

University of Western Australia

Department of Electrical and Electronic Engineering

Hauptseminar

Informatik

Norman Apel

Index:

1 Preface... 3

2 Specification.. 4

2.1 Hardware ... 4

2.2 Software .. 8

3 Approach and Realization... 9

3.1 Structure .. 9

3.2 Component Details.. 10

3.2.1 Routing.. 10

3.2.2 Collision Prevention.. 12

4 Future Prospects .. 16

5 References ... 17

1 Preface

The intention of this work is the design and implementation of a system for navigation of

an autonomous mobile robot in a maze.

In order not to collide with an obstacle on the way from start to goal, different navigation

problems must be solved. Basically, there are two kinds of navigation, local and global

navigation. Global navigation is associated mainly with routing on a map. Essential for

this sort of navigation is, that it is based on data that is not producible by the actual sensor

information. Therefore, the robot has to create a model of its environment. Self-

localization is an essential part of that process. Local navigation is understood as the

avoidance of obstacles within the sensor range.

Navigation is a necessary task in mobile robotics, therefore there are many strategies

dealing with the problem but the applicability of these strategies is mainly limited by the

available hardware and software. This work focuses on a realization regarding the

available resources.

2 Specification

2.1 Hardware

Eyebot Controller:

• 25MHz 32bit controller (Motorola 68332)

• 1 MB RAM

• 512kB ROM (for system and user-programs)

• 1 parallel port

• serial ports

• 2 DC motor driver (L293D)

• background debugging module

• 8 digital inputs

• 8 digital outputs

• 8 analog inputs

• interface for color and b/w camera (real-time on board image processing)

• LCD display (128x64 pixel)

• input buttons

• speaker

• microphone

• battery level indication

• Plug and Play connectors for motors, sensors and camera

• integrated wireless communication system

Labcar:

Configuration:

• EyeBot controller

• DC motors with encapsulated gears and encoders

• 1 servo for camera

• EyeCam digital camera

• LiIon battery with 220V charger

• EyeNet wireless communication module

• infra-red PSDs (Sharp GP2D02)

The raw data generated by the PSD is converted into a distance measurement by a lookup

table. To get correct measurements in close-up range it was necessary to change the

arrangement of the PSDs. Front, Left, and Right PSDs were calibrated separately and

provided with appropriate lookup tables.

Example FrontPSD:

Arrangement before:

Arrangement after:

Modified Labcar:

2.2 Software

Operating system Eyebot:

RoBIOS V5.2

With inbuilt functionality for Image Processing, Key Input, LCD Output, Camera,

System, Functions, Multi-Tasking, Semaphores, Timer, Download and RS-232, Audio,

PSD Sensor, Servos and Motors, V-Omega Driving Interface, Bumper / Infrared Sensors,

Latches, Parallel Port, A/D Converter, Radio Communication, Compass und TV Remote

Control.

EyeSim simulator (Linux):

The EyeSim simulator is a multiple mobile robot simulator. It was designed for

simulation of eyebot programs in a virtual environment. No changes in program code are

necessary. The simulation includes the RoBIOS functions, sensors and actuators. The

environment can be provided either in World format (Saphira) or in Maze format

(Micromouse).

3 Approach and Realization

3.1 Structure

To solve the problem my decision was to use a hierarchical approach. A superior agent

takes care of the routing and planning of action sequences. He activates the specific lower

agents, which are actually doing something.

The advantage in this is that action sequences can be divided into elementary actions.

These elementary actions are executed by agents, which are specially trained for their

tasks. Another big advantage is the modularity. This makes it easy to replace components

and develop them separately.

3.2 Component Details

3.2.1 Routing

The used maze (real and virtual) has orthogonal walls and the wall units are equal in

length. Therefore, it was self-evident to represent the map as a grid or a matrix. Further, it

is assumed that the robot is aligned on the grid and starts at the left bottom corner.

In this scenario, three methods for routing were tested.

1. Left Wall Following:

This method does not need a map. If the maze is free of cycles it always finds a way. The

advantage of this method is the easy implementation, but it is obvious that in most of the

cases, the path found may not be the shortest one.

The algorithm is simple. The robot is confronted with four situations where he can take

four different actions. These are executed as long as the goal is not reached.

Action table:

L F R Action

0 x x turn 90 degree CCW, drive one square

1 0 x drive one square

1 1 0 turn 90 degree CW, drive one square

1 1 1 turn 180 degree CW, drive one square

L – Left PSD

F – Front PSD

R – Right PSD

0 – PSD reading > Threshold (Threshold ~ grid size)

1 – PSD reading < Threshold

x – does not matter

CW, CCW – clockwise, counter clockwise

2. Lee-Moore Algorithm:

This algorithm needs a map. My implementation of the Lee-Moore algorithm represents

the map as a grid, where each grid point can contain connections to adjacent grid points.

It searches for a shortest-path connection between the start and goal by performing a

breadth-first search and labeling each grid point with its distance from the goal. This

expansion phase will eventually reach the start if a path exists. A second trace back phase

then forms the shortest path by following any path with increasing labels. This algorithm

is guaranteed to find the shortest path between a start and goal for a given map. The

complexity of this algorithm is O(n3). For the used mazes, this was the algorithm with

the best performance. Despite the maze being empty and hence there being many possible

paths, this algorithm gene rates a solution quickly.

3. Reinforcement routing:

This algorithm works by reinforcing actions that lead to the desired behavior. This is

achieved by using an extern reinforcement function. In the problem of routing, the reward

is one when the goal is reached and zero in all other positions.

This algorithm needs a map as well. In my implementation, every grid position is

represented with a state s. You can change states by taking actions a (e.g. go north, go

west ...). State action pairs are called Q-Values and are stored in a table. In order to learn

5 4

2

5

4

3

3

3

3

2 3

G

1

1 2

1

2

S 2 2 3

5 4

4 5

4 2

6 3 7

3

3

3

2 3

G

1

1 2

1

2

S 2 2 3

faster, eligibility traces were used. That makes it pretty much the Sarsa Lambda Learning

scheme, which works as follows:

Online Q-learning with Eligibility Traces:

Initialize every Q(s,a)=arbitrarily
X1 s = start
initialize every e(s,a)=0
observe current state s=st
repeat
· select an action a=at and execute it
 (max or random action, if random then Lambda = 0)
· observe new state s'=st+1
· get max action a' in s'
· receive reward r=r(s')
· dQ = r + Gamma * Q(s',a') – Q(s,a)
· e(s,a) = 1 /*replacing trace*/
· do for all s,a
 Q(s,a) = Q(s,a) + Betha * dQ * e(s,a)
 e(s,a) = e(s,a) * Lambda * Gamma
· s <= s'
until s is final
for X Epochs goto X1

The state action table represents a police Q'. If you execute the action with the biggest

value in each state, you follow the path to the goal. If every action in every state is

executed infinitely, Q' converges to the ideal policy Q*, which is the shortest path.

The advantage of this method is that it is learning online which means that it can react to

changes in the environment. Acquired knowledge about unmodified sections in the maze

stays unchanged while just the knowledge of the modified part is adapted. This would

lead to better performance than the Lee-Moore algorithm in very large mazes but has no

effect at the size of the used mazes.

3.2.2 Collision Prevention

For the benefit of a fast reacting system, that is, driving in a corridor and avoiding walls,

just the PSD sensors were used. The ca mera was not used, since image processing takes a

lot of time. The main task was to drive in the middle of the corridor and around 90 degree

corners. A good approach to solve that problem is to use a Multi Layer Perceptron

(MLP). It can be trained with back propagation. The training data was simply generated

by pushing the robot through the maze and record PSD readings, the speed and the

rotational speed. Then the MLP is trained with that data on the PC. Transferring the MLP

back to the robot he is now able to drive on its own. This method is called expert cloning.

Of course, some data manipulation is necessary before and after the neural net, which is

explained below:

Dataflow:

The used sensors (Sharp GP2D02) have a non linear-output. In order to get a distance

measurement you have to do a linearization and a scaling first (detail 2.1). After that, I

blend out distances that can either not occur or are not relevant for the task by clipping

the distance measurements to the range from 92mm to 420mm. This range is than scaled

to 0 to 1.

To enhance the performance, different setups were tested in the Neural Network module.

Setup 1:

· 3 input neurons

· 5,7,8 or 16 hidden neurons

· 2 output neurons

These Networks were trained with two different kinds of training data. The first approach

was to control the speed of left and the right motor directly. After putting a PID controller

between the net output and the motors, it worked well.

The second approach was to let the network control the speed (v) and the rotation speed

(w). The advantage in this is that the task becomes easier because the speed is nearly

constant. Furthermore, the V-Omega driving interface can be used which has an inbuilt

PI controller.

Both approaches generate good results but using the V-Omega driving interface makes

many thins much easier. That is the reason the second version was preferred. Increasing

the number of hidden neuron to more than seven, led to no more improvement.

Setup 2:

• 9 input neurons

• 8,16 or 32 hidden neurons

• 2 output neurons

The input neurons obtain the sensor readings from the current and the previous two time

steps. That is why nine input neurons are needed. This is a called sliding window

technique, and it leads to an expansion of the feature space. The intention in this is to get

more information out of the few sensors.

The training data corresponds to the second approach in setup 1.

Unfortunately, this setup did not perform very well. This can be caused by the complexity

of the input space and the mapping function, which cannot approximated properly by a

three layer MLP. The biggest problem was nevertheless the timings. It is essential that the

sample rate is the same while recording the training data and while using the neural net. I

could not find a method that ensures this in an appropriate way.

Setup 3:

• input neurons

• 5,7,8 or 16 hidden neurons

• 18 or34 Output neurons

This setup is just a little different from the first one. It is just got a different output

coding, which is topological.

Topological coding:

w in rad/s
-2.0 -1.75 -1.5 -1.25 -1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

v in m/s
-0.200 -0.175 -0.150 -0.125 -0.100 -0.075 -0.050 0.025 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Because of the topological coding, the neural net should be more robust. This effect did

not occur. In addition, the computing time was worse because of the higher number of

neurons.

Conclusion:

The best result was achieved with setup 1. In a maze with no dead ends, the robot drove

nearly collision free. Unfortunately, the neural net was not able to learn a U-turn.

However, this is understandable, due to the limited sensor information and the

complexity of the task.

4 Future Prospects

A big problem on the real robot was the self- localization. Using just odometer, the

information gets more and more inaccurate the further the robot goes. Furthermore, the

assumptions of the alignment and the orthogonal grid structure of the maze are very

restricting.

An approach to ease the restrictions is to represent the map as a graph. The position could

be mapped to the graph with vector-quantization. The drift of the odometer could be

adjusted by that way, but now the problem is to define a discrete action space and the

recognition of important landmarks, like crossings. This is hard to achieve without further

sensors.

I tried a graph approach, keeping the restrictions. A Growing Neural Gas (GNG)

generates the graph and the path is learned collateral with reinforcement learning. The

reason why it was not working was the instability of the Neural Gas. The parameters of

the GNG could not be adjusted in a way that new nodes were inserted for unknown

positions in the map while the old nodes were stable enough to represent the visited

positions.

Other approaches to build a graph representing a map could be Cohonen-Maps and ART-

Nets. Especially ART-nets are good in stability and plasticity. A big advantage is also the

ability of One-Shot-Learning.

5 References

[1] Prof. Dr. H.M. Gross, TU-Ilmenau, script “Lernen in neuronalen Netzen”, (2002)

[2] Dr. H.J. Boehme , Tu-Ilmenau, script “Kuenstliche Neuronale Netze”, (1998)

internet:

[3] http://robotics.ee.uwa.edu.au/eyebot/index.html

[4] http://www.geocities.com/fastiland/rlrobots.html#reinfo

[5] http://www.ece.iit.edu/~jnestor/java/MazeRouter.html

