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Abstract

Stereovision is an active research domain: many different solutions to the match-

ing problem have been proposed. This study’s scope was binocular stereo, dense

matching and algorithms suitable for efficient hardware implementation. Post-

processing was not included to keep the comparisons to the core of the algorithms.

Performance of Census, Pixel-to-Pixel and three correlations - normalised square

of difference (C1), normalised multiplicative (C2) and sum of absolute differences

(SAD) - was measured using ground truth maps. Although Census performed worst,

it was a good hardware implementation candidate. Therefore two variants were

evaluated: weighting the transform costs by their distance to the centre did not

have significant effect, but modifying the bit patterns showed improvements up to

17%.

Noise robustness is vital for stereovision systems. Using a noiseless ray-traced

image corrupted with Gaussian noise, Pixel-to-Pixel clearly outperformed the other

algorithms, up to a SNR of 15dB and was stable up to 33dB.

Two transforms using colour information showed no improvements, emphasizing

the strong correlation between colour and intensity values. Both this study and

literature showed that colour does not consistently improve matching quality.

Increasing the baseline increases the depth accuracy but also occlusions and the

difference in numbers of pixels in subtended surfaces; the Lambertian surfaces as-

sumption also becomes harder to justify. As the baseline increased from 0.1mto0.9m,

good matches dropped from 70% to ∼ 25% and standard deviation increased from

0.5 to ∼ 18.

A shell was measured both under ambient light and using active colour illumi-

nation. The latter consistently improved matching with no increase in computation

complexity.

An aerial set with both laser range scanner and manual entry disparity maps

was provided by the French National Geographic Institute. Using the manual map

as the ground truth, SAD showed 20% good matches (σ = 16) vs. 38% (σ = 6) for

laser range scanning.
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Chapter 1

General Introduction

Stereovision is the use of two images - taken with two cameras or a single camera

translated by a known distance - of the same scene to compute its depth information.

The main task of stereovision algorithms is matching an object’s position in one

image with the same object’s position in the second image to compute its depth by

triangulation.

Lane and Thacker surveyed a dozen stereo vision algorithms from 1973 up to

1992 [40]. They split the algorithms into:

• area-based : producing dense depth maps i.e. every single pixel in the image

has a computed depth, and

• feature-based : producing sparse depth maps i.e. only pre-processed pixels

(edges for instance) are matched and other pixels are interpolated if needed.

Unfortunately Lane and Thacker’s survey only described the different algorithms

and did not produce any comparisons between them. This study was motivated

by a desire to produce a real-time stereo vision system in hardware and thus an

expectation that the literature would provide guidance as to the most efficient and

best performing algorithms rather than just a menu from which a random choice

must be made. Metrics to compare algorithm performance are clearly needed in this

domain where a large number of approaches have been proposed but not carefully

compared: the metrics used in this study are described in section 3.4.

In 1993, Koschan in [41] was mentioning the existence of more than 150 algo-

rithms and underlining the lack of any form of comparison or framework for com-

paring these algorithms.

After this study had commenced, the large study by Scharstein and Szeliski [42]

and [43], (improving the previous [44]) appeared: they compared several algorithms

3



accuracies on several sets with known ground truth. However, additional metrics

were used here and several different experiments - for instance this study’s robust-

ness to noise experiment (see chapter 7 and appendix D) - have been carried out,

complementing their study. The algorithms used in this study are discussed in

section 3.2.

Stereo vision has a wide range of possible applications which can be classified

into:

• static scene description where accuracy is the most important consideration

and the processing time is not critical. Situations needing precise 3D measures

with the possibility of setting a practical device up to take stereo pairs of a

scene and reconstruct them afterwards, for instance for:

– cartography,

– dimensions of an object measurements in situations where access to the

objects is constrained so that conventional tools (rules, calipers,...) are

not useable,

– crime scene reconstruction for the police, where the position of all items

would be easily accessible through the 3D model,

– car crashes scene reconstruction, would give the final position of all ob-

jects and could be used as a backward condition to a 3D model to analyse

the crash parameters like speed and trajectory,

– architects, where panoramic pictures enable the 3D reconstruction of the

scene and work with 3D models of the constructions,

– ...

• dynamic scene description where real-time processing is critical as well as a

satisfying an accuracy requirement. Possible situations are:

– obstacle avoidance, for instance cars detecting pedestrians and alerting

the driver or even applying the brakes automatically

– autonomous navigation, where the mobile object updates its internal map

while moving,

– automated security controls, e.g. an unmanned railway station - Gari-

botto et al. in [45] provide a detailed description of this application,

– height estimation, for instance for an autonomous helicopter - Corke [46],

– ...
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GENERAL INTRODUCTION

This study compares several algorithms on defined sets of stereo pairs1 using

consistent metrics, with the ultimate aim of guiding a hardware implementation.

Only area based algorithms have been studied because they involve fewer decisions

and thus they are better suited to pipelined hardware processing. In addition a par-

allel study of feature based algorithms was performed by Catherine Davey [47]. The

hardware and real-time orientation of this work had a considerable influence on the

algorithms chosen for evaluation, for example, graph cut described in section 3.2.4

was excluded, despite its good performances, because of its processing time. Al-

though the initial goal of this study was real-time applications, it discusses points

belonging to both the static and dynamic areas; the geometry and especially the

accuracy was formally analysed in order to provide a better understanding of the

experimental configurations. A series of experiments comparing existing algorithms

or modifications of them were conducted.

• Chapter 2 discusses the geometry for both parallel and verging (i.e. crossing)

camera axes. Use of a biprism is also discussed. It introduces a depth accuracy

measure and shows how to determine the camera configuration which obtains

the best depth accuracy.

• Chapter 3 describes the experimental environment: the different stereo algo-

rithms, an outline of the software written, metrics used and the stereo pairs

used.

• Chapter 4 describes procedures procedures to set up an experiment to achieve

the accuracies discussed in chapter 2.

• Chapter 5 describes the results of ’baseline’ experiments in which all the orig-

inal algorithms were run on the synthetic stereo pairs as well as those used by

Scharstein and Szeliski [43].

• Chapter 6 assesses two variants of the Census algorithm (which has consider-

able potential for efficient hardware implementation but relatively poor per-

formance) to determine whether it warranted further consideration.

• Chapter 7 evaluates the robustness of selected algorithms against increasing

levels of noise in the images.

• Chapter 8 evaluates the possible benefit of using the colour information.

1All the images used by Scharstein and Szeliski [43] were used in this study as well as some new
ones.
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• Chapter 9 evaluates the consequences of increasing the baseline in order to

achieve higher depth accuracy.

• Chapter 10 describes measurements of a fossil shell as an example of the ap-

plication of the theory described in chapter 2 and configuration procedures in

chapter 4.

• Chapter 11 describes experiments on an image pair taken with verging (i.e.

non-parallel) camera axes: all other experiments used configurations in which

the camera axes were parallel. It also compares the binocular stereo algorithms

of this study against a laser generated disparity map.

• Chapter 12, the final chapter - Conclusions - does exactly what its title sug-

gests...

• Appendix A gives a more detailed description of the software written for this

study.

• Appendix B reproduces de Corridor (one of the used stereo pair) ray-traced

scene description file.

• Appendix C and D contain the full versions of two papers based on the work

in this thesis and presented at conferences.
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Chapter 2

Stereo Geometry

2.1 Introduction

This chapter presents an overview of the geometry and configurations for stereovi-

sion. Firstly configurations in which the optical axes of the cameras are parallel are

discussed. This part starts by describing the camera parameters and geometry, then

introduces the depth accuracy measure for experiments setup and fully explains the

behaviour of this accuracy. In chapter 4 an experimental way of determining the

camera’s sensor pixel size is illustrated with two examples, followed by a description

of procedures for setting up a camera pair to achieve a target accuracy requirement.

Then, the case of non-parallel camera optical axes is discussed: one of the image

sets used as a test has this configuration (see ??). Finally the use of a biprism,

described by Lee et al.(see [1]), as a stereovision device is discussed.

Throughout this discussion, epipolar geometry is assumed: Zhu and Zhang pro-

vide an extensive discussion of this [48]. It is usual to consider the epipolar con-

straint : a point on one line in one image will be found on the same line in the

other image. This can easily be achieved by careful camera setup (see the practical

experiment for more details 4.4) or can be pre-processed by image rectification or

regularisation: for instance, Dr. Thomas Fischer’s rectification application (see [49])

is composed of the following steps:

• manual selection of a set of corresponding pixels in both images,

• computation of the fundamental matrix using an approximate linearised ap-

proach [50],

• refinement of the approximate matrix by using non-linear optimisation with

the Levenberg-Marquadt gradient-based algorithm and
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2.2. PARALLEL CAMERA AXES

• forming a rectified pair where each initial epipolar line becomes a horizontal

scan-line.

Definitions

The parallax is the apparent displacement, or difference of position, of an object,

as seen from two different stations, or points of view; the binocular parallax is the

apparent difference in position of an object as seen separately by one eye, and then

by the other, the head remaining unmoved.

In image processing, disparity has the same meaning as ‘binocular parallax’ and

is usually the difference of position in pixels of a point between the two views.

2.2 Parallel Camera Axes

2.2.1 Notations

Figure 2.1 illustrates the stereo configuration: two cameras have parallel optical

axes (OlO
′
l and OrO

′
r for the left and right cameras respectively, the camera’s optical

centres are Ol and Or and their projections on the object plane are O′
l and O′

r) set

apart by a distance b (the baseline). FoV is the Field of View for a single camera,

a is the object’s extent and CFoV 1 is the common field of view of the two cameras,

i.e. the binocularly visible points.

p is the physical width of one pixel on the camera’s sensor and n the number of

pixels on one scanline. If Dchip is the width of the active part of the camera’s sensor,

then:

p =
Dchip

n
(2.1)

Distances are denoted by D... and disparities using d.... Usually, the output of a

stereo algorithm is disparities in pixels, representing the distance between the pro-

jection of one point on one scanline on one image to the projection of the same point

on the same scanline in the second image. For equations homogeneity, disparities are

homogenous to distances. Using p, the physical width of one pixel, we may convert

easily between pixels and µm for instance.

Both cameras have the same parameters: ΘMAX , the half view angle of the

1Note that the common field of view and the object’s extent, a, can be related by a constant:

CFoV = ρ · a where ρ ≥ 1
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STEREO GEOMETRY

camera, and D1, the focal distance. Since most modern cameras have zoom lenses,

ΘMAX and D1 have to be determined for any configuration of the camera.

Note that precise geometric information is not usually available for the economic

digital cameras that should be able to be used. A procedure for determining the

actual geometry is outlined in section 4.4.

r

D

D

2

1

O Ol r

chipD

FoV

Θ Θ

P
ab b

O’l O’r

D2min

bpl p

Figure 2.1: Stereo camera configuration: two cameras are positioned with their
optical centres at Ol and Or separated by the baseline, b. The remaining symbols are
explained in the text.

2.2.2 Geometry Description

Camera characterisation

The size of the image plane Dchip, the focal distance D1 and ΘMAX are related (cf.

figure 2.1) by:

tan ΘMAX =
Dchip

2 ·D1

or D1 =
Dchip

2 · tan ΘMAX

(2.2)
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2.2. PARALLEL CAMERA AXES

The size of the object plane FoV , the distance to the object, D2, and ΘMAX are

related (cf. figure 2.1) by:

tan ΘMAX =
FoV

2 ·D2

or D2 =
FoV

2 · tan ΘMAX

(2.3)

Note that Dchip is a constant, so using the image plane as a reference, ΘMAX will

determine the position of the optical centre (focal distance) and the field of view at

distance D2.

Common Field of View

From figure 2.1 we easily find that:

FoV = CFoV + b

Replacing FoV in equation 2.3 leads to a relation between CFoV (the common

field of view of the two cameras, i.e. the size of the largest object that can be fully

imaged by both cameras at distance D2), the object’s distance D2 and the baseline

b:

FoV = 2 ·D2 · tan ΘMAX = CFoV + b

i.e.

CFoV = 2 ·D2 · tan ΘMAX − b (2.4)

Distance and Depth

In figure 2.1, P is seen by both cameras: its disparity is dP . The similar triangles

theorem (Thales) links the distances on the camera sensors (pl or pr) to the distances

O′
lP or O′

rP , D1 and D2, i.e.:

pl =
D1 ·O′

lP

D2

pr =
D1 ·O′

rP

D2

Note that, as already mentioned, pl and pr are usually given in pixel position

on the images but may be converted to a distance by multiplying by p, the physical

width of a pixel on the sensor.

The disparity dP of point P is defined as the difference in position on the left

10
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and the right images:

dP = pl − pr

=
D1

D2

· (O′
lP −O′

rP )

=
D1

D2

· (O′
lP + PO′

r)

=
D1

D2

· b

dP =
D1 · b
D2

(2.5)

If the object is placed at an infinite distance:

D2 →∞ ⇒ dp → 0 ∀ b 6= 0, D1 6= 0.

This shows that an object at infinity appears at the same place on both image

planes. Practically, the camera resolution (i.e. pixel width p) will fix the minimum

measurable disparity, i.e. the maximum depth.

On the other hand:

D2 → 0 ⇒ dp →∞ ∀ b 6= 0, D1 6= 0.

Figure 2.1 shows that D2 cannot reach 0 for a finite sensor width. Equation 2.4

is used to determine the smallest distance D2min for which a single point is imaged

by both cameras (i.e. CFoV = 0):

a = 0 = 2 ·D2min · tan ΘMAX − b

⇒ D2min =
b

2 · tan ΘMAX

replacing tan ΘMAX :

D2min =
b ·D1

n · p (2.6)

One can verify that the closest distance is obtained for the largest possible disparity.

Depth Accuracy

Let δD′
2 be the distance between a point at depth D2 and the point just in front

at depth D′
2. Similarly, let δD′′

2 be the distance between a point at depth D2 and

11
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the point just behind at depth D′′
2 , Figure 2.2 illustrates that second situation.

Assuming that the smallest measurable difference is p, the width of one pixel, leads

to d′2 = d2 + p and d′′2 = d2 − p. Then using equation 2.5 to replace d2 by D2 gives:

δD′
2 = D2 −D′

2 δD′′
2 = D′′

2 −D2

= D2 − b ·D1

d′2
=

b ·D1

d′′2
−D2

=
p ·D2

2

b ·D1 + p ·D2

=
p ·D2

2

b ·D1 − p ·D2

All values are distances or dimensions and are positive, so δD′′
2 is larger than

δD′
2. In order to treat the worst case, write:

δD2 =
p ·D2

2

b ·D1 − p ·D2

(2.7)

Equation 2.7 gives the maximum absolute accuracy for a given configuration as a

function of the distance D2.

Relative Depth Accuracy

Other applications might need a maximum relative accuracy, defined as:

εD2 =
δD2

D2

From equation 2.7:

εD2 =
p ·D2

b ·D1 − p ·D2

(2.8)

This measure is useful in obstacle avoidance problems as it gives the accuracy as a

function of the distance to the obstacle.

Rewriting equation 2.8 by dividing by p ·D2 gives:

εD2 =
1

b ·D1

p ·D2

− 1

⇒




D2 ↗ ⇒ εD2 ↗
D2 ↘ ⇒ εD2 ↘

⇒




b ↗ ⇒ εD2 ↘
b ↘ ⇒ εD2 ↗

For obstacle avoidance problems, the relative accuracy εD2 decreases for nearer ob-

12
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jects and increases for farther objects.

b

b

a

ΘMAX

D’’

D1

MAXΘ

D2δ

2D

O Ol r

P’’2

P2

Figure 2.2: Stereo cameras setting.

2.2.3 Derived Relations

In a practical application, there will be an object (or collection of objects) with a

maximum extent, a, in a plane parallel to the image plane. In practice one needs

to have a small region around the object of interest, so that the common field of

view, CFoV = ρ · a, where ρ ≥ 1. In what follows, for simplicity, it is assumed that

a is the common field of view also. The application will determine the accuracy to

which we need to be able to measure features of the object(s), e.g. one may have a

collection of objects subtending a 100mm × 100mm region in the object plane for

which surface features need to be measured to an accuracy of 1mm. In this case,

δD2target = 1mm and it is necessary to determine D2 and b so that δD2limit ≤ 1mm.

The extent of the object will clearly determine a minimum value for D2, the closest

distance at which the object can be placed and still be visible in both images.
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Behaviour of the Accuracy Limit with D2

It is necessary to determine the value of D2 which leads to the best accuracy, i.e.

the point at which ∂δD2

∂D2
= 0. δD2 is given in equation 2.7 as a function of b, but a

is related to the object(s) size and is fixed by the problem conditions and is thus a

constant in any experiment. b is replaced by its expression as a function of D2 using

equation 2.4:

δD2 =
p ·D2

2

D2 · (2 · λ ·D1 − p)− a ·D1

(2.9)

D1 and p are constants as they are properties of the camera itself 2. See section 4.4

for an example solution.

Setting:

µ = 2 ·D1 · λ− p = Dchip − p = (n− 1) · p (using 2.2)

which is a constant for a given camera sensor as it only depends on the camera

internal parameters.

Note that µ is always positive: Dchip is the size of the chip and p the size of one

pixel.

Setting: 



u = p ·D2
2

v = D2 · µ− a ·D1

gives:

δD2 =
u

v

and the differentiation rule gives:

⇒ ∂δD2

∂D2

=
u′ · v − u · v′

v2

where u′ and v′ are the derivatives of u and v with respect to D2:





u′ = 2 · p ·D2

v′ = µ

2In cameras with zoom lenses, D1 may be adjustable over a fixed range
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Substituting back:

∂δD2

∂D2

=
µ · p ·D2

2 − 2a · p ·D1 ·D2

v2
(2.10)

=
p ·D2

v2
· (µ ·D2 − 2 · a ·D1

)

Now:

∂δD2

∂D2

= 0 ⇒ p ·D2 · (µ ·D2 − 2 · a ·D1) = 0

⇒





D2 = 0

or,

D2 =
2 · a ·D1

µ

D2 = 0 is not a realisable solution because equation 2.6 showed that D2min > 0. So

the only solution is:

D2best =
2 · a ·D1

µ
(2.11)

The derivative expression’s sign describes the function’s behaviour: p, µ, a, D1

and v2 are always positive. There is a unique value of D2 that minimises δD2,

so given the camera parameters and common field of view, ρ · a, one can find the

optimum position for the object.

The position of the vertical asymptote of the accuracy function is found when

the denominator in expression 2.9 equals zero:

µ ·D2asymptote − a ·D1 = 0

The asymptote’s position is:

D2asymptote =
a ·D1

µ

Back substituting µ leads to:

D2asymptote =
a ·D1

(n− 1) · p (2.12)

The sign on both sides of the vertical asymptote is:
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left: D2 <
a ·D1

µ
D2 · µ < a ·D1 δD2 < 0

right: D2 >
a ·D1

µ
D2 · µ > a ·D1 δD2 > 0

The function derivative and behaviour for all D2 values is:

D2 −∞ 0
2 · a ·D1

µ
+∞

∂δD2

∂D2

+ 0 − 0 +

δD2(D2) ↗ ↘ ↗
Table 2.1: Behaviour of the accuracy limit δD2 vs. D2

Rewriting equation 2.12 brings:

D2asymptote

a
=

D1

(n− 1) · p

which clearly shows that the asymptote corresponds to an object of extension a

viewed over a common field of n−1 pixels (see figure 2.3). So that there is only one

pixel ”available” for a shift and the only possible disparities are 0 and 1.

Substituting D2asymptote in the expression for the common field of view 2.4 leads

to:

aasymptote =
2 · a ·D1 · tan ΘMAX

(n− 1) · p − b

which leads to the expression of the baseline basymptote:

basymptote = aasymptote · (
n · p

(n− 1) · p− 1) = a · 1

n− 1

Note that if an object of extent, a, were to have an image one pixel wider, so

that:

D2 =
a ·D1

n · p
then b = 0 and the configuration is no longer stereo vision.

There are only two disparities possible, 0 and 1 and the boundary between the
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domain where d = 0 and d = 1 is situated at:

D2d=1 = D2asymptote =
b ·D1

p
=

a ·D1

(n− 1) · p

Note that this is also D2asymptote.

To determine the region visible to both cameras which starts at depth, D2inter,

note that:

tan
(π

2
−ΘMAX

)
=

b

2 ·D2inter

=
1

tan ΘMAX

=
2 ·D2

a + b

=
2 ·D2 · (n− 1)

a · n

⇒ D2inter =
a · n

2 · (n− 1) · tan ΘMAX

=
a ·D1

(n− 1) · p

and finally:

D2inter = D2asymptote = D2d=1

This shows that the only ”visible”, or measurable, disparity is d = 0 as all the d = 1

disparity region lies before D2 < D2inter i.e. outside the common field of view, see

figure 2.3. This explains the asymptote’s position D2asymptote.

Note that the best position is at:

2 ·D2asymptote =
2 · a ·D1

(n− 1) · p

In this case, the common field of view has an extent of 2 · a over a region of (n− 1)

pixels, which corresponds to the result found in the following section: the best

situation is when the baseline length is similar to the object extent, a.

The graph in figure 2.4 illustrates the function behaviour for positive values

of D2. Note that usable values for D2 are greater than the asymptote’s position,

D2asymptote.

Knowing the best value for D2 (cf. 2.11), and substituting D2 from equation 2.4

17
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d=1

.p(n−1).p

.pn.pn

a

b

bb

d=0

(n−1)

= =

MAX

π/2−ΘMAX

2D asymptote D2 inter D2 d=1

D1

O
R

O
L

Θ

Figure 2.3: Situation where the common field of view is represented by a region of
(n− 1) pixels.

into equation 2.11 gives the best value for the baseline:

bbest = a ·
(4 ·D1 · tan ΘMAX

µ
− 1

)

Replacing D1 · tan ΘMAX by
Dchip

2
and tan ΘMAX by

Dchip

2 ·D1

:

bbest = a ·
(Dchip + p

Dchip − p

)
(2.13)

This expression gives the baseline, b, providing the best depth accuracy as a function

of the common field of view a.

In real cameras:

Dchip + p

Dchip − p
' 1 because Dchip = n · p where typically n À 100,

thus

bbest ' a (2.14)

Thus the optimum baseline should be chosen to be equal to the common field of
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Figure 2.4: δD2 vs. D2

Graph parameters: D1 = 15mm; a = 0.1m; D2 : 0 ∼ 10m ;p = 4µm; n = 768

view, a.

The limiting value of the accuracy obtainable with the optimum configuration is

obtained by replacing D2 by its expansion (equation 2.7):

δD2limit
=

4 · p · a2 ·D2
1

µ2

(−4 · a · λ ·D1

µ

) ·D1 +
2 · p · a ·D1

µ

δD2limit =
4 · p · a ·D1

µ2
(2.15)
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Behaviour of the Accuracy Limit with D1

For the study of the accuracy limit as a function of D1, D2 and b are fixed; subsituting

equation 2.2 in equation 2.4, brings D2 as a function of D1:

D2 =
(a + b) ·D1

Dchip

Replacing this expression for D2 as a function of D1 in equation 2.7 brings:

δD2 =
p · (a + b)2 ·D1

Dchip ·
(
b ·Dchip − p · (a + b)

) (2.16)

p, (a + b)2 and D1 are positive. Thus the behaviour of δD2 versus D1 will be

determined by the sign of the denominator in 2.16:

Dchip ·
(
b ·Dchip − p · (a + b)

)

Dchip is positive, so the sign will depend on:

b ·Dchip − p · (a + b) = b · (Dchip − p)− a · p = µ · b− a · p




a <
µ · b
p

⇒




D1 ↗ ⇒ δD2 ↗
D1 ↘ ⇒ δD2 ↘

a >
µ · b
p

⇒




D1 ↗ ⇒ δD2 ↘
D1 ↘ ⇒ δD2 ↗

Note that
µ · b
p

is an upper limit for a:

if a >
µ · b
p

knowing that δD2(D1 = 0) = 0

brings: D1 ↗ ⇒ δD2 < 0

This limit on a corresponds to the width of the common field of view placed at

the maximum sensible distance D2MAX : computing D2 for the biggest distance, i.e.
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the smallest disparity (1 · p), using equation 2.5 brings:

D2MAX
=

D1 · b
1 · p

Replacing D2MAX
into the common field of view equation 2.4 gives:

a = 2 ·D2 · tan ΘMAX − b

= 2 · D1 · b
p

· tan ΘMAX − b

=
b

p
· (2 ·D1 · tan ΘMAX − p)

a =
µ · b
p

So the realisable values are:

a <
µ · b
p

D2MAX =
D1 · b

p

In real cameras configurations:

µ defined by Dchip − p ' 5 · 10−3m

b baseline, several cm 10−2m ≤ b ≤ 10−1m

p sensor’s pixel size, several µm ' 5 · 10−6m

If a is low enough (small objects, up to a few hundreds of millimetres), the accuracy

(δD2) has the same behaviour as the focal length (D1).

Note that a smaller focal length, D1, can increase the accuracy, but distortion

free short focal length lenses are also harder to design and fabricate, see [51] and [52].

Behaviour of the Accuracy Limit with b

When D1 is fixed, the behaviour of δD2 against b is determined by substituting D2

from 2.7 giving:

δD2 = ν · a2 + 2 · a · b + b2

µ · b− a · p
where:

ν =
p

2 · λ is positive because 0 < ΘMAX < 90o
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Writing δD2 = u
v
,

where





u = ν · (a2 + 2 · a · b + b2)

v = µ · b− a · p

and using the differentiation rule:

∂δD2

∂b
=

u′ · v − u · v′
v2

where u′ and v′ are the derivatives of u and v with respect to b:





u′ = 2 · ν · (a + b)

v′ = µ

The derivative of δD2 with respect to b is:

∂δD2

∂b
= ν · µ · b2 − a2 · (2 · p + µ)− 2 · a · p · b

v2
(2.17)

Because ν > 0 and v2 > 0, we consider the sign of:

(µ · b2 − a2 · (2 · p + µ)− 2 · p · a · b)

This is a second order equation in b with roots:





b1 = −a

b2 = a ·
(4 ·D1 · λ

µ
− 1

)

Studying the sign of 2.17 between its zeros, replacing v2 by its value in 2.17 leads

to:
∂δD2

∂b
= ν · µ · b2 − a2 · (2 · p + µ)− 2 · a · p · b

(µ · b− a · p)2

For values of b:

• If b → ±∞, only the highest terms of the polynomial in b are kept, leading to:

∂δD2

∂b
= ν · 1

µ
> 0
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• If −a < b < a ·
(4 ·D1 · λ

µ
− 1

)
, i.e. b = 0 for instance:

∂δD2

∂b
= −ν · 2 · p + µ

p2
< 0

• If b =
a · p
µ

, the denominator is zero and we have a vertical asymptote.

Sign on both sides of the vertical asymptote:

left of b: b <
a · p
µ

b · µ < a · p δD2 < 0

right of b: b >
a · p
µ

b · µ > a · p δD2 > 0

Leading to the following table for all values of b:

b −∞ −a a·
(

4·D1·λ
µ
−1

)
+∞

∂δD2

∂b
+ 0 − 0 +

δD2(b) ↗ ↘ ↗
Table 2.2: Behaviour of the accuracy limit δD2 vs. b

A curve constrained to real cases (b > 0) is illustrated in figure 2.2.3:





b < a ·
(p + 2 ·D1 · λ

2 ·D1 · λ− p

)




b ↗ ⇒ δD2 ↘
b ↘ ⇒ δD2 ↗

b > a ·
(p + 2 ·D1 · λ

2 ·D1 · λ− p

)




b ↗ ⇒ δD2 ↗
b ↘ ⇒ δD2 ↘

(2.18)

Note that the same value for b as in equation 2.13 is obtained. This shows that

the best baseline is just a bit smaller than the common field of view a. Accuracy

can be increased by moving the baseline b towards this value, but choosing a bigger

baseline does not necessarily imply getting a better accuracy.

Both these expressions need to be used to determine whether target accuracy can

be reached for the values of the parameters a, D1 and b, set by any given problem.
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Figure 2.5: δD2 vs. b
Graph parameters: D1 = 15mm; a = 0.1m; b : 0 ∼ 0.5m; p = 4µm; n = 768 pixels

2.2.4 Conclusion

Equations 2.11, 2.13 and 2.15 describe the behaviour for a given camera setup, thus

making possible to create a family of curves for different D1 i.e. ΘMAX values to

chose an acceptable camera configuration. Having found the best parameters set it

might be possible to modify the optimum (D2, b) pair to suit the other experimental

constraints.

The accuracy behaviour has been described:

1. vs. the camera’s focal length D1 in equation 2.17,

2. vs. the baseline b in equation 2.18, and

3. vs. the distance D2 in equation 2.9.
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2.3 Non-Parallel Camera Axes

2.3.1 Introduction

The previous section described the case where the two camera axes are parallel.

This section briefly describes the situation where the two camera focal axes are

not parallel, it is discussed comprehensively by Mallot [53], so this section simply

highlights the principal differences relevant to matching algorithms: the presence of

both positive and negative disparities.

2.3.2 Vergence and Vieth-Müller circle

z

ϕ
L R

γ

α

c

α
α

b
O O O OL LR R

P P

P

f f

p

ϕ

b x

y

Figure 2.6: Left: Axes and fixation point Pf , Middle: Cartesian reference system,
Right: Position of a scene point P while fixating Pf .

Figure 2.6 illustrates the axis, fixation point Pf and scene point P configuration:

• Pf is the fixation point, i.e. the point where the two camera axis cross,

• OL, OR are the centres of the cameras,

• b is the baseline, i.e. the distance between the two cameras,
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• ϕL, ϕR are the azimuth angles of the cameras, i.e. the viewing directions in a

head-centered system,

• α, αf are the vergences of P and Pf

• γ is the version,

• P is a point seen while fixating Pf .

The Cartesian coordinate system is defined by:

• x: the baseline vector (
−→
b ) between the two camera centres, OL and OR,

• y: the heading direction normal to the baseline and

• z: a vertical axis upward.

• so that OL and OR coordinates are OL(−b/2, 0, 0) and OR(b/2, 0, 0)

and the Hering vergence and versions are respectively:

• α = ϕL − ϕR

• γ = 1
2
· (ϕL + ϕR)

Note that a vergence, α = 0, corresponds to the case where the two cameras optical

centres are the same and is not stereovision anymore. In the parallel optical axes

case, α is undefined as the two axes do not cross anymore.

For each positive value of α, a Vieth-Müller circle of vergence α is defined by:

• centre: [ b
2
· cot α, 0, 0]

• radius:
b

2 · sinα

The Vieth-Müller circles are also referred to as iso-vergence lines.

Using βL and βR, the azimuth angles of point P in a camera-centered coordi-

nate system, the disparity of a scene point, P , may also be defined by the angular

difference:

δ = βL − βR (2.19)

Figure 2.7 shows the correspondence between the disparity in angular units (δ =

βL−βR) and the disparity in pixels with is the difference in length of the two portions

of the camera sensor (dL and dR) subtended by the two angles βL and βR, Pf is the

fixation point and P is a user sample point.

In Figure 2.7 shows three points, P1, P2 and P3 at increasing depths with angular

disparities:
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• δ1 = βL1 − βR1

• δ2 = βL2 − βR2

• δ3 = βL3 − βR3

In figure 2.7, the two angles labelled λ2 are equal (λ1 and λ3 have not been repre-

sented for clarity). P2 is on the iso-vergence circle containing Pf , then:

α2 = αf

Knowing:

αf + λ2 + βL2 = α2 + λ2 + βR2

leads to:

βL2 = βR2

i.e. disparities of points on the iso-vergence circle passing through the fixation point

Pf have for disparity:

δ2 = βL2 − βR2 = 0

Since

βL1 > βL2 > βL3

and

βR1 < βR2 < βR3

we must have:

δ1 > δ2 > δ3

and as δ2 = 0, we have:

δ1 > 0 and δ3 < 0

or negative as well as positive disparity values will be present.
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Figure 2.7: Disparity for 3 different cases while fixating Pf : a close point P1, a
point on the fixation circle P2 and a far point P3
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2.4 Biprism study

2.4.1 Introduction

Lee et al. proposed the use of a biprism so that stereopairs can be captured by a

single camera [1]. A biprism placed in front of a lens and centred on the camera’s

optical axis bends the rays impinging on the left and right halves of the image plane

to produce a pair of images similar to those obtained with two cameras whose optical

axes are not parallel.

2.4.2 Equivalent Stereo System

Figure 2.8 shows how a scene point, P, is imaged onto two positions on the image

plane so that it appears to be both at PL and PR in the scene. The deviation angle

of the biprism, δNa, is a function of n3, the refractive index of the biprism material,

and α, the angle at the base of the biprism. The configuration is illustrated in

figure 2.8 (adapted from Lee et al. [1]). From Snell’s law:

n =
sin(

α + δNa)

2
)

sin(
α

2
)

For BK7 (a commonly used glass), the refractive index, n = 1.52. α depends on

the cut of the biprism and is also known, so:

δ = 2 · arcsin ·
(
n · sin(α

2

))− α

The equivalent baseline, beq, is a function of the distance between the optical

centre of the camera and the biprism, tz, and δNa [1]:

beq = 2 · tz · tan δNa

3Usually refractive indices are measured using a sodium (Na) lamp whose dominant wavelength
is 589nm.
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Figure 2.8: Biprism configuration adapted from [1]

As an example, following Lee et al. and using the values:

α = 12.4o

δNa = 6.6o

tz = 152mm

leading to:

beq = 35mm

From 2.13, the best accuracy is achieved when a and b are almost equal, so that

this setup limits us to small objects. For larger objects, say, a = 300mm, start with

beq = 300mm:

beq = 2 · tz · tan δNa = 300mm

For a 12.4o biprism, tz = 1283mm, which, with a camera view angle of 25o, would

require an impractically large prism of 1194mm. For a 45o prism, tz = 306mm,

which still requires a prism of 285mm.

A biprism also separates colours. For ‘higher dispersion crown’, the refractive

index varies between 1.533 for a wavelength of 434nm and 1.514 for 768nm (see [54])

. For a prism with α = 12.4o, δ ranges from ' 6.66o to ' 6.42o. At a distance

tz = 152mm the separation is 17.7mm − 17.1mm = 600µm ' 120 pixels on a

camera with 5µm pixels. The 600µm dispersion is at the position of the lens, which
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is a few cm in size: the image sensor is a few mm in size so the ratio is roughly

one tenth. Thus the dispersion on the image plane is ' 60µm = 12 pixels, i.e. the

dispersion per colour components is ' 4 pixels.

This means that a black and white camera will see a thoroughly distorted view

of a multi-coloured object and therefore this technique will only work for objects

with a narrow spectral range.

For a colour camera, each colour component would be spread by about a third of

this, i.e. ∼ 200µm. Even though it would be possible to shift the colour components

by a known amount to align the centres of the R, G and B bands, the spread over

one colour band will still be several pixels.

2.4.3 Accuracy

For a realisable biprism system, this section calculates the accuracy that could be

achieved. Choosing values for camera A used in Chapter 4:

p = 4µm

D1 = 15mm

beq = 35mm ⇒ a = 35mm

⇒ D2 =
2 · a ·D1

µ
= 342mm

⇒ δD2 =
p ·D2

2

b ·D1 − p ·D2

= 0.9mm

However due to the prism dispersion, the effective p is increased to 4 pixels which

leads to δD2 = 3.6mm or ∼ 10% of a 35mm object.

2.4.4 Discussion

The interest in this approach is:

• the seemingly easier calibration of the system,

• noise might be limited by taking the two images with the same camera, as

opposed to using two separate sensors,

• an easier epipolar configuration as one only needs to set up the biprism per-

pendicular to the scanlines once,

• the baseline can be changed by moving the camera relative to the biprism only.
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On the other hand:

• the main limitation of the system resides in the fact that it can only handle

near objects and with a small equivalent baseline with a rather small field of

view,

• the sample calculations show that obtaining reasonable baselines needs a large

biprism,

• once two camera are positioned carefully on a rigid base the baseline can be

easily be modified (conserving the cameras alignment) using a precise trans-

later device,

• the angle δ is fixed, it depends on the biprism physical characteristics which

makes it more difficult to change settings: especially the field of view is fixed

and the only adjustable parameter is tz whereas with a dual camera configu-

ration, it is easy to change camera parameters, including the baseline and the

angle between the camera axes,

• the dispersion problem decreases significantly the accuracy of the system for

a given baseline and camera view angle.

Overall, since the main advantages of a bi-prism based system can also be pro-

vided by careful alignment and calibration of a pair of cameras, lower accuracy and

dispersion-induced distortions would generally make these systems unattractive.
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Chapter 3

Experiments: Introduction

3.1 Introduction

This chapter introduces several stereo algorithms: the ones used in this study as

well as other important algorithms described in the literature. The choice of al-

gorithms for this study has been motivated by the initial goal of this study, i.e.

hardware implementation suitable algorithms. An overview of the code used is also

given, followed by a description of the metrics and different stereo pairs used for the

comparisons.

3.2 Algorithms

This section presents firstly the algorithms implemented for this study, secondly

several variants of them and lastly some other key algorithms. Two main classes

of algorithms are presented: correlation based and dynamic programming. My own

variants will be introduced in the corresponding experimental chapters.

Binocular stereo has the following definitions:

• binocularly visible points are seen by both right and left camera,

• monocularly visible points are seen by either the right or the left camera and

• occluded points belong to the scene but cannot be seen by any of the two

cameras.

A partial occlusion is the exact equivalent to a monocularly visible point. However,

completely occluded points are not used by algorithms as they cannot be seen at all,

so commonly occlusion refers to a monocularly visible point, i.e. a partial occlusion.
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All these algorithms assume the ordering constraint, i.e. for a pair of matching

pixels, all the pixels on one side of a pixel are on the same side of the corresponding

pixel on the other image. This assumes mostly continuous surfaces: the classic

exception to this constraint is a scene with a pole in front of a background.

3.2.1 Correlation based algorithms

Firstly three standard correlation based variants are presented: two from Faugeras

et al. [55] and a third one which was simplified so that it was capable of an efficient

(small and fast) hardware implementation: the sum of absolute differences (SAD).

The Census algorithm has been considered with the correlation algorithms because

computation of the Hamming distance on the computed Census transform vectors

is similar to a correlation function.

Notation

I(P ) is the intensity at point, P : IL(P ) is an intensity in the left image and IR(P )

in the right one. Correlation functions are evaluated over a ‘window’ of neighboring

pixels in each image. A window, w(P, r), is defined by its centre, P , and its radius,

r. A radius, r implies a square window of (2 · r + 1)× (2 · r + 1) pixels.

Figure 3.1 illustrates the correlation process: for a point P on the reference image

(left for instance), all correlations with a window in the right image for the whole

disparity range are computed and the best value is chosen.

r

left image right image

P

disparity range

P r

Figure 3.1: Correlation between a left and a right image at point P : the best
correlation between windows in left and right images is searched for all the values
of the disparity.
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Corr1: Normalised Square of Differences Correlation (C1 in Faugeras et al. [55])

The first correlation cost, C1(P ), is the normalised intensity difference:

C1(P ) =

∑
P ′∈w(P,β)

(IL(P ′)− IR(P ′))2

∑
P ′∈w(P,β)

IL(P ′)2 · ∑
P ′∈w(P,β)

IR(P ′)2
(3.1)

Corr2: Normalised Multiplicative Correlation (C2 in Faugeras et al. [55])

The second correlation cost, C2(P ), is a normalised multiplicative correlation func-

tion:

C2(P ) =

∑
P ′∈w(P,β)

IL(P ′) · IR(P ′)

√ ∑
P ′∈w(P,β)

IL(P ′)2 ·
√ ∑

P ′∈w(P,β)

IR(P ′)2
(3.2)

Sum of absolute differences (SAD)

The third cost simply sums absolute differences without normalisation. This is

naturally much faster and has a simple hardware implementation:

SAD(P ) =
∑

P ′∈w(P,β)

|IR(P ′)− IL(P ′)| (3.3)

A variant of the SAD cost is the Sum of Squared Differences (SSD):

SSD(P ) =
∑

P ′∈w(P,β)

(IR(P ′)− IL(P ′))2
(3.4)

For hardware implementations, SAD is easier to implement as it only needs a

substraction, a comparison, and a possible sign change: SSD needs a substraction

and a multiplication. In hardware, a parallel-array multiplier requires O(n)2 space1

and a propagation delay approximately twice that of a substraction which requires

O(n) space, see Hamacher [56].

Discussion

Normalisation factors were introduced into the first two algorithms to allow for

‘real’ images taken with, for example, different gain settings. However, as my exper-

iments show, normalisation makes negligible contribution to the matching quantity.

Centred variants of the correlation have also been studied by Faugeras et al. [55]:

1Bit serial multipliers can be built but are very slow - they trade speed for space.
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they claim that normalised multiplicative correlation (C2) has similar performance

to the centred versions (C3 and C4 the centred normalised difference and centred

normalised multiplicative correlations respectively) and perform better than the C1

criterion. Figure 3.3 shows three correlation variants with the same window radius

tested against luminosity difference: the left image was not modified while a fraction

of the right image intensity was used (5% ∼ 100%). An illustration of right images

with different luminosity levels is given in figure 3.2

Figure 3.2: Exemples of different luminosity levels for the right image of the cor-
ridor stereopair, illustrated levels are, from left to right: 100%, 75%, 50% and 5%.

Note that the Corridor images were generated by ray-tracing so that the initial

luminosities of the left and right images are as accurate as possible.

Figure 3.3 shows that SAD and Corr1 have fewer good matches with the in-

creasing intensity difference whereas Corr2 maintains a stable percentage of good

matches. However, the normalised multiplicative correlation function (Corr2) is

much more complex than the SAD function and is not justified in the case of care-

fully calibrated cameras and especially in the case of a sliding camera taking two

shots at two different positions.

The crossing point between SAD and Corr2 - marked ’A’ in figure 3.3 - shows

that up to a few percent of luminosity difference SAD performs significantly better

in the case where the cameras are carefully calibrated.
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95% 85% 75% 65% 55% 45% 35% 25% 15% 5%
0%  

10%

20%

30%

40%

50%

60%

70%

Corr2
Corr1
SAD

A 

Figure 3.3: Plot of the percentage of good matches for Coor1, Corr2 and SAD vs.
percentage of the original luminosity in the right image, the left image remaining
unmodified.
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3.2.2 Census algorithm

Zabih and Woodfill describe both the Rank and the Census transforms in [57]

and [33]. Lan and Mohr [2] - see section 3.2.4 - working on the original Rank and

Census transforms as well as on a modification of Zabih and Woodfill algorithm,

claim that the Census version performed better than the Rank one, so in this study

only the Census algorithm was implemented:

1. For each pixel, P , in an image, define the Census transform, T , consisting

of bits describing the relationship between that pixel and those in a window,

w(P, β), of radius, β, surrounding point, P :

T (P, β) = ⊗
P ′∈w(P,β) ξ(P, P ′)

where ⊗ is a concatenation operator. Each bit of T is defined:

ξ(P, P ′) =





1 if I(P ) < I(P
′
),

0 otherwise.

ξ(P, P ′) represents the ordering (relative intensity) of a pixel at P ′, relative to

a central pixel at P .

The Census vector, T (P, β), is formed over a (2β+1)×(2β+1) ‘inner’ window

(see figure 3.4) and thus has a length of 4β2 + 4β bits - ignoring the central

pixel which is always 0 and may be omitted from calculations.

2. Form a Census vector by concatenating transforms over an ‘outer’ window

of radius α, (see figure 3.5):

V (O,α) = ⊗
P∈w(O,α)T (P, β)

which is zero when the surroundings of both pixels are identical.

3. For each possible value of the disparity, δ, compute the correlation between

the Census vectors:

C(δ, w(OL, β)) = V (OL, α)ª V (OR, α)

where OL = (x, y) and OR = (x − δ, y) are in the same scanline. ª is the

Hamming distance operator, i.e. C(δ, w(OL, β)) is computed by counting bits

which differ in the bit vectors, V (OL, α) and V (OR, α).

40



EXPERIMENTS: INTRODUCTION

4. Return the disparity value at which C(δ, w(OL, β)) is a minimum.

Note that since the major operations are simply comparing intensities and count-

ing bits, the Census algorithm is potentially very simple and efficient to implement

in custom hardware, e.g. using FPGA technology [58]. A hardware version has

been implemented by Woodfill et al. in [59] and [60] and achieves 42 frames per

second for a 320 × 240 pixels image with a maximum disparity of 24 pixels. It has

been implemented on the PARTS computer made of 16 Xilinx 4025 FPGAs and 16

one-megabyte SRAMs.
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β

P

Figure 3.4: Census algorithm: window over which the transform, T (P, β), is com-
puted, i.e. the inner window.

Outer window

Image

O(x,y)

β

(2.β)+1
P(x,y)

census transform
Inner window

α

(2.α)+1

O is described by the concatenation of census transforms (census vectors) applied
around P

O is the point being matched

census vector

Figure 3.5: Inner and outer window used by the Census algorithm
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3.2.3 Dynamic Programming algorithm: Pixel-to-Pixel

Birchfield and Tomasi’s Pixel-to-Pixel algorithm - in [61] and [62] - was chosen for

its ability to find occlusions. A dynamic programming algorithm, it minimises a

cost function to find the best path through all possible solutions. The cost function

is:

γ(M) = Nocc · κocc −Nm · κr +
Nm∑
i=1

d(xi, yi)

where:

• xi is the index in the left image and yi the index in the right image (using the

epipolar constraint only indices on the same lines are needed),

• N is the number of occlusions (Nocc) or matches (Nm), κ is the cost for an

occlusion (κocc) or reward for a match (κr) and

• d(xi, yi) is the dissimilarity measure.

The dissimilarity measure - see also Birchfiel et al. [63] - is used to decide whether

IL(xi) and IR(yi) are images of the same scene point. It is defined by:

d(xi, yi) = min(d(xi, yi, IL, IR), d(yi, xi, IR, IL))

where:

d(xi, yi, IL, IR) = min
yi− 1

2
≤y≤yi+

1
2

|IL(xi)− ÎR(y)|

where ÎR(y) is the linearly interpolated greyscale value.

The algorithms also looks for intensity gradients to find depth discontinuities. An

intensity gradient is defined as a minimum intensity jump over a minimum number

of pixels, for instance a gradient of at leat 5 grey levels over 3 pixels. A pixel x

in the left scanline is said to lie to the left of an intensity gradient if the intensity

variation between x + 1, x + 2 and x + 3 is at least 5 grey levels.

Figure 3.9 illustrates the definitions of left and right occlusions: the white dots

correspond to occlusion positions. It is assumed that an intensity gradient corre-

sponds to each depth discontinuity - see figure 3.6 - and an occlusion lies on the

same side of its intensity gradient, i.e.:

• If (xi, ..., xj) is a left occlusion, then xj lies to the left of an intensity gradient

(1 ≤ i ≤ j < k).

• If (yi, ..., yj) is a right occlusion, then yj lies to the right of an intensity gradient

(1 ≤ i ≤ j < k).
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P’

b−δ

black wall

white wall

centres of projection

image planes

intensity functions
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P

Figure 3.6: Pixel-to-Pixel greyscale gradients illustration.

Figure 3.7 shows a diagram of the cost array, where the cost is calculated for

each (x, y) cell, where x is the pixel position on the current epipolar line in the left

image and y is the pixel position on the same line in the right image. The black

cells represent cells that do not need to be computed: when the maximum disparity

is known (3 in the example implies δ = y − x ≤ 3).

For efficient storage, the array in figure 3.7 can be transformed to a dense array

(see figure 3.8) indexed by (δ, y) where y is the pixel position on the current epipolar

line in the reference image and δ ranges over all possible disparities. The computed

costs are saved in an array from which the lowest cost path is inferred, it has the

length of a scanline and the height of the maximum possible disparity.

The output of the cost array is a match sequence: an example appears in

figure 3.9, which shows the matching points for a line in the left and the right

images. Occlusions are marked by the white dots: when a match occurs, a line links

pixels from left and right images: the disparity is proportional to the slope of this

line.
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x

y

Figure 3.7: Pixel-to-Pixel cost array (x,y)

y
δ

Figure 3.8: Pixel-to-Pixel reduced cost array (δ, y)

Right

0 5 10
pixels position

Left

Figure 3.9: Pixel-to-Pixel match sequence. The white dots show where occlusions
are found.
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3.2.4 Other algorithms

Introduction

Recently, Scharstein and Szeliski - augmenting their first taxonomy [44] - have pro-

duced an extensive one with an objective comparison of more than thirty algorithms

in [43]. Their work is based on four sets of stereo pairs: Map, Sawtooth, Tsukuba

and Venus, all of which were used in this study also for consistency and are described

in section 3.5.

In their evaluation, they used the root mean square, RMS, of the error, between

the computed disparities dC(x, y) at position (x, y) and the ground truth disparities

dT (x, y), given as:

R =
1

N
·
∑
x,y

(
|dC(x, y)− dT (x, y)|2

) 1
2

The percentage of bad matching pixels was defined as:

B =
1

N
·
∑
x,y

|dC(x, y)− dT (x, y)| > δd

where δd was chosen as 1 pixel. Bad matches were also classified as:

• bad matches for non occluded zones,

• bad matches for textureless zones and

• bad matches for depth discontinuities.

The comparisons of correlation based algorithms takes into account a truncation

value taken between 1 and ∞ i.e.no truncation. Scharstein and Szeliski introduced

truncation in 1996 [64], [65] and [66]; they claim it mostly helps for discontinuities

where a window has pixels from the near and the far object. Truncation fixes a

maximum threshold to the matching cost (the correlation value for instance) which

limits the influence of wrong matches. A good range is given to be between 5 and 50

usually around 20 and has to be just larger than the level of noise. They compared

SAD and SSD algorithms with different truncation levels, with and without the use

of Birchfield and Tomasi’s sampling insensitive dissimilarity measure [63] as well as

using a 9× 9 min window.

Note that a 9 × 9 window corresponds to a radius of 4, which is the optimum

window size for the correlation algorithms as shown in section 5.2 - figure 5.1 shows

that radii larger than 4 do not significantly improve the percentage of good matches.

46



EXPERIMENTS: INTRODUCTION

In most cases the difference between SAD and SSD is negligible. Typical bad

matches rates are between a few percent and 60%: the best results are seen for

truncation values2 around 20 or a bit less.

Including Birchfield and Tomasi’s dissimilarity has a stronger positive effect with

smaller truncation values and always give comparable or better results than the

standard method. This strengthens the case for use of SAD over SSD as it is com-

putationally cheaper. My study also shows that SAD’s performance is very close

to that of normalised additive or multiplicative correlation functions (Corr1 and

Corr2), making SAD the optimum choice for a hardware implementation of a corre-

lation algorithm. Scharstein and Szeliski studied the effect of the truncation value

as well as Birchfield and Tomasi’s dissmilarity measure: in my study, correlation

algorithms were tested against different window sizes.

Scharstein and Szeliski also assessed dynamic programming algorithms, scanline

optimisation and graph cut algorithms with and without Birchfield and Tomasi’s

dissimilarity measure. The influence of the truncation and dissimilarity measure

was similar to that observed for the correlation algorithms. Some of the algorithms

tested were not included in this study as the reported processing times are in the

10 to 30 minute range whereas this study focussed on candidates for real time

implementation. Thus even though the graph cut approach is reported as the best

solution, especially in the presence of occlusions, it is extremely slow and it was not

considered likely to have an efficient hardware implementation [58].

Faugeras et al.

Faugeras et al. [55] have analysed correlation algorithms for a Mars rover application.

Their report describes several types of correlations implemented on several platforms

with 4 to 6 DSPs each. They used Fua’s method [67] and [68] to detect occlusions

and claim to solve the problem completely: a trinocular algorithm can compute an

error free depth map by combining the data from the three cameras.

They used algorithms with normalised additive and multiplicative correlations

as well as zero mean variants. They describe an implementation which optimises

the correlation window computation.

The choice of correlation area based algorithms was designed for a robust (over

long periods of time) navigation solution for a Mars rover. Navigation tests were

been made indoors and outdoors. Their experiments tested a whole system’s per-

formance with a stream of images and did not focus on the correspondence problem

2The truncation value depends on the image intensity range (0-255 for 8 bits for instance) as
well as the way the matching cost is computed (SAD or SSD for instance).
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alone, whereas in this work, I have focussed on objectively assessing the performance

of matching algorithms using carefully selected pairs of test images.

Kanade and Okutomi’s Adaptive Window Algorithm

Kanade and Okutomi’s adaptive window algorithm [69] uses a statistical model to

determine which the window size which produces an estimate of the disparity with

the least uncertainty. It starts from an initial estimate of the disparity map and

adapts the window size depending on local variations of intensity and disparity in

an iterative algorithm.

To illustrate the algorithm - using the standard white square on a black back-

ground stereo pair - Figure 3.10, from Kanade [69], shows selected points and fig-

ure 3.11 shows the final windows used around those points.

6P P

P P

P P P0 1

23

4

5

Figure 3.10: Selected points for the adaptive window algorithm description.

Table 3.1 compares the adaptive window algorithm with a fixed window algo-

rithm for 3 different window sizes - using SSD3 costs:

3Sum of Square Differences, see section 3.2.1 for a comparison with SAD
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Figure 3.11: Dotted lines show the windows used by the adaptive window algorithm
for the points given in figure 3.10

Window Mean Error (pixels)

3× 3 0.22
7× 7 0.20

15× 15 0.34

Adaptive Window 0.08

Table 3.1: Adaptive window algorithm versus SSD (Sum of Square Differences)
with fixed window radii of 1, 3 and 7.
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Lan and Mohr’s Partial Correlation Algorithm

Lan and Mohr [2] introduced a variant of Zabih’s approach - Census algorithm [33]

- to deal with partial occlusions. The idea is that there exists an affine relation

between the local left and right intensities except where there is an occlusion: their

method tries to adjust the inlier and outlier weights inside the correlation window.

Lan and Mohr introduced partial occlusion because standard correlation meth-

ods usually take into account single populations, whereas in stereovision, matching

windows contain pixels coming from different parts of the scene - as illustrated in

figure 3.12. This phenomenon is called partial occlusion even though it may have

other sources.

Figure 3.12: Partial occlusion phenomenon - as illustrated by Lan and Mohr [2].
The left and right window are seen from two different positions: some pixels in the
right window come from another part of the scene. The circle on the left images
illustrates the position of the occluding black circle on the right image.

They start from the hypothesis that the signal locally follows an affine relation

- illustrated in figure 3.13:

IR = k · IL + constant

They use robust statistics - based on the least median of squares regression

- to find the outlier part of the correlation between IR and IL - see figure 3.13.

The occluded part in each window is found and the correlation computed on the

remainder of the window. This report compares four different algorithms: standard

zero mean sum of squared differences (ZSSD), Zabih’s rank transform [33], their
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25
0

I

I

L

R

0 250

Figure 3.13: Affine relation: values following the affine relation between IL and IR

are marked ’×’: outliers are marked ’+’

modification of Zabih’s Census transform and their partial correlation algorithm, in

most cases, this variant of the ZSSD algorithm outperforms the original approach

and is slightly better than the rank or the Census transforms, but is slightly worse

if points in non occluded regions are chosen.

Lan and Mohr’s Census Variant

In the same report [2], Lan and Mohr discuss a variant of Zabih’s Census algo-

rithm [33]. In the inner part of the transform, instead of using 0s and 1s depending

on I(P ) < I(P ′), they use the probability that I(P ) < I(P ′): for neighboring pixels

P1 and P2; the bigger the intensity difference between P1 and P2 the more confidence

there is in the intensity ordering. They model the probability that I(P1) < I(P2) by

a gaussian distribution G(s, σ) where s is the observed value for prob(I(P1) < I(P2))

and σ is a measure of the standard deviation. Replacing the original Hamming dis-

tance by this method affects computation speed - they report a slow down factor of

100.

Lan and Mohr compared the standard ZSSD (Zero Mean Sum of Square Dif-

ferences), their statistical approach called RZSSDC (Robust Centred ZSSD), the

51



3.2. ALGORITHMS

original Rank transform and their modified Census transform. Table 3.2 gives their

results for a full image and table 3.3 for a selection of occluded pixels in the image,

showing the advantage of their method on these regions.

Algorithm Disparity Error
0 ∼ 1 1 ∼ 2 2 ∼ 3 3 ∼ ∞

Original Rank transform 11946 2512 299 968

Lan and Mohr’s Census transform 12960 2237 105 426

Lan and Mohr’s RZSSDC 11845 1985 193 1702

ZSSD 13140 1941 116 528

Table 3.2: Original Rank transform, ZSSD and Lan and Mohr’s Census and
RZSSDC comparison on a full image.

Algorithm Disparity Error
0 ∼ 1 1 ∼ 2 2 ∼ 3 3 ∼ ∞

Original Rank transform 77 14 0 49

Lan and Mohr’s Census transform 89 12 0 39

Lan and Mohr’s RZSSDC 118 10 0 12

ZSSD 56 0 0 84

Table 3.3: Original Rank transform, ZSSD and Lan and Mohr’s Census and
RZSSDC comparison on a selected occluded points subset.
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Gimel’farb’s Symmetric Dynamic Programming Stereo(SDPS)

Gimel’farb proposes a dynamic programming approach to the stereo problem based

on a Markov chain modelling of possible transitions - see figure 3.14 - to form a

continuous graph of profile variants (GPV) [70]. Then, the reconstructed profile has

to maximise the likelihood ratio - chosen as the log-likelihood ratio - with respect

to a purely random one [71].

Two matching points in the left and right images have for coordinates (xL, yL)

and (xR, yR) respectively, where yL = yR following the epipolar constraint. Nodes

N = (x, p, s) are defined by:

• x = xL+xR

2
: the cyclopean coordinate,

• p = xL − xR: the disparity, and

• v: the visibility:

– BVP (B) : binocularly visible points, i.e. seen by both left and right

cameras,

– MVP (ML, or MR) : monocularly visible, i.e. seen by the left or the right

camera only.

The different transitions in the model only depend on their visibility states.

Also, the Markov chain producing the purely random profile is defined by the two

following transition probabilities [71]:

• P (vi = B|vi−1 = B), and

• P (vi = M |vi−1 = M), where M is either ML or MR.

because [71]:

PML|ML = PMR|MR ≡ PM |M because ML and MR cases are equivalent by symmetry [71]

PB|ML = PB|MR ≡ PB|M = 1− PM |M

PML|B = PMR|B ≡ PB|M = 0.5 · (1− PB|B)

Finally, PB|B and PM |M are noted:

• for the purely random profile: PB|B and PM |M respectively, and

• for the profile reconstructed from a stereopair: P o
B|B and P o

M |M respectively.
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For simplicity, only the case where P o
B|B + P o

M |M = PB|B + PM |M = 1 is consid-

ered [72], i.e. the algorithm is defined by: SPDS(PB|B, P o
B|B).

Note that the distribution of the purely random profile ”controls” the smoothness

of the reconstructed profile by the way of maximising the log-likelihood between the

two profiles.

x

x

g g

x x x

p

p

p
p

x x x x

+1+0.5

0

0

0

0 0 0

L,0 L,0 R,0 R,0

RL

−1

+1

M

B

M

R

L

(x ,p ,v)
00

(x +1,p ,v)
0 0

(x +0.5,p −1,v)
0 0

(x +0.5,p +1,v)
0 0

L Rx

Figure 3.14: Graph of Profile Variants (GPV): possible transitions in the graph.

Figure 3.14 represents the possible transitions, where:

• gL and gR are the grey values for the two stereo channels, assumed to be

epipolar,

• (x, p) represent the point in the profile variants, and

• v is the visibility.

Gimel’farb and Lipowezky provide an accuracy comparison between the SDPS

algorithm and correlation based algorithms [72]. They use the four sets used by

Scharstein and Szeliski as well as in this study: Map, Sawtooth, Tsukuba and Venus

- images of a few hundred by a few hundred pixels in size with maximum disparity

range of a few tens of pixels - as well as a digitised rectified, i.e. epipolar, aerial
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stereo pair of an urban scene for which both dimensions are above a thousand pixels

with a maximum disparity range of [50, 150] - containing 392 ground control points.

% of pixels Mean of Standard Error
Image Set Abs. Err. <= 1 Abs. Err. Deviation Max

SDPS SAD SDPS SAD SDPS SAD SDPS SAD

Map 89.1 91.2 1.32 1.55 3.14 4.90 22 24

Sawtooth 93.7 94.6 0.60 0.41 1.36 1.46 11 15

Tsukuba 91.4 89.1 0.59 0.70 1.15 1.74 9 14

Venus 94.9 89.1 0.45 0.66 0.71 2.04 7 16

Table 3.4: Comparison of SDPS vs. SAD(r=4) on the four sets: Map, Sawtooth,
Tsukuba and Venus.
Note that SAD results have been extracted from this study for the comparison.

Table 3.4 shows the comparison between the SDPS dynamic programming algo-

rithm and SAD(r=4) on four common stereo pair between this study and Gimel’farb

and Lipowezky’s study. This shows a generally better behaviour for the SDPS algo-

rithm especially in terms of outliers, with smaller mean of absolute errors, standard

deviation and maximum errors, even if the initial percentage of pixels with errors of

0 or 1 pixel is about the same.

Algorithm Mean of Abs. Err. Std. Dev Error Max

SDPS(0.10, 0.90) 4.68 7.92 55

SDPS(0.25, 0.75) 3.59 6.35 39

SDPS(0.50, 0.50) 3.02 4.94 36

Cross Correlation 7× 7 5.51 11.28 50

Cross Correlation 21× 21 3.31 8.16 49

Table 3.5: Performance of SDPS with 3 different sets of parameters and cross
correlation with two window sizes.

Table 3.5 shows again a better overall behaviour of SDPS against a standard

cross correlation method. In addition, Gimel’farb and Lipowezky observe that the
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correlation algorithm tends to blur the buildings over a wider area than SDPS does.

This study found the same kind of relative behaviour between Pixel-to-Pixel -

another dynamic algorithm - and the tested correlation algorithms. The reported

results for SDPS lack processing times - preventing a more complete comparison.

Zabih et al. Graph Cut

Graph cut is an optimised technique for solving complex energy minimisation prob-

lems. Zabih et al. [34] describe the graph cut algorithms that also deal with the

occlusion problem. The energy function is:

E(f) = Edata(f) + Eocc(f) + Esmooth(f)

where:

• Edata comes from pixel differences between the images,

• Eocc imposes a cost for making a pixel occluded,

• Esmooth tends to give pixels in the same neighbourhood similar disparities.

Versions of the graph cut algorithm using two approaches for the smoothness

term: several older graph cut variants [73,74], Zitnick and Kanade’s algorithm [75,76]

and a standard correlation algorithm are all compared, see table 3.6. One of the two

approaches is much more promising and analysed in greater detail as it outperforms

almost all other tested algorithms.

Method Errors Gross errors False neg. False pos.
% % % %

Zabih et al. [34] 6.7 1.9 45.6 1.1
Zabih et al.(swap algorithm) [34] 20.7 13.6 50.6 3.4
Boykov, Veksler and Zabih [73] 6.7 2.0 82.8 0.3
Zitnick and Kanade [76] 12.0 2.6 52.4 0.8
Correlation 28.5 12.8 87.3 6.1

Table 3.6: Errors : the algorithm did not compute the correct disparity,
Gross errors : for disparities within ±1 of the correct disparity, or a pixel labelled
as occluded,
False: show the error rate for occlusions.

In their study, Scharstein and Szeliski [43] report a few percent of bad matches

on non occluded pixels using Zabih et al.’s algorithm on the Tsukuba, Sawtooth

and Venus stereo sets, whereas other algorithms tend to have more than 5% of bad

matches.
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Rectangular Subregioning

Sun’s algorithm [77] pre-processes the image to obtain rectangular windows. The

regions are obtained in two steps, first horizontal stripes are merged until the dis-

parity range in all neighbouring stripes differ by more than a threshold value, then

the same process is repeated with vertical stripes.

This leads to smaller rectangular windows for which the disparity range is known

and is smaller than the full range of disparities possible for the image. With the

disparity range, each of these rectangles defines a volume for which the solution has

to be found. A two stage dynamic programming approach is used to compute the

best path using zero mean normalised correlation as a cost for the matching.

Scharstein and Szeliski’s study does include, at the end, results for Sun’s algo-

rithm. Tests are performed on the four image sets: Tsukuba, Sawtooth, Venus and

Map. Sun algorithm results are reported in table 3.7 as well as results for other

algoritms discussed in this study as a comparison.

Algorithm Tsukuba Sawtooth
nonocc. text. disc. nonocc. text. disc.

Sun 11.10 20 10.70 18 41.99 20 5.51 20 5.56 20 27.39 19

SSD (r=10) 5.23 15 3.80 10 24.66 17 2.21 11 0.72 10 13.97 15

Pixel-to-Pixel 5.12 14 7.06 17 14.62 10 2.31 13 1.79 12 14.93 17

Mühlmann 9.76 19 13.85 20 24.39 16 4.76 18 1.87 13 22.49 18

Venus Map
nonocc. text. disc. nonocc. N/A disc.

Sun 4.36 15 4.78 12 41.13 19 4.17 19 27.88 19

SSD (r=10) 3.73 13 6.82 15 12.94 8 0.66 8 9.35 10

Pixel-to-Pixel 6.30 17 11.37 18 14.57 10 0.50 7 6.83 8

Mühlmann 6.48 18 10.36 17 31.29 18 8.42 20 12.68 16

Table 3.7: nonocc.: for bad pixels in non occluded regions,
text.: for bad pixels in textureless regions,
Note that the map image pair has no textureless regions - see 3.5.6.
disc.: for bad pixels in discontinuities,
The small number on the right gives the ranking in Scharstein and Szeliski’s study.
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3.2.5 Using Colour to Improve Matching

Colour and greyscale information are strongly correlated:

GreyLevel =
R + G + B

3

which partially explains why most algorithms only use the greyscale information.

Also it is faster to process one dimension than the three used for most colour spaces -

RGB, normalised RGB or HSI for instance. Nevertheless colour presents interesting

properties that should help matching: it is obvious than a red pixel should not

match a blue one even if they have similar grey levels.

In this study, colour experiments - see section 8 - used two approaches:

• combined where the cost function is evaluated on each of the three colour

coordinates and summed and

• separated where the cost function is evaluated on each colour coordinate and

the component with the strongest match is used.

The two following sections describe work using colour with success:

• firstly, Koschan et al. using colour instead of greyscale values with a ∼ 25%

improvement,

• secondly, Koschan et al. pyramidal colour block matching, and

• lastly, Jordan and Bovik using colour to reinforce a result found on greyscale.

Klette and Koschan

Klette, Koschan, Schlüns and Rodehorst have reported a matching improvement

by using colour information [78]. Koschan describes a block matching algorithm

- practically implemented in a vision system described in [79] and [80] - using a

chromatic/achromatic segmentation in the HSI (Hue, Saturation, Intensity) colour

space [41, 81]. Results were 25 ∼ 30% better than using greyscale values only. In
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this approach, achromatic pixels are defined as:

* Case 1: I > 95 or I ≤ 25

* Case 2: 80 < I ≤ 95 and S < 18,

60 < I ≤ 80 and S < 20,

50 < I ≤ 60 and S < 30,

40 < I ≤ 50 and S < 40,

25 < I ≤ 40 and S < 60,

where I is the intensity and S the saturation.

Since only the intensity and saturation are needed, the complex conversion from

RGB to Hue is avoided. Blocks of size n ×m - 8 × 8 in this example - are used; a

block is defined as achromatic if 60% of the pixels inside the block are achromatic.

The similarity measure between blocks is the mean square error (MSE) defined

as:

MSEcolour(x, y, ∆) =
1

n ·m ·
k∑

i=−k

k∑

j=−k

Dx

(
FR(x + i, y + j), FL(x + i + ∆, y + j)

)

where x and y are the pixel coordinates, ∆ is the disparity and Dx is:

DC(f1, f2) =
√

(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2

DA(f1, f2) = |R1 + G1 + B1

3
− R2 + G2 + B2

3
|2

for the chromatic and achromatic cases respectively.

Klette, Koschan, Schlüns and Rodehorst [78] describe the same kind of algorithm

using the (I1, I2, I3) space initially suggested by Ohta, Kanade and Sakai [82]. It is

defined by: 



I1 = R+G+B
3

I2 = R−B
2

I3 = 2·G−R−B
4

This space - combined with the colour block matching approach - was reported to

perform better than RGB, XYZ or HSI.
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Note that the block matching algorithm has been implemented in parallel in [83].

Koschan Pyramidal Block Matching

Koschan et al. describe a pyramidal approach for a block matching algorithm [3, 4,

84]. The block matching algorithm described in the previous section is modified to

use a quad pyramid:

• disparity at level s + 1, D(s + 1) can be derived from the disparities at the

previous level, D(s), using the algorithm at level s + 1,

• the disparity search space at level s+1 is derived from the disparity at level s

using a tolerance factor DT , thus defining D∆ the width of the reduced search

space [Dmin, DMAX ], i.e. controlling the smoothness of the disparity map.

i.e. :

D∆(s) = 2s−1 ·DT

Dmin(s) =





D(0)−D∆(s) for s = 1

Dmin(s− 1)−D∆(s− 1) for s > 1

DMAX(s) =





D(0) + D∆(s) for s = 1

DMAX(s− 1) + D∆(s− 1) for s > 1

Koschan et al. illustrate that without using the pyramidal approach, the block

matching algorithm has difficulties matching correctly the two eyes of a face [3] ; i.e.

the left eye is matched properly, but the right eye is matched with the left because

of the repetitive pattern of the eye. This effect can also be seen in the given example

of reconstruction at the end of chapter 4 in figure 4.13: half of the face is matched

properly but the second eye is mismatched. Using this pyramidal approach Koschan

et al. illustrate that because of the constrained range for the disparity both eyes are

now matched correctly, they also claim that the depth of small structures like the

ears is estimated more correctly.

Note that in the specific case of the human face another solution to avoid the

mismatching eye artefact, it is also possible to put the cameras vertically instead

of horizontally - Philippe Leclercq, Jiang Liu, Mark Chan, Alexander Woodward,

Georgy Gimel’farb and Patrice Delmas, Comparative Study of Stereo Algorithms

for 3D Face reconstruction, submitted to ACVIS’04 Brussels.
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After describing the pyramidal approach as efficiently implementable in parallel

- as well as the block matching algorithm alone, see previous section - Koschan et

al. in [4] give the running times for their algorithm in table 3.8.

Image size Block Matching Pyramidal Block Matching
in pixels 1 PU 10 PUs 1 PU 10 PUs

256x256 0.96 s 0.13 s 0.25 s 0.03 s

768x566 10.14 s 1.07 s 3.51 s 0.64 s

Table 3.8: Comparison of the running times for the block matching algorithm and
the block matching algorithm using the pyramidal approach for 1 and 10 processing
units (PUs). Results have been computed on a SGI Power Challenge with twelve
75MHz R8000 processors.

Table 3.8 illustrates the gain of parallel implementation for both the block match-

ing algorithm alone or the pyramidal block matching algorithm.

Jordan and Bovik

Jordan and Bovik [85] describe an experiment evaluating the use of colour to help

the matching of a standard algorithm - the Laplacian of Gaussian filtered pairs (a

feature based algorithm). It was compared with the use of chromatic gradients to

further describe the zero crossing. They chose this method rather than finding the

zeros for each colour band - red, green and blue - as it is computationnaly cheaper

and practically the position of the zero crossing in each colour band is not much

different from the intensity ones because of the strong correlation between the colour

bands and the intensity information.

The use of colour gradients is based on the presumption that close to an edge it

is more likely that the colour will change. The colour space used was the normalised

RGB space because the intensity information is already used by the standard inten-

sity zero crossing algorithm and the normalised RGB colour space is more robust

against intensity changes than the RGB colour space. The gradients used are:





Drg(x, y) = R(x,y)−G(x,y)
R(x,y)+G(x,y)+B(x,y)

Dgb(x, y) = G(x,y)−B(x,y)
R(x,y)+G(x,y)+B(x,y)

Dbr(x, y) = B(x,y)−R(x,y)
R(x,y)+G(x,y)+B(x,y)
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The sign of the variation is given by:

∂

∂x
(gσ ∗Drg) =

( ∂

∂x
gσ

) ∗Drg

where gσ is a two dimensional rotationally symmetric Gaussian. The orientation is

given by:

tan−1

( ∂

∂y
(gσ ∗Drg)

∂

∂x
(gσ ∗Drg)

)

The additional information derived from colour enables choice of candidates

within the disparity range that have:

• the same intensity contrast sign,

• roughly the same orientation: ±30deg,

• the same chromatic gradient sign for each of the normalised difference spectra.

So that after finding all intensity zero crossings, their algorithm can determine cross-

ings with a unique solution and validate it.

For one of the test scenes, city, they observed:

• a ∼ 40% decrease in crossings having at least one candidate, which shows that

the chromatic information eliminates incorrect matches,

• a ∼ 60% decrease in the total number of candidate matches, which shows that

the chromatic information helps disambiguate potential candidates,

• a ∼ 70% increase in unique matches,

• a ∼ 0.86% increase in the correct unique matches - even though small, it is

related to the strong increase of unique matches.

The two other sets, a Rubik’s cube and a set of hand tools, show similar behaviours

- although less strong for the cube and more significant for the tools set. A following

article [86] describes in greater detail the use of chromatic characterisation for egde

matching - feature based stereo. The algorithm described there uses a disparity

gradient constraint described by Pollard, Mayhew and Frisby [87]. The RGB colour

space is kept and is used colour band by colour band:

Rσx(x, y) =
∂

∂x
(gσ ∗R(x, y)) =

( ∂

∂x
gσ

) ∗R(x, y)

62



EXPERIMENTS: INTRODUCTION

The orientation is given by:

tan−1

(
Rσx(x, y)

Rσy(x, y)

)

Finally the chromatic gradient magnitude is:

√
Rσx(x, y)2 + Rσx(x, y)2

Two uses of colour are examined, firstly at the end of the algorithm to remove

ambiguity between several candidates and secondly as part of the primary cost

function in the algorithm itself. The use of this colour gradient to characterise the

possible candidates produced results similar to those of Klette, Koschan, Schlüns and

Rodehorst discussed previously. The use of the colour gradients within the algorithm

itself significantly improves the number of good matches especially for small window

radii, but also decreases the processing time as fewer potential matches have to be

processed.

Mühlmann et al. Efficient SAD Implementation

Mühlmann et al. divide the stereo algorithms in two [88,89]:

• real-time reconstructing and

• improving accuracy regardless of processing time reconstructions.

Following Klette et al.’s claimed improvement of the signal to noise ratio using

colour (see section 3.2.5), they used as a matching cost:

C(P ) =
∑

P ′∈w(P,β)

|ILred
(P ′)−IRred

(P ′)|+|ILgreen(P ′)−IRgreen(P ′)|+|ILblue
(P ′)−ILblue

(P ′)|

Parabolas were fitted to costs vs. disparity curves and the minimum used to estimate

disparities to sub pixel accuracy, see figure 3.15: only situations where one or two

pixels are below a given threshold are considered, if a third smallest value is present

the match is marked as bad. This was followed by median filtering - see Smith’s

sorting network [90].

The whole discussion of implementation takes into account hardware issues -

such as the processor cache - to describe the impact of the order of nesting variables

- length, width and disparity - in loops, as well as a discussion on the use of Single

Instruction Multiple Data, e.g.MMX or SSE, architectures. On a dual processor

800MHz Pentium III system with 512MB RDRAM using one thread for calculations

they report:
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Figure 3.15: In the left and middle diagrams, one or two minima lie below the
minimum threshold, so a parabola is fitted: its minimum provides the disparity
of the current pixel. In the right diagram, there are too many values below the
threshhold and the pixel is marked as bad and non matched.

image pair image size, maximum disparity ms ns
pixel×δmax

QSIF 160× 120, 32 50 82

Tsukuba 384× 288, 20 218 98

Pentagon 512× 512, 21 552 100

PAL 720× 576, 50 1890 91

Image00054 2048× 1536, 551 124900 72

Table 3.9: Execution time for different size images and disparity ranges.

Tsukuba was also used in this study: its processing time is several seconds - for a

window radius up to 4 - for a non optimised implementation of the SAD algorithm,

thus the optimisations produced a speedup factor of about 20. Mühlmann et al.

describe their algorithms as either a real time solution for stereo matching or as

a fast first guess for more complex algorithms that need an approximately correct

value as a starting point. Unfortunately they do not provide any correct match

statistics.
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3.2.6 Active Illumination

Introduction

Active illumination is the idea of projecting patterns onto the scene to help the

algorithm to match the left and right images by increasing the local information in

the images. It obviously helps in homogenous regions where no matching is otherwise

possible.

The two following sections introduce:

• Kanade’s et al. monochromatic active illumination for a four camera set work-

ing in real-time.

• Koschan’s et al. using active colour illumination

For instance, recently Scharstein and Szeliski in [91], have used structured light

to label each pixel. They use two different pattern generators: Gray codes and sine

waves but which respectively use 80 and 100 patterns. Their results are reproduced

in table 3.10 for two of their own sets: Cones and Teddy.

Cones Teddy
Algorithm t=1 (in%) t=2 (in%) t=1 (in%) t=2 (in%)

SSD 17.8 9.3 26.5 12.8

Dynamic Programming 17.1 9.8 30.1 10.5

Graph Cut 12.6 7.0 29.3 11.4

Table 3.10: Percentages of pixels which disparity error is greater than the given
threshold t.

Kanade et al.

Kanade et al. describe a real time stereo system using four cameras as well as active

illumination [92]. A projected light pattern of frequency modulated sinusoidally

varying intensity helps the matching and to obtain dense reliable depth maps instead

of interpolating between reliable pixels.

The system is composed of an 8x8 matrix of iWarp components - 20 MFlops5

each - and is capable of extracting stereo depth data in real-time with an accuracy of

less than 1mm in average for distances between 1.5 to 3.5m away from the cameras.

5Millions of Floating point Operations per Second
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The error analysis results is made by locating planar patches in the image as

well as a cylinder of known cross sectional radius. The furthest plane is 1.7m away

from the camera and the cylinder 3.3m. Average error is always less than 1mm with

a maximum error of a few mm and a standard deviation less than half a mm, see

table 3.11

Element Patch size Avg error Max error Std Dev
in pixels (µm) (mm) (µm)

Plane 1 20925 550 2.24 400

Plane 2 12405 420 1.91 310

Plane 3 993 520 2.97 420

Plane 4 1340 370 1.75 320

Cyl. 1 25200 640 4.35 540

Cyl. 2 35150 640 3.17 500

Table 3.11: Error fit for the planar patches and cylinder.

In conclusion, Kanade et al. mention that instead of a regular modulation of

the active light a random one would be preferable to eliminate the last chances

of repetitive pattern. Also some problems with dark surfaces or surfaces almost

parallel to the projection: the use of multiple projectors/patterns, either time or

colour sequenced may reduce the last causes of errors.

Chapter 10 of this study uses a colour pattern consisting of squares of different

colours projected onto the measured object.
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Koschan et al.

Following Kanade et al. conclusion on the better use for a colour pattern instead

of sinusoidal varying intensity pattern, Koschan presents the use of active colour

illumination in [3,4] combined with a pyramidal block matching approach. Koschan

et al. use a rainbow like pattern to illuminate the scene, its spectrum S is defined in

the 3 RGB bands as:





SR = sin
(

i
n
· π

)
·
(

GMAX

2
− 1

)
+ GMAX

2

SG = sin
((

2
3

+ i
n

) · π
)
·
(

GMAX

2
− 1

)
+ GMAX

2

SB = sin
((

4
3

+ i
n

) · π
)
·
(

GMAX

2
− 1

)
+ GMAX

2

where i = 0, ..., n is the row index of the generated colour spectrum SRGB and GMAX

is the maximum intensity in every colour channel. An illustration of the spectrum

is given in figure 3.16.

n
i

1

Figure 3.16: Sorting Network to compute the median of 9 elements (P1 to P9).
Each cell has as output the minimum (bottom left) and the maximum (bottom
right) of the two numbers on its inputs (at the top).

Results are given for a synthetic pair of a cube with uniform shading and no

texture thus presenting very ambiguous matching, in this case the projected colour

rainbow really improves the matching - see table 3.12 - as it is the only source of

information for the algorithm to perform matching.

Koschan et al. use the cube again but also make additional measurements on a

synthetic image pair representing the bust of Beethoven [4]. The results compare the
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Difference Good Matches Percentage
in pixels without active illumination active colour illumination

0 7.9 62.2

1 12.2 25.8

≥ 2 79.8 12

Table 3.12: Koschan results - from [3] - using pyramidal block matching with and
without the use of active colour illumination.

algorithm performance with and without active colour illumination in the following

cases:

• On the original image set, see table 3.13.

• On the set corrupted with Gaussian noise (σ = 10.0), see table 3.14.

• On the set corrupted with different contrast, see table 3.15. The right image

intensity IR was transformed into I ′R before projecting the colour pattern using:

I ′R =
3

4
· IR +

1

8
·GMAX

where GMAX is the maximum intensity.

• On the set corrupted by intensity difference, see table 3.16. IR was transformed

into I ′R before projection of the colour pattern using:

I ′R =
( IR

GMAX

) 1
χ ·GMAX

where GMAX is the maximum intensity and χ = 1.5

Tables 3.13, 3.14, 3.15 and 3.16 show that the use of active colour illumination

increases the quality of matching in all cases of image corruption as well as for the

original images.
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Difference Using intensity only Using active colour illumination
in pixels in % in %

0 59.6 63.3

1 34.0 31.8

≥ 2 6.3 4.8

Table 3.13: Koschan results - from [4] - using pyramidal block matching with and
without the use of active colour illumination on original set.

Difference Using intensity only Using active colour illumination
in pixels in % in %

0 39.8 44.3

1 42.5 43.5

≥ 2 17.7 12.2

Table 3.14: Koschan results - from [4] - using pyramidal block matching with and
without the use of active colour illumination when the right image is corrupted by
Gaussian noise (σ = 10.0).

Difference Using intensity only Using active colour illumination
in pixels in % in %

0 14.7 37.7

1 20.9 42.6

≥ 2 64.4 19.7

Table 3.15: Koschan results - from [4] - using pyramidal block matching with and
without the use of active colour illumination with different contrast.
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Difference Using intensity only Using active colour illumination
in pixels in % in %

0 9.6 28.6

1 18.4 36.7

≥ 2 72.0 34.7

Table 3.16: Koschan results - from [4] - using pyramidal block matching with and
without the use of active colour illumination with different intensity.
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3.3 Software

A modular software has been designed in ANSI C to run all the experiments, see

figure 3.17. The mainly used image format is ppm/pgm, an array of floats with a

comment header is also used to keep the precision of the results, graphic formats

are used for reading the input stereopair and for display only. All image sets and

algorithms are described by a configuration file - see also appendix A - also describing

file names and directories. Once a stereopair is loaded, it is possible to change

its parameters (convert to greyscale for instance) before choosing the algorithm to

process it with. If a ground truth disparity map exists it is possible to compare

the processed disparity map with it and create histograms of the errors. Functions

have been written to format the file name depending on the algorithm and chosen

parameters as well as file path.

Note that most of the functions have been documented in the source files using

ROBODoc - version 4.0.6 [93]. As an example, the given ’GNUmakefile’ compiles

the software as well as executes ROBODoc if it is installed.
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Figure 3.17: StereoLib’s organigram

3.4 Metrics

In order to compare computed disparity maps objectively, one needs to measure the

accuracy as distinct from subjectively estimating it by simply viewing images. A
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typical distribution showing percentage of pixels exhibiting a given disparity error is

shown in figure 3.18. Note that no sub-pixel estimation techniques were employed.

An appropriate disparity error clearly depends on the actual application in which

the dense disparity map will be used: in this work, the percentage of ‘good’ matches

has been reported as those with a disparity error less than 0.5 pixels. Less stringent

criteria, such as that used by Scharstein and Szeliski [43], who include all disparities

within 1.5 pixels of the correct match as ‘good’, may well be acceptable in many

applications. Lan and Mohr [2] define several classes:

• good match: up to one pixel error,

• near miss: between one and two pixels error,

• bad matches: between two and three pixels error and finally

• false matches: error bigger than three pixels.

My stringent criterion produces numbers of good matches which may seem low when

compared with other work. This work is concerned with assessing relative algorithm

performance so that the choice of acceptable error is somewhat arbitrary as long as

a consistent criterion is applied. The fraction of good matches is clearly the most

important metric but the mean and the standard deviation highlight characteristics

of the algorithms or the way they are implemented. For example, a small peak to

one side of the main peak (cf. figure 3.18) is due to aliasing. Such peaks appear

often: when there is more than one match, the the direction in which the program

scans the possible disparities causes the first one to be chosen resulting in a bias

in the calculated disparity. The Census algorithm is particularly susceptible to

such artefacts because the cost function is a sum of small integer values (Hamming

distances).
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0

Standard Deviation (spread)

Mean (bias)

% of good matches
(error <= 0.5)

%

Disparity Error

Figure 3.18: Metrics: typical distribution of percentages of pixels having a specified
disparity error.
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3.5 StereoSets

3.5.1 Introduction

This section presents the stereosets used in this study. It describes the characteristics

of every stereo pair including its working window to avoid border effects, as well as

any other relevant information (i.e. added noise, different baselines, ...).

3.5.2 Working window

To fairly assess all the stereo matching algorithms, any border effects were eliminated

by leaving a border of 20 pixels around each image to allow experiments with very

large window radii.

If the epipolar constraint is met for all images (whether by careful alignment or

rectification), matching only occurs on the same scan line. As described in 2.3, the

disparity range (∆min - ∆max) can include both positive and negative values.

Note that in the case of parallel axis, the lower limit is forced: ∆min = 0.
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Figure 3.19: Sketch showing how the working window is set to avoid border effects
and take the disparity range into account.

74



EXPERIMENTS: INTRODUCTION

For each image set used, the working window is outlined in the left and right

images in unbroken lines: dashed lines in the right window delineate both maximum

and minimum disparity limits. Refer to the code in StereoSetsSize.c which has

been used for both computing the working windows and to create the graphical

representation of these borders.
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3.5.3 MRTStereo

The MRTStereo program [94] is an addon to a ray tracing software package (MRT =

Modular Rendering Tools) that enables to create stereo sets from scene descriptions.

I used two sets computed with MRTStereo: the ”Corridor” set and the ”Madroom”

set. The main benefits of using MRTStereo are:

• the ability to specify the baseline between the two cameras for the study on

varying the baseline,

• ray tracing produces images with no noise from the camera sensor or other

sources,

• the ability to choose the image resolution - which impacts the accuracy as

shown in study of the ”CoinStack” set and the ”Shell” set.

Gerdes provides more information on his web site [94].
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3.5.4 Corridor

Default Set

The Corridor set was computed using the MRTStereo tool. The image size is

256 × 256 and default baseline used produced a maximum disparity of 20 pixels.

This set has very little colour (most pixels are ’grey’ i.e. R = G = B) apart from

some objects and textures on the wall. The main difficulty in this set is the complete

absence of texture on the back wall. For further reference, the 3D corridor scene

description files are given in appendix B.

Different Baselines Sets

For the study of the impact of the baseline on stereo algorithms, the Corridor set

was computed with increasing values for the baseline, from 10 to 90. Figure 3.21

shows on top a reference left image followed by right images with increasing baselines

(10, 50 and 90) and the corresponding left and right occlusion maps. Increasing the

baseline can improve the accuracy (see chapter 9 for more details) but also increases

the number and size of occlusions which is a central problem in stereo algorithms.

Additive White Gaussian Noise Sets

The Corridor set was produced by ray tracing and is free of the noise present in

real images. This set was corrupted with increasing levels of additive white gaussian

noise to assess the robustness of matching algorithms to noise. A full description of

the noise corruption process used is given in appendix D.
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Left and right images for the ”Corridor” set, baseline of 20 and no added noise.

Figure 3.20: Corridor: working window
Image size: height 256, width 256,
minimum disparity 2.5 pixels, maximum disparity 21.7 ∼ 22 pixels,
Image window: (c:41, l:19) - [c:194, l:216] : 41904 pixels
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Reference left image, baseline=0

baseline=10 baseline=50 baseline=90

Right images

Left occlusion maps

Right occlusion maps

Figure 3.21: ”Corridor” set with differing baselines
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Reference left image, no added noise

57dB 48dB 39dB

30dB 21dB 12dB

3dB -6dB -15dB

Figure 3.22: ”Corridor” set with different levels of noise added
See appendix D for a precise description of the significance of x dB of noise.

80



EXPERIMENTS: INTRODUCTION

3.5.5 Madroom

The ”Madroom” set is also created with MRTStereo. This set has been kept because

it represents a real challenge for any stereo algorithm as it presents lots of constant

width stripes that make it hard for any algorithm to find accurately. The results on

this set are usually complete outliers.

Default left and right images for the ”Madroom” set.

Figure 3.23: Madroom:
Image size: height 256, width 256,
minimum disparity 12.668714, maximum disparity 25.500000 (∼ 26),
Image window: (c:45, l:19) - [c:190, l:216] : 41040 pixels
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3.5.6 Map

The ”Map” stereo set usually gives very good results, it is a greyscale pair of a

map on top of other maps. It presents fine, non repetitive texture and very small

occlusions, so that all algorithm always perform very well on it.

Default left and right images for the ”Map” set.

Figure 3.24: Map:
Image size: height 216, width 284,
minimum disparity 4.375000, maximum disparity 28.125000 (∼ 29)
Image window: (c:48, l:19) - [c:215, l:176] : 37840 pixels
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3.5.7 Sawtooth

The ”Sawtooth” set provides both greyscale and colour textures with sloping walls.

Default left and right images for the ”Sawtooth” set.

Figure 3.25: Sawtooth:
Image size: height 380, width 434
minimum disparity 3.875000, maximum disparity 17.875000 (∼ 18)
Image window: (c:37, l:19)- [c:376, l:340] : 127840 pixels
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3.5.8 Tsukuba

The ”Tsukuba” set is a real scene with several distinct layers. Usually algorithm

cannot find accurately the lamp’s arms as either the window blends the disparity

gap either cost function try to provide ”smooth” disparities.

Default left and right images for the ”Tsukuba” set.

Figure 3.26: Tsukuba:
Image size: height 288, width 384,
minimum disparity 0.000000, maximum disparity 14.000000 (∼ 14)
Image window: (c:33, l:19) - [c:330, l:248] : 81840 pixels
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3.5.9 Venus

The ”Venus” set is a superposition of sloping planes with colour textures, either

writing or photo or painting.

Default left and right images for the ”Corridor” set.

Figure 3.27: Venus:
Image size: height 383, width 434,
minimum disparity 3.000000, maximum disparity 19.750000 (∼ 20)
Image window: (c:39, l:19) - [c:374, l:343] : 128282 pixels
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3.5.10 CoinStack

The idea of a stack of coins as a stereo pair has been used for different camera

calibration purpose. Coins are usually of precise known dimensions, in our case, we

used several coins from New Zealand, their complete details can be found at the

Reserve Bank of New Zealand [95].

The used background is a copy of a 20 New Zealand dollars note. The idea is that

notes have very fine texture for forgery prevention purpose. This fine texture should

be easily matched by algorithms and therefore provide a good reference disparity

for the image background.

The copy of a ruler has also been made either on the copy of the note itself or

on a transparent strip and can be used to measure the field of view of the camera.

Using modern photocopiers the scale on the copied paper or transparent is exactly

the same size than the original ruler.

Exemples of a stack of coins.
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3.5.11 IGN Aerial epipolar stereo pair with ground truth

This set has been given by the French national geographic institute (Laboratoire

MATIS, Institut Géographique National, IGN). The two images in figure 3.28 have

been rectified to satisfy the epipolar constraint. Two disparity maps - see figure 3.29

- were provided: one generated by laser and the other one by manual entry, with an

accuracy of one tenth of a pixel.

From these large images (3526× 4800) a smaller subset was extracted:

• the given disparity map do not cover the full initial set, and

• a smaller subset is faster to process.

Figure 3.30 illustrates the chosen part of the main stereo pair as well as the

windows used for processing and figure 3.31 the disparity map for the chosen section.

After a careful check these two images look very similar:

• only two cars have moved between the two images in the lower right corner of

the photos, and

• a some pedestrians around the church.

These images have been taken with verging camera axes and have both positive

and negative disparites - see section 2.3. Also the existence of a laser generated dis-

parity map makes it possible to compares its results vs. binocular stereo algorithms

- see chapter 11.
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Figure 3.28: IGN main set:Image size: height 3526, width 4800

Figure 3.29: IGN main set:
Left: laser range scanner disparity map - Right: manual input disparity map.
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Figure 3.30: Amiens 01: working window
Image size: height 800, width 800,
minimum disparity -42 pixels, maximum disparity 87 pixels,
Image window: (c:106, l:19) - [c:361, l:760] : 274360 pixels
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Figure 3.31: Amiens 01 set:
Left: laser range scanner disparity map - Right: manual input disparity map.
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Chapter 4

Camera Description and Setup

4.1 Introduction

This chapter describes the set up of an experiment: it describes how to

• practically describe a given camera,

• choose the camera parameters,

• set the camera and establish the scene configuration according to these pa-

rameters and

• reconstruct a scene from experimental results.

Firstly, a camera parameter has to be determined: the ratio D1/p. If enough

information is available, it is possible to estimate the pixel size p and use it to

compute D1. However, a procedure is described, which obtains an experimental

value for D1/p, which appears in all formulae and is enough to describe the camera

for a stereo application.

Note that in general neither D1 nor p can be separately determined experimen-

tally These two variables can only be directly determined if:

• D1 is known because

– the camera has a fixed documented focal length or

– the range of the adjustable zoom is known and forced to the maximum

or minimum value - which is rather suited for high-end cameras which

provide accurate feed back on the zoom setting - or

• p the camera manufacturer clearly states either which chip is used or the chip’s

pixel size, but for most cameras this information is not readily available.
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Secondly, the user has to establish a target accuracy for measurements on the

object. Using the camera description, it is possible to check whether the target

accuracy can be achieved or not. If achievable, it will lead to the choice of a view

angle for the camera (ΘMAX) (and thus the value of D1/p, cf. equation 2.2 where

Dchip is n×p), from which the baseline, b, between the two camera positions as well

as the distance at which to place the object to be measured (D2) are calculated.

Finally, having defined the camera and set the experimental configuration, a

practical way of calibrating the camera is given to achieve the desired view angle

and the right object distance. A short description of a procedure for reconstructing

a scene from a computed disparity map is also given.

4.2 Camera Characterization from a Stereo Pair

4.2.1 Introduction

Digital camera manufacturers usually give very little information on the chip they

use inside their devices, especially the ‘consumer’ versions which potentially could

be used to construct economic, portable stereo photogrammetry systems. The size

of a pixel and the position of the camera’s optical centre are needed for determining

the optimum configuration. This section sets out a straight forward procedure for

measuring the actual camera parameters. In most cases it will only be possible to

measure the ratio D1/p, but this is adequate for all the formulae. For zoom lenses,

most manufacturers give a focal length range, (e.g. 3.1mm ∼ 46.5mm) but the

accuracy of this information is unknown and there are generally no mechanisms to

set the lens precisely to any desired focal length.

The procedure described here only depends on the ability to measure a depth

and a distance in the scene, for example from known object sizes, a ruler or a grid

on the background. It also provides the distance between the object and the optical

centre of the camera: with complex lenses, it is very difficult to determine where that

centre is located inside the camera. Examples of the procedure with two different

cameras are given in the following two sections.
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4.2.2 Camera A: PAL format (768× 576), 1/4” sensor

Reported Camera Pixel Size

This camera has a sensor labelled ‘1/4 inch’ in the sales brochures, which is reported

by Parsons1 as a 3.2 mm × 2.4 mm sensor.

The manufacturer’s statement on this camera is a resolution of 800 × 600, but

the maximum resolution available for the user’s picture capture is 768× 5762 i.e. a

square pixel size of:

3.2÷ 800 = 4µm horizontally and

2.4÷ 600 = 4µm vertically.

Note that even though this information is available for this case, it was hard to

find and is not supported by definitive statements from the manufacturer, therefore

the following procedure was needed to confirm the reported figures. Neither the

pixel size, p, nor focal length, D1, can be determined separately but their ratio can

be determined and suffices in all cases.

Description of a sample scene setup: ‘CoinStack’

Two of ‘CoinStack’ sample images (numbers 0 and 4), shown in figure 4.1, were

used in the procedure. A stack of 3 visible New Zealand coins (whose thicknesses

are defined by the Reserve Bank of New Zealand [95]) sits on a banknote with 3

hidden coins below the largest to separate the stack from the background.

Two points at two different depths were chosen and their disparities in pixels

counted: for example, a point on the T of ’Twenty’ and another on the 5 of the

topmost 5 cent coin. The two points are surrounded by white circles on the two

images in figure 4.1 and are labelled ‘T’ and ’5’ in the following discussion. Using

Reserve Bank of New Zealand specifications [95], the height of the stack is:

∆D2 = 19.5mm

The baseline can be read from the position of the right hand edge of the images

1See Parsons’ history of sensors for a description of the norms and a relation between the labels
and actual digital sensor dimensions [96].

2For some cameras, the user’s picture window is surrounded by masked out pixels used for the
camera’s self-adjustment of the sensor’s black level. In this case the ’complete’ resolution of the
sensor is known but a value to be trusted is the actual number of pixels obtained when capturing
a picture, i.e. 768× 576 in this case. Note that the difference is minor and represents few tens of
pixels on several hundreds, i.e. a difference of about 5 %.
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Figure 4.1: left: CoinStack 0 image, right: CoinStack 4

on the ruler - 104.0mm for image 0 and 123.5mm for image 4 - giving:

b = 19.5mm.

It is easy to precisely measure b: in this example every millimetre is represented by

about 7 pixels. The field of view of one camera can be read from the ruler:

FoV = 106.0mm

The two points on image 0 have the following coordinates:

Point Image 0 Image 4 Disparity (pixels)

PT (218, 390) (75, 390) dT = 143

P5 (523, 267) (369, 267) d5 = 154

Note that good precision can be obtained by using viewing software with a zoom

option to determine the points and their disparities.

Using equation 2.5: 



dT · p =
D1 · b
D2

d5 · p =
D1 · b

D2 −∆D2

The value of ∆D2 is known from the height of the coin stack. p, D1 and b can be

eliminated by dividing one equation by the other, leading to a value for the distance
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from the optical centre of the camera to a known scene point:

D2 =
∆D2 · d5

d5 − dT

= 273mm (4.1)

D2 is practically hard to measure as the optical centre lies within the camera itself.

Experimentally it is easier to measure the distance from the object to a known point

on the camera and deduct the distance between this point and the optical centre:

this speeds up subsequent camera setups because the position of the optical centre

(depending on the chosen focal length) usually changes by few millimetres. So a user

can almost ’preset’ the camera at the desired position for the following experiments.

Knowing b and calculating D2, we can obtain the critical camera parameter,

D1

p
=

dT ·D2

b
= 2.0× 103

Assuming Parsons’ data is correct, i.e. p = 4µm, then D1 = 8.0mm for the setting

of the zoom lens used to capture these images.

Theoretical Accuracy Check

A quick approximation to the depth accuracy would be:

d5 − dT = 11 pixels represent ∆D2 ' 19.5mm

i.e.

δD2 = 1.77mm · pixel−1

Using equation 2.7, with both distances, i.e. D2 and D2 −∆D2:

δ(D2 −∆D2) ' 1.66mm < 1.77mm < δD2 ' 1.92mm

which shows that the quick approximation to the accuracy lies between the accura-

cies obtained theoretically, confirming the validity of the theoretical analysis.

Experimentally, it is easy to measure accurately two points in the scene and

derive the camera parameters and distances from these two points. In this case,

readily available objects (coins) were used so that the depth difference between the

two points was known.
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4.2.3 Camera B: 4MPixels (2288× 1712), 1/1.8” sensor

The same process was used with the second camera: a stereo pair was taken of a

scene with known depths and corresponding disparities, see figure 4.2; the baseline

is b = 20mm.

This coin stack contained 4 × 1 dollar coins: the height of the stack, ∆D2 =

10.96mm. The two chosen points were: on the background at the corner of the ’T’

of ’Twenty’ and on the crown on the 1 dollar coin; each is surrounded by a white

circle in the two images in figure 4.2.

Point Left Image Right Image Disparity (pixels)

PT (571, 1155) (1046, 1157) dT = 475

Pc (902, 546) (1392, 548) dc = 490

The camera is sold by the manufacturer as a:

• 4.13 million pixels

• with a 1/1.8” sensor given by Parsons [96] to be 7.2 mm × 5.3 mm.

Practically, the camera returns 2288 × 1712 = 3917056 pixels pictures in its

biggest resolution.

Not knowing the exact gross resolution but only the gross number of pixels, one

can guess the pixel size as:

• the sensor’s area is 7.2× 5.3 = 38.16mm2

• one pixel area is
38.16

4.13 · 106
= 9.24 · 10−6mm2

• one pixel is
√

9.24 · 10−6 ×
√

9.24 · 10−6 ' 3.0µm× 3.0µm

Note this strengthen the fact that except rare cases where a camera is completely

known, one has to use trusted values like the maximum returned picture resolution

in raw mode and calibrate using the D1/p ratio, manufacturers usually do not give

enough information to be sure of the pixel size or a precise enough feedback for focal

length.

D2 and D1/p are given by:

D2 =
∆D2 · dc

dc − dT

' 358mm (4.2)

D1

p
=

D2 · dT

b · (b) ' 8.5× 103

If p is known - p = 3.0µm - then D1 = 25.5mm.
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Figure 4.2: Left: CoinStack2 image 0; Right: CoinStack2 image 4

4.2.4 Summary

This section sets out a method for describing a camera when the required technical

specifications are not available. A simple experimental procedure determines the

ratio, D1/p, which appears in all formulae, from a pair of images. Values of D1 and

p separately are not needed.

For cameras equipped with zoom lenses, this protocol could be used to determine

ranges for (D1/p), as well as the associated half view angle, Θ,

tan ΘMAX =
n · p
2 ·D1

i.e.

ΘMAX = arctan
n · p
2 ·D1

which could be used as a guide to setting up the experiment.

Note that in both cases it is difficult to have clear statements of the camera’s

details: one can only rely on the maximum number of pixels actually captured by

the camera and experimentally determine the D1/p value. In most cases only partial

information is given and only verifiable values are to be trusted.
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4.3 Experiment Setup

4.3.1 Introduction

Now that the camera has been described - its D1/p ratio is known - one needs to

determine parameters for the configuration to be used for photogrammetry: the

baseline, b, and the object distance, D2, which achieve the target accuracy (or to

know that this accuracy is not achievable with that camera).

4.3.2 Description

This part describes an experiment’s set up through the example of the shell mea-

surement. The shell to be measured has an extent of about 20mm and the target

accuracy is δtarget = 0.5mm using Camera A.

We know that 3.1mm ≤ D1 ≤ 46.5mm from the camera specifications. ΘMAX

is given by equation 2.2. The common field of view is expressed as a function of the

object extent: a = ρ·20mm where ρ ≥ 1 indicates how many times the object extent

will be seen in the common field of view. A larger ρ leads to a smaller maximum

disparity and faster processing.

The best accuracy obtainable for given camera parameters is given by equa-

tion 2.15:

δD2limit
=

4 · p · ρ · a ·D1

µ2

where µ = (n− 1) · p. Substituting for µ, we obtain:

δD2limit
=

4 · ρ · a ·D1

(n− 1)2 · p (4.3)

One needs to be able to constrain the search for values for the different adjustable

parameters of the experiment. From equation 4.3, D1/p and ρ can be determined:

D1

p
=

δtarget · (n− 1)2

4 · ρ · a

ρ =
δtarget · (n− 1)2 · p

4 · a ·D1

Using ρmin = 1, we can determine

(D1/p)max =
δtarget · (n− 1)2

4 · a = 3676
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(D1/p)min is the minimum value achievable with a given camera. In most cases,

this will have to be determined experimentally using the procedure outlined in sec-

tion 4.2.

Determining the experiment’s parameters

Computing δtarget − δD2limit
within the defined search range leads to figure 4.3.

Two considerations affect the choice of values for D1 (or D1/p) and ρ:

• choosing larger values for D1/p (equivalent to larger values for D1, since p is

always fixed) may reduce image distortions due to wide view angles,

• choosing larger values of ρ reduces the maximum disparity of the object and

decreases processing time which usually has a time complexity linear in the

disparity.

From here on, ‘user’ will denote the values chosen by the user for D1 (or D1/p)

and ρ from the possible values, for instance:

• for camera A, D1 should be large enough to avoid distortions, so choose

D1user = 10mm (or D1/p large enough ' 2000),

• to reduce processing time, use the largest ρ possible - ρuser ' 2 for the chosen

D1user.

Fixing the ‘user’ values, it is possible to compute D2user and buser from equa-

tions 2.11 and 2.13 knowing ρuser and D1/p.

Thus, reading from figure 4.3 the experimental configuration should have:





(D1/p)user = 3.3× 103

ρuser = 2

D2user = 17.1mm

buser = 4.0mm

4.3.3 Summary

This section described the procedure for obtaining practical values for D1/p, ρ, D2

and b through the shell example. The target accuracy, δtarget, is used to determine

if the camera is suitable and leads to the choice of (D1/p)user (effectively the setting

of the zoom lens when one is used) and ρuser which leads in turn to the values for

D2user and buser using the formulae given in the geometry chapter.
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Figure 4.3: δtarget− δD2 as function of ρ and D1: Note that in this particular case,
a value for p was known, enabling the directly physically meaningful (and smaller -
values of D1/p tend to be > 103) D1 to be used: in general, D1/p would have to be
used.
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4.4 Camera Setup

4.4.1 Introduction

Digital cameras manufacturers commonly provide a zoom lens without a means

of setting the focal length precisely. Adjustment is usually made with a continu-

ous backward/forward control with no feedback indicating the actual focal length.

Thus one needs to experimentally adjust the camera settings - particularly the focal

length3. In all cases, the use of compound lenses makes the location of the optical

centre uncertain so that the distance D2 between the optical centre and the object

still needs to be set experimentally.

This section describes a practical use of the theory to set the values determined in

the previous section 4.3 where we determined D1 (or D1/p) and ρ and then computed

D2, the distance between the object and the optical centre of the lens. The position

of the optical centre for the lens system was determined by the procedure in section

4.2.2.

4.4.2 Experimental Procedure

Photograph 4.4 shows the experimental setup:

• the camera is mounted on a tripod on a table,

• the object is mounted on a second tripod on the ground.

It is possible to adjust:

• the levels of the heads of both tripods, see photo 4.5, the tripod on which

the camera is mounted has a vertical rack and pinion to adjust and lock its

vertical position,

• the object is attached to a horizontal rack and pinion on top of the lower

tripod, which is used to precisely adjust the baseline.

4.4.3 Satisfying the Epipolar Constraint

To satisfy the epipolar constraint, the rack and pinion on which the object is installed

needs to be aligned so that it moves parallel to the camera’s scanlines. The first

step is to rotate the head of the lower tripod. A small sheet of graph paper with a 5

3Some high-end cameras do have a precise digital focal length adjustment, in which case the
setting of D1 can be skipped
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4.4. CAMERA SETUP

Figure 4.4: Camera and rack and pinion tripods setup

mm grid allows easy location of some points, two arrows are used as references and

two boxes are drawn around two chosen points (see figure 4.6). On the first (rough)
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Figure 4.5: Left: levels on the sliding bar tripod; right: levels on the camera tripod

alignment, the coordinates for the two points on the first image were (..., 303) and

(..., 306) and on the second image (..., 312) and (..., 315). Thus the two images were

not epipolar, but from the position of the two shots and the coordinate differences,

it is possible to calculate the angle to rotate the tripod’s head.

The angular misplacement was 306 − 303 = 3 pixels for a baseline of a few

centimetres. Assuming a pixel size of 4.0µm for camera A leads to a correction

angle,

Θcorr = arctan
(3 · 4.0µm

4cm

) ' 0.02o

The angular error is a small fraction of a degree: a precise rotation table with

a vernier would make it possible to adjust the angle the first time. With this

equipment, on the other hand, the tripod’s head has a rotation scale marked every

5 degrees, which made the adjustment more tedious. After several trials, the two

images in figure 4.7 were obtained: the coordinates for the two points on the first

image were (..., 311) and (..., 310) and on the second image (..., 311) and (..., 310) so

the object was now aligned parallel to the camera’s scanlines.

Note that the adjustment was fairly quick using camera A with 720 pixels on

one scanline (a still capture resolution of 720 × 540 was used for the pictures in

figures 4.6 and 4.7), but the manual adjustment became very tedious with camera
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B which had 2288 pixels on one scanline, making more precise angle adjustment

hardware almost essential for a higher resolution camera.

Figure 4.6: First (rough) alignment of the rack and pinion supporting the object
with the camera’s scanlines

Figure 4.7: Rack and pinion aligned with the camera’s scanlines

4.4.4 Experimental Focal Distance and Object Distance Setup

This section describes three different ways to adjust the camera parameters (D1 and

D2) to satisfy the constraint found in section 4.2.

• Method 1 - one reference point on the background - is the simplest but incom-

plete and needs several iterations before obtaining the desired values.

• Method 2 - two reference points at different known depths - enables one to

obtain the right D2 in one step but needs iteration to obtain the desired view

angle.
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CAMERA DESCRIPTION AND SETUP

• Method 3 - using two calibration shots - is designed to adjust the camera

parameters in a practical way in one step.

Note that it will be necessary to choose a reference point on an object - the point

at which the target accuracy will be achieved. For a ‘deep’ object (one with a large

extent in the direction of the camera optic axes), the accuracy of measured depths

at points further from the camera centres than the reference point will decrease as

1/D. This point will need to be chosen so that the whole of the object (or the region

of interest in a general scene) fits into the common field of view.

These two conditions have to be taken into account when setting the accuracy

target and the object plane position. In this example, the reference point was chosen

in the background plane on which the shell was placed (ensuring that all depths had

at least the target accuracy). This assumption suited the shell because it is a shallow

object: it fits easily into the narrowing common field of view as the distance from

the optical centre decreases.

In all three methods, we know

• b - as it is part of the experiment parameters (see also 2.2.3),

• D2 - it is computed from sections 4.2.2 or 4.2.3 for instance, and

• the ratio D1/p, see sections 4.2.2 or 4.2.3 for instance.

Method 1 - One reference point on the object plane

The first possibility is to calculate the expected disparity of a reference point

(denoted ‘ref’) on the object plane:

dref =
b ·D1

D2 · p

By comparing the measured disparity of the reference point (denoted ‘meas’), dmeas,

with the expected disparity, dref , it is possible to calculate the direction in which to

move the object plane:





if dmeas < dref ⇒ D2meas > D2ref
⇒ D2meas ↘

if dmeas > dref ⇒ D2meas < D2ref
⇒ D2exp ↗

At this point, one only knows in which direction to move the object but not by

how much, so D2 has to be adjusted iteratively: moving the object will also modify

the field of view at the new depth thus both dimensions (D2 and ΘMAX) have to be

adjusted step by step:
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• Adjust D2 in the direction indicated until the required depth is reached.

• Adjust the field of view ΘMAX to the desired value.

• Changing ΘMAX also changes D2 but usually by a few mm only. If the new

values don’t satisfy the accuracy target, then change D2 and then ΘMAX again

until a satisfactory configuration is reached.

Method 2 - Two reference points at different known depths

If a known second point on the object is available, it is possible to calculate how

far to move the object plane to obtain the desired value for D2 (D2ref
). For instance,

in the ”CoinStack” images, the height of the stack is known - see figure 4.8 as an

illustration. Let A and B be two known points on the object. From a first set of

images, measure their disparities dA and dB:

dB =
D1exp · b

D2B

(4.4)

where D2B
is distance from the background to the optical centre of the camera and

D1exp is the distance from the optical centre of the camera to the image plane.

B

A

δD 2

D1

D2B D2A

Figure 4.8: Method 2: Configuration to determine the position at which an object
should be placed when the depths of two different points are known.

Similarly:

dA =
D1exp · b

D2A

(4.5)
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Note that actual values for D1 and b are not needed as their product appears in

both equations and can be eliminated by dividing one by the other to give:

dA

dB

=
D2B

D2B
−∆D2

leading to:

D2B
=

∆D2 · dA

dA − dB

By comparing D2B
with D2ref

, the object can be positioned at the right distance

from the camera optical centre.

Here, the accuracy is determined by errors in dA, dB and ∆D2. dA and dB are

measured on an image to within ±1
2
pixel leading to an accuracy of 0.5% if dA and

dB are about 100 pixels. ∆D2 is read from the tripod’s rack and pinion position to

within ±0.1mm, i.e. 1% if D2 is 13.5mm. So, in this example, the accuracy of D2B

is 2.5%.

This method places the object at the desired distance from the camera’s optical

centre but the field of view angle has to be determined iteratively once the object

is at the right distance.

Note that changing the camera’s focal length to adjust the view angle also moves

the optical centre and D2 might have to be adjusted again, checked and redeter-

mined. The next section presents a technique for adjusting the field of view angle

and distance in one step.

Method 3 - Using two calibration shots

In this method, one moves the camera so as to take two images at two depths

(D2a and D2b
) whose separation, ∆D2ab

= D2a −D2b
, can be measured accurately.

This situation is represented in figure 4.9. Compared to the previous method, this

one uses measurement of the extent of the field of view at two different depths

instead of at a single depth: this enables adjustment of all parameters in one step.

The fields of view at the two depths, Daexp and Dbexp , are read: for example, by

using the image of a ruler (as in the ’CoinStack’ example). The measured values

are: Daexp , Dbexp and ∆D2ab
, see figure 4.4.4 for the two example shots. Looking at

the ruler on the two images shows that Daexp = 51.0mm and Dbexp = 54.5mm; using

reference marks on the camera tripod gives ∆D2ab
= 13.5mm.

Thus, with this configuration, the view angle is:

Θexp = arctan
(Dbexp −Daexp

∆D2ab

)
= 14.5o (4.6)
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A

D
2ab

Da

Db

DaDb −

D
2b

D
2a

Plane a

Plane b

Θ

B

∆

Figure 4.9: Method 3: Configuration to determine the position at which an object
should be placed

Figure 4.10: Two shots at two different depths: only the depth difference needs to
be recorded

Using equation 2.4, the reference (expected) value of the view angle is:

a = 2 ·D2 · tan Θref − b ⇒ Θref = arctan
((ρ · a) + b

2 ·D2

)
= 13.2o (4.7)

If both values are clearly different, i.e. if the field of view at the desired depth leads

to impossible values on the graph in figure 4.3 for ρ, it is necessary to adjust the

focal length of the camera so that the new field of view:
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From figure 4.9:

Dbexp = Daexp + ∆D2ab
· tan Θexp

becomes:

Dbref
= Daref

+ ∆D2ab
· tan Θref

At this stage Daref
is unknown, but can be derived from:

Daexp = D2a · tan Θexp

Daref
= D2a · tan Θref

eliminating D2a from these two equations brings:

Daref
=

Daexp · tan Θref

tan Θexp

and finally:

Dbref
=

Daexp · tan Θref

tan Θexp

+ ∆D2ab
· tan Θref = 49.2mm (4.8)

Knowing both Dbexp and Dbref
, it is now possible to adjust the camera’s focal

length so that the half field of view becomes Dbref
- reading it from a ruler on the

image for instance (see figure 4.11).

Note that Dbref
is calculated at the current distance, D2b

, so it is not necessary to

move the camera at this point, only adjust the zoom lens to obtain the desired focal

length. See figure 4.11 for the photo of the calibration image after adjusting the focal

distance: on the ruler the field of view is ' 116mm− 17mm = 99mm ' 2 ·Dbref
.

Figure 4.11: Calibration image after adjusting the focal distance.
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The current depth:

D2b
=

Db

tan Θexp

= 210mm

If the current D2b
value leads to impossible values for D1 (in general D1/p) on the

graph in figure 4.3 it is necessary to move the object by:

∆D2 = D2b
−D2ref

=
Dbexp

tan Θexp

−D2ref

i.e.

∆D2 =
Dbexp ·∆D2ab

Db −Da

−D2ref
= 39mm (4.9)

After all these adjustments, it is possible to take to shots with a baseline of 40mm

and check that the common field of view is ρ · a = 2 · 20 = 40mm, see figure 4.12.

Figure 4.12: Two shots with a baseline of 40mm to check the common field of view
with the desired depth and focal distance

4.4.5 Summary

This section described methods for configuring a camera and an object to provide

a required depth accuracy, as well as a alignment of the object movement with the

camera’s scanlines when a single camera is translated to take both images.
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4.5 Reconstruction

Now we need to address the question: how does one compute a 3D representation of

the scene knowing the disparity map given as output of the stereovision algorithm?

This is the reconstruction step.

Equation 2.5 may be used to express distance, D2, as a function of the disparity,

d, and the ratio of focal length to pixel size, D1

p
:

D2 =
D1 · b
p · d (4.10)

The disparity map is an inverted representation of the scene in the sense that closer

parts of the scene are represented with lower values than farther parts of the scene.

Distances derived from experimentally determined disparities using equation 4.10

are referenced to an origin lying in the line connecting the optical centres of the

cameras. Appropriate translations to origins in the scene are readily made along

with the ’reflection’ that removes the inversion in the disparity map when necessary.

In applications like obstacle avoidance, the camera optical centres may be a ‘nat-

ural’ origin, making further corrections unnecessary. A simple program can take a

disparity map, the camera parameters and distance to the scene origin and compute

a 3D representation of the scene.

Figure 4.13 shows an example (taken from Chan et al. [49] of a reconstruction.

It includes the original left and right images, the computed disparity map using

the SAD algorithm with a window radius of 4 and the 3D Model derived from the

computed disparity map.
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4.5. RECONSTRUCTION

Figure 4.13: Top: Left and right image pair.
Bottom: disparity map using SAD with a radius of 4 and the corresponding
reconstructed 3D Model.

Note that in this figure , the reconstructed model has been rotated for easier visu-
alization of the 3D structure (of the nose for instance). The pixels not belonging to
the face have been masked out median filtered and the values belonging to the face
have been thresholded, so that outliers were removed and contrast improved. If this
is not done, one incorrect value can lead to an apparently flat face with one point
stepping out of it.
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Chapter 5

Assessing Stereo Algorithms

5.1 Introduction

This experiment measured the performance of several stereo algorithms: Corr1,

Corr2, SAD, Census and Pixel-to-Pixel. Several sets of images were used: Corridor,

Madroom, Map, Sawtooth, Tsukuba, and Venus. Full details of these experiments

have been presented at the Image and Vision Processing Conference New Zealand

2002, [97]: this article is reproduced in appendix C so this chapter simply highlights

the key results.

5.2 Correlation Algorithms

Figure 5.1 shows the results for the three correlation algorithms (Corr1, Corr2 and

SAD) in terms of percentages of good matches versus the increasing window radius.

All three algorithms have very similar behaviours. The biggest differences are

seen for the Madroom set which is a clear outlier with considerably lower matching

success (∼ 30% vs.70% or better) for all algorithms because of its stripes config-

uration. SAD has the same performance as the two other algorithms and would

therefore be preferred as it is computationally cheaper - see section 5.5.
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Figure 5.1: Correlation Algorithms: Percentage of good matches vs. the correlating
window radius.
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5.3 Census Algorithm

Census algorithm performance was plotted against both inner and outer window

radii (α and β respectively), see figure 5.2. After reaching reasonable sizes for the two

windows, the percentage of good matches plateaus and increasing the window radii

does not significantly change the good matches. On the other hand, increasing the

window sizes does decrease the standard deviation of the distribution, i.e. produce

fewer large disparity errors.
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Figure 5.2: Both graphs are plotted versus the inner and outer window radii (β
and α respectively).

5.4 Pixel-to-Pixel Algorithm

The Pixel-to-Pixel algorithm has two main parameters, a cost for an occlusion and

a reward for a match (κocc and κr respectively). These two values do not change

the algorithm timings, only the behaviour of the cost function. Figure 5.3 shows

the good match percentage for the Corridor set versus the parameters (κocc and κr).

Pixel-to-Pixel results show a large plateau for which almost any couple (κocc, κr)

produces similar results - the optimum being found at (κocc = 5, κr = 6).

5.5 Timings and Discussion

Figure 5.4 shows results from timing the algorithms with different parameter choices

and table 5.1 gives their complexity. Pixel-to-Pixel on the right has a single because
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Figure 5.3: Pixel-to-Pixel algorithm, percentage of good matches versus (κocc, κr)
Corridor stereo pair.

Algorithm Parameters Time Complexity
(sec) per point

Census α = 4, β = 3 58.4 O(α2β2∆)
Census α = 7, β = 5 361
Corr1 w = 4 3.9 O(w2∆)

w = 10 20.1
Corr2 w = 4 3.4 O(w2∆)

w = 10 16.6
SAD w = 4 2.0 O(w2∆)

w = 10 9.6
Pixel-to-Pixel ∀(κocc, κr) 1.8 O(∆2)

Table 5.1: Execution time and complexity of the chosen algorithms (w - window
radius; ∆ - maximum disparity)

its computation time does not depend on the value of either of its two parameters

(the reward and occlusion cost). Census, Corr1, Corr2 and SAD were timed with

two different parameter sets, the first for the best number of good matches, the

second for the lowest standard deviation.

• Correlation and Census algorithms have running times depending on the win-

dow sizes: in practical cases a trade off between result quality and computa-

tional speed will be needed. All these algorithms have the same behaviour:

once a reasonable window size is reached, any increase in radius does not sig-

nificantly increase the good match percentage but does decrease the standard

deviation of the given distribution.

• Census is handicapped in software because of its two nested loops to perform
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Figure 5.4: Execution time for the indicated algorithms and parameter choices.

the transform - see table 5.1, its complexity depends on the product of the

squares of its two windows parameters, thus making it slow for traditional

coding. It is better suited for hardware implementation where the nested loop

computations could be performed in parallel.

• Pixel-to-Pixel is the fastest of the tested algorithms and presents the best

quality results. SAD with a window radius of 4 has about the same timing

as the Pixel-to-Pixel algorithm. Corr1 and Corr2 are about twice as slow as

SAD or Pixel-to-Pixel.

5.6 Summary

This chapter presents the basic performance of the algorithms on the original im-

ages using greyscale data. These results were used as benchmarks when assessing the

colour and noise experiments described in later chapters. It appears that on tradi-

tional architectures, dynamic algorithms perform as well or better on both matching
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and speed criteria as other approaches. Although Zabih et al.’s ‘Graph Cut’ algo-

rithm (see 3.2.4) has the best performance in Scharstein and Szeliski’s survey [43],

it is computationally very intensive - ruling it out as a candidate for the real-time

hardware implementations that were the original motivation for this study.

Census does not perform well compared to other algorithms: because of its

potential for simple fast hardware implementation, two experiments were conducted

to see whether it’s performance could be improved - see chapter 6.
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Chapter 6

Census Transform Variants

6.1 Introduction

This chapter describes two variations to Woodfill’s Census algorithm [33]. Both

versions modify the transform in the inner window: the first one weights the different

bits according to their distance to the centre of the inner window while the second

one uses the middle of each inner window’s line instead of the whole window’s centre

as a reference. The first modification does not improve the matching quality and

loses the advantages of the bit patterns given by the original Census transform. The

second one keeps bit patterns but enables them to be computed more efficiently in

a hardware implementation. It also improves matching accuracy.

6.2 Census Hamming Distance Variant

The motivation behind this experiment was to emphasize the importance of pixels

close to the centre of the window by modifying the cost function. The original

algorithm uses the Hamming distance - adding 1 if corresponding bits of the left

and right vectors differ. In this variant, the contribution of differing bits of the

inner window (β radius) transform is weighted depending on the distance from the

centre of the window.

The vector is created in the same way:

ξ′(P (x, y), P ′(x′, y′)) =





1 if I(P ) < I(P ′),

0 otherwise.
(6.1)

However, when comparing the nth bit in the left and right vectors (Vleft and Vright),
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the contribution to the cost is:





1√
x2+y2

if Vleft(n) 6= Vright(n),

0 otherwise.
(6.2)

where x and y are the coordinates of the nth bit relative to the centre of the inner

window. The Hamming distance is replaced by the sum of all these weights.

Figure 6.1 shows the difference in good matches between this variant and the

original Census algorithm: positive numbers imply that this variant performs better

than the original algorithm. In all cases, the difference between the original Census

and this weighted variant are very small: the difference is at most a few percent.

The small improvements (when observed) do not justify the use of this variant -

especially as it is computationally heavier.

6.3 Line-based Transform Variant

This variant alters the Census transform itself and does produce a small - but

significant - increase in matching accuracy for windows above a minimum size. It

is based on the observation that, for corrected images, only pixels along individual

epipolar scan lines should be matching candidates and that neighbouring scan lines

should be used to provide further evidence for a match at a particular disparity

value. Therefore, in neighbouring scan lines, pixels are compared to pixels in those

lines rather than pixels in the current scan line, i.e.the pixel at the centre of the

current window. One can observe that the altered transform changes the basis for

aggregation of matching costs from the typical square window of simple area-based

matching algorithms to a set of lines more typical of dynamic algorithm approaches.

In this line-based transform, the rank transform is derived from the ordering of

pixels within a window relative to the pixel at the centre of the same line in the

window rather than the centre of the full window, see figure 6.2. For rectified images

(i.e. those aligned along epipolar lines), this ensures that pixels are only compared

with pixels in the same scan line for matching purposes.

Formally, the rank transform keeps the same core, except that it is computed

line by line: the ξ defined in equation 3.5 is replaced by:

ξ′(P (x, y), P ′(x, y′)) =





1 if I(P ) < I(P ′),

0 otherwise.
(6.3)
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Figure 6.1: Distance weighted cost function: Differences in percentages of good
matches compared to the original Census algorithm vs. both inner and outer window
radii.
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The reference pixel is in the same column as O, the transform centre, and the same

line as P ′ - see figure 6.2(b) - as opposed to the original algorithm where the reference

pixel is in the middle of the whole window - see figure 6.2(a).

(a) (b)

Figure 6.2: (a) Original algorithm - Window over which the rank transform is is
performed in step 1: all pixels are compared to the central grey pixel.
(b) Line-based variant: pixels in each line are compared to the grey pixels in the
centre of the same line.

Figure 6.3 shows the improvement in the number of correct matches as a function

of the two window sizes, α and β. For small β, the number of matches is smaller or

only marginally larger. This is to be expected because the number of significant bits

in the original census vector is 4β2 + 4β vs 4β2 + 2β for this variant. The difference

is more significant for small β, e.g. for β = 1, the number of significant bits reduces

from 8 to 6 (25%), whereas for β = 5, the reduction is from 120 to 110 (8%).

Note that larger improvements are observed for small values of α which has a

significant effect on computation time, particularly if α can be set to 0, eliminating

entirely the outer summation (and a program loop with its overhead) from equa-

tion 3.5.

Figure 6.4 shows the improvements obtained for all the images tested for varying

values of β when α was set to 0. Improvements are noted for all cases when β ≥
3 although the improvements are small for the Tsukuba images. The Tsukuba

pair’s ground truth has only four significant bits - matching its range of possible

disparity values, but introducing the possibility that quantization errors are affecting

matching.

Note that this line-based variant actually simplifies a hardware implementation

in that the first transform is entirely line-based so that only a window width (2β+1)

of the original pixel values needs to be retained in memory compared to 2(α+β) rows

for the original variant. This results in a significant saving in hardware resources to

implement a real-time matching circuit.
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Figure 6.3: Improvement in correct matches compared to the original transform
vs.the two window radius parameters, α and β.
Image: Corridor
Algorithm: Census - Line-based transform variant

6.4 Conclusion

The original Census algorithm may be improved by modifying the way the internal

transform is performed so that each pixel is compared to the pixel in the middle of the

same line in the window. However, this variant needs reasonable window sizes before

it outperforms the standard algorithm as the window carries less information. It

has the potential for much more efficient hardware implementations as considerably

fewer original pixel values need to be buffered during the compuation. However, as

soon as the outside (correlating) window is used, even though it remains generally

better than the original, the improvement drops to a few percent.

The potential for very efficient hardware implementations suggests that this line-

based variant may be worth additional study. However, in software, I have to point

out that the improvements are not great enough to allow a Census algorithm to

perform better or faster than several other algorithms examined in this work.
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6.4. CONCLUSION

Corridor Madroom Map Sawtooth Tsukuba Venus
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Figure 6.4: Improvement in correct matches using the Line-Based transform over
the original transform for all the images used vs.β: α was set to zero.
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Chapter 7

Robustness to Noise of Stereo

Matching

7.1 Introduction

The goal of this experiment was to benchmark several algorithms against increasing

levels of noise. The ’Corridor’ stereo pair was used because it was generated by a

ray tracer and does not contain any noise - as would be generated by a camera’s

sensor and electronics - see section 3.5.3 for more details. This allowed to precisely

compute the level of noise - of gaussian distribution - to be added independently to

each of the red, green and blue components of the image.

A full discussion of the robustness to noise was presented at the International

Conference on Image Analysis and Processing - ICIAP’03 [98] - and has been bound

in at appendix D. Therefore this chapter simply summarises the work and highlights

the major results.

Note that Koschan evaluated the advantage of using active colour illumination

with his pyramidal block matching algorithm against a single value of Gaussian

noise, see table 3.14, a change in contrast 3.15 and a change in luminosity 3.16

between the left and right image [4].

The noise level of Additive White Gaussian Noise, AWGN, is given by a signal

to noise ratio, SNR, in dB defined as:

SNRdB = 10 · log10

Psignal

Pnoise

where Psignal and Pnoise are the powers of the user and noise signals respectively.

Using ray-traced generated image one can compute the power of the signal and

define the needed power of the noise for a given SNR.
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7.2. CHOICE OF THE ALGORITHMS PARAMETERS

Section 3.5.4 shows several examples of noise corrupted images with different

noise levels. As a reminder, figure 7.1 illustrates the ’Corridor’ with no added noise

and corrupted with two different levels of noise:

Figure 7.1: Left: original Corridor left image,
Middle: Corridor left image with a high SNR (+57dB),
Right: Corridor with an equal part of noise and original signal (SNR=0dB).

7.2 Choice of the Algorithms Parameters

Firstly, from the study in the previous chapter on the behaviour of algorithms -

see chapter 5 - on all the stereopairs, two parameters sets were chosen for each

algorithm:

• for the correlation algorithms - Corr1, Corr2 and SAD - the sets were:

– the window radius producing the highest number of good matches: 4,

– the window radius producing the smallest standard deviation: 10.

• for the Census algorithm:

– the window radii producing the highest number of good matches: (4, 3)

– the window radii producing the smallest standard deviation: (7, 4).

• for the Pixel-to-Pixel algorithm:

– the parameters producing the best results for the noise free set: (κx =

5, κy = 6),

– (κx = 5, κy = 40), see following note for description.
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ROBUSTNESS TO NOISE OF STEREO MATCHING

Note that for Pixel-to-Pixel, the second set of parameters was chosen after noticing

that the first set - even though being the best for noise free images - behaved poorly

with increasing levels of of noise. One of the significant results from this experiment

came from a search for parameters which were more robust to noise - see section 7.4.

7.2.1 Correlation Algorithms Parameters Choice

Chapter 5 summarises the results for the three correlation algorithms on the initial

stereo pairs with no added noise. All three algorithms perform similarly. However,

SAD is clearly the fastest and is not outperformed. A window radius of 4 always gives

the optimum number of good matches percentages. Even for the Madroom pair,

which remains an outlier in terms of absolute match performance, SAD outperforms

the other algorithms.

7.3 Census Algorithm Parameters

For the Census algorithm, from chapter 5: the noise free results for the corridor

stereo pair are shown in figure 5.2. From these results, an inner window radius,

β = 3, and an outer window radius, α = 4, were chosen as producing the best

numbers of good matches. The smallest standard deviations were found for β = 5

and α = 7.

7.4 Pixel-to-Pixel Algorithm Parameters

Except at the boundaries, Pixel-to-Pixel results show a large plateau: values for

(κocc, κr) over a wide range produce similar results, see chapter 5. Initially (κocc =

5, κr = 6) was chosen as producing slightly better results for noise free corridor

images.

Further experiments with other values within the plateau region led to figure 7.2,

which plots the percentage of good matches against increasing levels of noise for

several pairs (κr, κocc). On this figure, the curve labelled ‘Best’ corresponds to the

overall optimum results for all pairs (κr, κocc) at a specified noise level. Even though

(κocc = 5, κr = 6) provides the best results for lower levels of noise, (κocc = 5, κr =

40) always gave results close to the best obtained for any (κocc, κr) pair (‘Best’

curve).
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7.4. PIXEL-TO-PIXEL ALGORITHM PARAMETERS

InfdB 48dB 33dB 18dB 3dB −12dB
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(5, 6)
(50, 6)
(50, 18)
(5, 40)
(100, 30)

Figure 7.2: Percentage of good matches vs. noise for several pairs (κocc, κr).
Images: Corridor
Algorithm: Pixel-to-Pixel
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ROBUSTNESS TO NOISE OF STEREO MATCHING

7.5 Discussion

Using two sets of parameters chosen by different criteria, the performance of each

algorithm against increasing levels of noise is plotted in figure 7.3 (percentage of

good matches) and figure 7.4 (standard deviation). It can be seen that:

• Pixel-to-Pixel with (κocc = 5, κr = 40) clearly outperform any of the other

algorithms both in terms of good match percentages and standard deviation.

• SAD performs as well as the other correlation algorithms and is computation-

ally cheaper.

• Census clearly gives the worst results of the tested algorithms.

InfdB 48dB 33dB 18dB 3dB −12dB

10%

20%

30%

40%

50%

60%

P2P (5, 6)
P2P (5, 40)
Census (4, 3)
Census (7, 5)
Corr1 (4)
Corr1 (10)
Corr2 (4)
Corr2 (10)
SAD (4)
SAD (10)

Figure 7.3: Percentage of good matches: effect of noise on different algorithms.
Images: Corridor with varying degrees of white Gaussian noise added.
Algorithms: all.
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7.5. DISCUSSION
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Figure 7.4: Standard deviation: effect of noise on the Corridor stereo pair for the
indicated algorithms.
Images: Corridor with varying degrees of white Gaussian noise added.
Algorithms: all.
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ROBUSTNESS TO NOISE OF STEREO MATCHING

7.6 Speed

In chapter 5, it was established that Pixel-to-Pixel is the fastest of the algorithms,

although SAD with a window radius of 4 has similar processing times. The results

of this chapter show that Pixel-to-Pixel clearly outperforms SAD in terms of noise

robustness.

Note that Pixel-to-Pixel computation times do not depend on the values (κr, κocc).

7.7 Summary

This experiment showed that Pixel-to-Pixel can outperform the other algorithms,

as long as its parameters have been chosen carefully - a ‘careless’ choice based on

the noise-free images (where almost any reasonable pair of values produces good

results) will perform badly when noise is added. When adding noise, the grey levels

get more and more corrupted. Pixel-to-Pixel uses these levels as a first step to

occlusions detection, hence the need for an adequate choice of occlusion cost and

match reward.

It is worth noting also that Pixel-to-Pixel only processes a line at a time, i.e.

it only needs one line to be buffered at any time. Other window-based algorithms

need to buffer a number of full scan lines determined by the window height (radius

for a square window). This means that the number of memory cells needed by a

hardware implementation is considerably lower.
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Chapter 8

Colour Experiments

8.1 Introduction

This chapter describes experiments where colour information has been used for

matching: the correlation cost functions have been modified in two ways to allow

the use of colour. Following the experiment description, the results are compared

with other approaches found in the literature also using colour for matching. The

two approaches used in this chapter are:

• the combined use of colour: all three colour bands (red, green and blue) were

used in a combination inside the algorithms, i.e. the algorithm operated on a

combination of the three colours:

Costcombined = ∪
c∈(R,G,B)Cost(c) (8.1)

• the separated use of colour: calculations were performed separately on each

colour band and the one providing the best match was chosen:

Costseparated = Best
c∈(R,G,B)Cost(c) (8.2)

Results are presented for the correlation algorithms, comparing the usual greyscale

results versus the combined and separated versions. It would be expected that using

colour should improve the quality of matching because a blue and a red pixel should

not match even though they have the same luminosity. However, one can note the

strong correlation between colour values and greyscale:

Greyscale =
R + G + B

3
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8.2. RESULTS

8.2 Results

Figures 8.1, 8.2, 8.3, 8.4 and 8.5 show the results for:

• combined, separated and greyscale (i.e. standard) versions of the:

• Corr1, Corr2 and SAD correlation algorithms, on the

• Corridor, Madroom, Sawtooth, Tsukuba and Venus stereopairs.

Note that the map stereopair has not been used because it contains no colour.

The Corridor and Madroom sets contain very little colour, therefore the difference

between colour and greyscale processing is not expected to show big differences.
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Figure 8.1: Corridor stereopair: Corr1 (top), Corr2 (middle) and SAD (bottom) -
Good matches (left) and Standard deviation (right).
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Figure 8.2: Madroom stereopair: Corr1 (top), Corr2 (middle) and SAD (bottom)
- Good matches (left) and Standard deviation (right).
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Figure 8.3: Sawtooth stereopair: Corr1 (top), Corr2 (middle) and SAD (bottom)
- Good matches (left) and Standard deviation (right).
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Figure 8.4: Tsukuba stereopair: Corr1 (top), Corr2 (middle) and SAD (bottom) -
Good matches (left) and Standard deviation (right).
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Figure 8.5: Venus stereopair: Corr1 (top), Corr2 (middle) and SAD (bottom) -
Good matches (left) and Standard deviation (right).
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8.3. DISCUSSION

In general, the combined versions present similar results to the greyscale and the

separated versions present lower quality results. However, contrary to expectation,

the differences were very small in all cases. It appears that:

• combining the red green and blue values is not much different from the greyscale

- i.e. another combination of red, green and blue - values and that

• the separated versions provide worse results because the information in the

single chosen colour band is not as useful as in any way of combining the three

colour bands, for instance the greyscale combination.

8.3 Discussion

Different uses of colour for stereo matching have been proposed in the literature

and are discussed here for comparison: notably, Jordan and Bovik and Koschan et

al. - see section 3.2.5 - both claim improvements of the matching quality with the

use of colour. This is contrary to the results presented here, illustrating the strong

correlation between colour and greyscale values. Thus comparing this chapter and

other’s work show that the use of colour is not trivial and needs further careful

study.

8.3.1 Jordan and Bovik

Jordan and Bovik - see section 3.2.5 - used a colour based gradient to qualify a

possible match and did not use colour directly in a matching function. They chose

this method instead of computing zero-crossings on each of the three colour bands

as they contend that each colour band zero-crossing is strongly correlated to the

greyscale ones.

Note that in this kind of approach the colour is used to reinforce the exist-

ing greyscale matches and increase the percentage of unique matches and also the

quality of the matching. However on two different image sets this unique matches

increase has a very large range: from +1% to +163%. This illustrates that colour

contribution to matching is difficult to clearly define, and is strongly dependant on

the situation.

Note that this increase’s range - +1% to +163% - joins this chapter’s results

where the use of colour does not necessarily improve the matching results of an

algorithm.
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COLOUR EXPERIMENTS

8.3.2 Koschan et al.

Koschan - see section 3.2.5 - works on blocks and segments the image into chromatic

and achromatic blocks1: a block is declared as chromatic or achromatic depending

on a threshold percentage of chromatic pixels within this block.

The block matching algorithm modified for chromatic/achromatic blocks was

claimed to perform always better - by 25 30% - than the the standard approach

using greyscale values.

8.4 Conclusion

This chapter described an experiment on the role of colour in stereo matching. Two

different approaches were applied to three correlation algorithms but they lead to

insignificant improvements despite expectations.

¿From other experiments reported in the literature, it appears that the way

colour is used as well as the algorithm itself has a strong impact:

• Koschan et al. reported a 25 30% increase using colour inside a block match-

ing algorithm, showing that different types of algorithms have different be-

haviours with or without colour. The way colour was used - defining chro-

matic/achromatic blocks vs. combined or separated bands - might be the cause

of this improvement.

• Jordan and Bovik use the colour information, i.e. gradients, to increase the

number of unique matches, i.e. select the best match from a number of can-

didates found by the greyscale matching alone, thus increasing the matching

quality. However the impact of this method has a wide range from +1% to

+163%.

The poor improvements made by colour in the combined and separated exper-

iments might result from the combination of correlation algorithms with strong

correlated values between colour bands and greyscale values.

It would appear obvious that failing to use the colour information is ignoring

information which could be used to improve matching. It is possible to propose

(quite realistic) synthetic scenes (an object of one colour on a background of different

colour where the two colours have the similar saturation levels) in which colour

1Intensity and saturation values only were used in the HSI colour space to make this segmen-
tation: the hue value is complex to compute from the RGB values usually obtained from a digital
camera.
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8.4. CONCLUSION

information would be vital to obtaining any matching at all, yet on three sets of

‘real’ colour images, greyscale information produces similar results to that obtained

from colour images. Thus it would appear that further independent experiments are

needed to resolve this issue.
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Chapter 9

Baseline Modification Effects

9.1 Introduction

The baseline is an important, easily adjustable, parameter in a stereo vision con-

figuration. Chapter 2 discusses the geometry and describes the best baseline choice

for a given object at a given depth. This experiment uses MRTStereo’s capability

to generate ray-traced stereo pairs with increasing baselines to study the influence

of the baseline length on matching and to provide experimental confirmation of the

issues discussed in chapter 2.

9.2 Matching vs. Baseline Length

The two algorithms giving the best and reliable results through the whole study were

used: SAD with a window radius of 4 and Pixel-to-Pixel with (κocc = 5, κr = 40).

Stereo pairs with baselines from 10 cm to 90 cm in steps of 10 cm1 were generated

using the MRTStereo software.

As the baseline increases, the range of possible disparities also increases. This

implies that, if edge effects are to be eliminated from the experiments (see section

3.5.2), the central matching window has to be reduced in size. Table 9.1 lists the

number of pixels used in the matching experiments and figure 9.1 shows the per-

centage of good matches versus the baseline length for two algorithms, SAD(w = 4)

and Pixel-to-Pixel(κocc = 5, κr = 40).

From figure 9.1, it is seen that increasing the baseline clearly handicaps the

matching algorithms. As the baseline increases, objects are seen from increasing

angles, this has several effects:

1In the MRT scene description files - see appendix B - the distance unit is cm. Note that the
Corridor set used in the rest of the study was generated with a baseline of 20 cm.
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9.2. MATCHING VS. BASELINE LENGTH

Baseline Number of pixels

10 44280
20 41904
30 39528
40 37152
50 34776
60 32400
70 30240
80 27864
90 25488

Table 9.1: Number of pixels able to be used for each baseline value.
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Figure 9.1: Percentage of good matches (left) and standard deviation (right) for
Pixel-to-Pixel(κocc = 5, κr = 40) and SAD(w = 4) vs. baseline.

• firstly, it increases the number of occlusions, i.e. the number of pixels seen in

one image and invisible in the other one (see figure 3.21 in section 3.5.4 for an

illustration of the occlusions),

• secondly, simple matching algorithms assume that an object reflects rays with

uniform intensity over all angles, i.e. they are Lambertian or perfect scatterers.

For typical scattering (rough) surfaces, the Lambertian assumption holds well

enough over small angles allowing simple matching algorithms to perform well

with small baselines, but as the baseline increases this assumption will become

harder to justify with real objects, and

• thirdly, the number of pixels subtended by a surface on an image plane is a

function of the angle between the surface and the rays from the image through
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BASELINE MODIFICATION EFFECTS

the camera’s optical centre. Again, for shorter baselines and thus smaller

differences in the directions of rays through the optical centres of the two

cameras, this factor only presents a problem for surfaces at high angles to the

image planes. However, as the baseline increases, the ’size’ of a plane projected

onto an image may start to differ significantly even for planes at quite small

angles to the image planes.

The influence of the baseline described by the graphs on figure 9.1 shows that:

• for small values of the baseline, SAD has a slight advantage (1 ∼ 2%) in terms

of good matches percentages against Pixel-to-Pixel. However, comparing the

standard deviation for the two algorithms shows that Pixel-to-Pixel always

has a better distribution than SAD, and

• for increasing values of the baseline, both algorithm have worse and worse

results both in terms of a smaller good matches percentage and bigger values

of the standard deviation.

Note that Pixel-to-Pixel explicitly considers occlusions which explains its better

behaviour with increasing baselines. For small baselines, SAD’s small good match

percentage advantage is because it matches pixels one by one: the view angles are

similar, so correlation works fine. On the other hand, Pixel-to-Pixel optimises a

path on a full line and has a better error distribution, with smaller numbers of large

errors.

9.3 Depth Accuracy vs. Baseline Length

9.3.1 Determination of D1/p

Figure 9.3 shows the value of D1/p determined for 17 points shown in figure 9.2.

These values are also reported in table 9.2) with their corresponding disparity from

the ground truth file. Using distances derived from information in the 3D scene

description file, the D1/p value and the mean computed, leading to:

D1/p = 223.9± 1.6(1σ)

Note that the uncertainty in figure 9.3 comes from the image discretisation or

pixelisation. The points chosen to create figure 9.3 were taken at the intersections

of tiles - see figure 9.2 - for a easy localisation in the 3D scene. These pixels end

up being black or white depending on the predominant colour over the area covered
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Figure 9.2: The blue circle shows the position of the first of the 17 selected pixels:
the remainder are at the intersections enclosed by the dotted line. The inset shows
which pixel of each intersection has been consistently chosen: the lower left pixel.
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Figure 9.3: Mean of the 17 D1/p values: 223.9; the range is: 221.8 to 226.8 and
the standard deviation 1.6.
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by the pixel. This pixel quantisation introduces an error, because the position used

is an integer coordinate whereas the exact position of this intersection could be a

fraction of a pixel away2. A few obvious irregularities due to pixel quantisation are

illustrated in figure 9.4.

Figure 9.4: Examples of pixel quantisation problems seen after magnifying the
floor area of the Corridor scene.

Table 9.2 gives the pixel world coordinates (from the scene description file in

appendix B), left image pixel coordinates, calculated ground truth disparity and

calculated D1/p for the 17 points.

D1

p
=

D2 · d
b

D2 was obtained by projecting in the real world coordinates:

• x: across the corridor,

• y: depth and,

• z: upwards.

the vector:

2For all 17 pixels a consistent position - illustrated in the inset to figure 9.2 - was chosen: the
lower left pixel of the intersection for 17 intersections at different depths.
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• starting from the camera optical centre, Cam(250, 150, 170) and

• pointing at the point at the tile’s intersection, P (x, y, z).

onto the camera optical axis:

• starting from the camera optical centre, Cam(250, 150, 170) and

• pointing at the look point: LP (100, 1600, 100).

The dot product of these two 3D vectors gives the cosine of the angle between

them, this cosine is used to obtain the norm of the projected ray between the camera

and the considered scene point onto the camera optical’s axis:

D2 = ‖−−−−−−−−−−−−→P (x, y, z)− Cam‖ × −−−−−−−−−−−−→P (x, y, z)− Cam · −−−−−−−→LP − Cam (9.1)

Point Point Disparity Calculated
World Image D1/p

Coordinates Coordinates b=10 b=50 b=90 b=10 b=50 b=90

200 150 0 241 110 7.19 35.95 64.71 222.69 222.69 222.69
200 200 0 224 115 6.19 30.95 55.72 222.56 222.56 222.56
200 250 0 211 118 5.42 27.13 48.84 222.11 222.11 222.11
200 300 0 201 121 4.83 24.19 43.55 222.14 222.14 222.14
200 350 0 193 124 4.42 22.14 39.85 225.30 225.30 225.30
200 400 0 187 126 4.01 20.08 36.14 224.36 224.36 224.36
200 450 0 181 127 3.66 18.31 32.97 222.90 222.90 222.90
200 500 0 176 129 3.37 16.85 30.33 221.79 221.79 221.79
200 550 0 172 130 3.13 15.67 28.21 221.92 221.92 221.92
200 600 0 169 131 2.95 14.79 26.62 224.17 224.17 224.17
200 650 0 166 132 2.78 13.91 25.04 224.65 224.66 224.66
200 700 0 163 133 2.60 13.02 23.45 223.39 223.39 223.39
200 750 0 161 133 2.48 12.44 22.39 225.70 225.70 225.70
200 800 0 159 134 2.37 11.85 21.33 226.84 226.84 226.84
200 850 0 157 135 2.25 11.26 20.27 226.81 226.81 226.81
200 900 0 155 135 2.13 10.67 19.22 225.60 225.60 225.60
200 950 0 153 136 2.01 10.09 18.16 223.23 223.23 223.23

Table 9.2: Calculated D1/p values for the 17 chosen points: world coordinates,
pixel position on the left image, disparity and computed D1/p for baselines (b =10,
50, and 90). Values vary slightly due the pixel quantisation problem but are constant
for different baselines. An average of all these D1/p values was used.
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9.3.2 Experimental Accuracy Check

Rewriting equation 2.7 by dividing both the numerator and the denominator by p

to use the D1/p ratio leads to:

δD2 =
D2

2

b · D1

p
−D2

(9.2)

In the Corridor scene description file, the sphere as a radius of 33 cm and is

positionned 290 cm away from the camera’s optical centre.

From the Corridor ground disparity map for a baseline of 50 cm (see figure 9.5

for the pixel positions):

• the closest point of the centre of the sphere has a disparity dmax = 42.4 pixels

and

• the furthest point on the top has a disparity dmin = 36.6 pixels,

i.e. 5.8 pixels to describe a depth range corresponding to the radius of the ball (33

cm). Thus the accuracy at the point halfway between these two is approximately3:

31.5÷ 5.8 = 5.4cm · pixels−1

On the other hand, using equation 9.2 in this situation, with:

• D2 = 261.3± 33cm,

• b = 50cm,

• D1/p = 223.9 from figure 9.3

gives:

δD2 = 6.2cm · pixels−1

The three points chosen for checking are:

• the centre of the sphere and the top of the sphere,

• the middle of the base of the cone and the top of the cone and

• the two first tile intersections used in section 9.3.1.
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9.3. DEPTH ACCURACY VS. BASELINE LENGTH

Figure 9.5: Positions on the sphere used for the accuracy check.

Point Point b=10 b=50 b=90
World Image Comp. Th. Comp. Th. Comp. Th.

Coordinates Coordinates δD2 δD2 δD2 δD2 δD2 δD2

Sphere centre and sphere top
250 107 33 196 145
250 173 66 234 145 27.3 34.5 5.4 6.2 3.0 3.4

Cone base and cone top
150 290 0 152 100

150 320 100 201 100 103.9 115.0 20.7 19.1 11.5 10.4
First tile

200 150 0 241 110
200 200 0 224 115 49.8 49.7 13.0 8.8 7.2 4.8

Table 9.3: List of the 3 chosen accuracy checks in the Corridor scene.

Each of these was checked for three different values of the baseline: 10 cm, 50 cm,

and 90 cm. Table 9.3 shows that computed depth accuracies are close to the theo-

retical ones. Discrepancies are found for some of the values, here again quantisation

problem are an explanation. Also, this test is based on easy to spot - but quite far

apart - points in the image: the discrepancies get bigger with the depth difference

inherent to the object:

• cone: 30 cm,

3This is an approximation because the depth accuracy is a non-linear function of D2.

150



BASELINE MODIFICATION EFFECTS

• sphere: 33 cm and

• tile: 50 cm.

This is designed to get an easy comparison with the theoretical law. It uses a range

to compare to a local, non-linear, law; also explaining existing discrepancies.

9.4 Summary

The results presented demonstrate that, even though increasing the baseline in-

creases the disparity range and thus the accuracy obtainable through the whole

scene, it also degrades drastically the matching quality of the algorithms so it can-

not be simply used in order to improve the accuracy of a given scene.

The experiment also enabled a check of the validity of theoretical accuracy results

given in chapter 2.
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Chapter 10

Fossil Shell Measurement

10.1 Introduction

This experiment was motivated by a need to measure several dimensions on some

plaster casts of fossil shells: it was a practical application of theory described in

chapter 2. The position of the shell which would provide the best possible accuracy

was determined following chapter 4. These casts were fragile and not easily measured

by conventional means - which prompted the request to use photogrammetry to

obtain the dimensions of interest - but this meant that a ground truth disparity

map was not available.

Projecting patterned light onto the scene adds extra information and thus helps

matching. Active illumination - described in section 3.2.6 - was assessed: using a

colour pattern enabled comparisons of standard algorithms on greyscaled images as

well as combined and separated versions of SAD and Corr2 - see chapter 8 - for

colour processing.

10.2 Experiment Setup

The shell is about 20 × 20 mm2, 10mm high and the ridges on the surface of the

shell are about 1mm deep, see figure 10.1.

Chapter 4 describes methods to adjust the camera parameters once the desired

configuration has been determined. Knowing from section 4.2.2 that a reasonable

D1/p for Camera A is ∼ 2.0 · 103 - or D1 = 8mm for a pixel size p = 4µm (see

section 4.2.2) - and using chapter 2, it can be inferred:

• b ' 20 mm from equation 2.13,

• D2 ' 110 mm from equation 2.11
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10.2. EXPERIMENT SETUP

Figure 10.1: Stereopair of the shell with a ruler for measuring. Original image size
is 720× 540 pixels.

• in this configuration the disparity range is about 70 pixels to describe a shell

depth of almost 10mm, i.e. δD2 ' 0.12mm.

Two sets of images were used, differing in the illumination scheme used:

• Set A: using ambient light (sunlight and fluorescent room lighting) - see fig-

ure 10.3 top - and

• Set B: using a colour mask - see figure 10.2 - projected onto the scene - see

figure 10.3 bottom.

Note that the second scheme was designed to overcome the lack of texture in the

white plaster cast - see the active illumination discussion in section 3.2.6 - using the

repetitive colour pattern illustrated in figure 10.2, following Kanade’s proposition

that using colour would further improve active illumination [92]. The pattern was

printed on a transparency and projected onto the shell.

For this chapter:

• SAD(r = 4), SAD(r = 10), and

• Pixel-to-Pixel(κocc = 5, κr = 40)

were used as previous trials had shown them to be reliable and producing the best

results of this whole study. Also
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Figure 10.2: Colour pattern used for the active colour illumination experiment.

Figure 10.3:
Top: Set A, left and right images using ambient light,
Bottom: Set B, left and right images using a colour pattern projected onto the scene.

• Corr2(r = 4) and Corr2(r = 10)

were assessed because of Corr2’s better behaviour with luminosity changes - com-

pared to Corr1 and SAD - see figure 3.3 in section 3.2.1.

To eliminate irrelevant background regions, all results were filtered using the

binary masks in figure 10.4.
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10.3. EXPERIMENT RESULTS

Figure 10.4:
Left: binary mask for set A (ambient light),
Right: binary mask for set B (active colour illumination).

Note 1: No sub-pixel estimation technique was used so that computed disparities

were constrained to integers which adds to the apparent irregularities of the result.

Note 2: Birchfield and Tomasi use post processing steps with Pixel-to-Pixel to

reduce errors. No post processing was used here as it can be used to improve any

processed disparity map and thus could bias the evaluation of core algorithms.

10.3 Experiment Results

Results are presented:

• firstly for set A using the standard versions - i.e. converting the images to

greyscale before processing them - of the algorithms, denoted as ’greyscale

processing’ in the following of this chapter,

• secondly for set B as an illustration of active colour illumination used to assist

greyscale processing algorithms, and

• finally for set B using the modified correlation algorithms (SAD and Corr2)

presented in chapter 8, denoted ’colour processing’ in the remainder of this

chapter.

Note 1: The colour experiments in chapter 8 showed no significant improvement

with either combined or separated use of the colour bands. However, the hypothesis

for the current experiments was that these techniques might assist matching with

active colour illumination of an otherwise weakly textured scene.

Note 2: A standard layout was used for all the the following experimental figures:
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• on the left: the disparity map in pixels,

• on the right: the reconstructed model - see section 4.5 - for which the depth

is given in m,

– for the ambient light image set - section 10.3.1 - the reconstructed model

is directly derived from its corresponding disparity map, because the

matching quality is too low and filtering did not improve the view,

– for the active illuminated image set - section ?? - the reconstructed model

used a filtered disparity map which eliminates physically impossible dis-

parities from the reconstructed view.

10.3.1 Set A: Ambient light using Greyscale Processing

In this section, all images were converted to greyscale, i.e. luminosity, before com-

puting the disparity maps. Figures 10.5, 10.6, 10.7, 10.8, and 10.9 show the com-

puted disparity map and the 3D reconstructed object using synthetic colours - see

section 4.5. Parameters used were:

• SAD(r = 4), SAD(r = 10),

• Corr2(r = 4), Corr2(r = 10) and

• Pixel-to-Pixel(κocc = 5, κr = 40).
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Figure 10.5: Left: disparity map, Right: 3D reconstruction using synthetic colours.
Algorithm: SAD(r = 4)
Images: ambient light shell set.
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Figure 10.6: Left: disparity map, Right: 3D reconstruction using synthetic colours.
Algorithm: SAD(r = 10)
Images: ambient light shell set.
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Figure 10.7: Left: disparity map, Right: 3D reconstruction using synthetic colours.
Algorithm: Corr2(r = 4)
Images: ambient light shell set.

All these results show a very poor reconstruction with no post-processing applied

to them: the ridges are wrongly matched because of their repetitive nature leading

to a completely false 3D map of the shell for all algorithms. As illustrated by

figure 9.1,in section 9.2 of the experiment dealing with the baseline modification

impacts: increasing the baseline does significantly handicap matching algorithms.

Here the disparity range is about 70 pixels and contributes to the poor matching

results.

In the light of these results, active colour illumination of the scene was tried. In

the following section - see 10.3.2 - both greyscale and colour processing algorithms

have been compared on set B stereopair.
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Figure 10.8: Left: disparity map, Right: 3D reconstruction using synthetic colours.
Algorithm: Corr2(r = 10)
Images: ambient light shell set.
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Figure 10.9: Left: disparity map, Right: 3D reconstruction using synthetic colours.
Algorithm: Pixel-to-Pixel(κocc = 5, κr = 40)
Images: ambient light shell set.
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10.3.2 Set B: Active Colour Illuminated Scene

Greyscale Processing

Figures 10.10, 10.11, 10.12, 10.13 and 10.14 show computed disparity maps and

reconstructed objects for:

• SAD(r = 4), SAD(r = 10),

• Corr2(r = 4), Corr2(r = 10) and

• Pixel-to-Pixel(κocc = 5, κr = 40).

Note that the disparity maps show all computed disparities, but, for the re-

constructions, disparity values used have been filtered using bounds derived from

approximate measurements of the shell depth.
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Figure 10.10: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: SAD(r = 4)
Images: active colour illumination shell set.

Using the greyscale processing algorithms on the active colour illuminated scene

does significantly improve matching with the SAD and Corr2 algorithms - especially

with a window radius of 10 - but Pixel-to-Pixel still fails on all the ridges and does

not give any intelligible results.

With a window radius of 4, SAD and Corr2 provide recognisable shell shapes,

and only small parts of the shell are not matched properly with a window radius

of 10. The two main areas of incorrect matching with SAD and Corr2 are on the

bottom left side of the shell which is mainly shaded in the original images.

Even with active colour illumination, Pixel-to-Pixel failed to provide any mean-

ingful matching. The disparity range for these experiments is 70 pixels for both set
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Figure 10.11: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: SAD(r = 10)
Images: active colour illumination shell set.
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Figure 10.12: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: Corr2(r = 4)
Images: active colour illumination shell set.

A and B and is much larger than those in the test images (from 14 pixels for the

Tsukuba pair to 29 for the Map pair). This effect is illustrated in figure 9.1 and

further discussed in chapter 9.

In addition, the repeated patterns of the ridges on the shell have some of the

characteristics of the Madroom set - all algorithms had difficulties matching repet-

itive patterns properly.

Internally Pixel-to-Pixel uses a threshold of 5 intensity levels - on 8 bit images, i.e.

a range of 255 intensity levels - over 3 consecutive pixels to declare a gradient. The
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Figure 10.13: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: Corr2(r = 10)
Images: active colour illumination shell set.
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Figure 10.14: Left: disparity map, Right: 3D reconstruction (non-filtered because
of the low-quality of the matching) using synthetic colours.
Algorithm: Pixel-to-Pixel(κocc = 5, κr = 40)
Images: active colour illumination set.

gradients are part of Pixel-to-Pixeĺs occlusion finding strategy - see section 3.2.3.

This scene of a shell seen from the top is expected to have very few occlusions.

However, figure 10.15 illustrates Pixel-to-Pixeĺs computed occlusion maps both for

set A and B.

To an extent, active colour illumination provides better results even though

Pixel-to-Pixel still does not really perform matching properly:

• for set A: the background - being black and white - is almost entirely inter-

preted as occlusions whereas it is just a flat back ground, and
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Figure 10.15: Occlusion maps using Pixel-to-Pixel(κocc = 5, κr = 40) with its
default threshold for the greyscale gradient.
Left: set A, Right: set B.

• for set B: fewer occlusions are found and are much closer to reasonable ones.

The two other parameters for Pixel-to-Pixel guide the penalty for an occlusion

and the reward for a match. Figure 10.16 shows the disparity map and reconstructed

3D model for set B, where:

• κocc = 150: the penalty was increased as this scene should have is not contain

any significant occlusions,

• κr = 40: following the same strategy, the reward for a match was increased,

and

• Greythreshold = 10: the threshold for the greyscale gradient was also increased.

This choice of Pixel-to-Pixel parameters produces a much more realistic recon-

struction. This shows that Pixel-to-Pixel can perform accurately in different cir-

cumstances but that it is very sensitive to its parameters: without appropriate

parameters it can fail completely. So, for general use, it appears that Pixel-to-Pixel

would need an a priori knowledge of the type of scene to dictate the choice of the

three parameters: the penalty for an occlusion, the reward for a match and the

threshold for greyscale gradients. Here, the best parameters - (κocc = 5, κr = 40)

- deduced from the robustness to noise experiment - see chapter 7 using a precise

ground truth - lead to a complete failure and other values have to be derived to suit

the new conditions.

Note that it is probably possible to further increase the quality of matching for

Pixel-to-Pixel on this specific stereo pair. However, without a ground truth, it is

not possible to assess objectively which parameters lead to the best results.
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Figure 10.16: Left: Disparity map, Right: Filtered 3D reconstruction.
Algorithm: Pixel-to-Pixel(κocc = 150, κr = 40) threshold for the greyscale gradient
= 10. Images: set B.
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Colour Processing, Combined SAD and Corr2

Figures 10.17, 10.18, 10.19 and 10.20 show computed disparity maps and recon-

structed objects for:

• SADCombined(r = 4), SADCombined(r = 10),

• Corr2Combined(r = 4) and Corr2Combined(r = 10) respectively.

As before, the disparity maps show all computed points but the reconstructed objects

have been filtered.
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Figure 10.17: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: SADCombined(r = 4)
Images: active colour illumination shell set.

As already shown in chapter 8, the combined variants of SAD and Corr2 do not

produce any significant improvement in matching. The lack of a ground truth makes

this assessment difficult. However, carefully comparing the disparity maps (and 3D

reconstruction) on figures 10.10, 10.11 on the one hand and figures 10.17, 10.18 - or

10.19, 10.20 for the Corr2 algorithm - on the other shows very similar error patches.
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Figure 10.18: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: SADCombined(r = 10)
Images: active colour illumination shell set.
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Figure 10.19: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: Corr2Combined(r = 4)
Images: active colour illumination shell set.
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Figure 10.20: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: Corr2Combined(r = 10)
Images: active colour illumination shell set.
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Colour Processing, Separated SAD

Figures 10.21, 10.22, 10.23 and 10.24 computed disparity maps and reconstructed

objects for:

• SADSeparated(r = 4), SADSeparated(r = 10),

• Corr2Separated(r = 4) and Corr2Separated(r = 10).
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Figure 10.21: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: SADSeparated(r = 4)
Images: active colour illumination shell set.
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Figure 10.22: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: SADSeparated(r = 10)
Images: active colour illumination shell set.
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Figure 10.23: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: Corr2Separated(r = 4)
Images: active colour illumination shell set.
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Figure 10.24: Left: disparity map, Right: 3D reconstruction using synthetic
colours.
Algorithm: Corr2Separated(r = 10)
Images: active colour illumination shell set.

The separated variant shows the similar behaviour to the combined one, i.e. no

clearly better results are seen by comparing the disparity maps and 3D reconstruc-

tion on figures 10.10, 10.11 on the one hand and figures 10.21, 10.22 - or 10.23, 10.24

for the Corr2 algorithm - on the other.
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10.4 Summary

This chapter describes a practical photogrammetric experiment based on both the

geometry described in chapter 2 and the experiment setup procedures set out in

chapter 4.

The shell was measured to have a height of about 10mm. From the experiments

giving useful results, i.e.figures 10.10 to 10.13 and 10.16 to 10.24, the height in the

reconstructed model is also about 10mm.

This experiment does not have a ground truth, so the comparisons are based on

both the processed disparity maps as well as reconstructed 3D models and rely on

one’s ability to compare these with an expected sea shell shape: it further emphasizes

the need for ground truth, cf. section 3.4, as comparing different results is necessarily

somewhat subjective when relying on the appearance of the reconstructed models.

However, the greyscale processing algorithms on an ambient light illuminated

object clearly do not produce the expected shape of the shell. In contrast, active

colour illumination provides significantly better results. The colour patterns provide

added matching information - distinguishing many regions that would otherwise be

confused.

As in the experiments of chapter 8, the combined and separated colour processing

variants of the correlation algorithms - SAD and Corr2 - did not lead to significantly

better results than their greyscale versions.

Chapter 7 already illustrated the sensitivity of Pixel-to-Pixel to the choice of its

parameters: the best parameters for the tested sets were (κocc = 5, κr = 6), but

(κocc = 5, κr = 40) was significantly more stable against increasing levels of noise.

Here again, in another different situation, (κocc = 5, κr = 40) had to be changed to

(κocc = 150, κr = 40) to obtain useful results. It is thus clear that effective use of

Pixel-to-Pixel requires a priori knowledge of the scene to guide a choice of reasonable

values for its parameters.
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Chapter 11

IGN Aerial Stereo Pair

11.1 Introduction

This chapter presents the results of experiments on the aerial image set described in

section 3.5.11. The images were taken from the air at two different times: the lower

right shows two cars and pedestrians around the church which have moved. The

photos were provided by the MATIS laboratory of the French National Geographic

Institute1 and are rectified i.e. epipolar. Taken from a plane, this set does not

have the parallel camera axes configuration of the other sets used in this study.

Its crossing axis geometry is discussed in section 2.3, where the presence of both

positive and negative disparities is explained.

Note that two disparity maps were supplied with these images: a manual entry

one used as ground truth because of its accuracy - see figure 11.7 bottom - and one

obtained by laser.

Laser-range scanning has been performed by TopoSys GmbH [99]. The sen-

sor [100] is linear and made of 127 optic fibers scanning in different directions every

±14.3o orthogonally to the flight axis. The number of measured points per square

meter changes with the plane’s speed and altitude. The laser generated disparity

map provided by the MATIS laboratory has about one point every 100mm in the

flight direction and one point every 1.20m in the orthogonal direction. Thus this

device measures irregular clouds of points as a function of the depth of the observed

scene. To obtain a dense model, these measures are interpolated, which introduces

some defaults especially close to the buildings. The point measure accuracy is about

100mm, but because of their irregular distribution as well as the interpolation step

it is difficult to give a precision for the dense model.

1Institut Géographique National: IGN
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The manual entry disparity map was produced end of the 70’s, early 80’s by the

IGN and is much older than the laser generated one. Buildings might have been

modified since then, however choosing a subset close to the church makes it easier

to check and the main part of the image has not been modified. Being matched by

hand using stereo-restitution this disparity map has been chosen as our groundtruth,

it’s precision is about 100mm.

Having these two disparity maps enabled to compare automated binocular stere-

ovision with a completely different method - i.e. laser range scanning - for obtaining

depth information.

11.2 Results

Figures 11.1 to 11.5 show results using:

• Corr1, parameters: correlating window height and width,

• Corr2, parameters: correlating window height and width,

• SAD, parameters: correlating window height and width,

• Census, parameters: α and β, and

• Pixel-to-Pixel, parameters: κocc and κr.

on an 800× 800 pixel region of the full images: and the working window enables a

comparison on 274360 pixels.
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Figure 11.1: Algorithm: Corr1
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Figure 11.2: Algorithm: Corr2
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11.2.1 Percentage of Good Matches

This aerial stereopair has the largest disparity range of this study:

• −42 ∼ +87 = 130 pixels vs.

• 14 ' 29 for Corridor, Madroom, Map, Sawtooth, Tsukuba and Venus - see

section 3.5 -

• and 70 for the fossil shell experiment - see chapter 10.

Chapter 9 - figure 9.1 - illustrated the increasing difficulty of matching as the baseline

increased, i.e. increasing the disparity range. This was mainly attributed to:

• geometry: the larger the baseline the less alike the two images become - in-

creasing number and size of occlusions - and

• statistics: the wider matching range increases the chances to chose an incorrect

match.

This was also observed in the fossil shell experiment - see chapter 10 - where

similar matching difficulties were seen, which were partially alleviated when extra

information was added: see the description of active colour illumination in sec-

tion 3.2.6 and results in section 10.3.2.

The results generally show a much lower percentage of good matches: table 11.1

compares the good match percentages for standard values of the algorithms param-

eters for the aerial vs. the Corridor stereopair.

Good Matches (%)
Algorithm Aerial stereopair Corridor

Corr1(r = 4) 19.8 62.9
Corr2(r = 4) 19.6 57.7
SAD(r = 4) 20.0 65.4
Census(α = 4, β = 3) 7.8 64.2
Pixel − to− Pixel(κocc = 5, κr = 40) 7.6 63.6

Table 11.1: Good matches for the aerial vs. the Corridor stereopair for algorithms
using the indicated parameter values.
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11.2.2 Ordering Constraint:

Church Tower

A typical problem of stereopairs taken with a large baseline is illustrated in fig-

ure 11.6. Aerial images are taken from about 1000m and need a large enough base-

line to obtain a satisfying disparity range. The figure shows the the region around

church tower on the left and right images and illustrates the two main problems of

this situation:

• the images show different faces of the tower and

• neighbouring regions are completely different.

This illustrates an exception to the ordering constraint - i.e. a point on one side

of an object in one image is on the same side of this object in the second image, see

section 3.2 - assumed by all algorithms used in this thesis.

Figure 11.6: Magnified section of IGN images showing the region around the church
tower.
Note that the tower shows different faces in the two images. Also a region on one
side of the tower in one image is on the other side of it on the other image.

11.2.3 Laser Generated and Manual Entry Disparity Maps

Comparison

Comparing the two disparity maps in figure 11.7, it is notable that the laser gener-

ated map gives blurred edges whereas the manual entry map gives accurate data to
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use as ground truth. Figure 11.7 shows the error distribution for the laser generated

disparity map compared to the manual entry one, it is characterized by:

• 33.2% of good matches,

• a standard deviation of 5.99 and

• an error range from -63 to +68 pixels.

Compared to automated stereo matching algorithms studied here, laser range

scanner imaging gives a higher percentage of good matches, a narrower distribution

and a smaller error range. However, this study’s scope was biased towards algorithms

with a potential for real-time and hardware implementation, thus other more recent,

but much more complex algorithms, like Zabih’s graph cut variants [34] should

also be compared before generalizing this conclusion to all automated matching

algorithms.

Algorithm Good Matches (%) Std. Dev. Range

Corr1(r = 4) 19.8 20.7 −106 ∼ +122
Corr1(r = 10) 18.7 19.2 −73 ∼ +122
Corr2(r = 4) 19.6 26.0 −119 ∼ +123
Corr2(r = 10) 18.1 24.8 −89 ∼ +122
SAD(r = 4) 20.0 19.3 −101 ∼ +122
SAD(r = 10) 20.4 16.1 −74 ∼ +120
Census(α = 4, β = 3) 7.8 23.9 −98 ∼ +122
Census(α = 7, β = 7) 8.4 20.4 −91 ∼ +122
Pixel − to− Pixel(κocc = 5, κr = 40) 7.6 20.1 −106 ∼ +119

Laser generated disparity map 33.2 6.0 −63 ∼ +68

Table 11.2: Comparison of several binocular stereo algorithms vs. laser range scan-
ning.

With this wide disparity range - 130 pixels - Pixel-to-Pixel does not outperforms

the correlation algorithms. It has already been shown that it is very sensitive to the

choice of its parameters (cf. Chapter 10), and once again, κocc = 5, κr = 40 does not

perform well on this stereo pair.

Other parameter values: κocc, κr as well as the greyscale threshold for gradients

have been tried outside the usual range of this study, table 11.3 reports these results.

The trials for other parameters for Pixel-to-Pixel - see table 11.3 - do not show

significant improvement, so the laser generated disparity map has been compared
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Figure 11.7: Disparity maps for the selected region of the IGN stereoset:
Top: laser generated map
Bottom: manually generated map.

to the SAD(r = 10) computed one because it is the binocular stereo algorithm

providing the highest number of good matches as well as the smallest standard

deviation:
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P2P (κocc, κr, gthr Good Matches (%) Std. Dev. Range

P2P (5, 60, 5) 7.9 23.5 −109 ∼ +120
P2P (5, 80, 5) 8.3 26.7 −107 ∼ +120
P2P (225, 2, 5) N/A N/A N/A
P2P (225, 60, 5) 10.5 23.7 −110 ∼ +120
P2P (225, 80, 5) 10.9 26.8 −107 ∼ +120
P2P (300, 2, 5) N/A N/A N/A
P2P (300, 60, 5) 11.4 23.6 −110 ∼ +120
P2P (300, 80, 5) 11.7 27.1 −107 ∼ +120
P2P (5, 60, 10) 7.8 23.8 −109 ∼ +120
P2P (5, 80, 10) 8.1 27.0 −107 ∼ +120
P2P (225, 2, 10) N/A N/A N/A
P2P (225, 60, 10) 10.7 24.2 −110 ∼ +120
P2P (225, 80, 10) 10.8 27.1 −107 ∼ +120
P2P (300, 2, 10) N/A N/A N/A
P2P (300, 60, 10) 11.6 24.0 −110 ∼ +120
P2P (300, 80, 10) 11.8 27.1 −107 ∼ +120
P2P (5, 60, 20) 8.1 24.4 −109 ∼ +120
P2P (5, 80, 20) 8.2 27.5 −107 ∼ +120
P2P (225, 2, 20) N/A N/A N/A
P2P (225, 60, 20) 11.0 24.4 −110 ∼ +120
P2P (225, 80, 20) 11.0 27.7 −107 ∼ +120
P2P (300, 2, 20) N/A N/A N/A
P2P (300, 60, 20) 11.6 24.2 −110 ∼ +120
P2P (300, 80, 20) 12.0 27.4 −107 ∼ +120
P2P (5, 60, 50) 8.7 24.6 −110 ∼ +120
P2P (5, 80, 50) 8.9 27.8 −110 ∼ +120
P2P (225, 2, 50) N/A N/A N/A
P2P (225, 60, 50) 11.3 24.6 −111 ∼ +120
P2P (225, 80, 50) 11.1 27.8 −111 ∼ +120
P2P (300, 2, 50) N/A N/A N/A
P2P (300, 60, 50) 12.0 24.7 −111 ∼ +120
P2P (300, 80, 50) 12.0 27.6 −111 ∼ +120

Table 11.3: Good matches percentage, standard deviation and error range for
different values of Pixel-to-Pixel parameters.
’N/A’ denotes parameters values for which Pixel-to-Pixel cannot match at all.

• firstly, in figure 11.8 showing the two different error distributions, and

• secondly, in figure 11.9 illustrating the disparity error values with their loca-

tion: it shows the point difference between the groundtruth map on the one

hand and the laser generated and SAD(r = 10) computed maps on the other
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hand. Darker values show small errors, the ranges of the two images have been

normalised so that the colour used for an error value is the same.
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Figure 11.8: Aerial subset.
Left: SAD(r = 10) error histogram
Right: Laser generated disparity error histogram.

From figure 11.9 one can verify that the laser generated map has less errors

dealing with failure to meet the ordering constraint around the church tower, whereas

SAD, in particular, and most of the other algorithms cannot deal with this situation

because they are implicitly based on this constraint. Also, most of the differences

between the laser generated disparity map and the SAD(r = 10) computed one

may be explained by the occlusions coming from the side walls of the church. These

occlusions handicap algorithms like SAD whereas the laser method is not sensitive

to such problems.
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Figure 11.9: Aerial subset.
Top: SAD(r = 10) error position
Bottom: Laser generated error position.
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11.3 Summary

In all cases, the percentage of good matches was less than 20% using the ±0.5 pixel

criterion for a good match, instead of 60% to 90% on other sets of images, and the

standard deviation is ∼ 20 against 10 or less for the other sets.

For the binocular stereo algorithms:

• in terms of good matches percentage:

– the best is SAD with 20.4%,

– the worst is Pixel-to-Pixel with 7.6%

• in terms of standard deviation:

– the best is SAD with 16.12,

– the worst is Corr2 with 25.97.

A clear example of a situation violating the ordering constraint has been illus-

trated. Stereovision algorithm are getting more and more accurate, Scharstein and

Szeliski report more than 90% of good matches for Zabih et al. graph cut algorithm.

However, all current algorithms use, at least implicitly this constraint. The next step

for binocular stereo vision is to take into account situations where this constraint is

not valid.

Having both a manual entry disparity map used as a ground truth and laser

generated map also enabled a comparison of the studied binocular stereo algorithms

with a different depth recovering method. It has been shown that the laser generated

disparity map is of much better quality: 4 times more good matches, much smaller

standard distribution of the error and a smaller error range. However, the because

the algorithms chosen for study here remain in the scope of real-time and efficient

hardware implementation, further comparisons with Zabih et al. Graph Cut - re-

ported by Scharstein and Szeliski as the best current performing algorithm - would

be needed to assess binocular stereo vs. laser. This also emphasizes the ordering

constraint problem: the laser generated map gets most of the church tower right

except for the sharp point at the apex, whereas stereo algorithms have very few

chances of matching it properly as it shows two different faces and clearly breaks

the ordering constraint.
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Chapter 12

General Conclusion

Practical use of stereovision devices need an accuracy measure. The relationship

between depth accuracy and camera configuration for the parallel camera axis con-

figuration was studied leading to a relation between the absolute accuracy and the

scene and cameras parameters. It was also extended to describe static measurement

experiences setup and illustrated in the shell experience. A relative accuracy was

also introduced for the case of dynamic situations like obstacle avoidance.

An initial assessment of the algorithms was performed as a reference. It was

designed to qualify the algorithm’s behaviour vs. their parameters, essential results

are reproduced in table 12.1.

• Pixel-to-Pixel best performing parameters were found as (κocc = 5, κr = 6).

• Correlation algorithms (Corr1, Corr2 and SAD) were found to have an optimal

- good matches / processing time - window radius of 4. Increasing the window

radius might slightly decrease the percentages of good matches but improves

the error distribution. However, large correlation windows get very slow to

process. The simplest correlation algorithm - SAD - was found to be almost

as fast as Pixel-to-Pixel.

• Census optimal set of parameters was (α = 4, β = 3). It behaves like correla-

tion algorithms in the way that increasing its window sizes slightly decreases

the good matches percentage but reduces the error distribution. Census was

by far the slowest, however it was coded on a standard PC whereas its bit

patter use makes it a good choice for hardware implementation.

Because Census was the slowest and not as good performing as the other algo-

rithms, two variants have been evaluated. The first one modified Census’s costs by

weighting them with their distance to the centre of the window. Computing a ’float’
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Algorithm Percentage of good matches Complexity
Corridor Map Sawtooth Tsukuba Venus

Census(4, 3) 64.3 83.0 85.9 62.4 85.6 O(α2β2∆)
P2P (5, 6) 64.8 75.8 85.6 74.6 80.4 O(∆2)
Corr1(4) 62.9 79.7 82.8 70.5 82.3 O(w2∆)
Corr2(4) 57.7 79.5 82.7 71.0 83.4 O(w2∆)
SAD(4) 65.4 80.8 83.4 69.2 81.8 O(w2∆)

Table 12.1: Initial results for the algorithms

distance inside the bit patterns of the Census algorithm affects its performance for

hardware implementation. This approach did not show clear modifications of the

Census results, it only changed the good matches percentages by a few percent both

positively and negatively. The second one modified the way the bit patterns are

formed inside the window, instead of comparing each pixel the the centre of the

window, it compared them to the middle of their own line. This method showed

most improvements - up to 17% - when not using the outer window at all and with a

large enough inner window - at least a radius of 3 - as this method generates smaller

bit patterns: one pixel is used as a reference in the original transform, several - i.e.

as many as the window’s height - are used in the variant.

Assessing stereo algorithms robustness to noise is a seldom tried experiment.

Even when performed it is usually against a single value of signal to noise ratio.

This information is vital if designing a stereo vision system. An experiment starting

from a ray-traced image - i.e. noiseless - and corrupting it by carefully computed

levels of additive white Gaussian noise was conducted.

• Pixel-to-Pixel performed best as long as its parameters were chosen correctly.

The initial set, (κocc = 5, κr = 6), based on the noiseless - or near noiseless

- images performed poorly against increasing levels of noise. A comparison

of parameter sets against the overall best values led to the choice of (κocc =

5, κr = 40) as the most robust set against noise.

• Up to a SNR of 15dB Pixel-to-Pixel clearly outperforms the other algorithms

of this study, and stays very stable up to a level of 33dB.

• Other algorithms do not show much differences, SAD is the second best and

Census the worst both in terms of good matches percentages and error distri-

bution.

Situations can be proposed where colour information would be essential, i.e. a red
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and a blue pixel should not match even though they have the same intensity. This

study tried two different approaches on the use of colour for correlation algorithms:

• separated: performing the algorithm on each colour band and select the best

result, or

• combined: performing the algorithm on a combination of the colour bands.

These two approaches showed no real improvement vs. standard greyscale processing

thus emphasizing the strong correlation between colour bands and intensity values.

However, methods which improve upon greyscale matching have been reported in

the literature, namely: colour block matching by Koschan et al. and the use of a

colour gradient to qualify matching candidates by Jordan and Bovik. Koschan et al.

claim a 25 ∼ 30% improvement of the matching. Jordan and Bovik claim between

a few percent and +163%, such a range emphasizes the ambiguity of colour use:

further research would be needed on these method to clearly evaluate the use of

colour for stereo matching.

Although analysis suggests that increasing the baseline also increases the depth

accuracy, this study highlighted practical problems introduced by larger baselines,

i.e. :

• occlusions increase thus penalising the quality of matching,

• simple matching algorithms assume Lambertian or perfect scatterers surfaces,

but increasing the baseline makes it harder to justify this assumption,

• increasing the baseline also increases the difference in pixels of the subtended

surfaces.

This experiment used Pixel-to-Pixel and SAD as the two best candidates over this

whole study. The range of baselines used was from 0.1m to 0.9m, the number

of pixels in the processing window ranged from 44280 to 25488 respectively and

the percentage of good matches from almost 70% to 20 ∼ 25%, with a standard

deviation between 0.5 and 18. This experience was also used to experimentally

verify the accuracy given in the geometry study.

Stereo vision can be used as a non-invasive way of measuring objects. Following

the geometrical study and setup descriptions a stereo pair of a fossil shell was taken

both under normal lights conditions and with a colour pattern projected onto it.

Active illumination - monochromatic or colour - has been reported in the literature

- Kanade et al. and Koschan et al. - as clearly improving matching results. In

this experiment also algorithms performed better on the active colour illuminated
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set than on the ambient light one even though no ground truth was available to

precisely quantify the improvement. The parameter set chosen for Pixel-to-Pixel as

the best against noise - (κocc = 5, κr = 40) - did not provide nearly good results.

This showed that Pixel-to-Pixel is really sensitive to the choice of its parameters.

Finally (κocc = 150, κr = 40) was found as providing better results.

Another real experiment has been conducted using an aerial rectified stereo pair

provided by the MATIS laboratory from the French national geographical institute

(IGN). Two depth maps were given: a manual entry one and one obtain from laser

range scanning. The manual entry depth map has been used as a ground truth

to compare the stereo algorithms of this study vs. a different method: laser range

scanning. The chosen subset illustrated a situation breaking the ordering constraint,

where laser range scanning performs accurately and stereo algorithms are at a loss.

Also occlusions due to building walls for instance introduce matching errors for

standard algorithms whereas laser range scanning provides better results. The best

algorithm - SAD - showed 20% good matches percentage with a standard deviation

of 16 and an error range of 195 pixels, −74 ∼ +120, vs. 38% good matches percentage

with a standard deviation of 6 and an error range of 131 pixels, −63 ∼ +68, for

laser range scanning.
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Further Developments

Using colour information for matching seems obviously reasonable: a blue and a

red point should not match even though they have the same intensity. However,

the literature and this study illustrate a need for a complete evaluation of the use

of colour to improve matching quality by reporting opposite results. Using colour

means increasing the computational cost, therefore one wants to make sure that

using colour will consistently improve the matching quality: this study showed no

improvement with the use of colour and literature shows improvements from only a

few percents to +163%.

Both the literature and this study showed a drastic improvement in the quality

of matching when using active illumination - even monochromatic. In the case of

obstacle avoidance, for cars for instance, projecting a ”eye safe” pattern - e.g. infra-

red - would significantly improve the quality of matching. Moreover using colour

does not seem to consistently improve the quality of matching. Thus monochromatic

active infra-red illumination would be an interesting candidate for robust stereo

vision implementation.

The chapter on the aerial stereo pair started a first comparison of binocular

stereo vs. laser generated disparity map. However this problem does not require,

in general, the real-time constraint and more comparison with better performing

algorithms is required: for instance Zabih et al.’s Graph Cut given as the best

performing algorithm by Scharstein and Szeliski but which was not in the scope

of this study. Depths for maps are usually obtained by manual entry, therefore

methods to pre-process data are vital.

Usual approaches to binocular stereovision keep the two cameras fixed - with

parallel or crossing axes - and try to match the pixels on the two images over a

disparity range. However, another approach would be to have the two cameras

to actively scan the scene - adjusting their fixation points. Objects at the fixation

189



point appear at zero disparity in the images presenting the potential to considerably

reduce the range of disparities which needs to be checked.
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Appendix A

StereoLib Software

A.1 Introduction

All the program has been written in ANSI C and been compiled on several environ-

ments like UNIX, LINUX and mostly CygWin1. The main modules are:

• StereoLibConfig configuration file defining the stereo pairs, algorithms and

experiments.

• Census algorithm.

• Correlation algorithms.

• Pixel-to-Pixel algorithm.

• Histogram handles the histogram and metrics functions for the experiments.

• Picture, WorkMatrix, ... handles ppm images and internal float images for-

mats.

• Data structure to handle all different used values: image coordinates, Census

vectors, ...

• Data processing to provide functions like noise generator, endian format, ...

• MemInfo set of memory tracking function for debugging purpose.

• GNUMakefile to compile a program, create the documentation, backup data,

...

Most of the functions and header files are documented in the code itself using

the ROBODoc format. The main feature are briefly described here.

1Cygwin is a Linux-like environment for Windows, see www.cygwin.com
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A.2 Directories Organisation

The standard directories are defined starting from the user given root:

root ’/cygdrive/c/Stereolib/’ containing the StereoLib.conf configuration file -

see section A.3 -, the GNUMakefile and the following folders:

• ColourMaps: containing a list of colour names (the rgb.txt from Emacs),

• Doc: containing the log files generated by ROBODoc2

– html

– rtf

– LaTeX

• Exemples: containing exemple C programs using the StereoLib

• Lib: containing needed libraries

– multiPTC 3 to create X graphic windows.

– Picture XDisplay to manage the windows created by multiPTC

and convert StereoLib ’s buffers to display them.

• Source: containing the source code for StereoLib

• StereoSets: containing the used StereoSets described in StereoLib.conf

– StereoSet name

∗ Experience name

• Algo directory: each algorithm has its own directory having its name (Census,

Pixel-to-Pixel, SAD, ...)

– StereoSet name

∗ Experience name

• Temp directory

2Automating software documentation tool (ver. 4.0.6) , see http://www.xs4all.nl/~rfsber/
Robo/robodoc.html for more information.

3 TinyPTC - www. gaffer. org/ tinyptc
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A.3 Configuration File

The used configuration file is called StereoLib.conf and is in the root directory.

The function StereoLibConfig - in StereoLib.c - is used to read the user

specified file.

The format is the following:

• ’#’ is used for comments,

• Every line should finish with a semi-colon, except comment lines,

• All spaces are ignored, i.e. file and directory names cannot have spaces.

The configuration file should contain as follow:

• ’UNIXFILEFORMAT’ or ’DOSFILEFORMAT’ to choose the format separa-

tor ’/’ or ’\’

• The StereoLib root directory, i.e. ’/cygdrive/c/Stereolib/’

• Three different information lists, lists starts with a ’{’ and ends with a ’}’,

– A list of possible stereosets directories: each line should contain the

stereoset name, the width, height and the window to use, the function

TraceImgWindow in the ImgWindow library can be used for defin-

ing the image processing window, the StereoSetsSize.c example

illustrates the definition of stereosets.

– A list of possible algorithm directories, each line gives an algorithm di-

rectory, an algorithm name and the number of parameters needed by the

algorithm:

∗ if the parameter number is missing it is set 0 by default,

∗ if the algorithm directory or name is missing, it is replaced by a copy

of the other one,

∗ if both are missing they are replaced by ’\0’ (NULL string),

– A list of possible experiments (i.e. Colour, AWGN, Baseline, ...): each

line provides an experience name, an experience indicator, the number of

parameters for the experiment number and a suffix, rules are the same

than for the algorithm information.
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A set of functions in the StereoLibConfig library access the different infor-

mation from the algorithm and experiments. These functions retrieve the different

information using either the number in the list or the name of the algorithm or

experiment.

Note that the directory information is referred to as ’list’ and the name is an

alternative way to describe it, i.e. ’Corr1’ for ’/Correlation/Corr1’; so that the list

directory can be called by a shorter reference name.

A.3.1 StereoSet File Name Format

The filename format for stereosets is inspired from the ’MRTStereo’ file names:

• StereoSet name

– P for pictures,

– D for disparity maps and

– O for occlusion maps,

∗ L for left image,

∗ R for right image,

· Experience name,

· Experience parameters,

· Experience suffix.

A.3.2 Experience Results File Name Format

• StereoSet name

– Algorithm name,

– Experience name,

∗ algorithm parameters,

· Experience name,

· Experience parameters,

· Experience suffix.
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A.4 Algorithms Description

A.4.1 Census algorithm

The main function CensusAlgo sets the right function pointers for the Census

transform function and the vector creation function:

• *CensusRank and

• *ImageVector .

Additional libraries have been developed to handle specific objects related to the

Census algorithms, like individual Census vectors or arrays (concatenated vectors

over a window).

A.4.2 Correlation-based algorithms

The CorrelationAlgo library contains the different correlation algorithms,

CorrelationAlgoCheck is used internally to associate the right function pointer

to *CorrWindow . Several correlation functions have been written for the different

experiments. Function pointers makes it convenient to generate more correlation

experiments. The main function , CorrelationAlgo , has two loops, one looking

for a maximum correlation, the other one to look for a minimum, this is to prevent

having the test inside the loop while running the timing for the program, the choice

is made once and the chosen loop is ran.

A.4.3 Pixel-to-Pixel algorithm

The Pixel2Pixel has the main algorithms functions and uses MatchArray

to handle the cost array of the algorithm and Scanline used to buffer one line of

the image. The main function, Pixel2Pixel , takes as parameters a stereopair,

its working window - see section 3.5.2 - the chosen type of loop (forward, backward

or faster) and the occlusion cost and match reward.

A.5 Histogram

The Histogram handles the histogram creation, saving and reading. The

DispError is used to create the disparity errors histogram as well as several

plots. Finally the LogArray library manages an array of histogram to save the

results of a complete experiment in one file.
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A.6 Images structures

Two main image structures have been created, one to handle the PGM/PPM formats

- Picture - for reading input images and writing easily viewable results. The

second format contains ’double’ floats - WorkMatrix - to keep as much precision

as possible during the processing; functions have been written to convert one format

into the other either for processing or for dumping the results in a viewable format.

A.7 Data

All in all there are lots of different structures to be considered. Some specific to

the algorithms, like the Census vectors, some are shared, like the coordinates (two

integers to represent a pixel position, three floats to save the minimum, maximum

and normalisation factor for a matrix, ...). All structures have been designed with

a constructor and a destructor. Different functions have been implemented to take

care of the eventual endian differences, add noise to the images, apply filters, ...

A.8 Memory Information

The MemInfo library is an encapsulation of the malloc / free functions

for debugging purpose. Linked lists are created with every memory allocations to

keep track of them and check that all memory is properly freed.

A.9 GNUMakefile

A sample GNUMakefile is given, it combines different options from compiling the

software with or without X windows4 window support, create backups, build docu-

mentation using ROBODoc, ...

• Compilation

– prog: makes the complete program using the standard StereoLib library.

– progxdisp: makes the complete program using the standard StereoLib

library and XDisplay libraries.

– clean: removes all object files and libraries files.

4 TinyPTC - www. gaffer. org/ tinyptc - has been interfaced by Picture XDisplay to
display images using X-window.
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– Note that:

∗ The program source and executable name can be overridden using:

· PROGNAME=newprogname

· EXECNAME=newexecname

∗ If the program needs the tiff library add:

· USETIFF=yes

∗ To compile without the assert functions and without the MemInfo

as debugging tool, add:

· GO TIGER=yes

• Backup:

– save: backups the files described in the BACKUPFILES variable,

– The name of the archive and files to backup can be overridden using:

∗ SAVENAME=backupdir/backupname

∗ BACKUPFILES=dirs files.ext –exclude= –exclude=*.bak

– Two variables can also be used:

∗ BACKUPDIR contains the default backup dir,

∗ TIMESTAMP creates a day and time string to concatenate with the

file name.

– The following situations are checked in order:

∗ error if tar is not found,

∗ archive tar and bzip2 ,

∗ archive tar and gzip if bzip2 does not exist,

∗ internal tar bzip2 format (-j) if bzip2 and gzip do not

exist.

• Predefined backup rules:

– savedoc: backups the documentation related files,

– savelib: backups the StereoLib ’s related source files and libraries,

– savestereosets: backups the stereosets used for the different experiments,

– cleansave: cleans all the archive files.

• Documentation:
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– html: makes a html reference directory ./Doc/html, main file is mas-

terindex.html

– cleanhtml: removes files in the html reference directory and the log file

in ./Doc

– rtf: makes a rtf reference file in ./Doc/rtf

– cleanrtf: removes files in the rtf reference directory and the log file in

./Doc

– latex: makes a TeX reference file in ./Doc/LaTeX

– cleanlatex: removes files in the latex reference directory and the log file

in ./Doc

– dvionly: creates the dvi file only in ./Doc/LaTeX, needs to have a TeX

file already made.

– dvi: calls latex to create the TeX file and makes the dvi file in ./Doc/LaTeX

– pdfonly: creates the pdf file only in ./Doc/LaTeX, needs to have a dvi

file already made.

– pdf: calls dvi to create the dvi file and makes the pdf file in ./Doc/LaTeX

– psonly: creates the ps file only in ./Doc/LaTeX, needs to have a dvi file

already made.

– ps: calls dvi to create the dvi file and makes the ps file in ./Doc/LaTeX

– docall: makes all the documents file format using: html rtf latex dvionly

pdfonly psonly

– cleandoc: cleans all the documents directories and log files using: cleanascii

cleanhtml cleanrtf cleanlatex

– cleanall: clean program, documentation and archive files using: clean

cleandoc and cleansave

• Note that:

– help: displays this help

– config: shows the main configuration for the makefile ’(names, directories

and need commands)’,

– the makefile must be started from its directory,

– the documentation is extracted from the source files using ”ROBODoc”

version 4.0.6,
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– once the TeX file created latex and makeindex commands are

needed to create the reference file with an index,

– if the makeindex command is missing a warning is given and the dvi file

is created without the index,

– the pdf format needs dvipdf to create the reference file in pdf format,

– the ps format needs dvips to create the reference file in ps format,

– all needed command must be found in the ’PATH’, if not an error is

generated.
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Appendix B

Corridor Stereo Pair Scene

Description File

B.1 Corridor.msd : main file

// GLOBAL PARAMETERS

// LEFT

vector eyecenter = (250,-150,170),

lookpoint = (100,1600,100);

// RIGHT

// vector eyecenter = (259.963,-149.146,170),

// lookpoint = (109.963,1600.85,100);

COLORRANGE 255

EYEP eyecenter

LOOKP lookpoint

UP (0,0,1)

FOV <30,30>

SCREEN <100,100>

BACKGROUND (0,0,0)

AMB_LIGHT (50,50,50)

// ======= rows of 2 LIGHTS ==============

SPOT_LIGHT (90,255,90) (250,-140,160) (0,280,-190) 15
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B.1. CORRIDOR.MSD : MAIN FILE

POS_LIGHT (150,150,150) (100,250,300)

POS_LIGHT (120,120,120) (300,250,300)

POS_LIGHT (150,150,150) (100,650,300)

POS_LIGHT (150,150,150) (300,650,300)

POS_LIGHT (150,150,150) (100,1050,300)

POS_LIGHT (150,150,150) (300,1050,300)

/// ============== FLOOR =================

// 200x200 area of 50x50cm plates (see tile.inc)

//

TRANS(0,0,0)

INCLUDE boden.inc

TRANS(200,0,0)

INCLUDE boden.inc

TRANS(0,200,0)

INCLUDE boden.inc

TRANS(200,200,0)

INCLUDE boden.inc

TRANS(0,400,0)

INCLUDE boden.inc

TRANS(200,400,0)

INCLUDE boden.inc

TRANS(0,600,0)

INCLUDE boden.inc

TRANS(200,600,0)

INCLUDE boden.inc

TRANS(0,800,0)

INCLUDE boden.inc

TRANS(200,800,0)

INCLUDE boden.inc

TRANS(0,1000,0)

INCLUDE boden.inc

TRANS(200,1000,0)

INCLUDE boden.inc

TRANS(0,1200,0)

INCLUDE boden.inc

TRANS(200,1200,0)

INCLUDE boden.inc

TRANS(0,1400,0)
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INCLUDE boden.inc

TRANS(200,1400,0)

INCLUDE boden.inc

// =============== CEILING =================

SURFACE 8 .2; (200,200,200) .8; (0,0,0) 0, 0; (0,0,0) 0

QUADRANGLE 8 (0,0,350) (0,1600,350) (400,1600,350) (400,0,350)

// =============== BACK ===============

SURFACE 9 0.6; (200,200,200) 0.4; (0,0,0) 0, 0; (0,0,0) 0

QUADRANGLE 9 (0,1600,0) (400,1600,0) (400,1600,350) (0,1600,350)

// =============== WALLS ===============

SURFACE 0 .8; (175,175,175) .4; (0,0,0) 0, 0; (0,0,0) 1

SURFACE 1 .2; (200,200,200) .8; (0,0,0) 0, 0; (0,0,0) 1

SURFACE 2 .5; (70,20,20) 1; (0,0,0) 0, 0; (0,0,0) 1

SURFACE 3 .1; (190,190,190) .6; (0,0,0) 0, 0; (0,0,0) 1

TRANS(0,0,0)

INCLUDE wand.inc

TRANS(0,400,0)

INCLUDE wand.inc

TRANS(0,800,0)

INCLUDE wand.inc

TRANS(0,1200,0)

INCLUDE wand.inc

ROT_Z(180)*TRANS(400,400,0)

INCLUDE wand.inc

ROT_Z(180)*TRANS(400,800,0)

INCLUDE wand.inc

ROT_Z(180)*TRANS(400,1200,0)

INCLUDE wand.inc

ROT_Z(180)*TRANS(400,1600,0)

INCLUDE wand.inc

// ================ OBJECTS ====================

//

SURFACE 5 1; (130,130,240) 0.7; (0,0,0) 0, 0; (0,0,0) 1
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TRANS(250,140,0)

SPHERE 5 (0,0,33) 33

SURFACE 6 .6; (255,100,100) .9; (0,0,0) 0, 0; (0,0,0) 1

TRANS(150,320,0)

CONE 6 (0,0,0) (0,0,100) 30

SURFACE 10 TEXTURE_2D24BIT 0.3; (250,250,250) 1; (0,0,0) 0, 0; (0,0,0) 1; "lena.ppm"

SURFACE 11 TEXTURE_2D24BIT 0.3; (250,250,250) 1; (0,0,0) 0, 0; (0,0,0) 1; "teaset.ppm"

TRANS(51,300,80)

PARALLEL 10 (0,0,0) (0,195,0) (0,0,212)

ROT_Z(180)*TRANS(349,510,100)

PARALLEL 11 (0,0,0) (0,200,0) (0,0,200)

SURFACE 4 .2; (120,85,85) .9; (0,0,0) 0, 0; (0,0,0) 1

TRANS(220, 1100, 0)

SUPERQ 4 (0,0,30) <50,50,30> <2.9,2.9,3.5>

ENDFILE

B.2 Boden.inc : included files

SURFACE 1 .3; ( 0, 0, 0) .7; ( 80, 80, 80) 0, 0; (0,0,0) 1

SURFACE 2 .3; (200,200,200) .7; (200,200,200) 0, 0; (0,0,0) 1

// 4 x 4 tiles, alternating in black and white

// each tile measures 50 x 50 resulting in a 200 x 200 square

// with a black tile in the lower left (at (0,0))

PARALLEL 1 (0,0,0) (50,0,0) (0,50,0)

PARALLEL 2 (50,0,0) (100,0,0) (50,50,0)

PARALLEL 2 (0,50,0) (50,50,0) (0,100,0)

PARALLEL 1 (50,50,0) (100,50,0) (50,100,0)
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TRANS(100,0,0) BEGIN

PARALLEL 1 (0,0,0) (50,0,0) (0,50,0)

PARALLEL 2 (50,0,0) (100,0,0) (50,50,0)

PARALLEL 2 (0,50,0) (50,50,0) (0,100,0)

PARALLEL 1 (50,50,0) (100,50,0) (50,100,0)

END

TRANS(0,100,0) BEGIN

PARALLEL 1 (0,0,0) (50,0,0) (0,50,0)

PARALLEL 2 (50,0,0) (100,0,0) (50,50,0)

PARALLEL 2 (0,50,0) (50,50,0) (0,100,0)

PARALLEL 1 (50,50,0) (100,50,0) (50,100,0)

END

TRANS(100,100,0) BEGIN

PARALLEL 1 (0,0,0) (50,0,0) (0,50,0)

PARALLEL 2 (50,0,0) (100,0,0) (50,50,0)

PARALLEL 2 (0,50,0) (50,50,0) (0,100,0)

PARALLEL 1 (50,50,0) (100,50,0) (50,100,0)

END

ENDFILE

B.3 Wand.inc : included files

///

// WALLS of a room

QUADRANGLE 1 (50,0,350) (50,0,0) (50,150,0) (50,150,350)

QUADRANGLE 0 (50,150,350) (50,150,0) (0,150,0) (0,150,350)

QUADRANGLE 1 (50,250,350) (50,250,0) (50,400,0) (50,400,350)

QUADRANGLE 0 (0,250,350) (0,250,0) (50,250,0) (50,250,350)

// DOOR of a room

QUADRANGLE 2 (0,150,350) (0,150,0) (0,250,0) (0,250,350)

// SIGN of a room

BOX 3 (50.5,280,157.5) <1,10,7.5>

ENDFILE
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Accuracy (IVCNZ’02)
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ASSESSING STEREO ALGORITHM ACCURACY (IVCNZ’02)

Corr1: Normalized In-
tensity Difference

∑(IL−IL)2

∑ I2
L ·∑ I2

R
[Faugeras et al. 1993]

Corr2: Correlation ∑ IL·IR√
∑ I2

L ·
√

∑ I2
R

[Faugeras et al. 1993]

SAD: sum of absolute
differences

∑ |IR − IL| [Faugeras et al. 1993]

Pixel-to-Pixel Dynamic [Birchfield and Tomasi 1998]
Census Census Transform [Zabih and Woodfill 1994]

Table 1: Algorithms used
In the first four algorithms, the summations are taken over all pixels in the matching

windows.

1.4 Method

For each algorithm, we first identified the best set of parameters for
the perfect images. In the first four algorithms, this involved de-
termining the best window size. For Pixel-to-Pixel there are two
parameters the match reward and occlusion penalty. For Census,
there are two ’windows’: the length of the Census vector (α) and
the radius of the correlation window (β ). Once the best parameters
for the perfect images were found, they were used in the noise ex-
periments. Here we first compute the algorithm on perfect images
with different sets of parameter, once the best set found, we submit
it to increasing levels of noise. For every pixel in an image, we use
200x200 windows i.e. 40000 individual error measures

Scharstein & Szelinsky [SZELISKI 2002] used two measures for
comparison: the percentage of wrong disparity pixels for which the
disparity was more than one unit and the root mean square error:

RMS =
1
N ∑

(x,y)

|dc(x,y)−dt(x,y)|2 (1)

We used three metrics: the percentage of accurate disparity pix-
els but we describe the histogram of disparity errors by its mean
and standard deviation.

σ =
1
N ∑

(x,y)

(

(dc(x,y)−dt(x,y))−derr
)2

(2)

wheredc(x,y) is the computed disparity anddt(x,y) the ground
truth disparity at(x,y) andderr is the mean of the disparity error,
derr = dc −dt .

As the formulae show, the difference between the RMS and the
standard deviation is that the standard deviation is centred around
its mean, whereas the RMS takes the bias of the mean. Thus we re-
port both the histogram spread and its mean so as to reveal any bias
an algorithm might show, whereas the RMS merges both factors
into a single metric.

1.5 Results

Initially, we used every algorithm on ‘perfect’ (noise-free) image
pairs with a wide range of parameters. We looked for the parameter
set giving the best zero error fraction value as well as the lowest
standard deviation. Note that these do not always coincide,cf. fig-
ure 2 and figure 3. The following graphs plot zero error fraction
and standard deviation for Pixel-to-Pixel and Census algorithms.

For the Pixel-to-Pixel algorithm, we did not implement the ‘post-
processing’ step: our intention here is to compare the basic area-
matching algorithms. Heuristics such as the scanline to scanline

Figure 2: Pixel-to-Pixel algorithm zero error fraction and standard
deviationvs the two adjustable parameters,κocc andκr
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Figure 3: Census algorithm zero error fraction and standard devia-
tion vs the window size parameters,α andβ

Figure 4: Pixel-to-Pixel and Census algorithms: Disparity error his-
tograms for different SNR values.

post-processing used by Birchfield and Tomasi could be applied by
any other approach.

Once we had determined the best working parameter sets, we
ran the algorithms on noise corrupted images. We ran experi-
ments on increasing amounts of noise until we reached a point
(SNR = −12dB) where the number of correct disparity matches
was the same as that which would have been generated by simply
guessing. Our images have a maximum disparity of 22, so that for a
window containing 40,000 pixels, random guessing would produce
a correct result for 40,000/22∼ 1,800 or∼ 4.5% of pixels. The
SNR=-12dB image in figure 6 shows that very little information re-
mains. Figures 4 show the Pixel-to-Pixel and Census histograms
for noise values from SNR=-15dB to +21dB and +∞ dB. Note that
the Census results show a plateau in matching performance at mod-
erately high noise levels whereas the Pixel-to-Pixel algorithm’s per-
formance continues to drop from an initial high value.

Finally we compared algorithms in terms of zero error fraction
and standard deviation against SNR as a parameter.

Figure 5 shows that most of the correlation algorithms, or corre-
lation related (e.g. Census), have a better robustness to increasing
noise levels with an almost flat section from +9dB to +21dB. The
dynamic approach (Pixel-to-Pixel) performs better on noiseless im-
ages but its performance degrades much faster when noise is added.

Figure 5 shows the spread from the mean in each histogram. All
the standard correlation algorithms (Corr1, Corr2, SSD and SAD)
perform quite well - producing results in a narrow band for all
noise levels. However Census has a wide spread of disparity errors
and Pixel-to-Pixel shows slightly narrower spreads. Again Pixel-to-
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Figure 5: Zero error (left) and standard deviation (right) for all al-
gorithmsvs SNR.

Pixel performs much better with very little noise.
These two graphs show that normalising factors in the correla-

tion formulae do not improve the results and simply add a lot of
computing time (cf. Corr1 and Corr2 formulaevs SAD and SSD).
In fact, the computationally simpler SSD algorithm produces better
results in less time than all other algorithms save that Pixel-to-Pixel
algorithm performs better on ‘good’ (i.e. low noise) images.

The Census algorithm shows a sharp degradation in performance
as noise is added: this is probably due to the fact that the census
transform does not take the distance of a pixel from the reference
pixel into account so that the Hamming distance might be signifi-
cantly perturbed by a few differences due to noise.

2 Conclusion

The metrics we have defined enable unbiased assessments of the
quality of stereo matching algorithms and thus provide an objec-
tive means for designers of new algorithms to compare their re-
sults with previous work. Our initial measurements would seem to
favour computationally simpler algorithms because their matching
performance is roughly equivalent to that of much more complex
and time consuming algorithms. However, Birchfield and Tomasi’s
Pixel-to-Pixel algorithm showed better performance on images with
high SNR’s. From the streaks which appear in disparity maps gen-
erated by Pixel-to-Pixel, it would appear that once it ‘gets lost’,i.e.
calculates a wrong disparity - by choosing a bad path, it becomes
very difficult for it to recover. Thus an error in one region of an im-
age propagates to other regions. Noise increases the probability that
a sub-optimal path will be chosen and this will often be reflected in
poor choices for subsequent pixels on the path.

In future work, we intend to use some better statistical methods
(e.g. χ2) to confirm, for example, that in the plateau region of figure
5 all the algorithms are essentially equivalent in performance and
that the best choice is therefore the computationally cheapest one.
This emphasizes the need for a better descriptive metrics.

We are also interested in using our metrics to evalutate the effect
of colour information on stereo algorithms. Most work to date has
been based on greyscale images. Defined metrics will enable us to
measure exactly any improvement that might appear.

Current work involves a precise understanding of the baseline
distance as well as using the texture to adaptively adjust matching
parameters.It has been found experimentally that the Census algo-
rithm parameters are sensitive to the level of texture of the input
images. Using a texture metric [SZELISKI 2002] we want to adapt
parameters depending on the local texture.

Noise is usually measured by a signal to noise (SNR) ratio ex-
pressed in dB and defined as:

SNR = 10· log10

(

Psignal

Pnoise

)

(3)

whereP is the power. A SNR of 0dB means that the power of the
signal is equal to the power of the noise and increasing the SNR
3dB means doubling the power of the signal.

For a discrete image, we can define the power as the mean of the
squared intensity values:

Psignal =
1

npixels
· ∑

image
I2
p

whereIp is the intensity of a pixel atp.
We now define a Gaussian with parametersµ andσ : N(µ ,σ)

whereµ is the mean andσ the standard deviation. For a centred
Gaussian (µ = 0): the power is defined as the variance of the distri-
bution:

213



214



Appendix D

Robustness to Noise of Stereo

Matching (ICIAP’03)

215
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Philippe Leclercq and John Morris
Centre for Intelligent Information Processing Systems,

School of Electrical, Electronic & Computer Engineering,
The University of Western Australia

Abstract

We measured the performance of several area-based stereo
matching algorithms with noise added to synthetic images.
Dense disparity maps were computed and compared with
the ground truth using three metrics: the fraction of cor-
rectly computed disparities, the mean and standard devia-
tion of the distribution of disparity errors.
For a noise-free image, Birchfield and Tomasi’s Pixel-to-
Pixel - a dynamic algorithm - performed slightly better than
a simple sum-of-absolute differences algorithm (67% cor-
rect matches vs 65%) - considered to be within experimen-
tal error. A Census algorithm performed worst at only 54%.
The dynamic algorithm performed well until the S/N ratio
reached 36dB after which its performance started to drop.
However, with correctly chosen parameters, it was superior
to correlation and Census algorithms until the images be-
came very noisy (∼ 15dB). The dynamic algorithm also ran
faster than the fastest correlation algorithms using an opti-
mum window radius of 4 and more than 10 times faster than
the Census algorithm.

1 Motivation

This work was originally motivated by an attempt to imple-
ment a stereo algorithm in hardware. Zabih and Woodfill
claim that their Census transform is suitable for this [10],
but, noting that there are several major groups of stereo
matching algorithms and many variants of the individual al-
gorithms within those groups, we felt that a feasibility study
to determine which algorithm(s) perform best was needed.
We soon discovered, that there has been little serious ef-
fort to compare algorithms and provide benchmarks for as-
sessing new algorithms or cost-performance trade-off data
which can guide, for example, hardware implementation ef-
forts1. Scharstein and Szeliski[9] provide the first thorough

1The high degree of parallelism present in the matching algorithm
makes stereo matching a classic problem for specialized hardware[7].

Figure 1. Disparity maps produced by the
Census (left) and Pixel-to-Pixel (right) algo-
rithms against the ground truth (centre).

study in this area - comparing over 20 algorithms or vari-
ants on two quality measures. Our work extends theirs by
including assessments of robustness to noise.

When one compares the computed disparity maps in figure
1, it is not at all obvious which algorithm is best. The two
disparity maps have about the same number of correct dis-
parities (62.7% and 62.6%) but the standard deviation indi-
cates that the spread of disparity errors for Pixel-to-Pixel is
less than for Census (1.5vs3.4). Thus metrics that enable
quantitative comparisons are important.

1.1 Algorithms

Stereo matching algorithms are generally classed as area- or
feature-based. This study focuses on basic area-based algo-
rithms: parallel work in our laboratory has assessed feature-
based algorithms[3].

For this study, we chose a small group of basic area match-
ing algorithms: the Pixel-to-Pixel algorithm[1] as a rep-
resentative of the dynamic algorithms and for its ability
to handle occlusions (it is the only one in this study with
this capability) and several correlation-based algorithms,
including the non-parametric Census algorithm[10], which
has features permitting efficient hardware implementation.
The algorithms are summarized in table 1.
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Corr1: Normalized In-
tensity Difference

∑

(IL−IL)2
∑

I2

L
·

∑

I2

R

[4]

Corr2: Correlation
∑

IL·IR
√

∑

I2

L
·

√

∑

I2

R

[4]

SAD: sum of absolute
differences

∑

|IR − IL| [4]

Pixel-to-Pixel Dynamic [2]
Census Census [10]

Transform

Table 1. Algorithms used: In the first three algo-
rithms, summations are over all pixels in the matching win-
dows.

(spread)

% of good matchesMean
(bias) (error <= 0.5)

Disparity Error
0

%

Standard Deviation

Figure 2. Sketch of typical distribution of dis-
parity errors showing matching metrics

2 Metrics

We compared dense disparity maps computed from an im-
age pair to a ground truth map: the differences were stored
in a histogram, from which we calculated:

1. the fraction of good matches,i.e. calculated disparities
within ±0.5 of the correct disparity,

2. the mean of the disparity error distributionand

3. the standard deviation of the distribution.

Figure 2 shows a typical distribution. Note that no sub-pixel
estimation techniques were employed. An appropriate dis-
parity error clearly depends on the actual application using
the disparity map. Less stringent criteria, such as that used
by Scharstein and Szeliski[9], who consider within±1.5

pixels of the correct match as ‘good’, may be acceptable in
many applications. Our stringent criterion produces num-
bers of good matches which may seem low when compared
with other work. Since we are assessing relative algorithm
performance, anyconsistent error may be used.
The fraction of good matches is clearly the most important
metric but the mean and the standard deviation highlight
characteristics of the algorithms or the way they are imple-
mented. For example, a small peak to one side of the main

peak (cf. figure 2) is due to aliasing. Such peaks appear of-
ten: when there is more than one match, the the direction
in which the program scans the possible disparities causes
the first one to be chosen resulting in a bias in the calculated
disparity. The Census algorithm is particularly susceptible
to such artefacts because the cost function is a sum of small
integer values (Hamming distances).

3 Results

3.1 Images

We used the MRTStereo tool[5] to generate images: it takes
a scene description and, by ray-tracing, generates left and
right colour images for a specified camera baseline as well
as precise disparity and occlusion maps. To simulate real
images, we added different levels of Additive White Gaus-
sian Noise to the R, G and B channels of the ‘perfect’ im-
ages independently. Greyscale images were generated by
summing the intensities in the R, G and B channels. The
amount of noise is described by the signal-to-noise ratio and
measured in dB,cf. the appendix.
Most algorithms match over a window of pixels to over-
come problems of noise and other artefacts introduced by,
for example, lighting and perspective variations. To prevent
edge effects, metrics were calculated on a central window
of 216 × 194 = 41, 904 pixels (in256 × 256 images). The
black borders in the disparity maps in figure 1 represent the
areas where disparities were not calculated.

3.2 Choosing the best parameters

All the algorithms have parameters which govern their oper-
ation: typically the size of the window over which costs are
aggregated although others such as the matching ‘reward’
and occlusion ‘penalty’ of the Pixel-to-Pixel algorithm are
found. Even though the Census algorithm is claimed to be
‘non-parametric’, it uses two windows: one for the trans-
form and one for the aggregation; whilst these window sizes
may be chosen arbitrarily, matching performance depends
strongly on them (cf. figure 3).
The optimal parameters for any algorithm also depend on
the images themselves. A useful parameter set must pro-
duce reasonable results for any unknown image. In addi-
tion to two image pairs generated by the MRT tool (‘Cor-
ridor’ and ‘Madroom’), we tested the algorithms on four
sets captured by real cameras for which ground truth data
is available and used by Scharstein and Szeliski[9] in their
studies (‘Tsukuba’, ‘Map’, ‘Sawtooth’ and ‘Venus’). Con-
taining unknown levels of noise, they were used to ensure
that parameters chosen for each algorithm were reasonable
i.e. that they would lead to fractions of good matches close
to the best obtainable with that algorithm.

2
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The ‘Madroom’ images contain alternating black and white
bands and present a difficult challenge for matching. None
of the simple algorithms tested here handles them well - a
typical set of results are shown in figure 4(b): at best, just
over 30% of disparities are calculated correctly compared
to > 60% for all other images. A more sophisticated algo-
rithm, including additional heuristics such as the uniqueness
constraint, is clearly needed for this scene. This work aimed
to provide fundamental data on basic algorithms as the basis
for further work, so we did not add additional rules.

In this work, a window radius ofw implies a(2w + 1) ×
(2w + 1) square window.

3.2.1 Census algorithm

Census concatenates the results of a transform over an ‘in-
ner’ window of radiusβ around a pixel into acensus vector
over an ‘outer’ (correlating) window of radiusα[10]. The
transform compares the pixel intensities and thus Census is
claimed to be ‘non-parametric’. However, a bad choice of
the sizes of the two windows can degrade performance, see
figure 3.

Figure 3(a) shows that choosing (α = 4, β = 3) produces
near to optimal numbers of good matches for all image sets
(even the Madroom pair, although the overall performance
of the algorithm is poor).

Figure 3 plots the disparity error’s distribution mean, ab-
solute mean and standard deviationvs α andβ. Optimum
values forα are in the region 3 to 7: performance is not sig-
nificantly affected by the choice ofβ. Since computation
time isO(α2β2∆), these curves also guide the selection of
parameters for real-time applications where one may sacri-
fice accuracy for speed.

Plots of the disparity error’s distribution means and stan-
dard deviation in figure 3 show that: increasing the window
radius decreases the bias - the mean approaches the centre
of the distribution - and narrows the peak. The bias is typ-
ically less than one disparity unit for reasonably sized win-
dows (α ≥ 3). The distribution keeps narrowing as both
window sizes increase, even though the fraction of good
matches drops slightly. This is the blurring associated with
larger windows informally described by many researchers:
it indicates that larger windows may be appropriate when
applications can tolerate a larger disparity error in return
for a higher number of acceptably matched points. Our ex-
periments thus include two sets of parameters for all the
correlation algorithms: one using a small window which
optimizes the number of good matches and a larger one
which produces a much narrower distribution. For Census,
(α = 3, β = 4) produces high match fractions for all images
and (α = 7, β = 5) produces the narrowest distributions.
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Figure 3. Census: fraction of good matches,
mean, absolute mean and standard deviation
of the disparity error distribution vs the win-
dow radius parameters, α and β. Images:
Corridor

3.2.2 ‘Correlation’ algorithms

Here window size is the key parameter, so we measured
how it affects matching performance.
From figure 4, it is apparent that for all images the num-

3
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Figure 4. Good matches vs window radius for
the six image sets: Cost functions: Corr1,
Corr2, SAD

ber of correct matches increases untilw = 4. For larger
windows, any improvement is small and slight degradations
were seen forw ≥ 6. The ‘Madroom’ pair is the exception -
showing a different behaviour to all the others. Its alternat-
ing black and white stripes make it prone to high numbers
of false matches without additional constraints (such as the
uniqueness constraint) with all the simple algorithms stud-
ied here. Whilst it challenges matching algorithms, this im-
age is unlikely to represent a real scene, so matching prob-
lems with it were not considered indicative of likely prob-
lems with real scenes.

3.2.3 Pixel-to-Pixel

Birchfield and Tomasi’s Pixel-to-Pixel algorithm is a dy-
namic algorithm which attempts to find an optimum se-
quence of moves through the space of disparityvs pixel po-
sition on a scanline. It uses a cost function which includes
κr - a reward for a match andκocc - a penalty for an oc-
clusion. It is the only algorithm in the study that explicitly
identify occlusions. The number of occlusions in the im-
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Figure 5. Pixel-to-Pixel: Correct match frac-
tion vs cost function parameters, κr and κocc

ages used here is small (4.2% of pixels), so that ability to
correctly identify them does not, in itself, add significantly
to overall matching performance.
We measured the performance of the Pixel-to-Pixel algo-
rithm for all of the test imagesvs the two adjustable param-
eters,κr andκocc, see figure 5. In all image pairs except
Madroom, results are relatively insensitive toκr andκocc

values with two images showing slight degradations at large
κocc values.
The values giving best results for the Corridor images
(κocc = 5, κr = 6) were initially chosen for the noise
experiments; they give near optimal performance (degra-
dations of a few percent only) with other images. Note
that this differs from Birchfield and Tomasi’s original sug-
gestion - (κocc = 25, κr = 5)[2] - which they appear to
have derived empirically based on the need to penalize long
occlusion sequences[1]. As before, the Madroom images
are the exception; they show a much lower number of cor-
rect matches and the shape of the surface is quite different.
Clearly additional constraints must be added to the Pixel-
to-Pixel algorithm for images of this type also.

4 Effect of Noise

Using optimum parameters chosen from noise-free images
(κr = 5, κocc = 6), the Pixel-to-Pixel algorithm is very ro-
bust to low noise levels, showing little degradation for SNR
> 36dB. Beyond this point, it degrades rapidly becoming
similar to the other algorithms for SNR∼ 24dB - see figure

4
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Figure 6. Effect of noise
‘InfdB’ labels the ‘perfect’ image generated by the ray tracer. Parameter values for each algorithm follow its name in brackets:
they are: Census (α, β); SAD, Corr1, Corr2 ( window radius ); Pixel-to-Pixel(κocc, κr) In (c), the curve labelled ‘Best’ shows the
percentage of good matches obtainable at each noise level with the optimumchoice forκocc andκr at that level.

6(a). Since this algorithm shows very little sensitivity tothe
actual values ofκr andκocc for the synthetic and noise-free
Corridor images (figure 5(a)) and for the apparently low-
noise Tsukuba images (figure 5(b)), we checked the effect
of noise for selected values ofκr andκocc with the results
shown in figure 6.The optimum values for perfect images
do not perform well in the presence of noise: larger val-
ues ofκr perform better. Using (κocc = 5, κr = 40) has
negligible effect on performance for noise-free images but
substantially improves the performance with noise present-
see figure 6 which compares algorithms. Pixel-to-Pixel re-
tains its advantage in the presence of noiseas long as good
values of κr and κocc are chosen. This casts doubt on the
proposition[2] that the occlusion penalty must prevent fail-
ure to match long sequences of pixels due to noise: in our
experiments largerκr values than those which are effec-
tive for noise-free (Corridor) or relatively noise-free images
(Tsukuba) are needed.

Of the correlation-style algorithms, the simplest (SAD) tol-
erates noise as well as any. Its performance degrades
steadily as noise is added and exceeds that of Pixel-to-Pixel
for images with SNR≤ 15 dB. For high levels of noise,
SAD’s aggregation over a window surrounding the pixel of
interest (Pixel-to-Pixel uses only information from the cur-
rent scanline) allows it to recover useful information.

The Census algorithm which has good matching rates at low
noise degrades very quickly as noise is added. This is cer-
tainly due to the ordering relation - small amounts of noise
can cause a large number of bits to flip in the transforms -
particularly in low contrast areas. However with large win-
dows, Census shows reasonable performance for noisy im-
ages: its performance comes close to that of the simpler and
faster correlation algorithms.

Correlation algorithms with large windows consistently
produce narrow distributions of disparity errors over all

Algorithm Parameters Time Complexity
(sec) per point

Census α = 4, β = 3 58.4 O(α2β2∆)
Census α = 7, β = 5 361
Corr1 w = 4 3.9 O(w2∆)

w = 10 20.1
Corr2 w = 4 3.4 O(w2∆)

w = 10 16.6
SAD w = 4 2.0 O(w2∆)

w = 10 9.6
Pixel-to-Pixel ∀(κocc, κr) 1.8 O(∆2)

Table 2. Running Times ( w - window radius;
∆ - maximum disparity)

noise values; Pixel-to-Pixel also consistently produces nar-
row distributions - see figure 6 (b).

5 Timing

Our tests show similar matching performance for several
algorithms, so we timed their executioncf. table 2.

Clearly, Pixel-to-Pixel is significantly faster than all the oth-
ers - as expected from the time complexities. The corre-
lation algorithms are fast for small windows but degrade
significantly (O(w2)) with the window size. Census is ex-
tremely slow: it has to work over two windows - small win-
dows are not effective and times increase quadratically with
both windows. However the Census algorithm’s potential
for efficient hardware implementation has led us to study
some improvements - targeted at hardware applications[6].

5
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6 Conclusion

It was clear that Birchfield and Tomasi’s Pixel-to-Pixel al-
gorithm, a dynamic algorithm, shows the best performance
of the area-based algorithms examined in this work: it pro-
vides the same or better correctly matched pixel fractions,
is significantly faster and tolerates noise, with negligible
degradation in performance up to a SNR of 36dB. Below
this level, matching performance degrades faster, but is still
superior to any of the correlation style algorithms until very
high levels of noise (SNR≤ 15dB) are present.
Simple correlation algorithms performed similarly and
there is little reason to prefer any one over the simplest sum-
of-absolute differences (SAD) one. Normalizing the signal
intensity may increase performance when the images are
poorly matched for intensity, but this was not evident in the
‘real’ images studied here: we contend that it is preferable
and relatively easy to calibrate the cameras themselves ei-
ther electronically or by pre-processing software.
We have started work on Census algorithm improvements:
despite relatively poor performance, their potential for effi-
cient hardware implementations makes them attractive.

A Noise

Noise is usually measured by a signal to noise ratio (SNR)
expressed in dB and defined as (whereP is the power):

SNR = 10 · log
10

(

Psignal

Pnoise

)

(1)

An SNR of 0dB implies equal signal and noise powers: in-
creasing an SNR by 3dB doubles the signal’s power. For a
discrete image, in whichIp is the intensity of a pixel atp,
the power is:

Psignal =
1

npixels

·
∑

image

I2

p

If the noise is assumed to have a Gaussian distribution,
N(µ, σ), and the Gaussian is centred (µ = 0), the power
of the noise is:

Pnoise = V ar(N(0, σ)) = σ2 (2)

For an image with power,Psignal, to produce a givenSNR,
we add noise with standard deviation:

σ =
√

V ar =

√

Psignal

10
SNR

10

(3)

To generate noise, calculate the normal centred deviate
N(0, 1)2 which relies upon a uniform random deviate3.
ConvertN(0, 1) to N(µ, σ) using:

2Using thegasdev function - chapter 7.2, page 289 [8]
3ran1 function - chapter 7.1, page 280 [8]

No noise SNR = 24dB SNR = 0db SNR = -12dB

Figure 7. Images with varying SNR’s
if X follows N(0, 1) thena · X + b follows N(b, a2)

Figure 7 shows images with increasing levels of noise.
At SNR=-12dB the image contains little valid informa-
tion. To place this noise definition in context, observe that
SNR=+24dB produces images which appear similar to the
‘perfect’ one, but this SNR implies noise withσ ∼ 9 and
therefore noise values of∼ 6% of signal values with a mean
intensity of∼ 153. This represents a large error,∼ 4% (6
in 153). Thus a good camera in a well-lighted scene would
produce SNR’s of 40dB or more.
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