycle (with regards to this algorithm)

than a CPU. The effects of this are shown in Chapter 7.

In essence the FPGA is able to fully process a single pixel in the source image every

clock cycle, whereas the CPU takes multiple clock cycles to accomplish the same

task. In addition, it is possible to instantiate multiple object locators on the FPGA,

allowing for the search for multiple objects simultaneously with little to no impact

on the overall performance of the system.

4.1.4 Thresholding

The algorithms described previously all operate on an image which has already been

pre-processed. Namely, they require an image which has already been reduced to a

bitmap indicating pixels corresponding to the object of interest. One of the most

common ways of constructing an image bitmap from a source picture is to threshold

the picture. A pixel is considered active if its intensity falls within a certain range,

and inactive if it falls outside this range. In the case of coloured images, a pixel can

be compared to a different threshold range on each of the different colour channels.

A colour pixel is considered active if it meets the threshold criteria on all of the
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CHAPTER 4. COMPUTER VISION

different colour channels. This method is a simple and efficient method of extracting

objects from images [21], however its accuracy depends on the ability to distinguish

the object of interest from the background. On images where the target object is

similar in colour to the background it becomes quite difficult to accurately extract

the object from the rest of the image.

4.2 Colour Spaces

At this point, it is important to consider how coloured images are represented and

stored. Coloured images are represented using a colour space, or colour model,

which is defined as a “specification of a 3D colour coordinate system and a visible

subset in the coordinate system within which all colours in a particular color gamut

lie” [27]. Each colour space is optimised for a different application, and the same

image may be represented using multiple colour spaces.

4.2.1 RGB

RGB (Red, Green, Blue) is an additive model in which red, green and blue light is

combined in various amounts to create other colours [28]. One of the most common

applications of RGB is the display of coloured images on CRT or LCD screens. In

addition, most digital cameras, including the ones used on the EyeBot M6 [29],

output data in RGB format. This representation is thus important for the input

and output of coloured images.

There are, however, several problems with using the RGB colour space for image

processing. The main problem lies in the colour space’s close coupling between colour

and brightness. Changing the values of any one RGB channel not only changes the

colour of a pixel, but also its brightness. This means that the same coloured object

will have vastly different RGB channel values in different lighting conditions. This is

illustrated in Figure 4.2, where the same orange box is show under various lighting

conditions. As can be seen, the RGB channel values of the box differ greatly as the

lighting environment changes.
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4.2. COLOUR SPACES

RGB = (247, 121, 78)

(a) Original Image

RGB = (186, 87, 28)

(b) Uneven Lighting

RGB = (102, 30, 5)

(c) Dark Lighting

RGB = (47, 2, 3)

(d) Very Dark Lighting

Figure 4.2: Examples of varying lighting conditions
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When using RGB colour space for image processing, it is usual to first normalise

the channel values in some fashion to decouple the image brightness from the colour

information [30, 31]. An alternative technique is to convert the RGB data into a

different colour space, then use the second colour space for image processing.

4.2.2 HSL/HSV

The HSL (Hue, Saturation, Lumience) and HSV or HSI (Hue, Saturation, Value

or Intensity) colour spaces solve many of the problems associated with RGB. Both

models define a coloured pixel in terms of three components [27]. Hue is the ‘type’ of

colour (green, yellow, etc), saturation is the ‘vibrancy’ of the colour, and the value

or luminance determines how bright a colour appears.

This is important for two reasons. Firstly, unlike RGB, HSV and HSL separate

colour from brightness. Thus it is possible to locate, say, an orange box, independent

of local lighting conditions. Secondly the important colour information is located

in a single channel (Hue). Both these factors make HSV/HSL very good colour

models for performing image processing [32]. Although the two colour spaces are

very similar, HSL produces a more ‘natural’ looking grayscale channel (Lumience)

than HSV (Value) [27].

Under HSL, the saturation component ranges from full colour to an equivalent grey

value, whereas in HSV, it ranges from full colour to white. In HSL, the luminance

component ranges from black, through the chosen colour, to white, whereas in HSV,

the value component ranges only halfway, from black to the chosen colour. The hue

component is the same for both colour spaces. This is illustrated in Figure 4.3,

which shows the visualisation of both colour spaces.

The conversion from RGB to HSL colour space is non-linear, given mathematically

by the following equations. Assuming the (Red, Green, Blue) channel values have

been normalised to lie between 0.0 and 1.0, let MAX equal the maximum of the

(Red, Green, Blue) values and MIN equal the minimum of these values.
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4.2. COLOUR SPACES

(a) HSV Colour Space (b) HSL Colour Space

Figure 4.3: Visualisation of the HSV and HSL colour spaces [33, 34]

Hue =



undefined if MAX = MIN

60◦ × Green - Blue
MAX - MIN

+ 0◦ if MAX = Red and Green ≥ Blue

60◦ × Green - Blue
MAX - MIN

+ 360◦ if MAX = Red and Green < Blue

60◦ × Blue - Red
MAX - MIN

+ 120◦ if MAX = Green

60◦ × Red - Green
MAX - MIN

+ 240◦ if MAX = Blue

(4.12)

Saturation =



0 if MAX = MIN

MAX - MIN
MAX + MIN

= MAX - MIN
2×Lumience

if 0 < Lumience ≤ 1
2

MAX - MIN
2−(MAX + MIN)

= MAX - MIN
2−2Lumience

if Lumience > 1
2

(4.13)

Lumience =
1

2
(MAX + MIN) (4.14)

This gives 0◦ ≤ Hue ≤ 360◦, 0 ≤ Saturation ≤ 1, and 0 ≤ Lumience ≤ 1. Note

that the condition of MAX = MIN signifies that the pixel corresponds to a grayscale

value, and hence the Hue channel has no meaning. This corresponds to points lying

along the central axis of the HSL colour cone.
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If, as is more often the case, the (Red, Green, Blue) channel values are expressed as

8-bit quantities, these equations become

Hue =



255 if MAX = MIN

42× Green - Blue
MAX - MIN

+ 42 if MAX = Red

42× Blue - Red
MAX - MIN

+ 126 if MAX = Green

42× Red - Green
MAX - MIN

+ 210 if MAX = Blue

(4.15)

Saturation =



0 if MAX = MIN

127× MAX - MIN
Lumience

if 0 < Lumience ≤ 127

127× MAX - MIN
255−Lumience

if Lumience > 127

(4.16)

Lumience =
1

2
(MAX + MIN) (4.17)

This gives 0 ≤ Hue ≤ 252, 0 ≤ Saturation ≤ 255, and 0 ≤ Lumience ≤ 255, with

Hue = 255 signifying a grayscale pixel. In addition to being scaled, the Hue values

have been rotated by 60◦ in order to reduce the number of case statements.

Figure 4.4 illustrates the decomposition of a RGB image into separate Hue, Satu-

ration and Lumience channels. It can be seen that areas of similar colour on the

original image correspond to similar Hue values, vibrant areas of the image corre-

spond to larger Saturation values, and the Lumience channel is essentially a grayscale

version of the original image.

Figure 4.5 shows the same images from Figure 4.2, but the pixels are now analysed

using the HSL colour space. As can be seen from the images, the Hue component

changes only slightly under varying lighting conditions. The white lines indicate the

results of running the object location algorithm over the images. It can be seen that

using the Hue channel allows the algorithm to locate the orange box (target Hue

value = 54 ± a tolerance of 5) under all but the darkest lighting conditions.

The principle difficulty with implementing the RGB to HSL conversion on the FPGA

24



4.2. COLOUR SPACES

(a) Original Image (b) Hue

(c) Saturation (d) Lumience

Figure 4.4: Example of HSL Channel Decomposition

lies in the division operation. Xilinx’s Spartan-3E FPGAs (indeed most FPGAs)

lack inbuilt hardware division units. This presents a problem, since the calculation of

all three HSL channels from RGB data involve some form of division. This problem

will be explored further in Chapter 6, and a solution outlined.

4.2.3 YCbCr

An alternative colour space is YCbCr, which represents an image using one lu-

minance (brightness, Y) channel, and two chromiance (colour, Cb and Cr) chan-

nels [35]. This colour space is used to encode images for television, as well as for

JPEG and MPEG encoding.

Multiple, highly similar yet subtly different, standards exist for YCbCr. Even the

name of the colour space changes from standard to standard. YCbCr is sometimes

referred to by YUV, or YPbPr, which are also slightly different standards from the

‘main’ YCbCr standard.
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HSL = (52, 231, 162)

(a) Original Image

HSL = (57, 188, 107)

(b) Uneven Lighting

HSL = (52, 233, 53)

(c) Dark Lighting

HSL = (41, 239, 24)

(d) Very Dark Lighting

Figure 4.5: Examples of varying lighting conditions using HSL Colour Space
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The RGB to YCbCr colour space conversion specified by the JPEG standard is given

by the following formulae [36].

Y = 0.299× R + 0.587×G + 0.114× B (4.18)

Cb = 128− 0.168736× R− 0.331264×G + 0.5× B (4.19)

Cr = 128 + 0.5× R− 0.418688×G− 0.081312× B (4.20)

Where (R, G, B) and (Y, Cb, Cr) are 8-bit quantities. This can alternatively be

expressed in matrix form as


Y

Cb

Cr

 =


0

128

128

+


0.299 0.587 0.114

−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312




R

G

B

 (4.21)

Figure 4.6 illustrates the decomposition of a RGB image into separate Y, Cb and Cr

channels. The Y (Luma) channel is similar to the Lumience channel in HSL/HSV in

that it is essentially a grayscale version of the image. The Cb and Cr (Chromiance)

channels encode the colour components of the original image. The subdued appear-

ance of the chromiance channels illustrates that the human eye is more sensitive to

changes in lumiance than changes in chromiance [35]. This allows for a decimation

in the chromiance channels with little perceptual loss of information, hence the use

of YCbCr colour encoding in lossy image formats such as JPEG.

Apart from its use in image formats, YCbCr is also important in image processing.

The YCbCr colour space has been found to be very effective for skin detection [31].

Chai and Bouzerdoum have claimed that the YCbCr colour space provides a good

coverage of human skin tones, and that pixels associated with skin tones have similar

Cb and Cr values [37]. This can seen in Figure 4.6 where skin regions in the original

image show little variation in intensity in the decomposed Cb and Cr images.

Implementing the RGB to YCbCr conversion on the FPGA is a matter of repetitive

multiplications against the input RGB data, involving constant coefficients. Unfor-
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(a) Original Image (b) Y (Luma)

(c) Cb (Chroma-Blue) (d) Cr (Chroma-Red)

Figure 4.6: Example of YCbCr Channel Decomposition
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4.3. EDGE AND CORNER DETECTION

0 -1 0

-1 4 -1

0 -1 0

(a) Laplace operator

-1 0 +1

-2 0 +2

-1 0 +1

(b) Horizontal Sobel operator

+1 +2 +1

0 0 0

-1 -2 -1

(c) Vertical Sobel operator

Figure 4.7: 3× 3 Convolution kernels

tunately, the coefficients of the conversion matrix are all fractional quantities and

the FPGA has no standard way of dealing with floating point numbers. The solu-

tion is to perform the operations using fixed point arithmetic, which will be further

elaborated on in Chapter 5.

4.3 Edge and Corner Detection

Edges in an image represent the boundaries between objects and the background,

while corners represent the intersection of two or more edges. In image processing,

edge points are the points in the image where the difference in intensities of neigh-

bouring pixels is at a maximum. Similarly, corner points are points in the image for

which the curvature of edge lines is maximised.

Two of the most common edge detection algorithms are the Laplace and Sobel

operators, both of which can be defined in terms of 3 × 3 convolution kernels, as

shown in Figure 4.7. The results of applying these operators to an image is shown

in Figure 4.8.

4.3.1 Convolution

A large number of image processing algorithms can be represented as filters in the

frequency domain. Blurring, for example, can be represented as a low-pass filter,

and sharpening by a high-pass filter. One method of applying these filters is to

first convert the image into its frequency domain representation using a Fourier
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(a) Test Image (b) Laplace operator

(c) Horizontal Sobel operator (d) Vertical Sobel operator

Figure 4.8: Examples of the Laplace and Sobel edge detection operators

30



4.3. EDGE AND CORNER DETECTION

Transform, then apply the desired filters using multiplication.

The disadvantage of this approach is that implementations of the Fourier Transform

can occupy large amounts of FPGA real estate. The Radix-2 Fast Fourier Transform

(FFT) algorithm is noted as consuming “45% of the slices and 30% of the block RAM

available on the Virtex-2000E FPGA chip” [38]. This presents a problem, since the

Virtex-2000E chip possesses over 4 times as many logic cells, and 3 times as much

block RAM, as the Spartan3-500E chip used in this project [39, 40].

An alternative to computing the Fourier Transform is to convolve the image in-

stead. The convolution theorem states that multiplication in the frequency domain

is equivalent to convolution in the time domain. For small sized images, convolution

is often faster and easier than the Fourier Transform [38]. The two-dimensional

discrete convolution is performed by applying a mask or kernel to the image using

a series of multiplications and additions. For example, a 3 × 3 kernel (kij) applied

to the pixel at position i22


k11 k12 k13

k21 k22 k23

k31 k32 k33

 �


i11 i12 i13

i21 i22 i23

i31 i32 i33

 =

k11i11 + k12i12 + k13i13

+k21i21 + k22i22 + k23i23

+k31i31 + k32i32 + k33i33

(4.22)

The kernel is then shifted and applied to the next pixel, and so on until the entire

image has been convolved. At a worst case, a 3× 3 kernel requires nine multiplica-

tions for almost every pixel in the image. This is the kind of repetitive task that can

occupy large amounts of CPU time, yet be very amenable to hardware acceleration

via a FPGA. Further details on FPGA acceleration of the convolution operation on

the EyeBot M6 can be found in (English, 2006) [2].

4.3.2 SUSAN

The SUSAN algorithm is outlined in a paper by Smith and Brady [41] as a method

of performing both edge and corner detection simultaneously. The algorithm does

not rely on convolutions, although it can be calculated using masks of varying sizes.
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This is typically a circular mask of 37 pixels, but the algorithm can also be applied

using a 3×3 pixel mask. The mask is first placed at each point in the image, and for

each point the intensity of every pixel within the mask is compared to the intensity

of the centre point [41]. If r0 is the position of the centre point, r is the position of

any other pixel within the mask, I(r) is the intensity of pixel r, t is some threshold

value, then the output of the comparison, c, is given by:

c(r, r0) =


1 if |I(r)− I(r0)| ≤ t,

0 if |I(r)− I(r0)| > t,

(4.23)

The number of pixels within the mask with similar intensity to the central pixel can

be obtained by summing c.

n(r0) =
∑
r

c(r, r0) (4.24)

This number is referred to as the USAN (Univalue Segment Assimilating Nucleus)

area of point r0 [41].

The USAN area is then compared to a constant geometric threshold, g, to obtain

an edge or corner response. A threshold of g = 3nmax/4 is used for edge detection,

and g = nmax/2 is used for corner detection.

R(r0) =


g − n(r0) if n(r0) < g,

0 otherwise.

(4.25)

This is sufficient to extract the edges from the image. Eliminating the false positives

from the initial corner response requires some further processing. Figure 4.9 shows

the results of executing the SUSAN algorithm over a test pattern.

The SUSAN algorithm has been shown to be well suited to FPGA acceleration.

Frame rates of over 100 frames per second have been reported when the algorithm

was implemented on a Xilinx XVC50-6 Virtex FPGA [42].
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(a) Test Image

(b) SUSAN Edges (c) SUSAN Corners

Figure 4.9: Example of the SUSAN algorithm
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Chapter 5

Fixed Point Arithmetic

Fixed point notation is a method of representing fractional numbers using only inte-

ger storage. This representation is important since the FPGA has no inbuilt support

for floating point numbers. Using floating point numbers would entail the construc-

tion of hardware floating point arithmetic units on the FPGA, then the replacement

of all arithmetic operations in the VHDL modules to use the new floating point

units. This would consume large amounts of FPGA resources, and increase the time

required to perform any calculation. By using fixed point representation instead,

it is possible to perform all the standard arithmetic operations (addition, subtrac-

tion, multiplication and division) on fractional numbers by using the FPGA’s inbuilt

integer arithmetic units.

Essentially a fixed point number is simply an integer with an invisible radix (dec-

imal or binary) point [43]. Consider the number 153.974. It can be represented

by an integer 153974, but remembering that the decimal point lies before the 3rd

digit. The placement of the radix point is completely arbitrary, and depends on

the numbers being represented. Since the radix point is not stored as part of the

number representation, it must be tracked separately by the programmer.

There are several notations in use to represent the bitwidth and location of the

radix point in fixed point numbers. The most common notation is Q-format, where

the number after the Q represents the number of fractional bits. For example Q17

represents a number with 17 fractional bits. A less ambiguous form of the Q notation
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is Qx.y, when ‘x’ is the number of bits to the left of the radix point (representing

the integer part of the number) and ‘y’ is the number of bits to the right of the radix

point (the fractional part of the number). So Q2.16 would represent a number with

2 integer bits and 16 fractional bits stored in an 18-bit word.

5.1 Fixed Point Format

The number of bits allocated to the integer and fractional components of a fixed

point variable depend greatly on the range and precision demanded of the variables

in a particular algorithm [44, 45]. For an unsigned variable α, the number of integer

bits (QI) must fulfil the expression

0 ≤ α ≤ 2QI (5.1a)

QI = dlog2(bαmaxc)e (5.1b)

If the algorithm requires the use of signed (two’s complement) variables, then this

equation must be modified to include a single bit used to represent the sign of the

variable. The relationship for signed variables (±α) is defined by the expression

−2QI−1 ≤ α ≤ 2QI−1 (5.2a)

QI = dlog2(bmax(|αmax|, |αmin|)c)e+ 1 (5.2b)

In this case QI also includes the sign bit.

While the size of the integer component determines the range of a fixed point vari-

able, the size of the fractional component determines the variable’s resolution. For

a given resolution ε the number of fractional bits (QF ) required is given by:

ε =
1

2QF
(5.3a)

QF =
⌈
log2

(
1

ε

)⌉
(5.3b)
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The integer and fractional bits are combined to form a single word (WL = QI+QF )

representing the fixed point variable. This gives the full range of the variable as

0.0 ≤ α ≤ 2QI − 2−QF (5.4)

for an unsigned variable and

− 2QI−1 ≤ α ≤ 2QI−1 − 2−QF (5.5)

for a signed two’s complement variable. It can be seen that there will be a trade-off

between range and resolution in order to fit the fixed point number into a given

word size.

5.2 Converting Floating Point to Fixed Point

Once an appropriate fixed point format has been selected, the fixed point approxi-

mation for the floating point variable can be calculated. This is a simple matter of

scaling the floating point number by 2 raised to the power of the number of fractional

bits.

Fixed Point = bFloating Point× 2QF c (5.6)

Since the fixed point representation is restricted to integer storage, the fractional

part of the scaled floating point number must be discarded. The most common

method is to simply discard the leftover fraction by flooring the scaled floating

point number, however greater accuracy can be obtained by rounding the number

instead.

Fixed Point = Round(Floating Point× 2QF ) (5.7)
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5.3 Elementary Arithmetic Operations

Arithmetic with fixed point numbers is much the same as arithmetic with integers,

and can be performed using the same hardware integer arithmetic units. The two

differences which need to be considered are alignment of the radix point during

addition and subtraction, and tracking the movement of the radix point during

multiplication and division.

In order to add or subtract two fixed point numbers and obtain a meaningful result,

the radix point of both numbers must first be aligned. One of the operands must be

left or right shifted, which will discard the information stored in the upper (in the

case of a left shift) or lower (in the case of a right shift) bits. When left shifting, the

lower bits should be filled with zeros, and when right shifting the upper bits should

be filled with the sign bit (or zero in the case of an unsigned number). In addition,

when shifting signed numbers, care must be taken that the sign bit does not change.

Bit shifting unsigned fixed point numbers

Left shift by 2

|x1|x0|y0|y1|y2|y3|y4|y5| =⇒ |y0|y1|y2|y3|y4|y5|0|0|
(5.8)

Right shift by 2

|x1|x0|y0|y1|y2|y3|y4|y5| =⇒ |0|0|x1|x0|y0|y1|y2|y3|
(5.9)

Bit shifting signed, two’s complement, fixed point numbers

Left shift by 2

|s|x0|y0|y1|y2|y3|y4|y5| =⇒ |s|y1|y2|y3|y4|y5|0|0|
(5.10)

Right shift by 2

|s|x0|y0|y1|y2|y3|y4|y5| =⇒ |s|s|s|x0|y0|y1|y2|y3|
(5.11)

Once the two numbers have been radix aligned, the standard integer addition and

subtraction operations may be performed to produce a result of the same word size
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5.3. ELEMENTARY ARITHMETIC OPERATIONS

and fixed point alignment.

Multiplication and division are similar, but do not require that their operands be

radix aligned first. Instead the radix point moves during the operation, producing

a result that is of a different alignment to the initial operands.

The size of a product is equal to the sum of the size of the original multiplicands.

This applies to the word size, the number of bits in the integer component, and the

number of bits in the fractional component. In Q-format notation

QM1.F1 ×QM2.F2 = Q(M1 + M2).(F1 + F2) (5.12)

Since it is often necessary to perform further operations using the original word size

of the multiplicands, the result of the multiplication will need to be truncated. It is

customary to keep the result in the same format as the original multiplicands, hence

preserving the bits clustered close to the radix point, which is often where the most

useful information lies.

Of the four basic arithmetic operations, division is the most involved. Integer divi-

sion units produce both a result (quotient) and a remainder. It is self evident that if

both the dividend and the divisor are integers, then the quotient and the remainder

will both be integers.

Dividend

Divisor
= Quotient +

Remainder

Divisor
(5.13)

If the divisor is an integer, but the dividend is a fixed point number, then both the

quotient and the remainder will possess a fractional component equal in size to the

fractional component of the dividend.

Dividend× 2QF

Divisor
= Quotient× 2QF +

Remainder× 2QF

Divisor
(5.14)

If the divisor is a fixed point number with QF fractional bits, then this is equivalent

to right shifting the dividend by QF (dividing by 2QF ). This will reduce the size of

the fractional component of both the result and the remainder, and may even cause
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them to have effectively a negative number of fractional bits.

Dividend

Divisor× 2QF
= Quotient× 2−QF +

Remainder× 2−QF

Divisor
(5.15)

Since the quotient and remainder are effectively fixed width windows into the true

value of the quotient and remainder, bitshifting the dividend and divisor in this

fashion will change the accuracy of the result of the division. In particular, increasing

the fractional component of the dividend will increase the resolution of the quotient,

whereas increasing the fractional component of the divisor will have the opposite

result.

In order to maximise the accuracy of the hardware division units, this project has

designed the divisors to divide a 16-bit dividend by an 8-bit divisor. Although both

dividend and divisor are really 8-bit quantities, this means that the dividend can be

bitshifted upwards by 8-bits, thus gaining an extra 8-bits of accuracy in the quotient.

Since this project is primarily concerned with using division to compute the RGB

to HSL colour space conversion algorithm, the focus lies on the quotient, and not

the remainder.
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Chapter 6

Division Algorithms

As mentioned previously, the main difficulty in implementing the RGB to HSL

conversion on the FPGA is the lack of hardware divisors. The calculation of all three

HSL channels from the RGB source involve some form of division. The division by

two in the Lumience channel can be replace by a simple bit-shifting operation, but

the divisions in the Hue and Saturation channels require a proper divisor. FPGAs

do not come with embedded hardware for performing division, so a divisor needs to

be constructed from the FPGA’s logic blocks.

Since floating-point arithmetic requires too many FPGA resources, the division op-

eration has to be approximated using fixed point arithmetic and integer hardware

division units. The RGB to HSL conversion operates on 8-bit quantities, so it is

desirable to use a hardware division unit that is optimised for processing byte sized

numbers. This presents a slight problem, since much of the current research into

hardware arithmetic units focuses either on numbers with large word sizes [46] or

floating point numbers [47]. In addition it is desirable to have a divisor with a high

degree of accuracy, fully pipelined implementation, and a short pipeline depth.
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START

Q <= Numerator
D <= Denominator
Counter <= N - 1

R <= 0

R <= lshift(R, Q[N - 1])
Q <= lshift(Q, 0)

R <= R - D

R < 0?

R <= lshift(R, Q[N - 1])
Q <= lshift(Q, 0)

R <= lshift(R, Q[N - 1])
Q <= lshift(Q, 1)

R <= R + DR <= R - D

Counter = 0?

Counter <= Counter - 1

R < 0? R <= R + D

STOP

YES

YES

NO

NO

Figure 6.1: Dataflow diagram for the Radix-2 Non-Restoring Divisor [43]

6.1 Radix-2 Non-Restoring Divisor

The standard algorithm for performing integer division is the Radix-2 Non-Restoring

Divisor. This algorithm is shown in diagrammatic form in Figure 6.1. The algorithm

divides an N bit numerator by an M bit denominator to produce an N bit quotient

and an M bit remainder.

Quotient N -bit =
⌊

Numerator N -bit

Denominator M -bit

⌋
(6.1a)

Remainder M -bits = Numerator N -bit mod Denominator M -bit (6.1b)

Expressed in another way,

Numerator N -bit

Denominator M -bit

= Quotient N -bit +
Remainder M -bits

Denominator M -bit

(6.2)
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Figure 6.2: Spartan3-500E Resource Usage for the Non-Restoring Divisor

This algorithm is widely used on FPGAs, and implementations are readily avail-

able [48]. Despite this, there are several problems with the algorithm. The first

problem is with the central loop, as shown in Figure 6.1. The algorithm requires

one execution of the loop for every bit in the quotient. This means the algorithm

is well suited to long pipelines, since every pass through the loop can be pipelined

to a separate clock cycle. Unfortunately this same loop structure also detrimentally

affects the performance of short pipelined implementations. The main purpose of

pipelining is to increase the clock speed of hardware units at the expense of requir-

ing more clock cycles to produce a result. The FPGA on the EyeBot M6 runs at a

clock speed of only 50MHz. Increasing the pipeline depth for the sake of clock speed

has no effect once the clock speed of the FPGA module exceeds the threshold clock

speed of 50Mhz. At this point a longer pipeline merely delays the time between

receiving the inputs and producing an output.

Figure 6.1 shows the percentage resource usage of the Spartan3-500E FPGA when

instantiating the non-restoring divisors provided by Xilinx CORE Generator. Since

the divisor is not fully pipelined, it not only requires multiple clock cycles to produce

each result, but cannot process any more inputs until the first has finished. As can be
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Numerator

Denominator Inverse Table

RightShift

Result

16 bit integer

8 bit integer

N bit fraction

16 bit integer

16 bit integer,
N bit fraction

Figure 6.3: Dataflow diagram for the basic Lookup Table Divisor

seen, the amount of FPGA resources required is inversely proportional to the amount

of time required for the divisor to produce a result. Implementations with a short

pipeline require a noticeably greater amount of FPGA space than implementations

with longer pipelines. Instead, what is desired is a divisor that is able to produce an

output every clock cycle, yet only requires a few clock cycles to produce each result,

at the same time requiring few FPGA resources.

The second problem with the Non-Restoring Divisor is that the result it produces

is truncated integer division. This means that when calculating Num / Denom it

actually produces the result b Num / Denom cN -bits, that is, it calculates the floor

of the division to N -bits. While this works well in most cases, it is suboptimal in

the case where integer division is used to approximate floating-point division. In

this case the result of the division should be as close to the ‘true’ result of Num /

Denom as possible.

6.2 Lookup Table Divisor

In order to solve the problems of both pipeline depth and accuracy, a different divisor

was designed for this project. The dataflow diagram for this algorithm, the Lookup

Table Divisor, is shown in Figure 6.3. It relies on the fact that division is equivalent
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6.2. LOOKUP TABLE DIVISOR

to multiplication by the inverse of the denominator. By using a precomputed lookup

table of inverses, the divisor in essence uses a hardware multiplier (of which the

FPGA has several) to implement a hardware divisor (of which the FPGA has none).

The entries in the inverse table are computed according to the equation

Inverse [Denominator] = Round
(

1

Denominator
× 2N

)
(6.3)

The division is then performed by multiplying the numerator by the inverse of the

denominator, then right-shifting to align the result to the same radix point as the

original numerator.

Result =

⌊
Numerator× Inverse[Denominator]

2N

⌋
(6.4a)

=

Numerator× Round
(

1
Denominator

× 2N
)

2N

 (6.4b)

Through careful calculation of the values in the lookup table, this divisor can produce

results closer to the true value than those produced by the Non-Restoring Divisor.

In Figure 6.3 and Equations (6.3) and (6.4) the bitwidth of the inverse table is

left unspecified. The choice of bitwidth depends on several factors, including the

availability of FPGA resources, and the maximum bitwidth of the FPGA’s hardware

multipliers. The Xilinx Spartan-3E hardware multipliers have a maximum individual

bitwidth of 17 for unsigned numbers or 18 for signed numbers — this includes the

sign bit. In addition, the choice of bitwidth is complicated by the fact that division

by certain numbers requires less bits than division by other numbers.

Consider the case of a division by 4. To minimise the size of the inverse requires

finding the minimum number of bits (minimise N) required to express 1/4× 2N as

an integer quantity. It is easily be seen that 1/4 = 2−2, and hence the inverse can
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be expressed as

Inverse[4] = Round
(

1

4
× 2N

)
= Round

(
2−2 × 22

)
= 1|2−bits

(6.5)

In other words, only a single bit is required to store the inverse of 4, since all the

work is done by the later bitshift right by 2 bits (equivalent to a division by 4). It is

intuitively obvious that a division by any power of 2 can be expressed by a multipli-

cation by 1, then a subsequent bitshift by N bits, where N = log2(Denominator).

Following on from this point, it is theorised that there is a specific bitwidth for every

possible denominator for which the accuracy is maximised. From Equation (6.4),

the result of dividing n by d using an N -bit inverse is

Result(n, d, N) =

n× Round
[

1
d
× 2N

]
2N

 (6.6)

Thus the magnitude of the error between the result output by the divisor and the

true value of dividing n by d is

Error(n, d, N) =
∣∣∣∣Result(n, d, N)− n

d

∣∣∣∣ (6.7)

Thus for any particular combination of denominator and N , the total error value is

obtained by summing Equation (6.2) for all possible values of the numerator.

Total Error(d,N) =
nmax∑
n=1

Error(n, d, N) (6.8a)

=
nmax∑
n=1

∣∣∣∣Result(n, d, N)− n

d

∣∣∣∣ (6.8b)

=
nmax∑
n=1

∣∣∣∣∣∣
n× Round

[
1
d
× 2N

]
2N

− n

d

∣∣∣∣∣∣ (6.8c)
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∴ Normalised Total Error(d,N) =
1

nmax

nmax∑
n=1

∣∣∣∣∣∣
n× Round

[
1
d
× 2N

]
2N

− n

d

∣∣∣∣∣∣ (6.8d)

Figure 6.4 describes the change in the Normalised Total Error for different denom-

inators as the bitwidth used to store the inverse changes. As can be seen from the

graph, the total error is very high for low bitwidths, but decreases as the bitwidth

increases, as expected. Also apparent from the graph is that for any particular

denominator, there is a particular bitwidth beyond which the accuracy of the divi-

sion does not improve. Indeed, as can be seen, increasing the bitwidth beyond this

optimum point may even decrease the accuracy of the division.

By carefully varying the bitwidth of the inverse table for each denominator, it is

thus possible to improve the accuracy of the divisor over using a fixed bitwidth for

the entries in the inverse lookup table.

Using a fixed inverse bitwidth of 17 (the largest bitwidth of unsigned integers that

can fit in a single Spartan-3E hardware multiplier), produces a normalised total
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error of

Normalised Total Error(d, Fixed Width) =
1

nmax

nmax∑
n=1

∣∣∣∣∣∣
n× Round

[
1
d
× 217

]
217

− n

d

∣∣∣∣∣∣
(6.9)

And from Equation (6.1a) the normalised total error of the Non-Restoring Divisor

is given by

Normalised Total Error(d, Non-Restoring) =
1

nmax

nmax∑
n=1

∣∣∣∣⌊n

d

⌋
− n

d

∣∣∣∣ (6.10)

These three normalised total error values are plotted in Figure 6.5. As can be seen,

the error of the Non-Restoring divisor is very constant for all values of the denom-

inator. This is because the Non-Restoring divisor always rounds the result down

to the nearest integer, discarding the fractional component entirely. Considering

the fact that the result of most divisions will have a fractional component, then on

average half of these divisions will have a fractional component of ≤ 0.5, and the

other half will have a fractional component of > 0.5. Thus the average fractional
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Numerator

Denominator Inverse Table

RightShift

Result

16 bit integer

8 bit integer

N bit fraction

16 bit integer

16 bit integer,
N bit fraction

Bitwidth Table

Figure 6.6: Dataflow diagram for the Lookup Table Divisor with Variable Bitwidth
inverse

component of the division results will be ≈ 0.5, which as shown in the graph, is the

normalised error value of the Non-Restoring Divisor.

By contrast, the error value of the Lookup Table Divisor fluctuates greatly depend-

ing on the denominator. There are two sources of error in the Lookup Divisor

algorithm. The first is due to the choice of value entered into the inverse table.

Since the inverse table can only store integers, parts of the fractional component

of the bitshifted inverse (1/d× 2N) are lost. Rounding the inverse preserve greater

accuracy over truncating it, but the inverses of many numbers are not rational in

radix-2 representation.

The other source of error in the Lookup Divisor algorithm comes from truncating

the result. Unfortunately, because of the variability in the stored inverse, the error

result from truncation is not readily obvious.

Nevertheless, it can be seen that the Variable Bitwidth version of the Lookup Divisor

algorithm gives superior results (less average error) than the Fixed Bitwidth version.

Furthermore, although the average error of the Fixed Bitwidth version fluctuates

around the error of the Non-Restoring Divisor, the average error of the Variable

Bitwidth version is usually much better than the Non-Restoring Divisor.

Implementing the Variable Bitwidth version of the Lookup Divisor algorithm re-

quires an extra lookup table to store the bitwidth of the inverse of each denominator.
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Lookup Divisor Version Slices 18x18 Multipliers

Variable Width Inverse 216 1
Fixed Width Inverse 103 1

Table 6.1: FPGA resource usage of the Variable Bitwidth Lookup Divisor vs. the Fixed
Bitwidth Lookup Divisor

Since this table only needs to store the size of the inverse, not the inverse itself, each

entry only occupies 5-bits (the number of bits needed to store the maximum size of

the inverse which is 17). This version of the Lookup Divisor is shown in Figure 6.6.

Unfortunately, adding the Bitwidth table and its associated extra logic noticeably

increases the amount of FPGA resources used by the divisor, as seen in Table 6.1.

6.3 Further Optimisations

From Figure 6.5, it can be seen that the Lookup Table Divisor gives a more accurate

result to the Non-Restoring Divisor on average. However it can also be seen that

there are cases in which the Lookup Divisor algorithm performs worse than the

Non-Restoring Divisor.

From Equation (6.4), it can be seen the result of the Lookup Divisor algorithm is

given via the truncation of a larger bitwidth quantity. The accuracy of the result can

be improved by changing this truncation into a rounding operation instead. Unlike

truncation, the rounding operation requires that more bits be computed than are to

be output in the result [49]. This isn’t a problem for the Lookup Divisor algorithm,

since the bitwidth of the inverse, N , is always greater or equal to one, hence there

is always an extra bit on which to base the rounding operation. Furthermore, while

rounding on a CPU requires extra computation, it can be performed quickly and

simply on a FPGA.

This transforms the result of the Lookup Table Divisor from Equation (6.4) to

Inverse [Denominator] = Round
(

1

Denominator
× 2N

)
(6.11a)

Result = Round

(
Numerator× Inverse[Denominator]

2N

)
(6.11b)
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= Round

Numerator× Round
(

1
Denominator

× 2N
)

2N


(6.11c)

While this may seem a small optimisation, the effect on the accuracy of the Lookup

Table Divisor is significant, as shown in Figure 6.7. Two facts are readily apparent

from the graph. Firstly, the introduction of rounding has greatly improved the

accuracy of the Lookup Divisor. In fact, the error of the divisor is now half that of

the error of the Non-Restoring Divisor.

This is not entirely surprising. The Non-Restoring Divisor discards the fractional

component of the result entirely. By contrast the Rounding Lookup Divisor uses the

value of the most significant bit of the fractional component (2−1 = 0.5) to perform

the rounding operation. In essence the Non-Restoring Divisor starts discarding

information beginning from the most significant bit of the fraction (2−1 = 0.5)

whereas the Lookup Divisor only starts to discard information beginning form the
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Figure 6.8: Dataflow diagram for the Lookup Table Divisor with Rounding

second most significant bit of the fraction (2−2 = 0.25). As can be seen from the

graph, these are approximately the magnitude of the average error in both divisors.

The second item of note on the graph is rounding the result effectively cancelled

any benefit gained by selectively varying the bitwidth of the inverse. This actually a

beneficial result. Since the fixed-width divisor performs as well as the variable-width

divisor (when the result is rounded), it is possible to avoid the extra complexity

required for implementing the variable-width divisor.

The final version of the Lookup Table Divisor is shown in Figure 6.8. By using fixed

widths quantities for the inverse table it avoids the need for a separate bitwidth table,

and thus saves space on the FPGA. By rounding the output the divisor produces

results of greater accuracy than the standard Non-Restoring Divisor.

Figure 6.9 shows the amount of FPGA resources consumed by the final version

of the Lookup Table Divisor as compared to the resources consumed by different,

openly available, implementations of the Radix-2 Non-Restoring Divisor [48]. All

the division units operate on unsigned integers, and divide a 16-bit number by an

8-bit number, since this is what is required by the architecture of the RGB to

HSL converter. It can be seen that the resource requirements of the Lookup Divisor

compare favourably with the requirements of the Non-Restoring Divisors. The main

52



6.3. FURTHER OPTIMISATIONS

0.0%

2.0%

4.0%

6.0%

8.0%

P
e
rc

e
n
ta

g
e

F
P

G
A

U
sa

g
e

P
e
rc

e
n
ta

g
e

F
P

G
A

U
sa

g
e

Slices Slice Flip Flops 4 Input LUTs MULT18X18SIOs

FPGA ResourceFPGA Resource

Lookup Table Divisor

UU Hardware(Q, R)

UU Single(Q, R)

UU Serial(Q, R)

Figure 6.9: FPGA Usage of the Lookup Table Divisor compared with different imple-
mentations of the Radix-2 Non-Restoring Divisor

difference being that the Lookup Divisor requires the use of one of the FPGA’s

hardware multipliers, whereas the Non-Restoring Divisors can be instantiated using

regular logic cells.

The Lookup Table Divisor shown in the graph is fully pipelined, returning an output

every clock cycle, and only takes 2 clock cycles to process each set of inputs. The

UU Hardware divisor is a fully pipelined Radix-2 Non-Restoring Divisor that takes

8 clock cycles to process each individual set of inputs. Both these divisors operate

at greater than the 50MHz limit required of the FPGA. By comparison, the UU

Single divisor use the Non-Restoring algorithm but calculates the result in only a

single clock cycle. However it runs at less than 22MHz, limiting its use. Finally, the

UU Serial divisor is much like the UU Hardware divisor in that it takes 8 cycles to

fully process its inputs. Unlike the previous divisors however, the UU Serial divisor

is not fully pipelined, and cannot accept any inputs until it has finished processing

the current result. These results are summarised in Figure 6.10.

It can be seen that the Lookup Table Divisor compares favourably with the Non-
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Figure 6.10: Performance of the Lookup Table Divisor compared with different imple-
mentations of the Radix-2 Non-Restoring Divisor

Restoring Divisor in its optimised niche of byte-sized division. Not only does the

Lookup Divisor return a more accurate fixed-point result, but it also has a compa-

rable FPGA resource utilisation, as well as a shorter pipeline depth and comparable

clock speed.

6.4 Error Distribution

The previous section provided calculations for the mean error produced by both

the Lookup Divisor and the Non-Restoring Divisor. However, in order to fully

characterise the systems, more information is required.

Let the inputs to the division algorithms be two random variables, n and d. Assume

that both are discrete random variables uniformly distributed between n ∈ [0, 65535]

and d ∈ [1, 255], that is n is a 16-bit integer and d is an 8-bit integer. It is not nec-

essary to consider to case of d = 0, since division by zero is an undefined operation.

Therefore the number of possible combinations of n and d is given by the expression
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divcombs = (nmax − nmin + 1)× (dmax − dmin + 1) (6.12a)

divcombs = (216 − 1− 0 + 1)× (28 − 1− 1 + 1) (6.12b)

divcombs = 224 − 216 (6.12c)

Furthermore, let Error(n, d) be the magnitude of the error resulting from dividing

n by d using one of the previously outlined algorithms. Since n and d are uniformly

distributed random variables, the probability associated with any particular combi-

nation of n and d is 1/divcombs. The mean error expected from a division operation

is thus given by [50]

ē =

nmax∑
nmin

dmax∑
dmin

Error(n, d)

divcombs

invalid (6.13)

Similarly, the standard deviation can be obtained from

σe =

√√√√√√
nmax∑
nmin

dmax∑
dmin

(Error(n, d)− ē)2

divcombs

(6.14)

The output result of the Non-Restoring Divisor is given by Equation (6.1a), hence

it has a mean error value of

ēnrd =

nmax∑
nmin

dmax∑
dmin

∣∣∣⌊n
d

⌋
− n

d

∣∣∣
divcombs

(6.15a)

ēnrd = 0.487844 (6.15b)

This is the same as the mean error obtained from Figure 6.7, as expected. In

addition, the standard deviation of the error of the Non-Restoring Divisor is given

by

σe−nrd =

√√√√√√
nmax∑
nmin

dmax∑
dmin

(∣∣∣⌊n
d

⌋
− n

d

∣∣∣− ēnrd

)2

divcombs

(6.16a)

55



CHAPTER 6. DIVISION ALGORITHMS

σe−nrd = 0.290281 (6.16b)

Which indicates that the error of the Non-Restoring Divisor is widely spaced. While

centred around ēnrd = 0.487844, there will still be a high probability of obtaining a

much higher error value.

Performing the same analysis on the Rounding, Fixed-Width (17-bits) Lookup Table

Divisor produces a mean of

ēltd =

nmax∑
nmin

dmax∑
dmin

∣∣∣∣Round
(

n×Round( 1
d
×217)

217

)
− n

d

∣∣∣∣
divcombs

(6.17)

ēltd = 0.255862 (6.18)

And a standard deviation of

σe−ltd =

√√√√√√
nmax∑
nmin

dmax∑
dmin

(∣∣∣∣Round
(

n×Round( 1
d
×217)

217

)
− n

d

∣∣∣∣− ēltd

)2

divcombs

(6.19)

σe = 0.157503 (6.20)

As can be seen, both the mean and the standard deviation of the Lookup Divisor

algorithm are approximately half those of the Non-Restoring Divisor. This is not

surprising, since the rounding operator in the Lookup Divisor allows the divisor to

capture more information in the result than the truncation operator of the Non-

Restoring Divisor.

Unfortunately, these same rounding and truncations operations make it difficult to

obtain an analytic expression for the probability density functions of the divisor

errors. However it is possible to construct a program to obtain a parametric ap-

proximation to the probability error density functions. Since both the numerator

and the denominator are assumed to be uniformly distributed random variables, it

is sufficient to iterate across every possible combination of numerator and denomi-

nator and record the error value. The resulting error values can then be discretized

and counted to produce a histogram — a probability mass function of the divisor
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error. This is shown plotted in Figure 6.11.

As can be seen, the error values of the Non-Restoring Divisor are fairly uniformly

distributed across range, whereas the error of the Lookup Divisor is clumped towards

the lower end of the error range. The error distribution for the Non-Restoring Divisor

is mostly symmetric as expected — there is as much a chance of a high error as there

is of a lower error value. The asymmetry of the Lookup Divisor is likely due to the

two rounding operations in the algorithm.

In addition, the probability mass functions show several spikes, notably at e =

0, 0.25, 0.5 and 0.75. This is likely a result of having discrete random variables as

inputs to the division algorithms instead of continuous random variables.

57



CHAPTER 6. DIVISION ALGORITHMS

0

0.005

0.01

0.015

0.02

0.025

P
ro

b
a
b
il
it
y

P
ro

b
a
b
il
it
y

0 0.2 0.4 0.6 0.8 1

Error ValueError Value

Radix-2 Non-Restoring Divisor

0

0.005

0.01

0.015

0.02

0.025

P
ro

b
a
b
il
it
y

P
ro

b
a
b
il
it
y

Fixed Width Lookup Divisor

Figure 6.11: Probability distribution of the error values from the divisors
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Chapter 7

FPGA Implementations and

System Performance

7.1 FPGA Modules

The various image processing algorithms have been implemented as separate VHDL

modules, and the inputs of the modules have been designed to be as generous as

possible in order to maximise code reuse. When linked together, the modules form

a system for performing detection and location of coloured objects using the FPGA.

7.1.1 EyeLink Flow Control Protocol

The EyeLink Flow Control Protocol was designed as a method to throttle the flow

rate of data between different modules. In every transaction of signal data, one

module will be sending data, and the other module will be receiving data. Between

Sender Receiver

el_ready_to_send

el_ack_data

Figure 7.1: Signals of the EyeLink Flow Control Protocol
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MAX - MIN
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Figure 7.2: Block diagram of the RGB to HSL colour space converter

the sender and the receiver, the protocol defines two signal lines el ready to send

and el ack data. This is illustrated in Figure 7.1.

When the sender has valid data to give to the receiver, it asserts el ready to send

high. When the receiver is ready and able to receive data, it asserts el ack data.

When both signals are high, the sender puts its data onto the signal line, and the

receiver reads the same data from the line. This protocol ensures that the sender

does not flood the receiver with more data than it can handle. It also ensures that

the receiver only processes valid data from the sender. In essence it allows two

modules with different data rates to operate correctly when linked together.

7.1.2 RGB to HSL Converter

This module implements the RGB to HSL colour space conversion outlined in Chap-

ter 4, Equations (4.15), (4.16) and (4.17). The module is divided up into several

distinct components as shown in the block diagram in Figure 7.2.

The Pre-Calc component reads in the (Red, Green, Blue) channel data and outputs

the Lumience, a code corresponding to the maximum RGB colour channel, and the

value of the maximum RGB channel minus the minimum RGB channel (delta).

The Saturation Selector component prepares the saturation parameters for the divi-

sor. The numerator of the saturation is the delta value from the Pre-Calc component,
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Algorithm 7.1 RGB to HSL: Pre-Calc

Require: Red, Green, Blue ∈ [0, 255]
Ensure: delta, Lumience ∈ [0, 255]

max val ⇐ max(Red, Green, Blue)
min val ⇐ min(Red, Green, Blue)
delta ⇐ max val − min val
if max val = Red then

max channel ⇐ ‘R’
else if max val = Green then

max channel ⇐ ‘G’
else if max val = Blue then

max channel ⇐ ‘B’
end if
Lumience ⇐ max val/2 + min val/2
/* division by 2 ≡ right shift by 1, dividing before adding ensures all calculations
fit within 8-bits */

bitshifted into the upper 8-bits of a 16-bit number to obtain greater precision from

the division. The denominator is the Lumience value or 255 minus the Lumience

value, depending on the size of the Lumience.

Algorithm 7.2 RGB to HSL: Saturation Selector

Require: delta, Lumience ∈ [0, 255]
Ensure: saturation numerator[7 : 0] = 0, saturation denominator ∈ [0, 255]

saturation numerator ⇐ delta shift left by 8
if Lumience ≤ 127 then

saturation denominator ⇐ Lumience
else

saturation denominator ⇐ 255 − Lumience
end if

Similarly, the Hue Selector prepares the hue parameters for the divisor. The param-

eters vary greatly depending on which of the original RGB channels was brightest.

Additional logic is added in order to keep all values as unsigned integers instead of

switching back and forth between signed and unsigned quantities.

The next component is the HSL Divisor, which calculates the division portion of

the RGB to HSL conversion algorithm for both the Hue and Saturation channels

(hue quotient and sat quotient, both Q8.8 fixed point numbers). The divisor is

a version of the Lookup Table Divisor module modified to carry additional state
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Algorithm 7.3 RGB to HSL: Hue Selector

Require: delta ∈ [0, 255]
Ensure: hue numerator[7 : 0] = 0, hue denominator ∈ [0, 255]

hue denominator ⇐ delta
if max channel = ‘R’ and Green > Blue then

hue numerator ⇐ (Green − Blue) shift left by 8
hue subtract ⇐ false

else if max channel = ‘R’ and Green ≤ Blue then
hue numerator ⇐ (Blue − Green) shift left by 8
hue subtract ⇐ true

else if max channel = ‘G’ and Blue > Red then
hue numerator ⇐ (Blue − Red) shift left by 8
hue subtract ⇐ false

else if max channel = ‘G’ and Blue ≤ Red then
hue numerator ⇐ (Red − Blue) shift left by 8
hue subtract ⇐ true

else if max channel = ‘B’ and Red > Green then
hue numerator ⇐ (Red − Green) shift left by 8
hue subtract ⇐ false

else if max channel = ‘B’ and Red ≤ Green then
hue numerator ⇐ (Green − Red) shift left by 8
hue subtract ⇐ true

end if
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information through the divisor’s pipeline.

Finally the Hue Offset and Saturation Shifter components takes the output from

the divisor, discards the upper and lower bits, and rounds the result to produce the

final HSL image data.

Algorithm 7.4 RGB to HSL: Saturation Shifer

Require: sat quotient in Q8.8 fixed point format
Ensure: saturation ∈ [0, 255]

if delta = 0 then
saturation ⇐ 0 /* Grayscale pixel */

else
sat ⇐ sat quotient[8 : 1] + sat quotient[0]

end if
/* The results of the saturation division are always fractional. Taking
sat quotient[8 : 1] instead of sat quotient[7 : 0] is the same as shifting right by
1, which performs the division by 2 necessary for the saturation channel. Adding
the last bit rounds the final result instead of truncating. */

This module is similar to that constructed by previous researchers for performing

colour object detection using FPGAs. The implementation proposed by Garćıa-

Campos [21] downsampled the three 8-bit RGB channels into three 5-bit channels,

which were then used as as an index into a table of Hue, Saturation and Intensity

values. Their implementation was simpler than the one constructed for this project,

but also less accurate, since the resolution of the input RGB data was reduced from

256 levels per channel to 32 levels per channel.

Figure 7.3 shows the results of running an image through the hardware RGB to

HSL converter on the FPGA. The decomposed images are very similar to the refer-

ence decomposition in Figure 4.4. The saturation and lumience channels are almost

identical to the reference decomposition, but the hue channel shows some visible dif-

ferences. The FPGA implementation manages to correctly identify the red portions

of the image (the eyes, nose, hands and ears of the mouse), but differs noticeably

from the reference implementation on the white fur of the mouse. Part of this dif-

ference is due to the fact that the Hue channel is cyclic. The Hue channel ‘wraps

around,’ so that low Hue numbers (dark areas on the image) are actually ‘close’ to

large Hue numbers (bright areas on the image).
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Algorithm 7.5 RGB to HSL: Hue Offset

Require: hue quotient in Q8.8 fixed point format
Ensure: hue ∈ [0, 255]

if delta = 0 then
hue ⇐ 255 /* Grayscale pixel */

else
hue ⇐ 42× hue quotient
/* 42 is Q6.0 format, and Q8.8 × Q6.0 = Q14.8 */
if max channel = ‘R’ then

hue offset ⇐ 42
else if max channel = ‘G’ then

hue offset ⇐ 126
else if max channel = ‘B’ then

hue offset ⇐ 210
end if
if hue subtract = true then

hue ⇐ hue offset − (hue[15 : 8] + hue[7])
else

hue ⇐ hue offset + hue[15 : 8] + hue[7]
end if
/* discard the fractional bits and the upper (empty) integer bits, and round
the result for greater accuracy */

end if

(a) Original Image (b) Hue

(c) Saturation (d) Lumience

Figure 7.3: HSL Channel Decomposition from the FPGA module

64



7.1. FPGA MODULES
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Cb += Kr2 * R

Cr += Kr3 * R

Y := 0

Cb := 128

Cr := 128

Y  += Kb1 * B

Cb += Kb2 * B

Cr += Kb3 * B

Figure 7.4: Block diagram of the RGB to YCbCr colour space converter

7.1.3 RGB to YCbCr Converter

The RGB to YCbCr colour converter operates as a three stage pipeline implementing

the matrix multiplication required to perform the colour space conversion shown in

Chapter 4, Equation (4.21). The incoming RGB data is loaded into registers in the

first stage. In subsequent states the registered data is then processed using multiply-

accumulate blocks to produce the YCbCr data, which is output in the final stage.

Figure 7.4 shows the block diagram for this module.

Since the coefficients of the RGB to YCbCr matrix are all non-integer quantities,

the FPGA implementation represents them using fixed point arithmetic in a similar

fashion to the Lookup Table Divisor. Figure 7.5 shows the results of running an

image through the hardware RGB to HSL converter on the FPGA.

7.1.4 Colour Thresholder

The colour thresholder module is configured by setting the limits of the three image

channels. Subsequently, three-channel pixel data is fed into the unit, which outputs

a ‘1’ if the pixel fits within the set limits, or a ‘0’ otherwise. Asserting the reset
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Algorithm 7.6 RGB to YCbCr Converter

Require: Red, Green, Blue ∈ [0, 255]
Ensure: Y, Cb, Cr ∈ [0, 255]

Y ⇐ 0

Cb, Cr ⇐ 16777216 /* 128 in Q8.17 */

Y ⇐ Y + 39191 × Red /* 0.299 in Q8.17 */
Cb ⇐ Cb − 22117 × Red /* −0.168736 in Q8.17 */
Cr ⇐ Cr + 65531 × Red /* 0.5 in Q8.17 */

Y ⇐ Y + 76939 × Green /* 0.587 in Q8.17 */
Cb ⇐ Cb − 43419 × Green /* −0.331264 in Q8.17 */
Cr ⇐ Cr − 54878 × Green /* −0.148688 in Q8.17 */

Y ⇐ Y + 14942 × Blue /* 0.114 in Q8.17 */
Cb ⇐ Cb + 65536 × Blue /* 0.5 in Q8.17 */
Cr ⇐ Cr − 10658 × Blue /* −0.081312 in Q8.17 */

/* Right shift and round to obtain the output channel values in Q8.0 format. */
Y ⇐ Y[24 : 17] + Y[16]
Cb ⇐ Cb[24 : 17] + Cb[16]
Cr ⇐ Cr[24 : 17] + Cr[16]
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(a) Original Image (b) Y (Luma)

(c) Cb (Chroma-Blue) (d) Cr (Chroma-Red)

Figure 7.5: YCbCr Channel Decomposition from the FPGA module
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Figure 7.6: Block diagram of the Colour Thresholder module

signal resets the internal state of the module to the default state. In the default

state, the module will match on every pixel (the limits for all the channels are set

to [0, 255]). A block diagram of the module is shown in Figure 7.6.

Algorithm 7.7 Colour Thresholder

Require: Chan1, Chan2, Chan3, Max Val, Min Val ∈ [0, 255], Set Chan ∈ [0, 3],
Reset ∈ [0, 1]

Ensure: Match ∈ [false, true]
if Reset = 1 then

/* Resets the internal state of the module to default values */
∀x ∈ [1, 3], minx ⇐ 0, maxx ⇐ 255

else if Set Chan 6= 0 then
minSet Chan ⇐ Min Val
maxSet Chan ⇐ Max Val

else if Set Chan = 0 then
if ∀x ∈ [1, 3], minx ≤ Chanx ≤ maxx then

Match ⇐ 1
else

Match ⇐ 0
end if

end if

Figure 7.7 shows the results of feeding the original image data through the colour

conversion modules. The converted images are then piped through the colour thresh-

old module to produce the final result. The threshold values were chosen to select
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(a) Original image — Lenna (b) HSL thresholded: 40 ≤ Hue ≤ 50

(c) Original image — Mouse (d) YCbCr thresholded: 77 ≤ Cb ≤ 127 ∧
133 ≤ Cr ≤ 173

Figure 7.7: Output from the FPGA colour conversion and threshold modules
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Figure 7.8: Block diagram of the Mass Counter module

the portions of both images with a strong red content. This works well on the mouse

image, which is mostly white and blue. It is relatively easy to extract the red eyes

and nose of the mouse from the rest of the image. By contrast, the background of

the Lenna image has very similar colour tones to the foreground, making it difficult

to distinguish between the two using colour thresholding alone.

7.1.5 Object Locator

The object locator module takes in a stream of bits representing an image mask,

where a ‘1’ designates pixels belonging to the object of interest, and a ‘0’ designates

other pixels. From this bitstream, row and column counts are made of the pixels and

the result stored in one of the FPGA’s block RAMs, where they may be streamed

out to the CPU, or to another module for further processing. The module is able to

process an input pixel every clock cycle, but requires an additional clock cycle at the

end of every row in order to write out the row count to RAM. The block diagram of

this module is shown in Figure 7.8. Unlike the colour converters, the data output

from this module is in 10-bit chunks, not 8-bit. 10-bits is necessary in order to store

the row or column count from a 512× 512 or 640× 480 resolution image.

The complexity of this algorithm stems from the need to synchronise accesses to the

module’s internal block RAM. The block RAM is dual-ported, meaning it can be

both read from and written to at the same time. However only a single read and
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Module Slices 18x18 Multipliers BlockRAMs
Available 4656 20 20

RGB to HSL Converter 170 3 2
RGB to YCbCr Converter 121 8 0
Colour Thresholder 54 0 0
Object Locator 134 0 1

Table 7.1: Resource usage of the implemented modules on a Xilinx Spartan3-500E
FPGA

a single write can be performed each clock cycle. Moreover, while a write can be

completed in a single clock cycle, reads take two cycles. On the first clock edge, the

read address is given to the RAM, however the read data will not be available until

the next clock edge. This means that data needs to be requested from the RAM a

clock cycle before it is needed.

This module differs from the others in that the results are not directly streamed out

as they are processed. Instead an entire image frame needs to be processed, and the

results accumulated in the module’s block RAM before being usable. In addition,

this module does not directly calculate the centroid of the object, only the row and

column histograms from Equation (4.4). Further calculations, including finding the

centre of mass and the axis of minimum inertia, are left for the CPU.

7.2 System Performance

Table 7.1 shows the amount of FPGA resources required to implement each of the

VHDL modules. As can be seen, the primary resource used by the modules is not

logic slices, but instead block RAMs and multipliers.

All of the implemented FPGA modules are fully pipelined, returning an output every

clock cycle. On the 50Mhz FPGA, this means they can each process approximately

190 medium resolution (512×512) frames per second. In addition, the parallel nature

of hardware logic blocks means that the FPGA can perform all these operations

more or less simultaneously. By contrast, a standard CPU needs to perform these

calculations sequentially, along with any other tasks the processor needs to complete.
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Algorithm 7.8 Object Locator

Require: Pixel In ∈ [0, 1]
if row cool down = true then

/* The end of the current row has been reached. Writing out the row data to
internal storage takes priority over all other tasks. */
write address ⇐ number of columns + current row
write data ⇐ row accumulator
read address ⇐ 0 /* Prepare for the 1st column */
current row ⇐ current row + 1
row cool down ⇐ false
row accumulator ⇐ 0

else if Reset = 1 then
/* Resets the internal state of the module to default values */
current row, current column ⇐ 0
number of columns ⇐ 352 /* CIF resolution — camera resolution */
row accumulator ⇐ 0
row cool down ⇐ false

else if Load Enable = 1 then
/* Count the value of the current pixel. */
row accumulator ⇐ row accumulator + Pixel In
if current row = 0 then

/* First row, no previous column data to increment */
column count ⇐ Pixel In

else
/* Otherwise increment the column data prefetched from RAM */
column count ⇐ read data + Pixel In

end if
/* Write out the current column data to RAM */
write address ⇐ current column
write data ⇐ column count
if current column = number of columns − 1 then

/* Reached the end of the current row */
current column ⇐ 0
row cool down ⇐ true

else
current column ⇐ current column + 1
/* Prefetch the next column’s data */
read address ⇐ current column + 1

end if
end if
/* Write/Read data to/from the block RAM on the clock. */
loop /* On the Clock Edge */

block ram[write address] ⇐ write data
/* read data will be available for the next clock cycle */
read data ⇐ block ram[read data]

end loop
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Figure 7.9: Frame rate of the FPGA vs a Laptop CPU [512× 512 Resolution Images]

The effects of this are shown in Figure 7.9. Despite possessing a significant advantage

in clock speed, the CPU still fails to match the frame rate of the FPGA.

The numbers in Figure 7.9 correspond to the maximum frame rate attainable from

the FPGA modules. The actual frame rate will be constrained by the transfer rate

of data into the FPGA (likely from the cameras) and out of the FPGA (to the CPU

or memory). The frame rate of the CPU will similarly be constrained by I/O.

On the testing framework used in this project, the image processing modules are

connected to the system bus through I/O buffers. The CPU writes data to the

FPGA, with the write address determining which module receives the data. The

processed data is then read back from the FPGA by the CPU, again with the read

address determining which module the data is read from.

Using MMIO (Memory Mapped I/O) and 512 × 512 resolution images, the colour

space converter modules manage a frame rate of about 2 frames a second, the colour

thresholder module 3 frames a second, and the object locator 15 frames a second.

These results do not seem to match the theoretical performance of the FPGA, given

that the modules are designed to run at the same speed, and given the maximum
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frame rate calculated in Figure 7.9. These inconsistencies can be explained by

examining the data rate of the system bus.

Under the test configuration, the CPU has to both write and read data to and from

the FPGA. This means the performance of the FPGA modules is twice constrained

by the system bus. The bus runs at a maximum speed of 22.4MHz, and using

MMIO, the CPU-to-FPGA data rate has been found to be about 3.6MB/s [1].

A full colour medium resolution image occupies 512× 512 pixels, times 3 bytes per

pixel (3 colour channels), which is equal to 768kB per frame. On the test system,

each frame processed by the colour space converters thus requires the CPU to write

768kB to the FPGA and then read an additional 768kB back. Both transfers require

a significant amount of time on the system bus, leading to the low frame rates. The

output data from the colour thresholder module has only a single bit for each input

pixel (so 512× 512/8 = 32kB per frame) hence the data transfer from the FPGA to

the CPU takes much less time, leading to a higher frame rate. The object locator

module has even less I/O data — only a single bit per input pixel, and only outputs

512 rows plus 512 columns times 10 bits per row and column counter, which equals

320kB per processed frame. Hence this module achieves the highest frame rate using

the testing framework.

This situation can be improved by using DMA (Direct Memory Access) for trans-

ferring data between the CPU and the FPGA. MMIO involves transferring a single

16-bit word at a time across the system bus. While easy to program, this method

of I/O does not take full advantage of the bandwidth available on the system. By

contrast, DMA requires making a request to the operating system to transfer a large

block of data at once, which while more involved, is more efficient [1].

Using MMIO, it takes 55.546 milliseconds to write a single 512× 512 bitmap to the

object locator module, and 0.85ms to read back the resulting histogram data. This

corresponds to a frame rate of approximately 17.7 frames per second. Using DMA

for writes instead of MMIO gives a write time of 44.039ms, corresponding to a frame

rate of about 22.28 frames per second.

Despite possessing an 8-fold advantage in clock speed, the ARM9 CPU on the Eye-
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Bot M6 only managed a processing time of 38.17 milliseconds per frame (≈ 26.2

frames per second). The faster frame rate of the CPU is likely due to processor’s

data cache, which is large enough to store an entire input frame to the object locator

algorithm. This allows the CPU to minimise accesses to the system bus, improving

its performance.

If the input data can be taken directly from the camera(s) instead of the CPU, then

the CPU-to-FPGA write time becomes irrelevant. In this case the frame rate of

the algorithms would depend only on the camera-to-FPGA transfer rate, and the

FPGA-to-CPU transfer rate. Since the cameras are connected to the FPGA through

a different bus to the CPU, it is anticipated that the frame rate will be much higher

with this configuration. Unfortunately the VHDL code necessary to communicate

with the cameras was in an unstable state at the time of writing. Without the

cameras, the data for the image processing modules needed to be transfered from

the CPU, leading to long write times and slow frame rates.
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Chapter 8

Conclusion

In conclusion, this project has constructed a new hardware platform, the EyeBot

M6, capable of replacing the existing EyeBot controllers. This platform features

a modern CPU, a FPGA, stereo cameras, and support for a wide variety of high

speed I/O devices. In addition, this project has constructed VHDL code for several

image processing algorithms for execution on the FPGA. These include modules for

performing colour space conversion, image thresholding, and object location. All of

these modules have been tested both in simulation and on the FPGA itself.

Unfortunately the VHDL code needed to retrieve data from the cameras was not in

a usable state at the time of writing, thus the image processing modules needed to

be tested using data streamed from the CPU. This led to low frame rates due to the

relatively slow transfer speeds of the system bus and the large quantities of image

data that needed to be transfered back and forth between the CPU and FPGA.

Once the cameras are fully operational, it is anticipated that the frame rates of the

image processing units will increase significantly.

In addition, this project investigated an architecture for performing fast, accurate,

8-bit division in hardware. This Lookup Table Divisor has been integrated into the

RGB to HSL colour space converter. An analysis of the error distribution of this

algorithm has been performed, and the Lookup Divisor has been shown to be more

accurate than the standard Non-Restoring Divisor.
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8.1 Future Work

The code to interface the image processing modules to the CPU is currently quite

temperamental. Different versions of this code exist to connect different modules to

the system bus, however no code exists for connecting all the modules to the bus at

the same time. More debugging and cleanup of this code is necessary.

In addition, the RGB to HSL conversion module currently seems to be suboptimised.

In order to achieve a 50MHz clock speed, the Xilinx synthesiser software requires

the ‘Register Balancing’ option to be enabled. By introducing more pipeline stages,

it should be possible to reach a 50MHz clock speed without requiring this option.

The RGB to YCBCR converter module is fully pipelined and produces an output

every clock cycle, as well as being able to accept an input every clock cycle. While

this is good from a throughput and performance perspective, it does mean the

module consumes 8 out of the 20 available hardware multipliers. For future work it

would be desirable to create a version that only works on a single input at a time (a

blocking pipeline). This should allow the converter to operate using only 3 (or even

less) multipliers, at the expense of throughput — a reasonable trade-off in some

circumstances.

While hardware logic may be faster, many algorithms are more simply expressed in

terms of CPU code. However, there exist several small processor cores which have

been designed for embedding in FPGAs. One example of this is the Xilinx PicoBlaze

8-bit micro-controller which has been specifically designed for Xilinx Spartan and

Virtex FPGAs [18]. Including one of these cores into the FPGA would increase

the flexibility of the FPGA, and could help ease the implementation of certain

algorithms.

Finally, the camera code needs to be polished and connected to the rest of the image

processing modules in order for the system to be able to perform real-time image

processing.
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