
The University of Western Australia

Faculty of Engineering, Computing and Mathematics

School of Electrical, Electronic and Computer Engineering

Centre for Intelligent Information Processing Systems

Technische Universität Ilmenau

Fakultät für Informatik und Automatisierung

Institut für Theoretische und Technische Informatik

Fachgebiet Neroinformatik und Kognitive Robotik

Comparison of Stereo Matching
Algorithms for Mobile Robots

by Annika Kuhl

October 2004 - February 2005

1 Abstract

For navigation and obstacle avoidance in the field of mobile robots, percep-

tion and identification of the surrounding environment is necessary. Depth

maps therefore provide an essential description of the world seen through

cameras.

This thesis will investigate with different types of stereo matching algo-

rithms for calculating depth maps. The task is to build and to implement a

system for generating depth maps on a mobile robot.

Many stereo algorithms make use of the epipolar constraint, meaning

that for a pixel in the left image the corresponding point in the right image

lies on the same horizontal line, the epipolar line. This strong constraint

is used to reduce the search space of the correspondence algorithms that

calculates depth maps.

To make use of the epipolar constraint the camera system needs to be

calibrated first, to get the intrinsic and extrinsic camera parameters, in

order to rectify images according to these parameters. The first chapters

therefore deal with the necessary pre-processing steps to calibrate cameras

and to rectify images.

2

Contents

1 Abstract 2

2 System Overview 4

2.1 Correspondence Analysis . 5

2.2 Epipolar Geometry . 7

3 Image Preprocessing 9

3.1 The Pinhole Camera Model 9

3.2 Camera Parameters . 10

3.3 Camera Calibration using CamChecker 12

3.4 Epipolar Constraint . 13

3.5 Camera Calibration á la Bouguet 14

3.6 Image Rectification . 16

4 Implemented Stereo Matching Algorithms 18

4.1 Software Architecture . 19

4.2 Census . 19

4.3 Census Modification . 21

4.4 Sum of Absolute Differences 22

4.5 Sum of Squared Differences 23

4.6 Comparison and Conclusion 24

5 Algorithm Improvements 25

5.1 Reduction of Search Area . 25

5.2 Uniqueness Constraint . 26

5.3 Clustering . 27

6 Robot Experiments 28

6.1 The Hummer Robot . 28

6.2 Robot Software . 29

6.3 Implemented Area Based Algorithm 30

6.4 Conclusion . 30

References 31

3

2 System Overview

Figure 1: System overview

The system for calculating depth maps starts with grabbing the images.

Two USB web cameras on top of the robot view the scene from a left and

right point of view.

Due to lens distortion and camera displacements the next step is to

rectify the images (see chapter 3.6) in order to make use of the epipolar

constraint as described in chapter 2.2. Therefore both cameras need to be

calibrated first to get the camera parameters that are explained in section

3.2. The Bouguet method, implemented in Matlab, is used for calibration

(see section 3.5).

The knowledge of the camera parameters is used to rectify both im-

ages. After rectification several stereo matching algorithms will calculate

the depth map of the surrounding scene. The algorithms implemented and

tested in this thesis are Sum of Absolute Differences, Sum of Squared Dif-

ferences and Census. The results are shown in section 4.

The final step is to cluster the resulting depth map. This is described in

section 5.3.

After implementing the three above mentioned algorithms on a PC the

best was chosen to be implemented on the robot. A discussion of these

results and a comparison to a feature based algorithm that came with the

robot can be found in chapter 6.

4

2.1 Correspondence Analysis

Correspondence analysis tries to solve the problem of finding which pixels

or objects in one image correspond to a pixels or objects in the other. This

is known as the Correspondence Problem. The algorithms can roughly be

divided into feature based and area based, also known as region based or

intensity based.

Area based algorithms solve the correspondence problem for every single

pixel in the image. Therefore they take colour values and / or intensities

into account as well as a certain pixel neighbourhood. A block consisting

of the middle pixel and its surrounding neighbours will then be matched to

the best corresponding block in the second image.

These algorithms result in dense depth maps as the depth is known for

each pixel. But selecting the right block size is difficult because a small

neighbourhood will lead to less correct maps but short run times whereas a

large neighbourhood leads to more exact maps at the expense of long run

times.

Typical algorithms are Marr and Poggio (1979), Grimson (1981) or the al-

gorithm of Ohta and Kanade (1985) which uses dynamic programming.

Feature based correspondence algorithms on the other hand extract fea-

tures first and then try to detect these features in the second image. These

features should be unique within the images, like edges, corners, geometric

figures, hole objects or part of objects.

The resulting maps will be less detailed as the depth is not calculated for

every pixel. But since it is much more unlikely to match a feature incorrectly

because of its detailed description, feature based algorithms are less error

sensitive and result in very exact depth maps.

A typical algorithm is described by Okutomi and Kanade (1992).

Besides the major correspondence algorithms, area based and feature

based, there are also phase based algorithms that transform the images using

FFT (fast fourier transformation) first. The depth is therefore proportional

to the phase displacement. Wavelet based algorithms are a subcategory of

phase based algorithms and use a wavelet transformation first.

5

There are a number of problems all correspondence analysis algorithms

have to deal with. An object seen by one of the cameras could be occluded

when seen by the other camera that has a slightly different point of view.

This object will cause wrong correspondences when trying to match images.

The cameras itself my cause distorted images due to lens distortion which

will lead to wrong correspondences especially in the outer regions of the

image.

Some more problems are caused by the objects themselves. Having lots

of small objects that look alike or having a special pattern that iterates quite

often makes it hard to find the matching object as there is more than one

possible match. This is known as the aperture problem.

Another big problem is homogeneity. Big homogeneous regions are dif-

ficult to match when seen through a small window only. The same textures

on different positions in the image will cause similar problems.

There are a number of constraints that ease the corresponding problem

and improve the results. According to [9] these are:

• Similarity constraint : the matching pixel / feature must have similar

intensities / attribute values

• Uniqueness constraint : a given pixel / feature can match no more than

one pixel / feature

• Continuity constraint : disparity should vary smoothly over the image

• Ordering constraint : if pixel / feature a is left to b the matching pixel

/ feature a’ needs to be left to b’

Another possibility to improve these correspondence algorithms are some

pre-processing steps like the pre-reduction of noise with a low-pass filter, the

adjustment of different illuminations or a white balance of each camera. But

the most effective pre-processing step is the calibration of the cameras and

the use of the epipolar constraint which will be described throughout the

next chapters.

6

Figure 2: General epipolar geometry

2.2 Epipolar Geometry

With two cameras arranged arbitrarily, the general epipolar geometry is

shown in figure 2. The relative position of both cameras is known and

C1 and C2 point out the optical centres of each camera. The straight line

connecting both optical centres is called baseline.

Each point M observed by the two cameras at the same time along with

the two corresponding light rays through the optical centres C1 and C2 form

an epipolar plane.

The epipole e is the intersection of the baseline with the image plane. The

epipolar line is therefore defined as a straight line g through e and m that

is the intersection of the line through M and the optical centre with the

respective image plane.

The point M in figure 2 is projected as m1 in the left image plane. The cor-

responding point in the right image therefore lies on the previous described

epipolar line g. This reduces the search space from two dimensional, which

would be the whole image, to one dimensional, a straight line only.

A simplification of the general epipolar geometry is shown in figure 3.

Both cameras are arranged in parallel, their focal length is identical and

the two retinal planes are the same. Assuming these conditions all epipolar

lines are horizontal within the retinal planes and the projected images m1

and m2 of a point M will have the same vertical coordinate. Therefore the

7

Figure 3: Stereo epipolar geometry

corresponding point of m1 lies on the same horizontal line in the right image.

Figure 4: Disparity

According to the stereo epipolar geometry the disparity as seen in figure 4

is defined as D = c2−c1. The depth d therefore is calculated by triangulation

d = b
f

D
(1)

where b is the distance of the two optical centres and f is the focal length.

A disparity of zero indicates that the depth of the appropriate point equals

8

infinity.

In order to assure the stereo epipolar geometry the rectification of both

images is necessary. Therefore both cameras need to be calibrated first

in order to get the camera parameters that are needed for the rectification.

The next section will deal with the problem of camera calibration and image

rectification.

3 Image Preprocessing

Image pre-processing is an essential step to simplify the correspondence

problem. As mentioned in section 2.1 the reduction of noise or a white

balance of each camera are possibilities therefore.

The stereo epipolar geometry as described in section 2.2 is a strong con-

straint to reduce the search area from two dimensional to a one dimensional

horizontal line. This chapter will deal with the problem of calibrating cam-

eras and rectifying images to assure this constraint.

3.1 The Pinhole Camera Model

Every camera maps the points of the three dimensional environment to a two

dimensional image. The simplest camera model that models this mapping

is the pinhole camera model.

Figure 5: The pinhole camera model

As shown in figure 5 the pinhole camera model consists of two screens.

9

R is The retinal plane where the two dimensional image is formed, F is the

focal plane with the optical centre C in the middle. Both planes are parallel

at a certain distance f which is the focal length.

The straight line going through a point M of the three dimensional world

and C is called the optical axis. Via perspective projection this point M is

mapped onto the two dimensional image.

Points on the focal plane have no image on the retinal plane as there is no

intersection of the optical axis as it is parallel to the retinal plane.

3.2 Camera Parameters

In order to transform a point of the three dimensional world into a two di-

mensional point of the image the knowledge of special camera parameters

is necessary. There are two kinds of camera parameters. The intrinsic or

internal parameters that describe the internal geometric and optical char-

acteristics of the camera, and the extrinsic or external parameters defining

the position and orientation of the camera in a world reference system.

Figure 6: Intrinsic and extrinsic parameters

As seen in figure 6 the system for modelling two or more cameras consists

of three different coordinate systems, the world reference frame (xw, yw, zw),

the camera frame (x, y, z) with the optical centre as origin and the image

frame (u, v).

A three dimensional point given in homogeneous world coordinates can be

converted into the camera frame by a rotation rij and a translation tj which

10

is expressed by the extrinsic parameters Te.

x

y

z

 = Te

xw

yw

zw

1

 , Te =

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 (2)

Then this point is converted to the two dimensional image plane using the

intrinsic parameters. These are in particular the focal length f, the principle

point (u0, v0), which is the centre of the image plane, and (k0, k1) the pixel

size in mm or α = f/k0 and β = f/k1 respectively. The transformation

using the intrinsic parameters is as follows:

u

v

s

 = Ti

x

y

z

 , Ti =

α 0 u0

0 β v0

0 0 1

 (3)

Since (u, v, s) is homogeneous, all three numbers are divided by s in

order to get pixel coordinates u’ and v’.

Points on the focal plane, where z = 0 and s = 0 respectively, can not

be transformed to image plane coordinates as division by zero is not defined

and the straight line going through this point and the optical centre does

not intersect with the image plane as it is parallel to the image plane.

In summary, a point given in world coordinates is transformed onto a

two dimensional image plane using the following equation:

u

v

s

 = TiTe

xw

yw

zw

1

 (4)

The knowledge of the intrinsic and extrinsic camera parameters allows

for the rectification of images and ensures the epipolar constraint. The

calculation of these parameters is the aim of the camera calibration and will

be discussed within the next chapters.

11

3.3 Camera Calibration using CamChecker

CamChecker [7] is a free camera calibration tool that calculates the intrin-

sic parameters of a camera. It is based upon the work of Zhang [11] and

therefore works with a chessboard as calibration pattern. It uses the camera

model defined by Zhang, which is an extension of the simple pinhole camera

model described in section 3.1. However, it also takes lens distortion into

account, which makes image undistortion more accurate.

For camera calibration at least 5, and up to 20, pictures of the chessboard

need to be taken. The software then extracts the corners of the board

automatically by thresholding the images to black and white. According to

[7] the intrinsic parameters are then calculated using Zhang’s approach as

follows

1. Finding a closed-solution homography for each image

2. Using these to find a closed solution for the intrinsics/extrinsics

3. Optimizing these intrinsics/extrinsics with Levenberg-Marquardt rou-

tines found in the GNU Scientific Library

This tool can be downloaded as win32 executable or as source code for Visual

Studio 6 and 7. I also adapted the code to compile it under Suse Linux.

Figure 7: CamChecker software that calculates the intrinsic parameters

After calculating the intrinsic parameters for each camera the images

can now be undistorted. For this a helpful little program from the Hugin

12

[2] project of Pablo d’Angelo is used. The code file zhang undistort.cpp

takes all the intrinsic parameters calculated by CamChecker and undistorts

a given image according to Zhang’s model.

Using these programs each camera can be calibrated independently. But

to assure the epipolar constraint with aligning horizontal image lines the two

cameras need to be calibrated together. Therefore the camera calibration is

done by using the Matlab implementation of Bouguet’s calibration algorithm

(see section 3.5).

3.4 Epipolar Constraint

Knowing the intrinsic and extrinsic parameters of each camera separately is

sufficient to undistort the appropriate images but it is not sufficient to assure

the epipolar constraint. The epipolar constraint ensures that the epipolar

lines coincide with the horizontal scan lines, and therefore corresponding

points in both images are only horizontally shifted, which reduces the search

space from three dimensional to two dimensional.

Given the two cameras, every point w = [xw yw zw 1]T of the world

reference frame can be projected to the appropriate image frame (m1 and

m2) using the linear transformation matrix P = Ti Te as known from section

3.2 as follows

m1 = P1 w, m2 = P2 w (5)

In order to rectify the images according to the epipolar constraint these

projection matrices P1 and P2 have to be adapted following special condi-

tions that are:

• both camera systems need to have equal focal length

• both camera systems need to have the same focal plane

• the optical centres need to kept constant

• correspondence of the vertical coordinate of each point in the left and

the right image

Using these and further conditions P1 and P2 can be calculated and the

taken images can be transformed according to the epipolar constraint.

13

A further and more detailed description may be found in the appendix

of the thesis of Nico Kämpfchen [5].

3.5 Camera Calibration á la Bouguet

Camera calibration is an essential preliminary step of calculating depth

maps. According to the chosen camera model the intrinsic and extrinsic cam-

era parameters as described in 3.2 need to be acquired. Jean-Yves Bouguet’s

developed a camera model that is based on the Tsai / Lenz camera model

and extends it.

The Tsai / Lenz camera model improves the simple pinhole model that

is described in 3.1. It is more suitable for precise tasks as it takes circu-

lar distortion caused by the lens system into account. Points of the world

reference frame are transformed to the image frame using the extrinsic and

intrinsic parameters from equation 2 and 3.

u

v

s

 =

α 0 u0

0 β v0

0 0 1

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

xw

yw

zw

1

 (6)

In order to get pixel coordinates u’ and v’, u and v are divided by s.

Then the radial distortion first and second order (κ0, κ1) are taken into

account by

d1 =
(

u − u0

α

)2

+
(

v − v0

β

)2

(7)

d2 = d2
1 (8)

uundistorted = u′ + (u′ − u0)(κ0d1 + κ1d2) (9)

vundistorted = v′ + (v′ − v0)(κ0d1 + κ1d2) (10)

The camera model of Bouguet [3] extends the Tsai / Lenz model and is

inspired by Heikkilä and Silvén [4]. It accounts for radial distortion first,

second and third order, tangential asymmetric distortion, skew and affinity,

14

which makes image rectification much more precise. The intrinsic parame-

ters are therefore extended by the parameters for the lens distortion.

To obtain both intrinsic and extrinsic parameters of the camera system

Bouguet adapted the method of Zhang [11] that uses a chess board as cali-

bration pattern. According to Zhang the process of camera calibration can

be divided into three steps:

1. Image acquisition

2. Extraction of the chess board corners in each image

3. Computing the intrinsic and external parameters

For image acquisition the two cameras on top of the robot are used to

grab several pictures of a chess board from different distances and angels

simultaneously (see figure 8).

Figure 8: Images taken from the chess board

The extraction of the chess board corners needs to be done manually

within the Matlab implementation of Bouguet’s calibration algorithm [3].

After that the computing of the intrinsic and extrinsic parameters is done

15

automatically. First every camera is calibrated separately before the global

extrinsic parameters are calculated.

Figure 9: Extrinsic parameters

Figure 9 shows the extrinsic parameters of the camera system and the

position of the 30 chess boards in front of the cameras within the pictures

seen in figure 8. The world coordinates of the chess board corners relative

to each camera are known and the position of the right camera with respect

to the left camera is calculated.

3.6 Image Rectification

Image rectification is the undistortion according to the calibration parame-

ters calculated in the camera calibration step in section 3.5.

After all intrinsic and extrinsic camera parameters are calculated they

can be used to rectify images according to the epipolar constraint. There-

fore Bouguet’s algorithm pre-computes the necessary indices and blending

coefficients to enable a quick rectification afterwards. The images are then

rectified by:

Inew(x0, y0) = a1Iold(x1, y1) + a2Iold(x2, y2) + a3Iold(x3, y3) + a4Iold(x4, y4)

(11)

16

with Inew and Iold as the original and the rectified image and the blending

coefficients ai separate for each camera.

After pre-computing, the parameters xi, yi and aj are then saved to

a text file. To be independent from Matlab these parameter files, one for

each camera, are reloaded using C++ or any other programming language.

Once reloaded, these parameters are used according to equation 11 to rectify

images quick and easy.

Figure 10: Left and right image before (upper) and after (lower) image

rectification

Figure 10 shows the images taken by the left and right camera before and

after the rectification. The upper images show a great vertical displacement

indicate by the chessboard due to the camera mounting system.

After calculating the intrinsic and extrinsic parameters both stereo im-

ages need to be rectified according to these parameters. This way both

images fulfil the epipolar constraint, meaning that the corresponding pixels

lie on the same horizontal line in both images.

The result of this rectification process is shown in the lower two images.

The vertical displacement vanished and every chessboard square has the

17

same hight in both images. Drawing a straight horizontal line through both

images every pixel in the left image on that line will have its corresponding

pixel of the right image on that same line.

The image rectification causes a reduction of the image size. The left

image is shifted downwards and the right image is shifted upwards due to

the mentioned displacement. Therefore the image size is reduced from 320

by 240 to about 320 by 185 as the upper and lower strip will be cut off in

both images.

4 Implemented Stereo Matching Algorithms

This section describes the implementation and results of the following stereo

matching algorithms using the epipolar constraint:

• Census

• Census Modification

• Sum of Absolute Differences

• Sum of Squared Differences

Subsection 4.6 comprises a comparison of all these algorithms concerning

runtime and depth map quality. The best one is chosen for some improve-

ments in section 5.

Figure 11: Test image Tsukuba (left) and groundtruth (right)

In order to compare the results of the different stereo matching algo-

rithms one fixed test image is chosen. Throughout this section the image

Tsukuba and its ground truth is used to allow a true comparison between

the different algorithms.

18

4.1 Software Architecture

Figure 12: Simplified UML class diagram of the software architecture

In order to make software programming easier the class diagram in figure

12 is designed before implementation. The class Images is used to handle

all functions to open and save images and files. After reading in the left and

the right image and the parameter files, respectively, the function rectify

will undistort and rectify both images.

For loading and saving files and image processing the computer vision

library VIGRA - Vision with Generic Algorithms [6] is used. It provides

functions and data structures to access and handle images easily and to

adopt own algorithms.

All algorithms in this chapter are run on a Pentium M (Centrino) laptop

with 1500 MHz and 512 MB RAM running Windows XP.

4.2 Census

Census is an area-based correspondence algorithm described by Zabih and

Woodfill [10]. The algorithm computes the displacement in two steps. First

the so called Census Transform is defined for each pixel in both images.

It describes the relationship between that pixel and its surrounding neigh-

bourhood. Neighbour pixels with an intensity smaller than the centre pixel

19

result in zero in the Census Vector and one otherwise (see figure 13).

Figure 13: Census vector

The second step computes the displacement by summing up the Ham-

ming distances of a small window in the left and in the right image. The

minimum for each horizontal line defines the displacement.

The algorithm is implemented in C++ and tested on the Tsukuba picture

in figure 11. The results are shown in table 1 where CT-Window is the size of

the window used to generate the Census Vector and Window is the window

size for computing the pixel displacements.

Figure 14: Depth map of the Census algorithm with CT-Window and Win-

dow of 3x3 (left), 5x5 (center) and 7x7 (right)

20

Resolution CT-Window Window Time in sec.

384 x 288 3x3 3x3 82

384 x 288 3x3 5x5 205

384 x 288 3x3 7x7 390

384 x 288 5x5 3x3 177

384 x 288 5x5 5x5 468

384 x 288 5x5 7x7 879

384 x 288 7x7 3x3 301

384 x 288 7x7 5x5 903

384 x 288 7x7 7x7 1702

192 x 144 3x3 3x3 10

192 x 144 3x3 5x5 24

192 x 144 3x3 7x7 69

192 x 144 5x5 3x3 20

192 x 144 5x5 5x5 53

192 x 144 5x5 7x7 78

Table 1: Results of the Census implementation

4.3 Census Modification

In order to improve the runtime of the Census algorithm a modification is

implemented. Therefore the window size that defines the Census Vector is

increased. This vector contains the information of all surrounding pixels

which should be sufficient to compute the best matching pixel in the right

image without an extra second window. The corresponding pixel in the right

image is now defined as the minimum of the Hamming distance of a single

pixel at the epipolar line.

This modification of the Census algorithm is much faster, but the result-

ing depth maps are reduced in quality as show in figure 15.

The poor quality is due to the reduced intensity information. Instead

of the exact intensity values the algorithm gets binary information only -

zero if the intensity is smaller than in the centre and one otherwise. This

information is insufficient to compute proper depth maps.

21

Figure 15: Depth map of the modified Census algorithm with CT-Window

of 13x13 (left), 15x15 (center) and 17x17 (right)

4.4 Sum of Absolute Differences

The SAD algorithm is also an area-based correspondence algorithm. It

computes the intensity differences for each center pixel (i, j) in a window vx

by vy as follows

SADv(x, y) =
∑

j

∑
i ||gt(x + i, y + j) − gt−1(x + vx + i, y + vy + j)||

It sums up the intensities of all surrounding pixels in the neighbourhood

for each pixel in the left image. The absolute difference between this sum and

the sum of the pixel, and its surrounding, in the right image is calculated.

The minimum over the row in the right image is chosen to be the best

matching pixel. The disparity then is calculated as the actual horizontal

pixel difference.

Figure 16: Depth maps of the SAD implementation with window sizes of

5x5(left), 7x7(centre) and 9x9(right)

22

Resolution Window Time in sec.

384 x 288 3x3 53

384 x 288 5x5 66

384 x 288 7x7 83

384 x 288 9x9 108

192 x 144 3x3 7

192 x 144 5x5 8

192 x 144 7x7 10

192 x 144 9x9 13

Table 2: Results of the SAD implementation

This implementation of the SAD algorithm results in proper depth maps

as seen in figure 16. The bigger the window the better the depth map as

there is a greater neighbourhood to ensure finding the correct corresponding

pixel. But the bigger the window the slower is the algorithm, as shown in

table 2. Depending on the application a compromise between runtime and

quality needs to be chosen.

4.5 Sum of Squared Differences

The area-based SSD algorithm is similar to the previously described SAD.

Instead of computing the absolute value, SSD squares the intensity differ-

ences as follows

SSDv(x, y) =
∑

j

∑
i(gt(x + i, y + j) − gt−1(x + vx + i, y + vy + j))2

The runtime of the SSD algorithm is nearly double that of the SAD.

This is due to the much slower square calculation. The computer-internal

implementation of the square operation is a multiplication which takes much

more time than the simple comparison needed to calculate the absolute

value.

The resulting depth maps in figure 17 are quite similar to those of the

SAD algorithm.

23

Resolution Window Time in sec.

384 x 288 3x3 148

384 x 288 5x5 322

384 x 288 7x7 580

384 x 288 9x9 915

192 x 144 3x3 18

192 x 144 5x5 39

192 x 144 7x7 69

192 x 144 9x9 107

Table 3: Results of the SSD implementation

Figure 17: Depth maps of the SSD implementation with window sizes of

5x5(left), 7x7(center) and 9x9(right)

4.6 Comparison and Conclusion

The best depth map of each of the implemented algorithms (Census, SAD

and SSD) is shown in figure 18. It is easy to see that the implementation

of the SSD and SAD results in much better depth maps than the Census

algorithm.

A comparison of the runtime between SAD and SSD (see tables 2 and

3) leads to the selection of the SAD algorithm for further improvements,

because the SSD algorithm needs nearly twice the time.

24

Figure 18: Comparison of the depth maps of Census (left), SSD (center)

and SAD (right)

5 Algorithm Improvements

After choosing the best area based algorithm some improvements will be

tested to achieve an even better performance and quality.

5.1 Reduction of Search Area

In order to improve the runtime of the algorithm a reduction of the search

area is implemented. The search area is reduced to a ratio of the whole

epipolar line.

Resolution Ratio Time in sec. Resolution Ratio Time in sec.

384 x 288 1 108 192 x 144 1 10

384 x 288 2/3 83 192 x 144 2/3 10

384 x 288 2/4 74 192 x 144 2/4 9

384 x 288 2/5 66 192 x 144 2/5 8

384 x 288 2/6 62 192 x 144 2/6 8

384 x 288 2/7 59 192 x 144 2/7 7

384 x 288 2/8 55 192 x 144 2/8 7

384 x 288 2/9 54 192 x 144 2/9 7

384 x 288 2/10 52 192 x 144 2/10 6

Table 4: Different ratios of the searching line with a constant window size

of 9x9

The resulting improvement in time is shown in table 4. Depending on

25

the maximum possible displacement in an image the Ratio could be reduced

to 2/10 of the whole width.

Figure 19: Different ratios of 2/3 (left), 2/6 (centre) and 2/10 (right)

The reduction of the search area also leads to an improvement of the

resulting depth maps as shown in figure 19. The error rate is much smaller

due to the elimination of impossible false out of range areas a priori.

5.2 Uniqueness Constraint

The uniqueness constraint validates the correctness of the corresponding

pixel. It therefore again executes the stereo algorithm on the matching

pixel found in the right image again in order to find the first pixel again.

This algorithm first searches, for each pixel in the left image, for the most

similar one in the right image at the same epipolar line. After a winner is

found the uniqueness is validated by applying the algorithm vice versa. It

searches for the best matching pixel in the left image. If the position of the

best matching pixel in the right image does not differ to that found again

in the left image the calculated depth is valid. Otherwise the depth value is

set to zero indicating invalid depths.

As seen in the chart in figure 20 the run times for the SAD algorithm

applying the uniqueness constraint are more than doubled compared to SAD

without uniqueness constraint. This is due to the second search along the

epipolar line in the left image to validate the corresponding pixel that was

found.

The uniqueness constraint leads to an improvement of the resulting depth

maps as seen in figure 21. Much more false depth values can be filtered out

and set to zero. This case leads to a sparse depth map due to invalid values.

26

Figure 20: Comparison of SAD with and without uniqueness constraint

Figure 21: Comparison of SAD without uniqueness constraint (left) and

with (right) both with a window size of 9x9 and search line ratio of 2/8

5.3 Clustering

Clustering is the last step according to the system overview in section 2. It

simplifies the depth map by merging all depth steps to a certain number of

depth cluster.

While calculating the depth map the maximal (max) and minimal (min)

depths are memorised. After choosing the number of clusters they are cal-

culated by

cluster(i) = floor

(
(i − min) numCluster

max − min

)
+ 1 (12)

27

where i is the current depth, numCluster is the number of clusters and

cluster(i) is the resulting new cluster.

Clustering is just a convenient addition to find obstacles much quicker

and to simplify the depth map. It takes a loop over the whole image or ...

seconds to calculate the clusters.

6 Robot Experiments

This section will deal with the actual implementation on a mobile robot.

The algorithm chosen in section 4 is adapted to fit into the software already

installed on the robot (see section 6.2). The mobile robot itself is described

in detail in section 6.1. Finally some experiments are conducted to compare

the feature based approach that was already implemented on the robot with

this area based solution.

6.1 The Hummer Robot

The mobile robot was build by Jacky Baltes at the University of Manitoba

in Canada [1]. It is an extended remote controlled Hummer H2 toy car.

Figure 22: The Hummer robot

A VIA Epia Mini-ITX motherboard at 533MHz is build in under the

roof of the car. Instead of a hard drive there is a CompactFlash card reader

28

with a 256MB flash card accessible through the hatchback of the car. Due

to the reduced drive space a mini version of the Debian Linux distribution

was developed. A wireless USB device on top of the roof allows connecting

to the robot via Laptop or PC. The vision hardware consists of two USB

Intel Me2Cam cameras as there is a Linux driver support for the OV511+

chipset used in these cameras. They capture colour images of 320 by 240

pixel. The cameras are mounted on a servo motor that allows them to pan

up to forty-five degrees in either direction. The stereo rig had to be improved

to fulfil the requirements of the camera calibration. The original mounting

was much too lose and the cameras changed their position to each other

while panning or driving. The new rig fixes the cameras so the rectification

is always valid once the cameras have been calibrated.

The remote control of the robot has been adapted and connected to

the embedded motherboard. The robot can now be steered by any joystick

plugged into a computer that is wirelessly connected to the robot.

6.2 Robot Software

The software that came with the robot is a feature based approach as de-

scribed in [8]. In order to calculate the depth of the surrounding objects the

algorithm performs 5 steps:

1. Colour Correction

2. Image Blur

3. Edge Detection

4. Region Extraction

5. Stereo Matching

The colour correction is necessary to correct possible imbalances in the

colour response. Finding corresponding pixels / features is much more ac-

curate on images with identical brightness, saturation et cetera.

The next step is to blur the images in order to smoothen it for the edge

detection. Small inconsistencies caused by low quality cameras, textured

29

surface or noise in general may interfere with the finding of edges. Simple

blurring is done by adapting the centre pixel to the average colour of the

neighbour pixels but will be improved by a Gaussian blur in further versions.

Finding edges and boundaries is an important step for the purpose of

feature extraction. Therefore a Sobel filter is chosen for its simplicity and

robustness.

The last pre-processing step is the extraction of features. Therefore a

region growing method is implemented that starts with finding non-edge

pixels as starting points. Pixels are then added to regions according to their

colour match. Once all pixels are part of a region, small regions are rejected,

these objects are defined by their size, mean value colour, centroid, bounding

box and region pixel map. These attributes are used by the stereo matching

to find corresponding regions.

The stereo matching algorithm starts by superimposing two regions, one

from each image, to calculate the union size which is the number of common

pixels. The region with the strongest match and a certain percentage of pixel

overlap will be considered as the corresponding region.

The whole matching algorithm works with uncalibrated cameras. There-

fore an accurate depth calculation is impossible.

6.3 Implemented Area Based Algorithm

The last step is to implement the chosen area based stereo matching algo-

rithm SAD from section 4.6. The existing framework is extended

6.4 Conclusion

30

References

[1] J. Baltes. http://www.cs.umanitoba.ca/˜jacky.

[2] P. d’Angelo. http://hugin.sourceforge.net/. 2004.

[3] J.-Y. B. C. C. T. for Matlab. http://www.vision.caltech.edu/bouguetj/calib doc/index.html.

2004.

[4] J. Heikkilä and O. Silvén. A four-step camera calibration procedure with

implicit image correction. CVPR, 1997.

[5] N. Kämpfchen. Modelbasierte lagebestimmung von objekten in stereobildse-

quenzen. Diplomarbeit, 2001.

[6] U. Köthe. http://kogs-www.informatik.uni-hamburg.de/˜koethe/vigra/. Uni-

versity of Hamburg, Germany, 2004.

[7] M. Loper. http://loper.org/˜matt/camchecker/camchecker docs/html/index.html.

[8] B. McKinnon and J. Baltes. Practical region-based matching for stereo vision.

In R. Klette and J. D. Zunic, editors, IWCIA, volume 3322 of Lecture Notes

in Computer Science, pages 726–738. Springer, 2004.

[9] Science and engineering at the University of Edinburgh.

http://homepages.inf.ed.ac.uk/rbf/cvonline/local copies/owens/lect11/.

[10] R. Zabih and J. Woodfill. Non-parametric local transforms for computing vi-

sual correspondence. Third European Conference on Computer Vision, Stock-

holm, Sweden, May 1994.

[11] Z. Zhang. A flexible new technique for camera calibration. EEE Transactions

on Pattern Analysis and Machine Intelligence, 2000.

31

