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Abstract

In recent years, Field Programmable Gate Arrays (FPGAs) have begun to reach densities
that allow large-scale parallel processing to be performed in programmable logic. The
application of FPGAs to image processing allows operations to be performed orders of
magnitude faster than on CPUs or DSPs. The ability to perform a given operation simul-
taneously on large sets of data removes the mundane repetitive tasks from CPUs, allowing
them to perform more complicated control tasks.

This project investigates the application of FPGAs to an image-processing platform tar-
geted at real-time imaging. A design is developed to optimise the flow of data through the
processing units (a CPU and a FPGA), such that image data is not required to traverse the
same path multiple times. The design also allows for configurable pre-processing stages to
be performed on the FPGA, freeing the CPU for more complicated control-oriented tasks.
One key feature of this platform is the built-in support for two cameras, enabling research
into hardware-based stereopsis.

Linux is used as the operating system on the device as it offers a solid, familiar platform for
development with a feature-rich toolchain. The developed board is capable of streaming
image data at 60 frames per second from two cameras, through a Spartan-3E FPGA
for pre-processing, and to a 400 MHz PXA255 for analysis. It offers a host of real-
world interfaces including motor drivers, position sensors and ADCs, along with USB and
Ethernet connectivity.

The reliability of the design is analysed by ensuring signal integrity within the circuit. The
hardware’s performance is evaluated and optimised to maximise data throughput from end
to end.
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Chapter 1

Introduction

Over the past few decades, embedded systems have become increasingly common in

everyday life. Television remotes, alarm clocks, cars and mobile phones contain just a

minute handful of the embedded systems people encounter daily. Embedded systems

are often required to perform tasks within a bounded time frame. For a simple device

such as a remote control, this is not a particularly demanding requirement. However,

for devices that are required to process large volumes of data, much more attention

needs to be given to performance.

Although many problems can be solved by simply harnessing more computational

power, some circumstances do not permit this option due to other constraints, such

as size or power consumption. In cases such as this, smarter, more efficient solu-

tions need to be explored. As embedded systems are generally designed for very

specialised purposes, performance can often be improved by taking advantage of

certain properties of the specific task. For example, a servo motor controlled from

a microprocessor may be handled more accurately by a dedicated timer unit.

Image processing is a computationally intense task which often requires fast, power-

hungry hardware to perform. Real-time image processing incurs further demands

on a system, as the processing of a frame must be completed before the next frame

is ready. Due to the repetitive nature of imaging algorithms, many operations lend

themselves well to parallelisation.

This project investigates methods for customising an embedded system for the pur-

pose of performing real-time image processing. It is anticipated that this system

will be used as a platform for mobile robots with high-performance image process-
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CHAPTER 1. INTRODUCTION

ing requirements. This requires that size and power consumption be kept minimal

and that the system be sufficiently future-proof to serve the needs of future users.

1.1 Project Scope

The primary goal of this project is to develop a hardware platform primarily tar-

geted at real-time image processing. This platform will serve as the successor to

previous generations of the robotic platform known as the EyeBot. Whilst provid-

ing optimisations for image processing and offering more computational power than

its predecessors, it will also aim to maintain source-level compatibility with existing

software written for the RoBIOS library (used on the previous EyeBots).

A key focus of this platform, referred to as the EyeBot M6, is the ability to accelerate

image processing through the use of a FPGA. It is expected that this will allow the

CPU to dedicate itself to more interesting (but less repetitive) tasks such as the

control system of a robot.

This platform is already being utilised by other students in CIIPS for developing a

range of hardware-accelerated image processing algorithms, from colour-space con-

version to stereo vision[3, 4].

1.2 Design Specification

The design of this system aims to be a general robotics platform, with real-time

imaging capabilities. To fulfil future requirements of a general robotics platform,

commonly used features from existing platforms, such as previous EyeBots, should

be incorporated. For real-time imaging, performance throughout the entire system

should to be maximised in order to satisfy the needs of future users.

1.2.1 Requirements

As the successor to the previous generation of EyeBots, the new hardware platform

should ideally provide the existing functionality in the EyeBot M5. This includes:

• LCD display;

2



1.2. DESIGN SPECIFICATION

• 2 DC motor drivers;

• encoder inputs for each motor;

• 14 servo motor drivers;

• 6 PSD inputs;

• audio input/output;

• analog input channels;

• digital I/O;

• RS-232 interface.

A indication of what constitutes “real-time” is required in order to better specify the

requirements of the system. The OV6630 camera modules intended for use provide

colour images at a rate of 60 frames per second and a resolution of 352×288 (Bayer

pattern). At a bare minimum, the system should be able to operate at this rate to

perform basic operations such as colour histograms.

In addition, to better adapt to real-time image processing applications and serve as

a viable platform for future projects, the following requirements were also added:

• Dual colour cameras — support for two cameras exposes the ability to utilise

stereo vision techniques to obtain depth calculations. The implementation of

stereo vision algorithms on the FPGA is already being investigated by other

students in CIIPS[4].

• High-speed connectivity — the previous generation of EyeBots offered se-

rial and parallel ports for communications. With serial port speeds up to

115200 bps and parallel port speeds up to 921600 bps, it would struggle to

deliver a single colour image frame in under a second. Furthermore, serial and

parallel ports are becoming less common on new PCs, being replaced in favour

of USB and Firewire.

• Wireless capability

• Non-volatile storage

3



CHAPTER 1. INTRODUCTION

1.2.2 Constraints

Time and budgetary constraints limit the range of devices that can be incorporated

into the hardware platform. Thus the underlying goal is to obtain the best possible

performance within the given constraints and at minimal cost. These constraints

are:

Power consumption: As the device will be battery operated, power consumption

should be minimised. Facilities should exist to disable devices which are not

in use.

BGA mounting: Designing boards with BGA (Ball-Grid Array) components re-

quired software that was not available at the start of the project. The venerable

Protel 98 package available to us had no facility for creating or routing BGA

components. In addition, the Electronic Workshop in the department did not

have the necessary equipment to manufacture or populate BGA components.

If fabrication and population of the boards were performed by an external

company, the use of BGA components would double the cost.

PCB size: As the target device is intended for use on mobile platforms such as

robots, the size of the board must be kept to a minimum. As a guide, the

existing EyeBot M5 has dimensions 113 mm×93 mm. A much larger board

would become too impractical for some autonomous devices.

PCB layers: Many PCB manufacturers will manufacture PCBs with up to six

layers. Locating a company willing to do eight or more layers is particularly

difficult, not to mention costly. Thus the design should use no more than six

layers.

RoHS compliance: The RoHS (Restriction on Hazardous Substances) directive

was enforced in the EU (European Union) on July 1st 2006[5], with other coun-

tries around the world expected to follow suit in the following years. Amongst

other things, this directive prohibits the production or import of electronics

goods containing lead within the EU. This has caused a variety of production

issues in the global electronics industry as all manufacturers require retooling

to accommodate lead-free processes.

In 2006, some manufacturers were providing RoHS-compliant alternatives for

their entire product line. However many were still in the conversion process,
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hampering the availability of RoHS-compliant parts for non-standard compo-

nents.

Additionally, some usability constraints were placed on the design:

• ease of programmability;

• low cost development tools (ideally free);

• debugging interface;

• source-level compatibility with previous EyeBot software.

1.3 Major Contributions

The major contributions of this project are:

• the architectural and schematic design of the EyeBot M6;

• sourcing RoHS-compliant parts for the design;

• the Linux drivers for devices on the board:

– FPGA configuration

– FPGA memory-mapped I/O access

– adapted Ethernet driver

– ported USB 2.0 driver

• the VHDL for communicating with the motors, servos, encoders, and PSDs;

• assistance in writing the VHDL for interfacing to the SRAM controller;

• a library for providing a simple, documented method of accessing the required

hardware;

• performance benchmarking and optimisation of data transfer from the FPGA

to the CPU.

The PCB layout and population of the board was performed by Ivan Neubronner

in the electronics workshop at The University of Western Australia.
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CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

Chapter 1 offers a brief outline of the project, its motivations and its specification.

Chapter 2 presents some background information in the areas of high performance

embedded systems, hardware-based vision systems and work performed by

other research groups.

Chapter 3 documents the approach taken to the hardware design of the Eye-

Bot M6.

Chapter 4 describes the software drivers and interfaces written for the EyeBot M6.

Chapter 5 evaluates the success of the design and its fulfilment of the design cri-

teria, details the performance obtained from the system and describes how its

performance was enhanced.

Chapter 6 summarises the project and discusses future work on the EyeBot M6

that will follow.
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Chapter 2

High Performance Embedded Systems

Traditional computer systems operate with a “best effort” approach, where tasks are

attempted using the available resources, but with no guarantees of their successful

completion. Operations may fail to complete on these systems due to unexpected

memory or CPU requirements. For example, dynamic memory allocation leads to

memory fragmentation after repeated allocation and freeing — a tasks that requires a

large contiguous allocation may fail, even if there is sufficient total memory available.

Dynamic allocation can also take a non-deterministic amount of time, making it

impossible to predict the behaviour of the system in all circumstances.

Embedded systems must be designed for reliability. This requires a different per-

spective on design and coding in order to guarantee that the necessary resources

will always be available at runtime. Embedded tasks typically pre-allocate their

total memory requirements at boot, so that the application developer will know im-

mediately if insufficient memory is available. Dynamic allocation is avoided, which

reduces the number of error paths required in the code and the likelihood of memory

leaks being introduced.

Embedded tasks typically also require deterministic execution times in order to

guarantee consistent behaviour of the system under any input condition. System

designers must ensure that sufficient processing power is available for all intended ap-

plications, otherwise risk performance degradation or failure of the system. Systems

utilising real-time operating systems are designed with determinism and reliability

in mind.

High performance embedded systems are subject to the same constraints as regu-
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lar embedded systems, in that their determinism and reliability is critical. High

performance systems are often required in situations where processing occurs on

large streams of real-time data. These include multimedia applications such as

audio/video streaming and high-bandwidth networking equipment. Requirements

must be met through efficient utilisation of the available hardware.

Fault tolerance is an aspect of reliability that is difficult to anticipate. Process

variation in fabrication can lead to stability issues in memory cells, increased leak-

age currents, and differing behaviours at high frequencies[6]. Operation in high-

temperature environments also reduces the mean time between failure (MTBF) of

a device. The effects of aging need also be considered for devices to operate reliably

in the long-term.

2.1 Challenges for High Performance Embedded Systems

High performance embedded systems are often required to push the limits of their

hardware. Aspects of a computer system which are normally taken for granted must

be analysed much more closely. These include:

• cache performance;

• instruction pipelining;

• interrupt latency;

• impact of interrupts on scheduling;

• the cost of context switching;

• data flow paths within the system.

Depending on the architecture, neglecting to consider some of these factors can

have a huge impact on performance. Yet accurately predicting the performance of

code on a system utilising caches, pipelines and DMA is practically impossible. A

worst-case analysis can be performed, assuming that memory reads never hit the

cache, the instruction pipeline is flushed at every potential opportunity, and that

DMA is continually stealing cycles from the memory bus. This however, is a highly

unrealistic scenario and meaningless in practical systems. Gaining an understanding

8
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of each component’s effect, their interactions and their impact on overall system

performance, is still beneficial for maximising computational efficiency.

For example, heavily pipelined architectures incur a severe performance penalty on

each unanticipated branch — the Intel XScale processor has a 7 stage pipeline,

with a 4 cycle penalty for branch misprediction. Although modern dynamic branch

predictors typically predict over 90% of branches accurately[7], excessive context

switching can noticeably degrade their performance[8].

Optimising compilers are often aware of the intricacies of the architecture they

target and attempt to maximise the efficiency of the generated assembly. They can

determine an optimal schedule of instructions to minimise register dependencies,

pipeline stalls from memory loads and branch misprediction penalties. However, the

compiler can only work within the constraints of the code it is given. To improve

efficiency, the compiler may require some encouragement to generate more optimal

code. For example, unrolling tight inner loops by hand improves performance on

some architectures, due to fewer branches and the freedom to use more registers.

In addition to the indeterminism of the CPU architecture, the most common em-

bedded languages, C and C++, were not designed to consider timing requirements

of code, and thus compilers are free to generate code as they see fit. No constraints

can be given to specify minimum or maximum execution times. This gives rise to

difficulties when trying to validate timing-critical code[9]. For example, if an oper-

ation involved in video streaming consumes more time than allocated, the following

frame may be dropped. Conversely, if an operation completes in less time than

expected, extra buffers may be required to store the result until it is needed. To

achieve reliability, the number of variables in the system must be reduced. This may

however not always be possible.

2.1.1 The Von Neumann Bottleneck

Computer vision systems have traditionally been implemented on CPU-based ar-

chitectures where a processor alone performs image capture, the desired image pro-

cessing tasks and any post-processing required on the images. Performing these in

real-time on such an architecture requires not only a fast CPU, but also sufficient

memory bandwidth for image capture and processing. This model suffers from the

limitation known as the von Neumann bottleneck[10].

9



CHAPTER 2. HIGH PERFORMANCE EMBEDDED SYSTEMS

The von Neumann bottleneck arises from the separation between the CPU and the

memory, where the data of interest lies. Performing simple tasks on large amounts

of data (such as the pixels of an image), requires each pixel to be read from and

written back to memory. CPU data caches were created to alleviate the pressure on

the memory bus, but their benefits are minimal for continuous streams of data.

Some CPUs (particularly DSPs) offer small amounts of fast internal memory that

can be addressed explicitly, rather than relying on a cache controller. However, very

few offer sufficient internal memory to hold even a single image frame. In addition,

requesting the CPU to copy data from external memory into the internal memory

is a poor use of CPU time. Zinner and Kubinger[11] demonstrate a method of

double buffering image data by co-ordinating DMA requests to pre-populate internal

memory. By using DMA, the CPU can dedicate its time to processing data, whilst

the DMA controller feeds data into internal memory.

Another solution applicable to data acquisition systems such as computer vision

platforms, is to utilise a dedicated hardware device to perform the necessary pre-

processing on the incoming data. This permits the CPU to spend less cycles on

simple repetitive cache-thrashing operations, and more cycles on analysing the re-

sults and making decisions with some degree of intelligence.

2.1.2 Real-time systems

A real-time1 system can be defined as a system that is only considered correct if

its outputs are correct and delivered within a specified deadline[12]. Failure to

meet either criteria constitutes a failure of the system. Real-time systems do not

necessarily need to be high performance, and conversely, high performance systems

do not necessarily need to be real-time. However, the two have certain aspects

common to both. Designing a real-time system requires a holistic approach, that

considers the hardware, the operating system, and all applications, in order to satisfy

the required deadlines.

Real-time systems differentiate between two types of deadlines — hard real-time

deadlines and soft real-time deadlines. Failure to meet a hard real-time deadline may

result in a system failure, whereas failure to meet a soft real-time deadline merely

1“Real-time” in this section refers to the ability of a system to complete tasks in bounded and
deterministic time. This is in contrast to “real-time” image processing, used throughout the rest
of this thesis, which refers to the rate at which images that can be processed.
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results in degraded system performance. Although the constraints on an image-

processing platform are not necessarily hard deadlines, it must be able to maintain

an average processing rate higher than the required frame rate, and not deplete any

image buffers in the data path. This requires a deterministic and bounded execution

time.

In order to guarantee bounded execution times, careful application (or elimination)

of programming constructs such as unbounded recursion, while loops and interrupts

is required. Intimate knowledge of the hardware architecture is also required to

understand the amount of determinism that can be expected — for example cache

misses, instruction pipeline stalls and failed branch predictions all contribute to

execution time and are exceedingly difficult to predict under all circumstances.

2.2 FPGAs and Image Processing

FPGAs have become increasingly common in applications where DSPs were previ-

ously the only viable solution. This form of large-scale programmable logic provides

specialised signal processing capabilities, which accompanied by the inherent paral-

lelism of hardware, offers an immense performance advantage over a traditional CPU

or DSP model. Additionally, the reconfigurable nature of FPGAs allow updates to

be performed entirely in software, reducing the costs of hardware modifications for

fixing bugs.

One of the most prominent advances in image processing technology is the appli-

cation of FPGAs to real-time image processing. Common image processing tasks

can be performed by a FPGA orders of magnitude faster than by a CPU-based

architecture such as a typical modern Intel processor[13]. Even the latest dedicated

floating-point DSPs, such as Texas Instruments’ TMS320C6200 series of DSPs, take

nearly twice as long as a Xilinx Virtex FPGA to perform a complex object detection

application[14].

One of the most common image processing tasks is edge detection. This is often

used as a precursory step in other algorithms. In most implementations (for ex-

ample, Canny, Sobel, and Robert’s Cross), it can be applied as a simple windowed

convolution function and hence can be parallelised very easily. Venkatesan and

Rao[15] have implemented the Canny edge detection algorithm on a Xilinx Virtex

FPGA running at 16 MHz, and were able to outperform a 1.3 GHz Pentium III by
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a factor of 20.

More recently, an algorithm called SUSAN[16] has been designed that can perform

both edge and corner detection simultaneously. This has been implemented on a

Xilinx Virtex FPGA in around 1 500 logic cells, and can process 120 images per

second at a resolution of 512× 512 pixels without heavy optimisation[17] — around

6 times faster than a Pentium III running at 450 MHz. Many other researchers

have explored similar routes of implementing vision algorithms on a FPGA, all

achieving respectable results, orders of magnitude faster than with a CPU-based

architecture[18, 19, 20].

FPGAs have clearly proven themselves to be a valuable resource in any image pro-

cessing platform. One design approach would be to simply utilise a pre-fabricated

image processing device and supplement it with a FPGA. This leverages existing

technology and reduces design and production costs. Off-the-shelf hardware exists

that allows an add-on board with a FPGA to be connected into a PCMCIA slot of

a PC, a PCI bus or even directly into a HyperTransport bus alongside the CPUs in

a multiprocessor system. In this way, the FPGA acts as a co-processor to the host

CPU, allowing intensive operations to be offloaded.

Simple tests involving discrete cosine transforms (DCTs) have shown that a Virtex-II

running at 60 MHz could perform DCTs on a 352×288 image at around 590 frames

per second[21]. However, the speed of performing programmed I/O to transfer the

image data to and from the FPGA proved to be major bottleneck. Although the use

of DMA would improve speed, this method highlights the issue of the von Neumann

bottleneck.

An improved architecture would streamline the flow of data through the FPGA,

rather than requiring the CPU to load the image data in and then out of the FPGA.

By connecting the cameras directly to the FPGA, we can instantly take advantage

of the parallelism the FPGA provides. In this model, data flows from the cameras

over dedicated lines to the FPGA, where the images are processed by the FPGA,

and the results are then passed over the CPU’s bus to the CPU for further analysis.

The ability to access multiple memory banks simultaneously from a FPGA would

also give a substantial performance increase to many algorithms[14]. However, as

each memory bank requires in the order of 30 to 50 dedicated pins, this rapidly

consumes much of the FPGA’s I/O capability. The use of sequential-access memory

devices, such as the AverLogic AL422 could reduce this pin count requirement (as
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the addressing pins are no longer required), but some algorithms may require random

access to the image data.

Most of the designs reviewed placed the FPGA on a core system bus, and gave the

FPGA its own memory in addition to the on-chip block RAM. However, none of

the designs involving a camera had it connected directly to the FPGA — this may

have been for configurability and modularity, but the impact on performance was

not noted. With these past experiences in mind, there still exists a large degree of

freedom for the design of the EyeBot.

Although FPGAs are available with sizes in the order of millions of gates, their

freedom and reconfigurability allows larger algorithms to be segmented into several

smaller independent stages, of which only one needs to occupy the FPGA at any one

time. These stages can run sequentially on blocks of data to produce an identical

net result. This technique of run-time reconfiguration has been used to improve the

logic density in a range of applications, including hardware video encoders where

only one third of the logic density is required[22]. Research into OS-level support

for reconfigurable architectures has shown that a more holistic approach to sharing

FPGA resources can create more efficient designs that require much less logic than

an equivalent statically configured design[23, 24].

2.3 Similar Work

2.3.1 EyeBot M1–M5

The previous generations of EyeBots (M1–M5) were created in CIIPS (the Centre for

Intelligent Information Processing Systems) at The University of Western Australia.

They transpired from the need for a viable hardware platform that could enable

research to be carried out in a variety of mobile robotics applications[25]. The

EyeBots offer support for a range of real-world interfaces, including servos, motors,

quadrature encoders, position sensing devices (PSDs) and digital and analog I/O.

Since their creation, they have served as the control platform for soccer-playing

robots, biped walkers, autonomous underwater vehicles and other mobile robotic

devices.

The original EyeBots were built around a Motorola 68332 processor, running at

33 MHz and connected to an 80x60 pixel, 24-bit colour camera. The CPU is ca-
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pable of performing simple image processing tasks such as Sobel edge detection on

grayscale images at around 10 frames per second and colour object detection at

around 5 frames per second. More detailed analysis of images reduces this frame

rate significantly, such that the results obtained from processing an image are often

outdated and irrelevant by the time the processing is complete.

Despite their slower image-processing capabilities, the core robotics function of the

EyeBot’s design has proven to be quite successful, through its ease of use and versa-

tility. A new design would ideally incorporate all of the existing functionality from

the current EyeBots, and extend it further.

2.3.2 CMUcam

Carnegie Mellon University (CMU) have created a low-cost self-contained image

processing system which can perform basic colour blob tracking at 16.7 frames per

second[26]. The device, CMUcam, utilises an OV6620 CMOS camera, connected to

a Ubicom SX28 microcontroller, running at 75 MHz and offering 136 bytes of SRAM

(less than the size of a single line of camera pixel data!) This simple yet powerful

architecture offers significant size, power and cost advantages over other products

available.

It has been used to successfully guide small autonomous robots, through the RS-232

interface provided. Due to the limited baudrate of the RS-232 interface, it can only

return statistical information about an image in real-time. Entire frame dumps are

possible, but require around 5 seconds per frame. Thus all the desired information

within an image needs to be extracted on the SX28 microcontroller, and condensed

into data that can be transmitted over the RS-232 link in a reasonable amount of

time.

CMU recently released CMUcam2[27], which utilises the faster Ubicom SX52 pro-

cessor and an additional FIFO buffer chip that allows an entire image to be stored

(but only accessed sequentially). This device has even more capabilities than the

original CMUcam, including motion tracking and providing histogram data of colour

channels. The buffer chip in CMUcam2 allows for multi-pass algorithms to be im-

plemented, so long as random access to the image data is not required. Enforcing

sequential access comes with the benefit of design simplicity — addressing an image

frame randomly would require using an additional 17 address pins on the 52-pin
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SX52 processor.

Despite their limitations, both CMUcam and CMUcam2 demonstrate what can be

achieved with restricted processing power and a tiny amount of RAM.

2.3.3 Cognachrome

The Cognachrome is a commercial vision system based around a Motorola 68332

processor, but utilises specialised hardware that allows 25 objects to be tracked at

up to 60 frames per second[28]. The system’s software can be configured to track

up to three different colours at once, and relay information about the positions of

the detected objects over a serial connection.

These devices were used on the soccer robots that won the first International Micro

Robot World Cup Soccer Tournament in 1996. They have also been used in robots

developed at MIT, designed to catch flying objects. Their high frame rate offers very

rapid snapshots of their surroundings, allowing for fast reactions. Unfortunately,

very little information about their hardware acceleration is available.

2.3.4 MDP Balloon

Cambridge University are currently working on a board known as the MDP (Multi-

disciplinary Design Project) Balloon board[29]. This board uses Linux and provides

a host of interfaces for extensibility. Whilst this is not specifically targeted at image

processing, version 3 of the board includes an Intel PXA270 processor running at

520 MHz and a 400 000 gate FPGA.

The PXA270 features Intel “Quick Capture”, allowing a camera to be connected

directly to the CPU without any extra circuitry. Colour space conversion can be

performed by on-chip hardware, which supports a range of common image formats

provided by CMOS cameras. Combined with the on-board FPGA, this would serve

as a suitable platform for image processing. However, as images are streamed into

RAM, image processing algorithms are still subject to the von Neumann bottleneck.
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Figure 3.1: Block diagram of the EyeBot M6 hardware platform.



Chapter 3

Hardware Design

Several months of work were dedicated solely to the design of the hardware platform.

The process of selecting parts and ensuring the correctness of the final schematic

proved to be quite time consuming. The design and schematic went through several

iterations before being transferred to a PCB layout. A block diagram of the final

design is shown in Figure 3.1.

Most devices are connected to either the CPU (Gumstix) or the FPGA. The design

frees the CPU from both repetitive and timing-critical tasks, by delegating those

to the FPGA. Similarly, the FPGA is not directly involved with any hardware that

requires a large amount of logic to control. The resource in highest demand is the

central bus on which the CPU, FPGA, USB and Ethernet chips reside.

The following sections detail the components of the design and the rationale behind

the design decisions.

3.1 CPU

The constraint on avoiding BGA components drastically reduced the number of

options available — the range of CPUs available in standard lead packages did not

extend past 200 MHz. The fastest CPUs that could be obtained in a non-BGA

package were Samsung’s S3C44B0 at 66 MHz, the Philips LPC2100 at 70 MHz, and

more impressively, Atmel’s AT91RM9200 at 180 MHz and CirrusLogic’s EP9302 at

200 MHz.
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However, none of the available devices were deemed to have sufficient computational

power or I/O for the future needs of an EyeBot. Thus the focus moved to searching

for readily available single board computers (SBCs). This proved to be a much more

promising approach — many companies provide SBC devices with a range of faster

CPU speeds. Regardless of which board was chosen, the final design would thus

require two boards — the SBC and a second board incorporating the FPGA and

other I/O interfaces.

Compulab, an Israeli company, manufacture compact, powerful SBCs based around

a variety of architectures (from PXA255s and PXA275s through to Pentium-IIIs)

all on compact boards around 70 mm× 60 mm in size. They also appeared to be an

attractive price, until it was discovered that they required an expensive evaluation kit

to be purchased first. However, with a wide variety of processors, it did demonstrate

what was possible. In particular, they highlighted that for low power consumption,

the PXA255 and PXA270 processors were good performers.

Another device in a similar league is the Sun SPOT — based around an ARM920T

core at 180 MHz, with a strong resemblance to the AT91RM9200 and are designed for

real-world sensing and low power consumption. A German company, F&S Electronik

Systeme, manufacture a family of devices called PicoMOD. These utilise a 400 MHz

Samsung ARM-9 part in a compact form factor, with 32 MB of RAM.

Gumstix Inc. offer a 400 MHz ARM-9 PXA255 processor with 64 MB of RAM, in

a tiny 20 mm × 80 mm package, as shown in Figure 3.2. This was chosen as the

most cost-effective solution. It provides much more computational power than the

alternatives in the same price range and also comes with Linux pre-installed. A build

environment is freely downloadable, allowing the image to be modified as desired

and with minimal hassle involved in rebuilding the entire system. Additionally,

drivers are written and functional for many peripherals including Ethernet, audio,

USB slave, and the LCD.

The Intel PXA255 processor (featured on the Gumstix and other SBCs examined)

offers the ARMv5TE instruction set. The “E” denotes the DSP extensions to the

ARM instruction set[30]. This includes support for single-cycle instructions such as:

saturating addition/subtraction — when processing image data, saturating re-

sults is more desirable than overflowing. Avoiding an explicit check for overflow

reduces the number of instructions required and minimises costly branches.
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Figure 3.2: Gumstix board with a 400 MHz PXA255 processor, 64 MB of RAM, 16 MB
of flash and Bluetooth.

These are typically found in inner loops of code, where the maximum benefit

can be attained.

16x16-bit and 16x32-bit multiply/accumulate — this is another common task

seen when applying image masks, performing alpha blending, averaging pixel

values or calculating dot products. The ability to perform each multiply/accumulate

in a single instruction cycle presents enormous potential for optimising image-

processing algorithms.

count leading zeroes — this operation is primarily used for normalisation. Whilst

not as applicable to processing pixel data directly, it can be used to optimise

the speed of division operations.

3.2 FPGA

By utilising a FPGA for image processing, many of the concerns about reliability

and determinism of image processing tasks are eliminated. Dedicated hardware is

not subject to variations from interrupts, pipeline stalls, DMA accesses, and other

external factors. This creates a more predictable system and frees up the CPU for

control-oriented tasks.
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Part LUTs I/O pins Block RAM Multipliers
Altera Cyclone EP2C20 18,752 142 234 Kbits 26
Lattice ECP2-12 12,000 131 221 Kbits 24
Xilinx Spartan-3E XC3S500E 9,312 158 360 Kbits 20

Table 3.1: Comparison of largest available FPGAs in non-BGA packaging from various
manufacturers.

FPGAs from several vendors were investigated including Altera, Lattice Semicon-

ductor and Xilinx. All vendors provide development environments for their FPGAs

free of charge. Due to the BGA constraint, the analysis focused on the largest

FPGAs available in non-BGA packaging from various manufacturers, as shown in

Table 3.1. The logic unit counts between vendors are not directly comparable, and

only give a general guide to the size of a FPGA[31, 32, 33]. Due to structural dif-

ferences in the internal design of FPGAs, certain designs may favour one device or

another.

The Xilinx Spartan-3E was chosen for a number of reasons:

• more block RAM — for processing image data, the ability to store and access

more image data in fast block RAMs will increase the performance of algo-

rithms. Although the Altera’s block RAMs provide finer-grained access, it did

not justify 35% less block RAM.

• a higher user I/O pin count — after connecting 2 cameras, the CPU bus, the

SRAM, 14 servos, 4 motors, 6 PSDs and 8 digital I/O lines, at least 134 pins

are required.

• lower cost — at the time of investigation, the Altera EP2C20 was double the

price of the Xilinx XC3S500E.

• experience — Xilinx parts and tools are already used within the department

for other vision-related projects.

This choice came at the expense of extra logic that would have been gained by

choosing the Altera EP2C20.

The FPGA is connected to the CPU such that it can be configured simply by writing

the configuration stream into the address space of the FPGA. Partial reconfiguration
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is also supported by exposing the SelectMAP interface of the FPGA. This allows

the system to utilise dynamic runtime partial reconfiguration, but at the expense

of half the bus bandwidth, as 8 bits of the 16-bit data bus are dedicated to the

configuration interface.

3.3 Cameras

The EyeBot M6 allows two cameras to be connected directly to the board. The

motivation for this is to allow experimentation with stereo vision algorithms on the

FPGA.

The board is designed for the OmniVision OV6630 camera, mounted on a C3038

module manufactured by CoMedia. This camera provides 352×288 colour images

(Bayer format) at up to 60 frames per second and provide a configuration interface

that allows control over gain, white balance, hue and gamma settings.

A similar model is available (the AA763) with a compatible pinout, and provides

VGA resolution images (640×480), should the extra resolution be required. Al-

though the FPGA may require some modifications to capture the larger image, no

hardware changes are necessary.

3.3.1 Camera Configuration

The OV6630 cameras are configured via a protocol known as SCCB[2] — a two-

wire interface with a protocol specification that maps quite cleanly onto the I2C[34]

protocol developed by Philips. Previous FPGA-based circuits utilising this camera

communicated with the camera directly from the FPGA. Implementing the SCCB

protocol in VHDL consumed a large amount of the FPGA’s logic. As the PXA255

has an I2C bus master on-chip, it was decided to utilise it in order save the logic

space in the FPGA.

The SCCB interface on the OV6630 camera has a hard-coded slave address. If both

cameras are placed on the same SCCB bus, confusion would arise when attempt-

ing to configure the registers. This may not be an issue if only writes were ever

performed by the master (the PXA255), as it would equate to both cameras being

programmed identically, and some brief bus contention when the cameras acknowl-

edge the transmission.
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A better solution, utilises the observation that when a camera is placed into standby

mode (by holding a high level on its PWRDN pin), it will not respond to SCCB

commands. It will however retain its current configuration. Thus two (or more)

cameras can be configured from the same SCCB bus by powering down all the other

cameras that are not being configured. This method is used to configure the two

cameras on the board.

3.3.2 Stereo Vision

The camera connectors are positioned parallel on the board at fixed positions. This

places the baseline width of the cameras at 66 mm, closely approximating the dis-

tance between the eyes of an adult human. However, unlike the human eyes, the

cameras do not have the ability to turn towards each other. This imposes a mini-

mum distance that any stereo vision algorithm can function at, as the object may

be out of view of one or both cameras. This is demonstrated in Figure 3.3 — the

unshaded area at the top is the region in which objects appear in both frames. Light

grey areas represent regions where objects only appear in one camera’s field of view.

The dark grey regions are out of view of both cameras.

Despite the limitations created by immovable cameras, a fixed geometry eases the

burden on a stereo vision system by eliminating many unknown factors. Addition-

ally, by fixing the positions of the cameras appropriately on the board, it should be

possible to guarantee that:

• the CCDs of both cameras always lie in the same plane;

• the scan lines of both cameras are parallel;

• the images are aligned vertically.

If these three conditions are satisfied, corresponding scan lines of the cameras repre-

sent the epipolar lines required to utilise the epipolar constraint in stereo vision[35].

This eliminates the need for the rectification pre-processing stage that is typically

required to satisfy the epipolar constraint. That is, for any given point in an image,

the corresponding point from the opposite image lies on the same epipolar line, and

thus the same scan line. To allow for slight deviations, algorithms such as SAD

(Sum of Absolute Differences) will limit their search space to a small number of

scan lines above and below the theoretical epipolar line.
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Figure 3.3: Geometry of the camera positions, as fixed by the design of the board. Dark
grey regions represent blind spots for both cameras. Light grey regions are
only visible by one of the two cameras.
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This model is based on the premise that both CCD cameras are manufactured

identically — it was later discovered that this is often not the case (see Section 5.4).

3.4 SRAM

Although the Xilinx Spartan-3E contains a total of 45 kB of block RAM, an entire

352× 288 image consumes 99 kB. Thus a secondary storage medium is required in

order to perform any multi-pass image processing operations. A static RAM device

was chosen in preference to dynamic RAM. The reasons for this are:

• no DRAM refresh logic is required, reducing the complexity of the FPGA and

preserving logic for image-processing functions;

• the large storage densities offered by DRAM are not required — even a 1 MB

SRAM can store 10 camera frames;

• it allows for algorithm designers to split complicated algorithms — i.e. if an

algorithm is too large to fit in a single FPGA image, the designer can opt

to partition the algorithm into two (or more) phases performed by different

FPGA images, utilising the SRAM as temporary storage space for intermediate

results. As reconfiguring the FPGA takes in the order of 100 ms, any DRAM

that relied on the FPGA for refreshing would have lost its contents.

The Cypress CY7C1383D is a 2 MB (1024 × 18-bits) SRAM that can be accessed

synchronously at up to 100 MHz. There also exists a 1 MB version (the Cypress

CY7C1363D), that is pin for pin compatible with the CY7C1383D.

As the current drawn by the SRAM even in standby mode is quite substantial

(70 mA), a facility is provided on the board to disconnect power from the SRAM

when not required.

3.5 AC97

The Philips UCB1400 provides a standard AC97 interface to the PXA255 and offers

three audio inputs, two audio outputs, four analog inputs, 10 digital input/outputs,

and a touchscreen controller. Software support already exists for this device on the
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Gumstix platform. Its tiny footprint (8 mm × 8 mm) aided to minimise the overall

size of the board.

3.6 JTAG

JTAG is a standard interface and protocol used for externally examining PCBs and

ICs. The JTAG interface of the PXA255 is exposed primarily for reflashing the

bootloader when recovering from a damaged flash image. This is generally the only

circumstance where JTAG is necessary. If the bootloader is intact, the kernel and

filesystem can be reflashed over serial or Ethernet. JTAG could potentially be used

for debugging purposes, however most code that will be written for the board will

be userspace Linux code which can be debugged much more easily using gdb.

On initial revisions of the Gumstix board, the JTAG connections were exposed

through the top connector. Unfortunately, this was altered on newer revisions —

the JTAG pins must now be accessed via test points on the board. These test

points are not accessible when the Gumstix is mounted on the EyeBot M6, so in-

place recovery is not possible.

3.7 USB Slave

The PXA255 offers a dedicated USB 1.1 slave port to allow the platform to act as a

USB device. This mode of operation is well supported by Linux, and is accompanied

by drivers that enable the PXA255 to act as a mass storage device, an Ethernet

adapter or an RS-232 serial port. Further drivers could also be written to support

any form of device. One potentially useful driver would allow the board to emulate

a webcam, streaming video data from the EyeBot’s cameras.

The mass-storage device driver can be used for loading user programs onto the Eye-

Bot. As USB is becoming more common-place than RS-232 on modern computers,

this presents an ideal successor to the current serial method used for loading pro-

grams. Additionally, the USB interface can operate at 12 Mbps — over 100 times

faster than the RS-232 interface.

A USB device is able to draw up to 500 mA off the 5 V rail[36]. The EyeBot takes

advantage of this by drawing power from the USB rail if it is not otherwise powered,
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allowing use of the device without a battery. This is achieved by positioning a

Schottky barrier diode from the USB rail to the 5 V rail of the EyeBot M6, to

ensure that power does not flow back into the USB host. The Schottky barrier

diode is chosen for its low forward voltage drop.

The software needs to ensure that large current consumers such as the servos and

motors are not turned on whilst powered from the USB port. This can be determined

by either observing the status of the PWRON line at power-up, or reading the

battery voltage through the ADC channel.

3.8 Bluetooth

The Gumstix board provides an integrated Bluetooth module capable of speeds up

to 921 600 bps. This will allow EyeBots to communicate wirelessly either with each

other, or a central “base station”. It also allows the possibility to interact with the

EyeBot from a PDA or mobile phone with Bluetooth capabilities.

3.9 Infrared

An infrared sensor (TSOP1738) is connected to a GPIO line on the PXA255. This

device is the same as that used on the previous generations of EyeBots and is capable

of decoding standard 38.4 kHz signals. A powerful software package called LIRC

supports decoding infrared signals from a variety of receivers. A small amount of

extra software will be required in order to convert the signal from the TSOP1738

to a list of time intervals between pulses. The LIRC software package is capable of

performing the decoding and can be programmed for a variety of remote controls.

3.10 USB Host

USB 2.0 connectivity was decided to be an essential component of the hardware

platform, as it allows a large and diverse range of devices to be connected, supple-

menting the existing on-board devices. Such devices could include extra webcams,

serial adapters, mass storage devices, mobile phones, GPS units or wireless adapters.
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At the time of writing, most of the USB 2.0 controller ICs on the market interfaced

directly to a PCI or PCI-X bus. Very few non-PCI devices were available. The most

promising candidate was the Philips (now NXP) ISP1761. Existing application

notes[37] describe the required connections for the PXA255, implying that it had

been used with success in the past. Existing Linux drivers for the device also reduced

development time, but required porting to recent versions of the Linux kernel.

3.11 Ethernet

Gumstix produce Ethernet add-on modules for their boards that utilise the SMC

LAN91C111 Ethernet chip. Unfortunately, sourcing these ICs was not a trivial

task, so the search began for a different IC. Desirable features in a chip included

existing drivers for both the Linux kernel and the U-boot bootloader, no specific bus

requirements (e.g. PCI-only chips) and the ability to support 100 Mbit Ethernet.

The chosen device was the ASIX AX88796B. As this device is compatible with the

venerable NE2000, drivers exist for almost every operating system and platform! It

is capable of both 10 Mbps and 100 Mbps connections, can be connected directly to

the PXA255’s data bus and requires a minimum of extra circuitry.

The physical interface requires an isolating transformer to protect the EyeBot from

unexpected voltages should the Ethernet be plugged into a malfunctioning device,

phone line or other dangerous voltage source. It also serves to provide the correct

impedance of 100 Ω for the Ethernet connection, ensuring that maximum power is

transferred across the Ethernet line, and maintains the signal integrity by ensuring

that transmission line effects such as reflections do not occur.

3.12 Servos

The board supports 14 dedicated servo motors — the same number as supported

by the current EyeBot M5. Each servo is connected to an output pin on the FPGA

and driven by logic in the FPGA. As the signalling for positioning servos is timing

critical, dedicated logic on the FPGA ensures that the servos do not fail, regardless

of the state of the CPU.
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3.13 Motors

The board supports four independently controlled motors, driven via two L293DD

push-pull driver ICs connected in a H-bridge configuration. Like the servos, the mo-

tor control lines are connected to the FPGA. Each of the four motors are controlled

by a direction line and an enable line. Inverting the direction line will invert the

polarity of the connections to the H-bridge, reversing the motor’s direction. Each

motor’s speed is adjusted by a PWM controller inside the FPGA, connected to

the enable line for the H-bridge. The PWM controllers driving these four motors

are configured to be 90◦ out of phase with each other, in order to smooth out the

instantaneous current requirements of the motors.

The power source for the motors is selectable via a jumper block that allows con-

nection directly to the battery rail or the 5 V rail. Alternately, any arbitrary source

may be connected to the motors by feeding it to the centre pin of the jumpers1.

The 6-pin motor connector is identical to that used on the current EyeBot M5s,

with the pinout given in Appendix A.

3.14 Encoders

Each motor can have an associated quadrature encoder that provides feedback on

the current shaft position. Decoding these encoders is yet another task which is

better suited to the FPGA, saving the CPU from continuous streams of interrupts.

It also guarantees that no shaft rotations will be missed, for example should the

CPU become heavily loaded.

Encoder signals are typically subject to mechanical jitter as the switch contacts open

and close, giving rise to an electrical signal with multiple and ill-defined rising and

falling edges. Many designs do not allow for this jitter, leading to unreliable results;

yet reliably decoding noisy encoders is well-documented. Numerous approaches can

be taken[38, 39], but they all observe that only a handful of the possible transitions

are actually valid occurrences and the others can be safely ignored.

The technique used on the EyeBot M6 (shown in Listing 3.1) is based upon the

observation that a definitive event occurs only when both encoder inputs become

1Users must ensure the motors operate within the specifications of the L293DD driver IC (i.e.
motor voltage is between 5 V and 36 V and the current per motor does not exceed 600 mA).
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if (rising_edge(CLK)) then

enc <= ENC_A & ENC_B;

case enc is

when "00" => eevent <= ’0’;

when "11" => eevent <= ’1’;

when "01" => edir <= ’0’;

when "10" => edir <= ’1’;

end case;

last_eevent <= eevent;

if (last_eevent = ’0’ and eevent = ’1’) then

if (edir = ’0’) then

encval <= encval - 1;

else

encval <= encval + 1;

end if;

end if;

end if;

Listing 3.1: VHDL code used for decoding quadrature encoder inputs.

ENC_A ENC_A 

ENC_B 

ENC_A 

ENC_B 

eevent 

ENC_A 

ENC_B 

eevent 

edir 

Figure 3.4: Decoding noisy quadrature encoder inputs.
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Figure 3.5: Timing diagram for reading an 8-bit distance value from Sharp’s GP2D02
PSD (not drawn to scale).

high. This event is latched until both encoder inputs have returned low. The

direction of the event is determined by the most recent input to have transitioned

from a low to a high. By sampling the encoder inputs every 20 ns (from the 50 MHz

clock), the probability of missing an event is practically zero. The resulting signals

are shown in Figure 3.4.

3.15 PSDs

The position sensing devices (PSDs) are connected to the FPGA’s input pins. The

decoding of the six PSDs can be performed by the FPGA in parallel, freeing the

CPU from this repetitive task. The CPU can simply read a memory location to

retrieve the latest reading from the PSDs. What was previously 650 lines of m68k

assembly code for the EyeBot M5, is replaced by a total of 120 lines of VHDL.

As per the datasheet for the Sharp GP2D02 device, a very specific waveform is

required to be clocked into the device (shown in Figure 3.5). The VHDL code to

do this can actually be made exceedingly small — Listing 3.2 shows the 7 lines of

code written to perform this. The operation of this VHDL code is not immediately

obvious, so an explanation follows.

The waveform requires 8 brief pulses followed by a longer pulse, with the timing

constraints given on the diagram. The FPGA is clocked by a 50 MHz crystal oscil-

lator, giving a base clock signal with period 20 ns. To minimise the logic required to

create this waveform, the approach taken is to clock this signal into a binary counter,
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3.15. PSDS

Figure 3.6: Waveform as generated by the FPGA for clocking the PSDs.

PSD_CLK_Out <= ’0’;

if (CLK_Divisor_Reg(21 downto 18) = "0000") then

PSD_CLK_Out <= not(CLK_Divisor_Reg(13));

if (CLK_Divisor_Reg(17) = ’1’) then

PSD_CLK_Out <= ’1’;

end if;

end if;

Listing 3.2: VHDL code for generating the PSD clock input signal.
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and connect the appropriate logic to the output bits of the counter to generate the

waveform.

Given the constraint of a minimum of 70 ms between successive PSD reads, a 22-bit

up-counter is used, giving a period between reads of 20 ns × 222 = 83.9 ms. The 8

brief pulses are generated by connecting the output to the inverse of the 13th bit,

when bit 21 through to bit 17 are all zero. This essentially means that the 3 bits

from 16 to 14 are counting through the 8 required pulses. The bits retrieved from

each PSD’s output are fed into a shift-register. The on-time of the waveform is thus

given by 10 ns× 213 = 0.164 ms, within the bounds required by the PSD.

To obtain the final high pulse, the output of the waveform generator is sent high if

bits 21 through to 18 are zero, but 17 is a one. The resulting waveform is displayed

in Figure 3.6.

3.16 Top board

A secondary daughterboard is needed for several reasons:

• The Gumstix has connectors on both sides of the board, each presenting a

different set of signals. The bottom connector mates with the base board of

the EyeBot M6, whilst the top connector requires a connection to bring the

necessary lines back to the base board. The signals to connect to the LCD are

located on the top connector. By placing the LCD on this board, the number

of pins that need to be routed back down to the lower board is minimised.

• LCD modules come in varying sizes, colour depths and costs. As the PXA255’s

LCD controller is configurable for many types of LCDs, restricting the Eye-

Bot M6 to one specific LCD is not desirable. By placing the LCD on a daugh-

terboard, LCDs can be interchanged, depending on the application.

• Additional general purpose I/O (GPIO) lines — all 20 LCD lines can also act

as general purpose I/O. If an application requires more digital I/O and can

function without a 16-bit colour LCD, these lines can be utilised.

• A lot of difficultly was experienced in attempting to source a RoHS compli-

ant speaker in Australia. By moving the speaker to a daughterboard, more
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flexibility is given to the overall design. The audio amplifier circuitry was

also placed on the top board with the speaker, reducing the complexity of the

routing on the base board.

In order to ensure that different top boards are interchangeable, a standard interface

was created. A rudimentary auto-detection method identifies which type of board

is connected by defining certain LCD lines to be pulled up or pulled down. On

start-up, the bootloader will read the ID of the connected device and pass this ID

to the Linux kernel. The kernel can use this to correctly configure the LCD, and

other devices connected to the top board.

3.17 Power supply

Given the array of devices on-board, numerous voltages are required. The FPGA

requires 1.2 V, 2.5 V and 3.3V, the USB host requires 5 V, and the LCD requires

3.0 V, 3.6 V and 8.0 V. The main 5 V rail is supplied by an LM2678 switch-mode

power supply, capable of passing 5 A of current. A TPS75003 regulator provides

the three voltages required by the FPGA, whilst the LCD power supply is regulated

with simple zener diodes.

Fast-response polyswitches are used on the board in preference to fuses, to avoid

the hassles associated with fuses and the temptation of replacing them with an

overspecified value. The servos and USB host ports have an independent polyswitch

which can be monitored by the FPGA to detect in software if the polyswitch has

tripped.

3.17.1 Power control

In order to fulfil the goal of minimising power consumption, many devices on the

board were given facilities to be disabled or placed into a low power mode. A number

of control signals were dedicated to disabling power for certain devices. These signals

are documented in Appendix A. Devices that do not have a direct control signal

for disconnecting power can be powered down through software. Specifically, the

Ethernet and USB devices can be placed into standby mode using configuration

registers and hence do not require a dedicated control line.
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Figure 3.7: Circuitry for the software controlled power supply.

3.17.2 Power switch

In order to avoid the reliability issues associated with mechanical on/off switches,

the design utilises a single SPST pushbutton. This, along with a GPIO pin from the

PXA255 (connected to PWRON in Figure 3.7), is connected to the on/off pin of the

main power supply IC (LM2678) through a resistor network. Both the switch and

the GPIO send the on/off pin high, supplying power to the rest of the device. Thus

in order for the device to stay on, the GPIO pin must be set high before the switch

is released. The software on the PXA255 can then turn the device off by releasing

the GPIO line.

By connecting an input pin on the PXA255 to PWRSW, the PXA255 can also sense

when the button has been depressed or released. The zener diodes protect the CPU

from excessive voltages, as VBATT may potentially be as high as 40 V.

34



Chapter 4

Software Design

4.1 Drivers

Linux is a freely available operating system and has already been ported to the

PXA255 processor and Gumstix platform. This allowed development to occur much

more rapidly, as most of the hardware was already supported. However, some of the

devices added onto the EyeBot M6 are not in canonical locations and hence certain

drivers needed to be modified in order to detect them.

4.1.1 Ethernet

The ASIX AX88976B Ethernet chip is advertised as NE2000-compatible — i.e. it is

designed so that a driver for a standard NE2000 network controller will also operate

correctly with this chip. This was nearly the case but some modifications were made:

• As the address lines were connected starting from A1, rather than the canonical

A0, all register offsets were shifted left one bit.

• DMA support for the PXA255 processor was added to increase throughput.

• Support for link status information through the MII interface was added.

The device is also supported by the bootloader, u-boot. This allows reflashing to be

performed over Ethernet rather than serial (reducing the time taken to reflash from

minutes to seconds).
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4.1.2 USB 2.0 Host

The EHCI specification[1] was created by Intel as a standard interface for commu-

nicating with USB 2.0 host controllers. As such, it is used by a majority of USB

2.0 devices in desktop and laptop PCs, with the benefit of only requiring a single

EHCI-compliant driver. The Philips ISP1761 USB 2.0 host controller is advertised

as “adapted” from the EHCI specification. Unfortunately, this means standard

EHCI drivers are not compatible.

Fortunately however, Philips released Linux drivers for this device in May 2006,

under the GNU General Public License. These drivers were written for a much

older version of the Linux kernel (2.6.9), and specifically targeted for a particular

x86 PCI card. In order to use this driver on the EyeBot M6 it needed to be:

(a) ported from 2.6.9 to the kernel version on the Gumstix (2.6.17);

(b) adapted to the PXA255 processor and architecture; and

(c) adapted to the EyeBot M6 platform.

In order to complete (a), it was observed that the Philips drivers bore a strong

resemblance to the standard EHCI driver in the Linux kernel. This is not surprising

as the ISP1761 was adapted from the EHCI specification. Thus the easiest method

of porting the driver to 2.6.17 was to observe the differences in the standard EHCI

driver between versions 2.6.9 and 2.6.17, and attempt to merge those differences into

the Philips driver. This was achieved with a small amount of creativity and made

(b) and (c) seem quite straightforward in comparison.

In the process of debugging it was noticed that the USB chip was generating a

disproportionate number of interrupts (in the order of 1000 per second). This was

tracked down to the “Frame list rollover” event, which occurs when the 16-bit frame

list counter rolls over from its maximum value to zero. It should however increment

once every 125 µs, thus generating an interrupt every 8.192 s. It is not yet known

why this behaviour occurs but it needs to be isolated, as it incurs a significant impact

on performance.
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4.1.3 FPGA

The circuit was designed so that the FPGA could receive its configuration data by

simply writing to the FPGA’s address space. The configuration data appears on the

data pins of the FPGA 8-bits at a time and a logic gate drives a rising edge on the

configuration clock pin of the FPGA when data is ready and stable (Xilinx refers

to this mode as Slave-Parallel configuration). This allows for a simple and efficient

implementation in software.

A kernel module was written to make programming the FPGA from userspace a

trivial task. In keeping with traditional UNIX paradigms, the kernel module pro-

vides a device node /dev/fpga0 that will, upon writing to the device node, begin

to program the FPGA. Thus to load bitstream into the device, a user can simply

copy the bitstream onto the filesystem and run cat bitstream > /dev/fpga0.

Similarly, the bitstream can be compressed with a utility such as gzip and can be

loaded by running zcat bitstream.gz > /dev/fpga0. An uncompressed image

for the 500 000 gate FPGA on the board is 278 KB, regardless of how much logic is

actually utilised within the FPGA. Unused logic appears to be represented by null

bytes in the bitstream, thus the images generally compress proportionally to the

amount of logic used.

The kernel module also allows userspace applications to directly access the FPGA’s

address space by implementing the mmap() call on /dev/fpga0. A process can

open the device node, map the FPGA into its own address space with mmap() and

perform memory-mapped I/O operations without any further assistance from the

kernel. This allows for fast access to the FPGA and retains the added system

reliability gained from memory protection — if the userspace program crashes, the

entire system does not suffer. This makes both development and debugging much

easier compared to the alternative solution of developing code within the kernel

itself.

Interfaces are also provided that allow DMA to be performed directly to or from the

FPGA. The use of DMA improves data throughput for contiguous data and allows

the CPU to perform other instructions whilst waiting for data to arrive. This is

discussed in more detail in Section 5.2.
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4.1.4 Power Switch

By connecting the power switch to a GPIO line, the CPU can be informed of changes

in the state of the switch via an interrupt. Debouncing is achieved in a kernel module

by initiating a timer on each interrupt edge and only acting on the timer expiring

(after 100 ms). Events from the power switch are fed to any userspace applications

reading the device node /dev/powerswitch.

To avoid relying on userspace to power the device off, the kernel module also initiates

a second timer when the button is pressed and cancels this timer if the button is

released. This timer expires after one second and forces a power off of the system.

As there is no other control to power off the system (short of removing the power

source) placing this functionality within a single well-debugged kernel module will

aid reliability and avoid wear on the battery or power connectors.

4.2 Boot time

A short boot time is a highly desirable property of an embedded system. In the

development and debugging stage, one may be restarting the system several times

in a minute. The EyeBot M5 has a sub-second boot time, which is practically

imperceivable.

Unfortunately, the Gumstix platform in its default configuration has a boot time

in the order of 15-20 seconds. This is unacceptable for what is a reasonably simple

embedded system and slows the development of drivers and software. An analysis

was undertaken of the time spent during boot of a default Gumstix to identify

where the time was being spent. The stages of boot-up were observed over the serial

console, and displayed in Table 4.1.

The largest contribution to boot time comes from the bootloader reading the com-

pressed filesystem in search of the kernel to boot. As the location of the kernel

image is dynamic, the filesystem must be scanned upon each boot. This search was

eliminated by explicitly partitioning the flash into separate areas for the kernel and

the filesystem, at the expense of convenience when reprogramming. The kernel is

located at a known, defined location and copied directly into memory on start-up.

The second largest contribution to boot time arises from loading drivers for hard-

ware. Whilst a large proportion of this is spent actually initialising the hardware,
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Duration (s)
Cumulative
Time (s) Stage

0 Power-on
0.3 0.3 First bootloader message

11.0 11.3 Bootloader loads kernel from filesystem
1.4 12.7 Kernel booted
0.6 13.3 udev service started
4.3 17.6 Hardware drivers loaded
3.1 20.7 Miscellaneous services started
0.2 20.9 Userspace ready

Table 4.1: Armed with a primitive stop-watch, the above timings were measured during
the boot sequence of the Gumstix.

a small but noticeable amount of time can be saved by compiling drivers statically

into the kernel, rather than as modules. The saving arises from not needing to

traverse the filesystem and uncompress each individual binary module. It is not an

ideal solution whilst developing drivers, but once a driver is deemed stable, it can

transition to being statically compiled to keep boot-time minimal.

A large number of the services started by default on the Gumstix are not necessary

(such as http and ssh) and can be disabled. Additionally, as userspace applications

can begin immediately after the kernel has booted, the illusion of a fast boot time

can be created by deferring the loading of extra modules and services.

After implementing these strategies and reducing the boot sequence to involve the

minimum number of steps to be operational, a user interface can be displayed on

screen 5 seconds from power on, and the remainder of the services are ready a further

4 seconds later. Whilst still not as fast as previous EyeBots, the modularity of the

system outweighs any disadvantages. This however could be investigated further in

the future.
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Chapter 5

Design Evaluation

A large amount of effort went into verifying the correctness of the design at the

schematic stage. Unfortunately, a small handful of things were overlooked on the

first iteration (as was inevitable).

• The data bus buffers were designed to protect the CPU from misconfigured

peripheral ICs. However, they were configured in the schematic on the flawed

assumption that there were no devices on the bus other than what was on the

board and so the bus was always driven by the buffers. This is quite obviously

wrong, as the SDRAM and boot flash on the Gumstix board share the same

bus.

The solution was to rewire the OE line of the buffer ICs to an additional logic

gate so that the buffers only activated when a relevant chip-select was asserted.

All required lines were available through vias on the board. With assistance

Figure 5.2: Mounting of the logic gate to control the data bus buffers’ output.
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from the workshop, the circuit modification could be made quite unintrusive

(see Figure 5.2).

• The Ethernet oscillator circuit was missing a biasing resistor, and so the circuit

never began oscillating. Connecting a 2 MΩ resistor in parallel with the crystal

was sufficient to start the oscillator.

• The experimental circuitry for the Ethernet line interface did not bias the

transmit/receive pairs correctly, or match the standard 100 Ω line impedance

for 100 Mbit Ethernet over UTP (unshielded twisted pair). Even after modify-

ing the circuit to correctly bias the pairs, the Ethernet connection would only

operate at 10 Mbit. This experimental circuit was replaced with an Ethernet

isolation transformer to provide the correct line impedance, enabling reliable

100 Mbit Ethernet, without transmission line effects.

Once these issues were overcome, the initial prototype board was fully functional

and work could begin on developing drivers for the device.

5.1 Signal Integrity

After the circuit was functional, a closer analysis was performed to ensure that the

board was operating as designed, and not just by sheer luck. The most susceptible

signals were the high speed signals used for the FPGA’s clock, the CPU bus and

the SRAM. On the oscilloscope, the 50 MHz clock presented a peak-to-peak signal

of 3.8 V and rise/fall times of 5 ns. These lie within the limits of the Spartan-3E

and thus were deemed to be acceptable. The other high speed paths proved to be

not quite as trouble-free.

5.1.1 CPU data bus

Transferring data to and from the CPU over the data bus was initially unreliable.

Random bit errors with no particular pattern frequently appeared. Lowering the

speed of the bus solved the issue but this was not an ideal solution, as throughput

was diminished.
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(a) 2 mA (b) 6 mA

Figure 5.3: The effect of adjusting output drive current strength on the FPGA’s data
bus lines. The upper trace is from a data bus output pin on the FPGA.
The lower trace is the signal presented to the CPU after passing through
the buffer.

For a Variable Latency I/O (VLIO) read, the PXA255 requires that the data be

present and stable at its data pins 15 ns before OE is deasserted. The fastest VLIO

transfer rate asserts OE for only 40 ns. Hence, the data must be presented to the

CPU 25 ns after the falling edge of OE. Allowing for the (maximum) 5.2 ns delay

of the buffer ICs[40], this requires a response time of 20 ns or less from the FPGA.

When reading a register from the FPGA, this is not a problem, as low-delay com-

binatorial logic can be used to respond to requests from the data bus. However,

when reading from a block RAM inside the FPGA, the access requires a clock —

typically, the address is clocked into the block RAM on a clock edge and the data

can be read out after 10 ns (i.e. on the opposite edge). Given the FPGA’s 50 MHz

clock has a period of 20 ns, this pushes the limits of the required timings. Upon

closer inspection with an oscilloscope, it became clear that the data bus lines from

the FPGA were not rising and falling fast enough.

Xilinx’s tools offer two settings for adjusting the drive characteristics of output pins

on the FPGA. The first is the slew rate, which sets the rate at which the outputs

switch. The slew rate can be “slow” (the default) or “fast”. “Fast” was already

chosen for the data bus lines. The second option is the drive current strength. The

lowest drive current of 2 mA is selected by default, in order to reduce transmission

line effects on long PCB traces. Increasing this to the next possible value of 4 mA

reduced the bit errors substantially, however occasional errors still existed. A drive

current of 6 mA eliminated all bit errors — this was verified by the error-free transfer
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Figure 5.4: Overshoot on the PWE signal.

of 100 GB of data.

The impact of adjusting the drive current on rise/fall times is clearly visible in

Figure 5.3. In both the 2 mA and 6 mA traces, the output of the data bus buffer

(shown in the lower trace) has a sharper transition. In the 2 mA trace, this transition

occurs too late, adding several nanoseconds of delay — just enough to push the total

path delay above the minimum acceptable.

5.1.2 CPU bus control lines

Whilst inspecting the write behaviour of the data bus, one signal stood out as being

particularly unhealthy. The PWE line was the only trace to exhibit large amounts of

overshoot and ringing. As can be seen from Figure 5.4, nearly ±1.2 V of overshoot

was present on the 3.3 V signal. Given that no other signals presented such extreme

behaviour, the only reason for the PWE line to be different is its tracking on the

board.

Examining the location of the PWE trace on the PCB revealed why the signal

suffered such severe overshoot (Figure 5.5). Not only was the entire track nearly

24 cm long, but it passed over two cuts in the ground plane. The track’s length

creates a significant capacitive component, whilst passing the track over the cut

ground plane creates an significant inductance. The inductance creates the excessive

overshoot. The combination of the two creates an LC resonant circuit, leading to

the ringing observed in the oscilloscope capture.
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Figure 5.5: The PWE track on the PCB is shown in red. The yellow line represents
the inductance loops created by the cuts in the ground plane.

To confirm that the poor choice of tracking really was the cause of the signal degra-

dation, some rough calculations of the expected resonant frequency of this circuit

were compared to the observed behaviour on the oscilloscope. If the inductive com-

ponent is modelled as two rectangular loops caused by the cuts in the ground plane,

and the capacitive component is modelled as a parallel plate capacitor with the area

of the PWE track, the resonant frequency can be estimated.

A track of length 240 mm, width 0.18 mm and distance 0.2 mm from the ground

plane, with a dielectric of 5ε0 can be a approximated as having 10 pF of capacitance,

ignoring fringing effects1. The two rectangular loops have dimensions 11 mm×8 mm

and 54 mm × 10 mm, giving inductances of 24 nH and 97 nH, respectively2. This

gives a period in the order of T = 2π
√

LC = 7 ns.

This result is a reasonable approximation to the 15 ns period of the ringing ob-

served from the oscilloscope trace in Figure 5.4. Although this overshoot does not

noticeably degrade performance, it incurs unnecessary oxide stress within the CMOS

structures of the FPGA, USB and Ethernet devices, leading to an increased risk of

failure. On the next revision of the board, the track was re-routed to reduce the

1Fringing effects in fact have a substantial impact on the capacitance in this case, but we expect
the answer to lie within a similar order of magnitude.

2These calculations are based on a wire (return path) diameter of 14 mil (1/1000th of an inch)
and a relative permeability of 1.
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track length and a shorter return path was added for the signal.

5.1.3 SRAM interface

The interface between the SRAM and FPGA operates flawlessly at 50 MHz. How-

ever, both the SRAM and FPGA are capable of operating at up to 100 MHz. By

clocking the SRAM interface at a faster rate than the rest of the FPGA, no single

component inside the FPGA can saturate the SRAM bus. This is highly bene-

ficial as memory bandwidth-intensive operations, such as FFTs and stereo vision

algorithms, can operate without starving a camera supplying frames or the CPU

reading results.

Inside the FPGA, the SRAM interface (described in more detail in [4]) is decoupled

through the use of asynchronous FIFOs to queue read and write requests. Using a

DFS (Digital Frequency Synthesizer) block, the SRAM can be operated at a range of

frequencies, achieved by multiplying and/or dividing the 50 MHz clock by integers

in the range from 2 to 32. Unfortunately, attempting to run the SRAM at 100 MHz

failed with frequent bit errors. These bit errors only occurred on reading from

SRAM; writing to the SRAM did not produce an error3.

Through experimentation, it was discovered that the fastest speed at which reads

could be achieved was 83.3 MHz. Once again, investigation of the signal lines with

an oscilloscope revealed the cause. On a 50 MHz signal, the rise and fall times of

the data bus lines for writes to the FPGA were both 4 ns. When performing reads,

the rise and fall times were measured to be 6 ns. Thus any signal that switches

faster than 1
6 ns+6ns

= 83.3 MHz can not be reliably guaranteed. This agrees with

the experimental results obtained.

Adjusting the output drive current strength (as was done for the CPU bus in Sec-

tion 5.1.1) offers no benefit, as it does not influence the SRAM’s output characteris-

tics. Instead, the capacitance of the tracks would need to be reduced by shortening

the traces, avoiding vias and/or rearranging the components. This was not done

due to time constraints, but should be considered in future revisions of the board.

3In order to test reading and writing independently, a known good FPGA image (operating at
50 MHz) was loaded into the FPGA to perform one half of the test.
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5.2 I/O Bandwidth

As the target application of the platform is real-time image processing, throughput

must be maximised through the critical image data paths. These paths are: from the

cameras to the FPGA; the FPGA to the CPU; and the CPU to real-world interfaces

(such as the LCD, Ethernet and USB).

The camera to FPGA interface must be designed to accommodate the pixel clock

frequency of 17.73 MHz. Past work at The University of Western Australia with

these cameras have utilised buffer chips and other circuitry for 5 V → 3.3 V level

conversion. Unfortunately, that circuitry introduced a sufficiently large reactance,

causing the signal to be degraded due to lengthy rise and fall times. Learning from

these discoveries, the EyeBot M6’s camera connections to the FPGA avoided any

intermediate circuitry, were kept close to the ground plane and as short as feasibly

possible.

The FPGA to CPU interface could be considered the most critical path on the

entire board, as the CPU is where the intelligent processing can finally begin. To

be able to transfer images in real-time to the CPU, a fast bus interface is required.

A 352×288 pixel image in 16-bit colour at 50 frames per second requires a transfer

rate of 9.67 MB/s. Ideally, the system should be capable of streaming this amount

of data constantly from the FPGA to the CPU.

Using the VLIO transfer mode of the PXA255, the theoretical upper limit on the

transfer rate over a 16-bit bus is 22.4 MB/s (see Figure 5.6). This assumes that burst

transfers are always performed (to avoid unnecessary set-up/hold delays) and does

not allow for any other devices on the bus, such as the LCD and other peripherals

which require a fixed proportion of the bus’s bandwidth.

Some empirical testing provided the results shown in Figure 5.7(a). Three different

methods for reads were trialed.

MMIO mode — Memory mapped I/O is the simplest method of data transfer.

In this mode, the CPU requests one 16-bit word at a time from the FPGA

through its memory-mapped I/O space. The CPU is unable to service any

other tasks whilst waiting for data from the FPGA, but both user-mode and

kernel-mode tasks that wish to access the FPGA require no special interface.

Each 16-bit read has configurable setup times and hold times, as documented

Section 6.7.6 of [41].
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Figure 5.6: Minimum timing diagram for a VLIO burst-of-four read from the FPGA.
A period of 340 ns between subsequent read requests gives a theoretical
upper limit of 8 bytes

340 ns
= 22.4 MB/s on a 16-bit bus.

The values for RDF, RDN, RRR determine the timing characteristics of
VLIO accesses, and must be configured through the PXA255’s MSCx reg-
isters, as per Section 6.7.3 of [41]. Above, RDF, RDN, RRR are set to
their minimum values of 3, 2 and 1, respectively.
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DMA via kernel — Using DMA has several advantages over MMIO mode trans-

fers:

• The CPU is available to process other instructions whilst waiting for data

to arrive.

• The DMA controller is aware that multiple sequential bytes will be read,

and hence can optimise accesses using burst transfers.

• The CPU does not also have to perform the subsequent write to memory.

Transfers are performed by the DMA controller, which is external to the CPU

and has no awareness of the page translation tables in use by the CPU. Hence

all addresses used by the DMA controller must be physical memory addresses,

not virtual addresses. This means the destination pages for DMA must be

contiguous in physical memory. Only the kernel can request such pages; con-

tiguous pages in a userspace process are only contiguous in the virtual address

space and are not guaranteed contiguous in physical memory.

Due to this limitation, in order to use DMA to transfer data to userspace

applications, the data must be handled twice — once to perform the DMA

into contiguous pages accessible by the kernel and then again to copy it to

userspace. Despite this performance penalty, the speed gain is still significant

in comparison, nearly tripling the speed of MMIO mode. This speedup is

largely from the utilisation of burst transfers on the bus.

If the second copy could be avoided, throughput would be improved further.

DMA to userspace — Facilities to perform DMA to userspace have not yet en-

tered the mainstream Linux kernel, however work has been done to achieve

this on PCI-based platforms[42], seeking to be merged in the next major devel-

opment cycle of the Linux kernel. Similar ideas are being pursued to improve

the efficiency of the Linux networking stack[43], with speed improvements of

up to 80% on multi-processor machines.

A similar scheme has been used on the EyeBot M6 to provide a physically-

contiguous memory region to a userspace process that can then be used for

DMA. When such a memory region is requested, it is given two virtual address

mappings — one in the kernel’s address space (which is in-fact a 1:1 mapping

to physical RAM), and a second in the process’s own virtual memory area.

Care needs to be taken to maintain coherency with the PXA255’s data cache.
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Figure 5.7: Empirical performance measurements using VLIO.

Caching policies are applied through the MMU’s pagetables, and hence apply

to virtual addresses. The Linux kernel’s DMA routines take care of cache co-

herency to the kernel’s virtual address mapping but not the userspace address

mapping. Thus after performing the DMA, any data cache-lines associated

with the virtual mapping must be explicitly flushed.

Empirical results (shown in Figure 5.7(a)) demonstrate DMA to userspace transfer

speeds to be 66% faster than DMA via the kernel, and more than four times as

fast as MMIO mode. Combined with the ability to perform other processing tasks

whilst waiting for data to arrive, this mode of transfer offers the optimal solution

for streaming images in real-time from the FPGA.

In Figure 5.7(b), empirical results show that writing to the FPGA is in fact faster

via MMIO than performing DMA via the kernel. This arises from two factors —

the PXA255 coalescing writes into burst transfers improving the speed of MMIO,

and the need for a second memory-to-memory copy from kernel-space into userspace

slowing down the DMA process. The speed of MMIO is not significantly slower than

direct DMA from userspace, suggesting that the extra code complexity involved in

ensuring cache coherency is not beneficial.

Further improvements in transfer speed could be achieved by utilising a bus access

method other than VLIO. This requires an extra line to be routed from the CPU
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Component Minimum Maximum Typical
Base system 1 200 mW 2 400 mW 1 800 mW
Ethernet (100 Mbit) 0.4 mW 400 mW 400 mW
AC97 3.3 mW 100 mW 50 mW
FPGA 0 mW 855 mW 400 mW
SRAM 0 mW 577 mW 400 mW
Cameras 0 mW 132 mW 132 mW
USB 2.0 Host 0 mW 117 mW 80 mW
LCD 0 mW 77 mW 47 mW
Motor Controllers 0 mW 840 mW 600 mW
Motors 0 mW 10 000 mW 0 mW
Servos 0 mW 10 500 mW 0 mW
PSDs 0 mW 1 050 mW 0 mW
Total 1 204 mW 25 848 mW 3 809 mW

Table 5.1: Estimated power consumption under stand-by conditions, worst-case condi-
tions and one typical usage scenario.

to the FPGA (WE), for which there was no spare FPGA pin on the initial revision.

The second revision of the board has freed up one such pin and has the WE line

routed through, allowing the possibility for the FPGA to emulate an SRAM-like

device and further increase transfer speed.

A 32-bit data bus, rather than the chosen 16-bit bus, would precisely double the

achievable speed. However, following this path would require a larger board in

order to physically fit another 16-bit data buffer, and further complicate the already

densely routed PCB.

5.3 Power Consumption

As numerous target applications of the EyeBot M6 will be battery operated, the

ability to minimise power consumption is advantageous. Table 5.1 lists:

• the minimum power that can be drawn by each device on the board;

• the maximum power that may potentially be drawn by each device on the

board;

• empirical values of power usage, measured in one typical scenario (specifically

image-processing — no motors, servos or PSDs, but with two cameras, the
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FPGA, SRAM and Ethernet enabled).

Each of the components in Table 5.1 (except for the base system) can be enabled

or disabled independently, allowing for a very fine grained approach to managing

power consumption.

For minimum power consumption, all devices on the board other than the CPU must

be disabled. The 1.2 W consumed is due to the fact that the PXA255 continues

running at full speed. The PXA255 supports low-power modes which have not

been investigated, but could potentially drop power consumption to below 100 mW.

Future work will attempt to minimise the power consumption as much as possible,

and still allow the device to resume in response to interrupts.

5.4 Stereo Vision

As described in Section 3.3.2, one intention of fixing the camera positions on the

board was to coerce corresponding scan lines of the cameras to lie on epipolar lines.

This reduces the search space for stereo vision algorithms implementing area-based

matching. The premise of the model required that the cameras be manufactured

identically.

Of the cameras available, only one combination of two cameras gave results that were

close to ideal (shown in Figure 5.8). Other combinations exhibited clear differences

in the manufacturing of the camera modules. The imaging sensor on one of the

camera modules was raised slightly on an edge, and thus not coplanar with any of

the other modules. Although the other modules were coplanar, they possessed subtle

but noticable differences in their vertical offsets and rotational components. The

vertical offset can be attributed to differences in the lens mounting. The rotational

component arises from the positioning of the CCD device on the board itself.

The lack of consistency between camera modules means that a stereo vision system

must either carefully choose matched cameras or implement an initial rectification

stage to project each image into the same plane. The latter approach requires a

calibration routine to calculate the required transform. The calibration only needs

to be performed once for a given pair of cameras.

Projection into the plane is often approximated by an affine transformation. A space-

efficient implementation of an affine transformation in the FPGA could potentially
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Figure 5.8: Images of an alignment test pattern, captured simultaneously from both
cameras on the EyeBot M6.

be achieved in around 4 320 logic cells[44], or around 40% of the logic in Spartan-3E

FPGA on the EyeBot M6.

5.5 Optimising image processing functions on the PXA255

Although the main aim of this hardware platform is to remove to repetitive image

processing tasks from the CPU and implement them in the FPGA, this may not

always be feasible or desirable. For example when prototyping algorithms, writing

and verifying C code is often much quicker than the equivalent task in VHDL code.

Thus being able to improve the performance of CPU-level code is highly desirable.

Assuming that an algorithm cannot be macro-optimised any further (its complexity

is fixed), areas for micro-optimisation need to be investigated.

As discussed in Section 3.1, the PXA255 offers the ARMv5TE instruction set, with

DSP-enhancements. Many of these extra features are automatically utilised by the

GNU C compiler4. Instructions that are not quite as straight-forward for the com-

piler to optimise, such as saturating addition/subtraction or count leading zeroes,

can be utilised through the use of intrinsics. (Intrinsics allow access to architecture-

specific instructions but can be implemented in a portable fashion).

Resorting to optimisation through writing assembly code is generally undesirable,

as the code no longer remains portable and becomes harder to maintain. However,

by understanding what assembly instructions can be generated for the ARMv5TE

4The parameter -march=armv5te needs to be passed to the gcc command in order for the DSP
extensions to be used.
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instruction set, C code can be written to encourage GCC to create more optimal

output. As an example, some basic code to apply a mask to an image was analysed.

The code in its simplest form is shown in Listing 5.1. It performs pair-wise mul-

tiplication on two 8-bit images, storing the upper 8-bits of the 16-bit result. The

compiler used was gcc 3.4.5 with optimisation level 2. The generated assembly5 has

an inner loop of 9 instructions, an outer loop of 15 instructions, and takes 8.9 ms

for a 352 × 288 image on the 400 MHz PXA255. The first observation is that the

nested loops reduce the effectiveness of the branch predictor.

void apply_mask_c_1(img_t image, img_t mask, img_t result) {

int x, y;

for (y = 0; y < HEIGHT; y++)

for (x = 0; x < WIDTH; x++)

result[y][x] = ((image[y][x] * mask[y][x]) >> 8);

}

Listing 5.1: Code to apply a mask to an image, in its simplest unoptimised form. img t
is a 2-dimensional array of 8-bit values.

By utilising the knowledge that a 2-dimensional array is stored contiguously in mem-

ory, the code can be reduced to a single loop using pointers into the array (List-

ing 5.2). The generated assembly has a single loop of 8 instructions and completes

in 8.3 ms.

void apply_mask_c_2(img_t image, img_t mask, img_t result) {

int i;

u8 *p, *q, *r;

p = (u8*)image;

q = (u8*)mask;

r = (u8*)result;

for (i = 0; i < HEIGHT*WIDTH; i++)

*r++ = ((*p++) * (*q++))>>8;

}

Listing 5.2: Acting on the knowledge that the 2-dimensional arrays are stored contigu-
ously allows one loop to be used instead of two.

By forgoing the use of a loop counter, as shown in Listing 5.3, one instruction is

5The generated assembly for all the routines in this section is included in Appendix B.
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void apply_mask_c_3(img_t image, img_t mask, img_t result) {

u8 *p, *q, *r, *end;

p = (u8*)image;

q = (u8*)mask;

r = (u8*)result;

end = p + (HEIGHT*WIDTH);

while (p != end)

*r++ = ((*p++) * (*q++))>>8;

}

Listing 5.3: Replacing the unnecessary loop variable eliminates an instruction from
inside the loop.

shaved off the size of the loop. Unfortunately, this code takes precisely the same

execution time as the previous attempt with 8 instructions in the inner loop (8.3 ms).

This is attributed to the load requiring three cycles, assuming the data to be loaded

is in the data cache. If an instruction that requires the result of a load immediately

follows, it will stall for two cycles. In this case the result of the load is used two cycles

later and hence stalls for one cycle, effectively giving the loop the same execution

time as the previous attempt.

Loop unrolling is another common technique for improving code performance, as

it avoids the penalty of branching. A compiler flag exists for gcc to perform loop

unrolling, however it does not give any benefit in this case, as the XScale’s branch

predictor already predicts the branch accurately, so no penalty is incurred. Instead,

the loop can be unrolled by hand four times in order to perform writes as 32-bit

words rather than 8-bit words. This increases the size of the loop to 20 instructions

but achieves four bytes per iteration, thus gives an average of 5 instructions per

iteration. It also requires that the destination buffer is aligned to a 4-byte boundary.

This code (shown in Listing 5.4) takes 5.0 ms per frame to execute. Performing the

loads as 32-bits offers no benefit, as more instructions are required to extract the

four 8-bit bytes than to perform the individual reads.

The PXA255 CPU will complete most data processing instructions in one clock cycle,

unless the following instruction requires the result shifted by an explicit number of

bits. If a shifted result is required in the following instruction, the instruction

pipeline will stall for one cycle waiting for the result. In the previous method, the

result was built sequentially using bit shifts at each stage, incurring pipeline stalls.
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void apply_mask_c_4(img_t image, img_t mask, img_t result) {

u8 *p, *q, *end;

u32 *r;

p = (u8*)image;

q = (u8*)mask;

r = (u32*)result;

end = p + (HEIGHT*WIDTH);

while (end != p) {

u32 res1, res2, res3, res4;

res1 = (*p++ * *q++) >> 8;

res2 = (*p++ * *q++) >> 8;

res3 = (*p++ * *q++) >> 8;

res4 = (*p++ * *q++) >> 8;

*r++ = res1 | (res2 << 8) | (res3 << 16) | (res4 << 24);

}

}

Listing 5.4: Loop unrolling to perform writes 32-bits at a time.

If instead the 32-bit result was constructed in parallel from two intermediate 16-

bit results, the linear dependency tree is removed. This spreads the dependency

requirements between registers so that the likelihood that the instruction pipeline

will stall is minimised (it is assumed that the compiler is aware of where pipeline

stalls occur and can schedule the instructions appropriately).

This code is shown in Listing 5.5. The assembly generated by this code actually has

an inner loop of 21 instructions — one instruction longer than previously, giving an

average of 5.2 instructions per iteration. However, the code executes in 4.6 ms per

frame. This is almost half the time required for the initial implementation!

These results have all been achieved without resorting to assembly code but required

examining the assembly output produced by the compiler and knowledge of the

CPU architecture. Hand-coding assembly code is not only a slow and error-prone

process, but tends to produce less efficient code unless the coder knows precisely how

to schedule instructions optimally. An assembly routine was coded to perform the

above task (apply_mask_asm_2_1, shown in Appendix B) and achieved an execution

time of 4.5 ms per frame — not significantly faster than the fully optimised C code.

The efficiency of the functions presented here are summarised in Table 5.2.

As the gcc compiler understands many of the intricacies of the XScale architecture,
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void apply_mask_c_5(img_t image, img_t mask, img_t result) {

u8 *p, *q, *end;

u32 *r;

p = (u8*)image;

q = (u8*)mask;

r = (u32*)result;

end = p + (HEIGHT*WIDTH);

while (end != p) {

u32 res1, res2;

res1 = *p++ * *q++;

res1 = res1 >> 8 | ((*p++ * *q++) & 0xff00);

res2 = *p++ * *q++;

res2 = res2 >> 8 | ((*p++ * *q++) & 0xff00);

*r++ = res1 | (res2 << 16);

}

}

Listing 5.5: Building the result in parallel rather than sequentially removes unnecessary
pipeline stalls.

Function Time per frame % Gain
apply_mask_c_1 8.9 ms 0%
apply_mask_c_2 8.3 ms 7%
apply_mask_c_3 8.3 ms 7%
apply_mask_c_4 5.0 ms 43%
apply_mask_c_5 4.6 ms 48%
apply_mask_asm_2_1 4.5 ms 49%

Table 5.2: Timing and efficiency gains for various optimisations of an image masking
routine.

it can achieve near-optimal code with substantially less effort from the programmer,

compared to writing assembly by hand. The C code also remains portable to other

architectures and platforms, whereas optimised assembly code is of no use. Thus,

optimising C code based upon knowledge of the architecture is a preferable approach

to improving execution speed6.

6Appendix A of [45] details methods of optimising assembly routines. It is targeted at developers
writing in ARM assembly and optimising compiler writers, but gives a deeper understanding of
how an optimising compiler may be exploited to generate more efficient code.
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Conclusion

Over the course of this project, a high-performance embedded system was designed,

developed and evaluated, for the purposes of real-time image processing. The sys-

tem provides a highly adaptable hardware and software platform by combining the

parallelism of programmable logic with the versatility of a fast 32-bit RISC CPU.

Through optimising the flow of data through the system, images can be processed

efficiently in order to achieve real-time speeds.

The design was built upon the experiences of previous FPGA-based imaging devices,

and has been adapted for use as a mobile robotics platform. Two cameras were

connected directly to the FPGA, allowing stereo vision algorithms to be utilised to

achieve depth perception. In addition, power consumption was minimised through

a fine-grained power management scheme.

The performance of the design was analysed in order to improve the speed of data

transfers. Techniques were also explored for improving the efficiency of image-

processing code. Together, the system’s resources are effectively utilised to maximise

throughput from end to end.

It is hoped that this platform will serve the needs of high-performance image pro-

cessing applications for many years to come.

6.1 Future Work

Creating or adapting an appropriate hardware platform is often the a very time-

consuming task for an embedded image-processing project. As the EyeBot M6
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provides a system tailored for image processing, it can serve as the starting point

for a vast range of computer vision-related projects.

The next step in making hardware image processing easily accessible, is the cre-

ation of a library of pluggable VHDL image processing routines. This allows a user

to request images from the camera that have already had a set of transformations

applied. The Xilinx tools offer a graphical block-level editor, allowing VHDL com-

ponents to be connected on-screen to form a single FPGA programming image. This

method could potentially be used to graphically connect a sequence of image pro-

cessing components together, requiring no knowledge of VHDL or the underlying

system.

As the successor to previous EyeBot generations, a port of the RoBIOS operating

system will be completed to allow existing applications to run unmodified. RoBIOS

provides a standardised interface to motors, servos, quadrature encoders, position

sensing devices and other hardware devices commonly found on robotic platforms.

It also offers high-level control functions for navigation and motor control.

Further work to be performed on the platform includes:

User interface — a light-weight toolkit with touchscreen support needs to be writ-

ten or adapted to the EyeBot M6. A facility to export the user interface over

the network using a remote desktop protocol such as RDP or VNC would allow

a portable method of remotely controlling the EyeBot.

Application interface — a simple, documented method of loading user applica-

tions onto the device over USB to make life easier for application developers.

FPGA I/O standardisation — the devices attached to the FPGA (such as mo-

tors, servos, and PSDs) require standardised addresses for libM6 to access. A

definitive bitstream providing access to all devices on the FPGA needs to be

created and versioned.

ISP1761 bug — isolating the ISP1761 interrupt bug described in Section 4.1.2.

Additional areas that could be explored on the platform include:

Real-time Linux — for more complicated control applications where bounded de-

terminism is mandatory, a real-time operating system is required. Real-time
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ports of the Linux kernel are available, but drivers will need to ensure they do

not interfere with the operation of the real-time scheduler.

Improving performance using non-VLIO transfers — the second revision of

the board will give the FPGA access to the PXA255’s WE signal, allowing

transfers to be performed with faster transfer modes than VLIO.

Partial reconfiguration — the board has signals connected that potentially al-

low partial reconfiguration to be performed. Partial reconfiguration could be

used to transparently change image processing algorithms without affecting

operation of the rest of the device.

Power consumption — although all peripherals on the board can be disabled,

the PXA255 CPU itself never enters a low-power mode. The PXA255 offers a

rich set of power-saving modes. Investigating these may allow the EyeBot M6

to remain in standby for over a week. Driver support for suspend/resume will

constitute a large portion of this work.

The development of the EyeBot M6 has opened up a world of possibilities for easily

experimenting with embedded vision systems, limited only by one’s creativity and

imagination1. Building up a library of reusable software and VHDL components will

accelerate the development of future systems, allowing the rapid creation of a wide

variety of applications. This project has laid down the foundations for autonomous

robots, vehicles, submarines and other devices to benefit from a powerful imaging

system.

1. . . and the size of the FPGA.
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Board Detail

A.1 Power Control Signals

Signal Connected to Purpose

PWRON PXA255 GPIO32 When high, keeps the main regulator powered.

5VEN AC97 GPIO2 When high, supplies 5 V power to the motor drivers,

servos and USB ports.

PWFPGA AC97 GPIO0 When high, enables the 2.5 V and 1.2 V power sup-

plies for the FPGA, and the 50 MHz crystal.

FCFG AC97 GPIO9 When high, sinks 30 mA of current from the 2.5 V

rail — must be high when programming the FPGA.

FROFF FPGA P144 When high, disables the SRAM.

PWOFF AC97 GPIO5 When high, disables Camera 1 and places the SRAM

into standby.

CAMOFF AC97 GPIO4 When high, disables Camera 2
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A.2 Top view

A.2.1 Jumpers

J8 On: connect RTS pin of Serial 2 to 5 V

J9 On: connect RTS pin of Serial 1 to 5 V

J12 On: disable console on Serial 1

J35 Composite Video output from Camera 1

J36 Composite Video output from Camera 2

A.2.2 Top board connector pinout

Microphone Input 1 2 Microphone Ground

Speaker Output 3 4 Analog Ground

5 V 5 6 Ground

VBATT 7 8 3.3 V

Digital I/O 0 9 10 Digital I/O 1

Digital I/O 2 11 12 Digital I/O 3

Digital I/O 4 13 14 Digital I/O 5

Digital I/O 6 15 16 AC97 Sync

Infrared Signal 17 18 AC97 Reset

ADC synchroniser 19 20 AC97 Bit Clock

AC97 Data In 21 22 AC97 Data Out

I2C Serial Clock 23 24 I2C Serial Data

Touchscreen X+ 25 26 Touchscreen Y+

Touchscreen X- 27 28 Touchscreen Y-

Power Supply Hold 29 30 Serial 2 Rx

Serial Console Enable 31 32 Serial 2 Tx

Slave USB- 33 34 Serial 1 Rx

Slave USB+ 35 36 Serial 1 Tx
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A.2. TOP VIEW

Pin 1 of the camera module is marked “Y0”.
Cameras hang below the board when mounted.
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A.3 Bottom view
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A.3. BOTTOM VIEW

A.3.1 Connectors

JP1 — Test points

Warning: Do not pull up/down these signals without a series resistor.

1 Pull high to force FPGA power on (1.2 V and 2.5 V rails)

2 3.3 V

3 Ground

4 3.3 V

5 Pull high to force 5 V line

6 3.3 V

7 Pull high to force power circuity to stay on

8 3.3 V

9 VBATT

10 Ground

11 Connected to power button

12 5 V

13 2.5 V

14 Ground

15 1.2 V

16 Ground

JP2, JP3 — Motor power

JP2 controls the power source for motors 1 and 2. JP3 controls the power source

for motors 3 and 4. Both have the following pinout:

1 5 V

2 Motor power

3 VBATT

Thus a jumper from pin 1-2 will supply 5 V to the motors, and a jumper from pin

2-3 will supply the battery voltage to the motors. Alternately, an external supply

can be connected to pin 2. Ensure that this supply is within the specifications of

the L293DD motor driver IC.
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J30–33 — Motors

1 Motor -

2 Motor +

3 Ground

4 VCC (5V)

5 Encoder B

6 Encoder A

J14–20 — Servos

1 Signal

2 5 V

3 Ground

J24–26 — PSDs

1 Ground

2 Clock Input

3 5 V

4 Data Output

J5 — ADC Inputs

1 5 V

2 Analog Input 0

3 Analog Input 1

4 Analog Input 2

5 Analog Ground

J34 — Digital I/O

The digital I/O pins are divided into two banks of 8 pins each. Each set of 8 are be

configured to be simultaneously inputs or outputs.

3.3 V 1 2 5V

DIO 0/0 3 4 DIO 0/1

DIO 0/2 5 6 DIO 0/3

DIO 0/4 7 8 DIO 0/5

DIO 0/6 9 10 DIO 0/7

DIO 1/0 11 12 DIO 1/1

DIO 1/2 13 14 DIO 1/3

DIO 1/4† 15 16 DIO 1/5†
DIO 1/6† 17 18 DIO 1/7†

Ground 19 20 Ground

† These I/O lines are shared with Camera 2 and are not available if Camera 2 is in use.
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A.3. BOTTOM VIEW

P3 — USB Port

This port is designed to connect to a standard USB port cable, as found inside PC

motherboards.

1 Ground

2 Data -

3 Data +

4 5 V
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Appendix B

Assembly Listings for Section 5.5

000001d0 <apply_mask_c_1>:

1d0: e92d40f0 stmdb sp!, {r4, r5, r6, r7, lr}

1d4: e3a0e000 mov lr, #0 ; 0x0

1d8: e1a06000 mov r6, r0

1dc: e1a05001 mov r5, r1

1e0: e1a04002 mov r4, r2

1e4: e1a0000e mov r0, lr

1e8: e59f7038 ldr r7, [pc, #56] ; 228 <.text+0x228>

1ec: e3a0c000 mov ip, #0 ; 0x0

1f0: e080200c add r2, r0, ip

1f4: e7d21006 ldrb r1, [r2, r6]

1f8: e7d23005 ldrb r3, [r2, r5]

1fc: e28cc001 add ip, ip, #1 ; 0x1

200: e15c0007 cmp ip, r7

204: e0030391 mul r3, r1, r3

208: e1a03443 mov r3, r3, asr #8

20c: e7c23004 strb r3, [r2, r4]

210: dafffff6 ble 1f0 <apply_mask_c_1+0x20>

214: e28ee001 add lr, lr, #1 ; 0x1

218: e35e0e12 cmp lr, #288 ; 0x120

21c: e2800e16 add r0, r0, #352 ; 0x160

220: bafffff0 blt 1e8 <apply_mask_c_1+0x18>

224: e8bd80f0 ldmia sp!, {r4, r5, r6, r7, pc}
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228: 0000015f andeq r0, r0, pc, asr r1

0000022c <apply_mask_c_2>:

22c: e92d4010 stmdb sp!, {r4, lr}

230: e59f4028 ldr r4, [pc, #40] ; 260 <.text+0x260>

234: e1a0e002 mov lr, r2

238: e3a0c000 mov ip, #0 ; 0x0

23c: e4d02001 ldrb r2, [r0], #1

240: e4d13001 ldrb r3, [r1], #1

244: e28cc001 add ip, ip, #1 ; 0x1

248: e15c0004 cmp ip, r4

24c: e0030392 mul r3, r2, r3

250: e1a03443 mov r3, r3, asr #8

254: e4ce3001 strb r3, [lr], #1

258: dafffff7 ble 23c <apply_mask_c_2+0x10>

25c: e8bd8010 ldmia sp!, {r4, pc}

260: 00018bff streqd r8, [r1], -pc

00000264 <apply_mask_c_3>:

264: e52de004 str lr, [sp, #-4]!

268: e1a0c002 mov ip, r2

26c: e280eb63 add lr, r0, #101376 ; 0x18c00

270: e4d02001 ldrb r2, [r0], #1

274: e4d13001 ldrb r3, [r1], #1

278: e15e0000 cmp lr, r0

27c: e0030392 mul r3, r2, r3

280: e1a03443 mov r3, r3, asr #8

284: e4cc3001 strb r3, [ip], #1

288: 1afffff8 bne 270 <apply_mask_c_3+0xc>

28c: e49df004 ldr pc, [sp], #4
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00000290 <apply_mask_c_4>:

290: e92d40f0 stmdb sp!, {r4, r5, r6, r7, lr}

294: e1a04000 mov r4, r0

298: e1a05001 mov r5, r1

29c: e1a06002 mov r6, r2

2a0: e2807b63 add r7, r0, #101376 ; 0x18c00

2a4: e4d42001 ldrb r2, [r4], #1

2a8: e4d53001 ldrb r3, [r5], #1

2ac: e4d40001 ldrb r0, [r4], #1

2b0: e4d51001 ldrb r1, [r5], #1

2b4: e00e0293 mul lr, r3, r2

2b8: e4d4c001 ldrb ip, [r4], #1

2bc: e4d52001 ldrb r2, [r5], #1

2c0: e0030091 mul r3, r1, r0

2c4: e4d40001 ldrb r0, [r4], #1

2c8: e4d51001 ldrb r1, [r5], #1

2cc: e002029c mul r2, ip, r2

2d0: e0010190 mul r1, r0, r1

2d4: e1a02442 mov r2, r2, asr #8

2d8: e2033cff and r3, r3, #65280 ; 0xff00

2dc: e183342e orr r3, r3, lr, lsr #8

2e0: e1a01441 mov r1, r1, asr #8

2e4: e1833802 orr r3, r3, r2, lsl #16

2e8: e1833c01 orr r3, r3, r1, lsl #24

2ec: e1570004 cmp r7, r4

2f0: e4863004 str r3, [r6], #4

2f4: 1affffea bne 2a4 <apply_mask_c_4+0x14>

2f8: e8bd80f0 ldmia sp!, {r4, r5, r6, r7, pc}
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000002fc <apply_mask_c_5>:

2fc: e92d40f0 stmdb sp!, {r4, r5, r6, r7, lr}

300: e1a04000 mov r4, r0

304: e1a05001 mov r5, r1

308: e1a06002 mov r6, r2

30c: e2807b63 add r7, r0, #101376 ; 0x18c00

310: e4d42001 ldrb r2, [r4], #1

314: e4d53001 ldrb r3, [r5], #1

318: e4d4c001 ldrb ip, [r4], #1

31c: e4d51001 ldrb r1, [r5], #1

320: e0000293 mul r0, r3, r2

324: e4d4e001 ldrb lr, [r4], #1

328: e4d52001 ldrb r2, [r5], #1

32c: e001019c mul r1, ip, r1

330: e4d53001 ldrb r3, [r5], #1

334: e4d4c001 ldrb ip, [r4], #1

338: e002029e mul r2, lr, r2

33c: e003039c mul r3, ip, r3

340: e2011cff and r1, r1, #65280 ; 0xff00

344: e2033cff and r3, r3, #65280 ; 0xff00

348: e1832422 orr r2, r3, r2, lsr #8

34c: e1810420 orr r0, r1, r0, lsr #8

350: e1800802 orr r0, r0, r2, lsl #16

354: e1570004 cmp r7, r4

358: e4860004 str r0, [r6], #4

35c: 1affffeb bne 310 <apply_mask_c_5+0x14>

360: e8bd80f0 ldmia sp!, {r4, r5, r6, r7, pc}
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Hand coded assembly version of apply_mask:

.type apply_mask_asm_2_1, %function

.global apply_mask_asm_2_1 apply_mask_asm_2_1:

stmfd sp!, {r4-r9, lr}

mov ip, r2

add lr, r2, #(352*288)

1:

ldrb r2, [r0], #1

ldrb r3, [r1], #1

ldrb r4, [r0], #1

ldrb r5, [r1], #1

ldrb r6, [r0], #1

ldrb r7, [r1], #1

ldrb r8, [r0], #1

ldrb r9, [r1], #1

smulbb r2, r2, r3

smulbb r4, r4, r5

smulbb r6, r6, r7

smulbb r8, r8, r9

cmp lr, ip

and r8, r8, #0xff00

and r4, r4, #0xff00

orr r8, r8, r6, asr #8

orr r4, r4, r2, asr #8

orr r2, r4, r8, asl #16

strne r2, [ip], #4

bne 1b

ldmia sp!, {r4-r9, pc}
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Appendix C

libM6

libM6 is a library for accessing the hardware on the Eyebot M6. The devices con-

nected to the FPGA are depending on the correct FPGA image being loaded, and

has not yet been finalised. The documentation below covers the essential functions

for accessing the FPGA, and other existing functions.

Accessing the FPGA

volatile u16* FPGA map(FPGA addr t address, unsigned long bytes)

Maps a region of the FPGA’s address lines into the calling process’s address

space. It returns a pointer to a the memory-mapped I/O region, which should

only be accessed on 16-bit boundaries.

address is the offset into the FPGA’s address space. This should always be

an even address, as the lowest address bit is not connected to the FPGA.

bytes is the number of bytes to be mapped. This will automatically be

rounded up to the next multiple of a page size (4K bytes).

int FPGA memcpy from(void *dest, FPGA addr t src, int bytes)

Performs a DMA read from the FPGA’s address space into a memory location.

It returns 0 on success, and -1 on error (error in errno).

dest is the target address to copy data into. It must be aligned to an 8-byte

boundary.
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src is the I/O address on the FPGA to copy data from. It must be aligned

to an 8-byte boundary.

bytes is the number of bytes to copy. It must be a multiple of 8.

int FPGA memcpy to(FPGA addr t src, void *src, int bytes)

Performs a DMA write to the FPGA’s address space from a memory location.

It returns 0 on success, and -1 on error (error in errno).

dest is the I/O address on the FPGA to copy data to. It must be aligned to

an 8-byte boundary.

src is the source address to copy data from. It must be aligned to an 8-byte

boundary.

bytes is the number of bytes to copy. It must be a multiple of 8.

GPIO access

int GPIO set bank direction(int bank, GPIO dir t direction)

Sets the direction of a bank of GPIO pins.

bank is 0 or 1.

direction is one of GPIO_IN or GPIO_OUT.

int GPIO set state(int bank, int gpio, int state)

Sets the state of a given GPIO pin that has been configured as an output.

bank is 0 or 1.

gpio is between 0 and 7, inclusive.

state must be 0 for clear, or non-zero for set.

int GPIO get state(int bank, int gpio)

Returns the state of a given GPIO pin that has been configured as an input.

bank is 0 or 1.

gpio is between 0 and 7, inclusive.
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Position Sensing Devices

void PSD enable()

Enables all PSDs.

void PSD disable()

Disables all PSDs.

void PSD set update period(int ms)

Sets the number of milliseconds between PSD updates. The minimum sam-

pling interval is 83 ms. ms will be rounded up to the next multiple of the

minimum sampling interval. The default period is 83 ms.

void PSD read(int number)

Returns the uncalibrated 8-bit value read from the PSD counter.

number is between 0 and 5, inclusive.

79





References

[1] Intel Corporation, “Enhanced host controller interface for univeral serial bus.”

http://www.intel.com/technology/usb/ehcispec.htm. [On-line, accessed

15-Oct-2006].

[2] OmniVision, “OmniVision serial camera control bus (SCCB) functional specifi-

cation.” http://www.ovt.com/products/SCCBSpec AN 2 1.pdf. [On-line, ac-

cessed 10-Jul-2006].

[3] L. Chin, “FPGA-based embedded vision systems.” Final Year Project Thesis,

2006. School of Electrical, Electronic and Computer Engineering, The Univer-

sity of Western Australia.

[4] D. English, “FPGA-based embedded stereovision algorithms.” Final Year

Project Thesis, 2006. School of Electrical, Electronic and Computer Engi-

neering, The University of Western Australia.

[5] “Directive 2002/95/EC of the European Parliament and of the Council of 27

January 2003 on the restriction of the use of certain hazardous substances in

electrical and electronic equipment,” in Official Journal of the European Union,

pp. 37/19–37/21, 2003.

[6] V. Narayanan and Y. Xie, “Reliability concerns in embedded system designs,”

Computer, vol. 39, no. 1, pp. 118–120, 2006.

81

http://www.intel.com/technology/usb/ehcispec.htm
http://www.ovt.com/products/SCCBSpec_AN_2_1.pdf


REFERENCES

[7] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge, “The bi-mode branch predictor,” in

MICRO 30: Proceedings of the 30th annual ACM/IEEE international sympo-

sium on Microarchitecture, (Washington, DC, USA), pp. 4–13, IEEE Computer

Society, 1997.

[8] S. Pasricha and A. Veidenbaum, “Improving branch prediction accuracy in

embedded processors in the presence of context switches,” in Proceedings of the

21st International Conference on Computer Design, (Washington, DC, USA),

IEEE Computer Society, 2003.

[9] M. Duranton, “The challenges for high performance embedded systems,” in

Proceedings of the 9th EUROMICRO Conference on Digital System Design,

(Los Alamitos, CA, USA), IEEE Computer Society, 2006.

[10] J. Backus, “Can programming be liberated from the von Neumann style?: a

functional style and its algebra of programs,” Communications of the ACM,

vol. 21, no. 8, pp. 613–641, 1978.

[11] C. Zinner and W. Kubinger, “ROSDMA: A DMA double buffering method for

embedded image processing with resource optimized slicing,” in Proceedings

of the Twelfth IEEE Real-Time and Embedded Technology and Applications

Symposium, IEEE Computer Society, 2006.

[12] P. A. Laplante, Real-time Systems Design and Analysis: An Engineer’s Hand-

book. IEEE Press, 2 ed., 1997.

[13] J. Greco, “Parallel image processing and computer vision architecture,” 2005.

[14] P. McCurry, F. Morgan, and L. Kilmartin, “Xilinx FPGA implementation of a

pixel processor for object detection applications.”

82



REFERENCES

[15] M. Venkatesan and D. V. Rao, “An efficient reconfigurable architecture and

implementation of edge detection algorithm using Handle-C,” in ITCC ’04:

Proceedings of the International Conference on Information Technology: Coding

and Computing (ITCC’04) Volume 2, (Washington, DC, USA), p. 846, IEEE

Computer Society, 2004.

[16] S. M. Smith and J. M. Brady, “SUSAN — a new approach to low level image

processing,” Int. J. Comput. Vision, vol. 23, no. 1, pp. 45–78, 1997.

[17] C. Torres-Huitzil and M. Arias-Estrada, “An FPGA architecture for high speed

edge and corner detection,” in CAMP ’00: Proceedings of the Fifth IEEE

International Workshop on Computer Architectures for Machine Perception

(CAMP’00), (Washington, DC, USA), p. 112, IEEE Computer Society, 2000.

[18] T. H. Drayer, J. G. Tront, R. W. Conners, and P. A. Araman, “A develop-

ment system for creating real-time machine vision hardware using field pro-

grammable gate arrays,” in HICSS ’99: Proceedings of the Thirty-Second An-

nual Hawaii International Conference on System Sciences-Volume 3, (Wash-

ington, DC, USA), p. 3046, IEEE Computer Society, 1999.

[19] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative analysis of the

speedup factors of FPGAs over processors,” in FPGA ’04: Proceedings of the

2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate

Arrays, (New York, NY, USA), pp. 162–170, ACM Press, 2004.

[20] T. W. Griffin and N. L. Passos, “An experiment with hardware implementation

of edge enhancement filter,” J. Comput. Small Coll., vol. 17, no. 5, pp. 24–31,

2002.

[21] T. S. Mohamed and W. Badawy, “Integrated hardware-software platform for

image processing applications,” in Proceedings of the 4th IEEE International

83



REFERENCES

Workshop on System-on-Chip for Real-Time Applications, (Washington, DC,

USA), pp. 145–148, IEEE Computer Society, 2004.

[22] J. Villasenor, C. Jones, and B. Schoner, “Video communications using rapidly

reconfigurable hardware,” in IEEE Transactions on Circuits and Systems for

Video Technology, vol. 5, December 1995.

[23] G. Wigley and D. Kearney, “The first real operating system for reconfigurable

computers,” in Proceedings of the 6th Australasian Computer Systems Archi-

tecture Conference, (Los Alamitos, CA, USA), p. 130, IEEE Computer Society,

2001.

[24] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt, “Dynamic

scheduling of tasks on partially reconfigurable FPGAs,” in IEEE Proceedings

of Computers and Digital Techniques, 2000.

[25] T. Braunl, “EyeBot: A family of autonomous robots,” in Proceedings of the

6th International Conference on Neural Information Processing, pp. 645–649a,

1999.

[26] A. Rowe, C. Rosenberg, and I. Nourbakhsh, “A low cost embedded color vision

system,” in Proceedings of the 2002 IEEE/RSJ International Conference on

Intelligent Robots and System, vol. 1, pp. 208–213, IEEE Computer Society,

2002.

[27] A. Rowe, C. Rosenberg, and I. Nourbakhsh, “A second generation low cost

embedded color vision system,” in Proceedings of the 2005 IEEE International

Conference on Computer Vision and Pattern Recognition, IEEE Computer So-

ciety, 2005.

84



REFERENCES

[28] Newton Laboratories, “Cognachrome image capture device.” http://www.

newtonlabs.com/. [On-line, accessed 15-Oct-2006].

[29] P. Fidler, T. Froggatt, M. Morley, A. Green, E. Greveson, and P. Long, “MDP

balloon board: An open source software & hardware system for education,” in

Proceedings of the 7th Real-time Linux Workshop, 2005.

[30] H. Francis, “ARM DSP-enhanced extensions.” http://www.arm.com/pdfs/

ARM-DSP.pdf. [On-line, accessed 14-Oct-2006].

[31] Altera Corporation, “The truth about die size: Comparing Stratix & Virtex-

II Pro FPGAs.” http://www.altera.com/literature/wp/wp stx compare.

pdf. [On-line, accessed 14-Sep-2006].

[32] Altera Corporation, “An analytical review of FPGA logic efficiency in Stratix,

Virtex-II & Virtex-II Pro devices.” http://www.altera.com/literature/wp/

wp stx logic efficiency.pdf. [On-line, accessed 14-Sep-2006].

[33] H. Patel, “The 40% performance advantage of Virtex-II Pro FPGAs over com-

petitive PLDs.” http://www.xilinx.com/bvdocs/whitepapers/wp206.pdf.

[On-line, accessed 14-Sep-2006].

[34] Philips Semiconductors, “The I2C bus specification.” http://www.nxp.com/

acrobat download/literature/9398/39340011.pdf. [On-line, accessed 4-

Oct-2006].

[35] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, pp. 235–

237. Prentice-Hall, 2003.

[36] Compaq, HP, Intel, Lucent, Microsoft, NEC, Philips, “Universal Serial Bus

specification, revision 2.0.” http://www.usb.org/developers/docs/. [On-

line, accessed 10-Oct-2006].

85

http://www.newtonlabs.com/
http://www.newtonlabs.com/
http://www.arm.com/pdfs/ARM-DSP.pdf
http://www.arm.com/pdfs/ARM-DSP.pdf
http://www.altera.com/literature/wp/wp_stx_compare.pdf
http://www.altera.com/literature/wp/wp_stx_compare.pdf
http://www.altera.com/literature/wp/wp_stx_logic_efficiency.pdf
http://www.altera.com/literature/wp/wp_stx_logic_efficiency.pdf
http://www.xilinx.com/bvdocs/whitepapers/wp206.pdf
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
http://www.usb.org/developers/docs/


REFERENCES

[37] Philips Semiconductors, “Interfacing the ISP176x to the Intel PXA25x proces-

sor.” http://www.nxp.com/acrobat download/applicationnotes/AN10037

4.pdf. [On-line, accessed 10-Sep-2006].

[38] P. Alfke and B. New, “Quadrature phase decoder.” http://direct.xilinx.

com/bvdocs/appnotes/xapp012.pdf. [On-line, accessed 29-Sep-2006].

[39] K. Chapman, “Rotary encoder interface for Spartan-3E starter

kit.” http://www.xilinx.com/products/boards/s3estarter/files/

s3esk rotary encoder interface.pdf. [On-line, accessed 18-Jul-2006].

[40] Pericom Semiconductor Corporation, “PI74LPT16245 technical datasheet.”

http://www.pericom.com/pdf/datasheets/PI74LPT16245.pdf. [On-line, ac-

cessed 22-Oct-2006].

[41] Intel Corporation, “Intel PXA255 processor: Developer’s manual.”

http://www.intel.com/design/pca/applicationsprocessors/manuals/

278693.htm. [On-line, accessed 10-Oct-2006].

[42] P. Chubb, “Linux kernel infrastructure for user-level device drivers,” in

Linux.conf.au Adelaide, Australia, 2004. http://www.ertos.nicta.com.au/

publications/papers/Chubb 04.pdf [On-line, accessed 14-Sep-2006].

[43] V. Jacobson and B. Felderman, “Speeding up networking,” in Linux.conf.au

Dunedin, New Zealand, 2006. http://www.lemis.com/grog/Documentation/

vj/lca06vj.pdf [On-line, accessed 14-Sep-2006].

[44] F. Bensaali, A. Amira, I. Uzun, and A. Ahmedsaid, “An FPGA implementation

of 3D affine transformations,” in Proceedings of the 10th IEEE International

Conference on Electronics, 2003.

86

http://www.nxp.com/acrobat_download/applicationnotes/AN10037_4.pdf
http://www.nxp.com/acrobat_download/applicationnotes/AN10037_4.pdf
http://direct.xilinx.com/bvdocs/appnotes/xapp012.pdf
http://direct.xilinx.com/bvdocs/appnotes/xapp012.pdf
http://www.xilinx.com/products/boards/s3estarter/files/s3esk_rotary_encoder_interface.pdf
http://www.xilinx.com/products/boards/s3estarter/files/s3esk_rotary_encoder_interface.pdf
http://www.pericom.com/pdf/datasheets/PI74LPT16245.pdf
http://www.intel.com/design/pca/applicationsprocessors/manuals/278693.htm
http://www.intel.com/design/pca/applicationsprocessors/manuals/278693.htm
http://www.ertos.nicta.com.au/publications/papers/Chubb_04.pdf
http://www.ertos.nicta.com.au/publications/papers/Chubb_04.pdf
http://www.lemis.com/grog/Documentation/vj/lca06vj.pdf
http://www.lemis.com/grog/Documentation/vj/lca06vj.pdf


REFERENCES

[45] Intel Corporation, “Intel XScale microarchitecture for the PXA255

processor.” http://www.intel.com/design/pca/applicationsprocessors/

manuals/278693.htm. [On-line, accessed 20-Oct-2006].

87

http://www.intel.com/design/pca/applicationsprocessors/manuals/278693.htm
http://www.intel.com/design/pca/applicationsprocessors/manuals/278693.htm

	Title page
	Letter to the Dean
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Abbreviations
	Introduction
	Project Scope
	Design Specification
	Requirements
	Constraints

	Major Contributions
	Thesis Outline

	High Performance Embedded Systems
	Challenges for High Performance Embedded Systems
	The Von Neumann Bottleneck
	Real-time systems

	FPGAs and Image Processing
	Similar Work
	EyeBot M1--M5
	CMUcam
	Cognachrome
	MDP Balloon


	Hardware Design
	CPU
	FPGA
	Cameras
	Camera Configuration
	Stereo Vision

	SRAM
	AC97
	JTAG
	USB Slave
	Bluetooth
	Infrared
	USB Host
	Ethernet
	Servos
	Motors
	Encoders
	PSDs
	Top board
	Power supply
	Power control
	Power switch


	Software Design
	Drivers
	Ethernet
	USB 2.0 Host
	FPGA
	Power Switch

	Boot time

	Design Evaluation
	Signal Integrity
	CPU data bus
	CPU bus control lines
	SRAM interface

	I/O Bandwidth
	Power Consumption
	Stereo Vision
	Optimising image processing functions on the PXA255

	Conclusion
	Future Work

	Board Detail
	Power Control Signals
	Top view
	Jumpers
	Top board connector pinout

	Bottom view
	Connectors


	Assembly Listings for Section 5.5
	libM6
	References

