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Abstract 

 

Image processing plays a key role in vision systems. Its function is to 

extract and enhance pertinent information from raw data. In robotics, 

processing of real-time data is constrained by limited resources. Thus, it 

is important to understand and analyse image processing algorithms for 

accuracy, speed, and quality. The theme of this thesis is an 

implementation and comparative study of algorithms related to various 

image processing techniques like edge detection, corner detection and 

thinning. A re-interpretation of a standard technique, non-maxima 

suppression for corner detectors was attempted. In addition, a thinning 

filter, Hall-Guo, was modified to achieve better results. Generally, real 

time data is corrupted with noise. This thesis also incorporates few 

smoothing filters that help in noise reduction. Apart from comparing 

and analysing algorithms for these techniques, an attempt was made to 

implement correlation-based optic flow. 
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 1. Introduction 

 

“Image processing is the capturing and manipulation of images in order 

to enhance or extract information” [1]. It is an important step for many 

different fields including robot vision. The images captured by a robot 

are subjected to various kinds of processing in order to obtain relevant 

information. The results from the image processing act as an input for 

the next phase of the application. These can be like navigation and 

localization, where captured images are a key source of input.  

 

Image processing techniques operate on pixels, transforming them in 

some manner and producing the result. A pixel, short for picture 

elements, is the basic representation of image data in an electronic 

format. An image is simply a collection of data represented in arrays of 

pixels. Image processing techniques are generally called filters. Filters 

work upon areas in an image called neighbourhoods. A neighbourhood 

is a set of pixels surrounding one pixel that is of interest. Generally, the 

neighbourhood is of size 3 x 3 in which the centre pixel is the point of 

interest. 

 

Most of the operations performed on neighbourhoods are based on the 

concept of convolution. Mathematically, convolution is “an integral that 

expresses the amount of overlap of one function g as it is shifted over 

another function f” [2]. 

 

τ τ τ∫
t

0

f  *  g  =  f ( )  g ( t -  )  d  

Equation 1: A convolution function. 

 

In filtering, an image is convolved with a pre-defined kernel. A kernel is 

a template of size m x n representing a set of weights assigned to the 

pixels of a neighbourhood. 
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Noise is unwanted data within the image that distorts it. Noise can occur 

due to reasons like errors in digitization, and imperfect capturing of 

images. Smoothing is used to suppress noise and to blur an image. 

Smoothing filters are essentially a low-pass filter, which retain low values 

and suppress high values. An image contains locations where there are 

sharp intensity fluctuations between successive pixels. Blurring is the 

result of reduction in these fluctuations. 

 

Sharpening filters are used to segment an image. It is essentially a high-

pass filter, which attenuates low values and preserves high values. Low 

values result from differentiation of image sections where the spread of 

intensity values is within a constant range. In an image, an edge is an 

abrupt change in gray level intensity values of successive pixels. High-

pass filtering enhances these features in an image. High values are the 

result of differentiation in those sections where there is a significant 

change in intensity values. In image processing, differentiation is 

approximated by taking differences. The basic types of differences are: 

 

• Forward Difference 

In forward difference, the current (previous) pixel is subtracted from the 

next (current) pixel and the result is assigned to the current pixel. In 

Equation 2, ‘ ∂  x1 I ’ is the derivative of the current pixel where the 

current pixel is subtracted from the next pixel. ‘∂  x2 I ’ is the derivative 

of the current pixel where the previous pixel is subtracted from the 

current pixel. The result is assigned to the current pixel. Hence, the 

direction of difference is from right to left. 

 

∂

∂
 x 1  x + 1  x

 x 2  x  x -1

 I = I - I

 I = I - I
 

Equation 2: Forward difference method. 

 

The equation for ‘∂  x2 I ’ corresponds to the template shown in Equation 

3. 



 

 3 

 

     -1 

H
x
= -1 1  H

y
= 1 

 (a)   (b) 

Equation 3: Template for forward difference for ‘ ∂  x2 I ’. 

 

• Backward Difference 

In backward difference, the next (current) pixel is subtracted from the 

current (previous) pixel and the result is assigned to the current pixel. In 

Equation 4, ‘∂  x3 I ’ is the derivative of the current pixel where the next 

pixel is subtracted from the current pixel. In case of ‘∂  x4 I ’, the current 

pixel is subtracted from the previous pixel. The result is assigned to the 

current pixel. Hence, the direction of difference is from left to right. 

 

∂

∂
 x 3  x  x + 1

 x 4  x -1  x

 I = I - I

 I = I - I
 

Equation 4: Backward difference method. 

 

The equation for ‘∂  x3 I ’ is corresponding to template shown in Equation 

5. 

 

H
x
= 1 -1  H

y
= 1 

     -1 

 (a)   (b) 

Equation 5: Template for backward difference for ‘ ∂  x3 I ’. 

 

 

• Central Difference 

In central difference, the previous half-a-pixel (next pixel) is subtracted 

from the next half-a-pixel (previous pixel) and the result is assigned to 
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the current pixel. In Equation 6, ‘∂  x 5 I ’ is the derivative of the current 

pixel where the next pixel is subtracted from the current pixel. In case 

of ‘ ∂  x 6 I ’, the previous pixel is subtracted from the next pixel. The 

result is assigned to the current pixel. Hence, the direction of difference 

is from left to right. 

 

∂

∂

 x 5  1  1 x  +   x  -  
 2  2

 x 6  x  +  1  x  -  1

 I   =   I   -   I

 1
 I   =     ( I   -   I )

 2

 

Equation 6: Central difference method. 

 

The previous two difference methods compute approximations at the 

previous or next half-a-pixel location, as shown in Equation 3 and 

Equation 5. In the central difference method, approximation is made at 

the previous and next half-a-pixel location. This can be expanded to 

‘ ∂  x  7 I ’ which is the difference of the next pixel and the previous pixel 

as shown in Equation 8. 

 

∂  x 7  x + 1  x -1 I = I - I  

Equation 7: Re-interpretation of the central difference method. 

 

      -1 

H
x
= -1 0 1  H

y
= 0 

      1 

 (a)   (b) 

Equation 8: Template for central difference for ‘ ∂  x 7 I ’. 

 

The term ‘
1
2

’ in Equation 6 for ‘ ∂  x 6 I ’ can be neglected. This is 

because the pixels in the real images have random intensity values. 

Hence, ‘ ∂  x 7 I ’ was preferred over the discussed difference methods. 



 

 5 

 

Often, when filters are applied to images, the values of pixels go out of 

a valid range, for example less than 0 or greater than gray-level value 

255. In order to ensure that this does not happen, a factor is applied. 

Normalization factor is the process of bringing the pixel values of an 

image within a defined range. This concept is used in smoothing filters 

to ensure that on addition, values do not exceed gray-level value 255. In 

edge detectors, a scale factor may be applied to its result to ensure that 

the strengths of all the edges do not exceed the gray-level value 255. 

This simplifies distinguishing strong edges from weak edges. 

 

In this study, the resources used were mainly computer based. A suite of 

image processing software called ImprovQT [3] was used for 

implementing various techniques and testing them. 

 

Improv (Image Processing for Robot Vision) , originally written by Dr. 

Thomas Bräunl at The University of Stuttgart, is currently at version 5.1. 

Improv is a Linux-based application. It is a tool for real-time image 

processing. It can work accurately on a low-resolution camera, which is 

required by mobile robots. It has the ability to use synthetic images or 

live images captured by a camera. Applying filters on images in Improv 

is as good as using them on robots. 

 

The latest version of Improv comes with the ability to integrate plug-ins 

in an easy manner. This makes the image processing sequence 

completely customisable in a user-friendly manner. A screenshot of 

ImprovQT 5.1 is shown in Figure 1. 

 



 

 6 

 

Figure 1: ImprovQT 5.1 [3]. 

 

Figure 1 is an example of a simplest form of Improv. Improv can handle 

a number of sub-windows; default value is six. 

 

0 1 2 

3 4 5 

Figure 2: Order of sub-windows in ImprovQT 5.1. 

 

There are many advantages of testing an image processing application 

on Improv before downloading it on robots. The main advantage is that 
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intermediate steps involved in image processing can be systematically 

tested and modified. At any stage, a number of plug-ins can be added or 

removed from the processing to achieve better results. The output of 

image processing steps in Improv is the same as the output obtained on 

implementing the same steps on a robot. 

 

As given in [4], “fundamental steps in image processing are  

• Acquisition – acquiring a digital image. 

• Pre-processing – improving the images in ways that increase the 

chance for success of the other processes. 

• Segmentation – partitioning an image into its constituent parts or 

objects. 

• Representation (boundary and regional) and description (feature 

selection) – Representation converts the data to a form suitable for 

computer processing. Description extracts features for differentiating 

one class of object from another. 

• Recognition and interpretation – Recognition assigns a label to an 

object based on information provided by its descriptors. 

Interpretation assigns meaning to an ensemble of recognised 

objects.” 

 

This thesis focuses on image pre-processing and segmentation. The 

different types of filters experimented and listed here are smoothing 

filters, edge detectors, corner detectors, and thinning filters. 

 

An ideal image is one that is free from noise. Smoothing is the process 

of blurring and noise reduction. Types of smoothing filters implemented 

in this thesis are: 

• Mean filter, 

• Gaussian filter, and 

• Median filter. 

 

Edge detection is the process of highlighting edges in an image. Edges 

correspond to the outline of an object. This property of an object is 
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useful in object detection. However, in many cases edges do not 

correspond to object boundaries, for example shadows, and textures. In 

such cases, false edges are detected. Even when edges correspond to 

boundaries, detection techniques fail if two pixels of different 

overlapping objects have similar intensity values. Types of edge 

detectors implemented in this thesis are: 

• Laplace, 

• Laplacian of Gaussian (LoG), 

• Difference of Boxes (DoB), 

• Sobel, 

• Robert’s, 

• Kirsch, 

• Prewitt, and 

• Robinson. 

 

Corner detectors are used to identify corners in an image. Corners are 

the junctions of edges. Analogous to edges false corners may be 

detected in regions having shadows or textures. The standard corner 

detectors discussed in this thesis are: 

• Kitchen-Rosenfeld, 

• Beaudet, 

• Plessey, 

• Noble, and 

• Harris-Stephens. 

 

Apart from these, an attempt was made to realize the concepts of non-

maxima suppression for corners detectors. In addition, corner detectors 

based on derivatives of corner response were also implemented. 

 

Thinning filters are used to thin edges and lines in an image. This is 

because we may only be interested in the presence of lines, not in their 

thickness. Thinning filters try to reduce the width of edges or lines as 

much as possible, ideally to one pixel. The filters implemented in this 

thesis are: 
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• Stefanelli-Rosenfeld, 

• Lü-Wang, and 

• Hall-Guo. 

 

The standard Stefanelli-Rosenfeld algorithm [5] was modified to speed 

up calculations as explained in [6]. Similarly, the Hall-Guo algorithm [7, 

8] was adapted to obtain much better and faster results. 

 

Finally, Optic flow was also implemented. Optic flow is a vector field that 

shows the direction and magnitude of intensity changes of a pixel in an 

image. In this thesis, correlation-based optic flow was implemented. It 

was utilized to find similarities between two successive images of a 

sequence. The concepts of sum of the squared differences (SSD) [9-11] 

and sum of the absolute differences (SAD) [10] were applied in obtaining 

optic flow. 

 

All these filters were implemented as plug-ins in ImprovQT [3]. A 

number of different combinations of these filters were experimented on 

test images. This was done in order to achieve better results and speed 

up computation. The images considered for these tests were real and 

synthetic gray-scale. These algorithms and techniques were compared, 

and tested on various images.  
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 2. Literature review 

 

A number of sources regarding image processing techniques and 

algorithms were reviewed and studied. The filters implemented in this 

thesis were motivated by this review. 

 

Deriche and Giraudon [12] proposed a new scale-space based approach 

that combines Laplacian and Beaudet’s measure for corner and vertex 

detection. 

According to the authors, there are two groups of corner detectors: 

• The first group extracts the edges as a chain code and then searches 

for points having maximum curvature. Thus, it involves an extra 

calculation for detecting edges. 

• The second group is based on approaches that operate directly on a 

gray-level image. They either find “interest points” or work on the 

measurements of gradients and curvatures of the surface. 

 

Their work analyses several corner detectors based on the second group. 

This work gave a good starting point for implementing the Beaudet [13], 

Kitchen-Rosenfeld [14], Plessey [15], Noble [16], and Harris-Stephens 

[17] corner detectors. This work highlights similarities and differences 

between Kitchen-Rosenfeld and Zuniga-Haralick, and Plessey, Noble and 

Harris-Stephens corner detectors. As shown in the paper, Zuniga-

Haralick is based on the facet model while Kitchen-Rosenfeld is an 

operator that directly computes whether a pixel is a corner. Zuniga-

Haralick differs from Kitchen-Rosenfeld with an expression 2 2
x yI  + I  in 

the denominator (Equation 39). Plessey (Equation 43) was proposed by 

Harris; and Noble gave a theoretical formulation for this detector using 

differential geometry (Equation 45). Harris and Stephens made a slight 

modification to the original Plessey (Equation 47). The authors state that 

none of these corner detectors has good corner localization. Their 

approach attempts to correct this. 
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“Interest points” are better explained by Sonka et al [18] as an 

investigation among a much smaller number of points of an image. 

These points are expected to have some typical local property. For 

example, if square objects are present in an image then corners are very 

good interest points. The web-site mentions corner operators Moravec 

(based on interest points), Zuniga-Haralick (based on the facet model as 

explained in [12]), and Kitchen-Rosenfeld. Deriche and Giraudon [12] 

give a different representation of the Zuniga-Haralick corner operator. 

Kovesi helped in further understanding Harris corner detector [19, 20]. 

The papers by Cooper et al [21, 22] was also a source of understanding 

of Kitchen-Rosenfeld corner detector and few other concepts for corners. 

 

A number of edge detectors and smoothing filters were listed by Sonka 

et al [18]. These were Laplace, Laplacian of Gaussian (LoG) Sobel, 

Robert’s, Prewitt, Kirsch, and Robinson. Their description of the 

Laplacian of Gaussian (LoG) edge detector and Gaussian mean filter was 

useful in their implementation. Bräunl [6] gives a good explanation and 

skeleton code for the Laplace and Sobel edge detectors along with their 

edge directions. Bernd [23] gave a good start towards understanding the 

Difference of Boxes (DoB) edge detector. 

 

The discussions on smoothing filters like Mean, Gaussian, and Median in 

Sonka et al [18], Gonzalez et al [4], and Jain et al [24] assisted in the 

implementation of these filters. 

 

In fields like fingerprint and pattern matching, the shape of the lines or 

objects is more important than its thickness. When the thickness 

changes uniformly throughout the image, these applications can 

produce results by neglecting the thickness, as suggested by Alt [25]. In 

general, the input for these applications does not exhibit a uniform 

change in thickness. 

 

To perform matching without thickness affecting the process, thinning 

was proposed by Stefanelli and Rosenfeld [5]. They stressed on the 
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presence and shape of line-based objects, rather than their thickness. 

One method to achieve thinning is to find the “medial line” of the 

objects and to delete pixels not on the medial line. They proposed two 

algorithms for identifying the medial-line. In the first method, at each 

iteration, all contour points (points lying on the outline of the object) 

except the final points (points lying on the medial line) of the object are 

deleted. This method has a disadvantage that it can yield non-connected 

or even no medial line for connected figures. To overcome this, the 

second method has four sub-iterations; at each sub-iteration, only a part 

of the contour is removed. 

 

Lü-Wang [26] proposed an improved version of the algorithm introduced 

by Zhang and Suen [27]. They pointed out the disadvantages in [27] and 

overcame these by preserving necessary and essential lines which 

should not be deleted. The process of thinning was divided into two 

sub-iterations with conditions acting on each of the sub-iteration. The 

conditions for each sub-iteration were different to ensure that in the first 

sub-iteration only the southeast pixels are deleted. The second sub-

iteration concentrated on deleting pixels on the northwest boundary. 

They pointed out difference in the approach from [27], by swapping the 

order of the sub-iterations. This method overcomes the problem of 

preserving important structures, which were part or whole of a pattern. 

This was accomplished by manipulating the conditions proposed by 

Zhang-Suen [27]. 

 

Guo and Hall proposed two parallel thinning algorithms [8]. They 

proposed a two sub-iteration process for deleting unwanted pixels. 

Alternately, these sub-iterations concentrated on deleting northeast and 

southwest pixels, and applying a thinning operator to one of two 

subfields. Their work did not concentrate on recovering the original 

image unlike a few other approaches that focussed on image recovery as 

proposed by Arcelli et al [28]. This is because they stated that image 

recovery after thinning is not always necessary. They pointed out that 

the fully parallel thinning algorithms, which are restricted to 3 x 3 
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operators, have difficulty in preserving the connectivity. Hence, few 

authors [5, 8, 27] partially serialized their algorithms by dividing an 

iteration into several distinct sub-iterations or by partitioning the image 

into distinct subfields [29]. Guo and Hall pointed out that by defining 

distinct subfields these algorithms applied thinning operators to 

different parts of an image. In addition, they pointed out that on using 3 

x 3 local operators, algorithms defining two sub-iterations achieved 

optimal results. They pointed out that the thinning filter proposed by Lü 

and Wang [26], and Zhang and Suen [27] outperforms the one proposed 

by Stefanelli and Rosenfeld [5]. The original algorithm [27] and its 

improved version [26] was modified by Guo and Hall to overcome the 

problems of maintaining connectivity. The modified algorithm had a 

variable that was useful in endpoint detection while the second 

algorithm proposed by them had a scheme of dividing the image in a 

checkerboard fashion as described by Holt et al [30]. The medial curve 

of thinness produced by the two algorithms was comparable but the 

second algorithm was faster. This thesis concentrates on studying the 

second algorithm. 

 

In his PhD thesis, Camus [10] presented optical flow algorithms for real-

time robots. He pointed out limitations of robotic systems that affect 

optical flow calculations. These are like restricted sensing capacity, 

limited computational power, and restricted mobility . This has resulted 

in limited implementation of optic flow for practical applications. The 

success of an optical flow algorithm is measured by how well it fulfils 

the three basic requirements of robotic vision; robustness, speed, and 

accuracy. According to Camus, accuracy can be optimised once the first 

two requirements are met.   

 

In his thesis, he has discussed the limitations and implementation of 

gradient-based, velocity -tuned filter based, and correlation-based 

techniques for computing optical flow. The algorithms based on 

correlation-based optical flow are shown to be robust in practice but are 

practically infeasible due to the high computational costs. He tried 
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tackling the problems of correlation-based approach by devising a 

space-time trade off to this algorithm. His modification reduces the 

running time of the algorithm from quadratic-time to linear-time. His 

work gave a good start for understanding correlation-based optic flow.  

 

Correlating successive frames helps to analyse the motion of an object. 

However due to the aperture problem it may not be possible to obtain 

the correct optical flow vector for all the corresponding image frames. 

This problem cannot be solved completely. However, by correlating the 

pixel’s neighbourhood in successive frames and then finding the 

corresponding match of a pixel helps to minimise the aperture problem. 

To find the corresponding match of a pixel a maximum possible 

displacement is presumed. Camus [10] assumed this value to be seven 

for his experiments while Wei-Härle [31] assumed the value to be five. 

The match strength was calculated as the sum of the match values 

between each pixel in the displaced patch in the first image and the 

corresponding pixel in the actual patch in the second image. Camus 

implemented two techniques to compute match strength. These are SAD, 

which takes the absolute differences between the two pixels’ intensity 

values and SSD, which takes the squared differences of their respective 

intensity values. The lowest value of the match strength was considered 

the best match. Moravec used a variance of normalized cross-correlation 

(NCC) to calculate match measure for stereo matching. Camus stated 

that NCC and SAD were insensitive to contrast. However, he observed 

that NCC did not produce good results. In addition to these techniques, 

Singh [11] listed direct cross correlation and mean normalized cross 

correlation. 

 

 Temizer [32] calculated optic flow by first applying a Gaussian 

smoothing filter to blur (smooth) the image. A Laplacian filter was then 

applied to obtain the edges from the images. After applying these filters, 

the displacements are calculated by correlation as explained by 

Nishihara [33]. Temizer evaluated the best match by comparing the 

number of matching pixels in two patches with some (percentage) 
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threshold. If the number is greater than the threshold, then the two 

patches are considered to match. 

 

A practical implementation of correlation-based optical flow was used 

for obstacle avoidance as outlined by Grünewald et al [34] and for object 

detection as discussed by Batavia et al [35]. 

 

To implement edge and corner detectors, understanding the concept of 

applying derivatives was necessary. Sonka et al [18], Gonzalez et al [4] 

and Jain et al [24] were helpful in clearing these concepts. Kreyszig [36] 

and Mathworld [37] helped in clarifying general mathematical concepts. 

Mathworld [37] and Gonzalez et al [4] helped in the understanding of 

convolution and correlation. 

 

There was a constant source of inspiration from [38], [39], and [40]. 
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 3. Smoothing filters 

 

Smoothing filters are used to blur an image and reduce noise. There are 

different types of such filters that can be applied for different kinds of 

problems. The filters discussed here are the Mean, Gaussian, and 

Median filters. The Mean and Gaussian are linear filters whereas Median 

is a non-linear filter. In linear filters, the output pixel value is calculated 

using the weighted sum of the input pixels. A non-linear filter does not 

calculate the weighted sum of pixels in the neighbourhood. It assigns a 

value to the output pixel, which is directly based on the values of the 

pixels in the neighbourhood. 

 

 3.1.  Mean filter 

 

The Mean filter calculates the mean (arithmetic) value in the 

neighbourhood of a pixel under consideration and assigns it to the pixel. 

If the dime nsions of the template used are odd (e.g. 3 x 3), then the 

pixel under consideration is the centre pixel. If not, then a decision has 

to be made about selecting which pixel to consider. When selecting this 

pixel for the first neighbourhood, consistency has to be followed in 

maintaining the relative position of the pixel in successive 

neighbourhoods of the image. 

 

Equation 9 shows the mean function that is applied to every pixel of the 

image. Here, f (i,j) is the output image at pixel (i,j) and g (i,j) 

is the input image. k is the index in the template and n is the number of 

the elements of the neighbourhood. 
1
n

 is the normalization factor that 

makes sure that the output image values are within the range. 
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∑
n

 k
k  =  1

 1
f  ( i , j )  =  g  ( i , j )

 n  

Equation 9: Mean function [24]. 

 

An example of the mean 3 x 3 filter is shown in Equation 10. 

 

1 1 1  

1 1 1  
1
9

 

1 1 1  

    3 x 3 

Equation 10: Mean filter 3 x 3. 

 

In general, a square template looks like Equation 11. 

 

 1 1 1 …. 
…. 1  

1 1 1 …. 
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1  
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1  

      K x K 

Equation 11: Mean filter K x K. 
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A rectangular template looks like Equation 12. 

 

  0        1         2        .  .  .      N  
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: 
 
 

M 1 1 1 …. 
…. 

1  

       M x N 

Equation 12: Mean filter M x N. 

 

In Mean filtering, the larger the template size, the more the blurring in 

the result image and more time is consumed in calculations. This can be 

explained by assuming the filter’s template size to be 1 x 1. Upon 

filtering, the value of the centre pixel is replaced by the mean value, 

which is its own value. Hence, in the end, we get the same image 

without any smoothing and a very fast process. On inc reasing the size of 

the template, say to 3 x 3, the mean of the centre pixel is no longer its 

own value. It is now calculated from the expanded neighbourhood, that 

is, the value of the other pixels in the neighbourhood starts affecting 

the mean calculation. In addition, the process takes more time. For this 

reason, the larger the template size, the more the blurring and the 

better the smoothing. Generally, Mean filters based on the 3 x 3 

template have shown the best performance in speed and blurring effect.  

 

In certain templates, the centre pixel is given more stress, i.e. its value 

is considered higher than the neighbourhood pixels. Such a template 

may look like Equation 13. 
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1 1 1 

1 2 1 
1

10
 

1 1 1 

Equation 13: Mean filter with variable weights [24]. 

 

This helps bring about a better approximation of noise in the 

neighbourhood. This may often be required at further image processing 

stages. 

 

  
(a)      (b) 

Figure 3: Mean 3 x 3 filter (Equation 10): (a) Original image , (b) Smoothed image. 

 

  
(a)      (b) 

Figure 4: Mean 5 x 5 filter (Equation 11, K = 5): (a) Original image, (b) Smoothed image. 
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(a)      (b) 

Figure 5: The effect of Salt and Pepper noise on an image: (a) Original image corrupted 

with noise, (b) Smoothed image with Mean 3 x 3 filter (Equation 10). 

  
(a)      (b) 

Figure 6: The effect of Salt and Pepper noise on an image: (a) Original image corrupted 

with noise, (b) Smoothed image with Mean 5 x 5 filter (Equation 11, K = 5). 

 

 3.2.  Gaussian filter 

 

The Gaussian filter is similar to the Mean filter with the difference of the 

weights assigned to every pixel in the kernel. The standard one-

dimensional Gaussian filter is defined as Equation 14. 

 

σ

π σ

2

2
 - x

 21
G  ( x )   =     e

2
 

Equation 14: Gaussian function - one-dimensional [18, 41]. 

 

The Gaussian function is used to form the kernel, which is convolved 

with every pixel in the image. ‘σ ’ is the standard deviation, a variable 
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factor which indicates the width of the Gaussian curve over a set of 

pixels, generally ‘3 σ ’. The window size (size of the kernel) is calculated 

by Equation 15. 

 

σw i n d o w  s i z e   =   1  +   2  *  c e i l  ( 3  *  )  

Equation 15: Calculation of “window size” in Gaussian filtering [42]. 

 

The Gaussian curve response for one-dimension with mean 0 and with 

different sets of ‘σ ’ is shown in Figure  7, Figure 8, and Figure 9. 

 

Figure 7:  Gaussian One-dimensional Curve with mean 0 and standard deviation ( σ ) = 

0.3 (Equation 14). 

 

In the above Figure 7, the curve is steep. This is due to the value of 

standard deviation ‘σ ’. 
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Figure 8: Gaussian One-dimensional Curve with mean 0 and standard deviation (σ ) = 

0.5 (Equation 14). 

 

Figure 9: Gaussian One-dimensional Curve with mean 0 and standard deviation (σ ) = 

1.0 (Equation 14). 
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As seen from Figure 7, Figure 8, and Figure 9, the higher the value of 

sigma ‘σ ’, the shallower the gradient of the curve. For this reason, the 

Gaussian curve in Figure 9 ( σ  = 1.0) is smoother than the curve in 

Figure 8 (σ  = 0.5) which is smoother than the Figure 7 (σ  = 0.3). 

  

The one-dimensional Gaussian filters along the x and the y directions 

acting together on the image results in one two-dimensional Gaussian 

filter. The relation is shown in Equation 16. 

 

G  ( x ,  y )  =  G  ( x )  G  ( y )  

Equation 16: Two one-dimensional Gaussian filter resulting in one two-dimensional 

Gaussian filter. 

 

Using the same value of ‘σ ’, applying the two-dimensional Gaussian 

filter has the same effect as applying the one-dimensional Gaussian filter 

twice, once each in the x and y directions. A two-dimensional Gaussian 

function can be written as Equation 17. 

 

σ

π σ

2 2

2

 - (x  +  y )

 2
2

1
G  ( x ,  y )   =     e

2
 

Equation 17: Gaussian function - two-dimensional [18, 41]. 

 

The one-dimensional Gaussian function along the x and the y directions 

can be applied in either way, that is, x after y or y after x, to result in 

two-dimensional Gaussian function. Both are shown in Figure 10. 
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(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

Figure 10: The result of the Gaussian function applied to the image: (a) Original image , 

(b) Gaussian x on original image (Equation 14), (c) Gaussian y on original image 

(Equation 14), (d) Gaussian x after y on original image, (e) Gaussian y after x on 

orig inal image , (f) Gaussian two-dimensional function on original image (Equation 17). 

The value of standard deviation ‘ σ ’ used in all these results is 1.5 (Figure 7). 

 

In Figure 10, (d), (e), and (f) exhibit the same result on applying the filter 

to (a). Figure 10 (b) and (c) are the results of applying Gaussian function 

along the x and the y directions respectively. Figure 10 (d) and (e) are 

the results of applying Gaussian function x after y and y after x 

respectively. Figure 10 (f) is the result of applying two-dimensional 
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Gaussian function on the original image (a). In all these Gaussian 

functions, the value of σ  was taken 1.5. 

 

Similar to the one-dimensional Gaussian function, the two-dimensional 

function is used to form a kernel, which is then convolved with every 

pixel in the image. The window size is calculated as given by Equation 

15. Unlike the one-dimensional Gaussian, the two-dimensional 

convolution kernel is a square template whose size is given by 

windowsize * windowsize. 

  

 

Figure 11: Gaussian Two-dimensional Curve with mean 0 and σ  = 0.3 (Equation 17). 
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Figure 12: Gaussian Two-dimensional Curve with mean 0 and σ   = 0.5 (Equation 17). 

 

 

Figure 13: Gaussian Two-dimensional Curve with mean 0 and σ  = 1.0 (Equation 17). 



 

 28 

The value of ‘σ ’ affects the slope of the curve in Figure 11, 16, and 17, 

just as in the case of Gaussian one-dimensional filter. The higher the 

value of ‘σ ’, the smoother the resulting image. 

 

As outlined by Fisher et al [41], a two-dimensional Gaussian function is a 

discrete approximation with the value σ  = 1.4 as shown in Equation 18. 

 

 2 4 5 4 2  

4 9 12 9 4  

5 12 15 12 5  
1

155
 

4 9 12 9 4  

 2 4 5 4 2  

      5 x 5 

Equation 18: Discrete approximation to Gaussian function with σ  = 1.4 [41]. 

 

The result of the discrete approximation of Gaussian function with σ  = 

1.4 along with σ  = 1.5 is shown in Figure 14. Figure 14 (a) shows the 

original image. Figure  14 (b) and (c) are the two-dimensional Gaussian 

function approximated at σ  = 1.4 and σ  = 1.5 respectively. 

 

It can be clearly seen that the image in Figure 14 (b) is less blurred than 

Figure 14 (c). It was observed that it took longer to produce the result in 

Figure 14 (c) compared to Figure 14 (b). This is due to the kernel size; 

where latter uses a 5 x 5 kernel size to smooth the image, the former 

takes a 11 x 11 kernel size to smooth the image. 
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(a) 

  
(b)      (c) 

Figure 14: Two-dimensional Gaussian functions on an image: (a) Original image, (b) 

Gaussian function at σ  = 1.4 (5 x 5 template from Equation 17), (c) Gaussian function 

with σ  = 1.5 (11 x 11 template using Equation 15 and Equation 18). 
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(a) 

  
 (b)      (c) 

Figure 15: The effect on Salt and Pepper noise on an image: (a) Original image 

corrupted with noise, (b) Smoothed image with Gaussian function at σ  = 1.4 (5 x 5 

template from Equation 17), (c) Smoothed image with Gaussian function with σ  = 1.5 

(11 x 11 template using Equation 15 and Equation 18). 

 

 3.3.  Median filter 

 

Not only does the Median filter reduce the noise in the image, it also 

reduces the contrast of the edges. Compared to the Mean and Gaussian 

filters, the Median filter has less blurring effect at edges. The Median 

filter calculates the median of the neighbourhood for the pixel under 

consideration and assigns this value to the same position in the output 

image. Generally, the Median filter uses templates of size 3 x 3. The 

process for each pixel under consideration is as follows: 

• Consider the neighbourhood values. 

• Sort them in ascending or descending order. 

• Estimate the median using the following criteria: 
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o If there are an odd number of pixels in the template, the 

median is the centre of the sorted values. 

o If there is an even number of pixels in the template, the 

median is the average of the two centre pixels of the sorted 

values. 

• Assign this median value to the pixel in the same location in the 

output image. 

 

32 78 59  - - - 

24 90 35  - 49 - 

68 49 12  - - - 

 (a)    (b)  

Figure 16: Median filter: (a) The pixels values in the input image, (b) The result of 

applying a median filter to the pixel under consideration in the output image. 

This result value (49) replaces the old value (90). 

 

Suppose we take the centre pixel (value 90) in Figure 16 as the pixel 

under consideration. 

 

Median (at the centre pixel) = median (32, 78, 59, 24, 90, 35, 68, 49, 

12) 

 

First, the values are sorted in ascending order: 

 

Sort (32, 78, 59, 24, 90, 35, 68, 49, 12) = 12, 24, 32, 35, 49, 59, 68, 

78, 90. 

 

On sorting, we get value 49 as the median value for the neighbourhood. 

The initial value of the pixel under consideration, 90, is replaced with 

the median value, 49. 
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The Median filter is not optimal in speed, as it has to sort the 

neighbourhood values for every pixel before the median can be decided. 

 

  
(a)      (b) 

Figure 17: Median filter: (a) Original image, (b) Image after applying Median filter. 

 

  
(a)      (b) 

Figure 18: Median filter on salt and pepper noise: (a) Original image, (b) Image after 

applying Median filter. 

 

  
(a)  (b) 

Figure 19: Median filter on impulse noise: (a) Original image, (b) Image after applying 

Median filter. 
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As seen in Figure 17, Median filtering preserves the edges but reduces 

the sharpness formed by a corner. At the junctions of edges, Median 

filter shows a curved shape and that corner cannot be clearly detected 

by a corner detector. This is the reason why a median filter is not 

preferred in corner detection. 

 

 3.4.  Comparison of smoothing filters 

 

The Mean and Gaussian filters blurred the image to some extent to 

remove the inconsistency in the fluctuations of neighbouring pixel 

values. However, they were not able to remove the salt and pepper and 

impulse noises. Compared to the Mean filter, Gaussian filter had a better 

blurring effect due to the different weights assigned to different 

positions of pixels. While Median filter did not blur the image as much, 

it was able to suppress salt and pepper, and impulse noises. In the 

Median filter, it was observed that the intersection of edges were no 

longer as sharp as in the original image. Comparatively, it preserved the 

quality of edges. This is because, the median value is not calculated 

using the weighted sum of pixels like the Mean and Gaussian filters but 

is taken as one of neighbourhood pixel values. Table 1 compares the 

speed of different smoothing filters applied on the test image (Figure 3 

(a)). 

 

The following are some of the key parameters that were selected for 

measurement of performance of smoothing filters. 

 

• Original speed: This is the maximum speed, measured in fps (frames 

per second), possible with no smoothing filters applied to the image. 

This value remains same for every smoothing filter as the same 

image (Figure  3 (a)) was used for testing all filters. For the image 

used in these tests, the original speed was at a maximum of 222 fps. 
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• Final speed: This is the maximum speed with the particular 

smoothing filter applied on the image. 

 

• Parameters: For an optimal solution, a smoothing filter may depend 

on parameter(s), which need to be tuned at run-time. 

 

• Type: The smoothing filters were classified into either of the two 

types, linear and non-linear. 

 

 
Final 

Speed 
Parameters Type 

Mean 

3 x 3 
53.0 - Linear 

Mean 

5 x 5 
46.0 - Linear 

Gaussian Two- 

Dimensional 
2.8 σ  = 1.51 Linear 

Gaussian 

5 x 5 
26.9 σ  = 1.42 Linear 

Median 27.6 - Non-Linear 

Table 1: Comparison of different smoothing filters. 

 

 

                                                 
1 - A kernel of size 11 x 11 was created using Equation 15 with ‘σ ’ = 1.5.  

2 - Discrete Approximation with ‘σ ’ =1.4 for defining kernel of size 5 x 5 (Equation 18). 
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 4. Edge detectors 

 

Edge detection, the ability to determine the edge of an object [43], is a 

primary step in many image enhancement procedures. In an image, an 

edge is an abrupt change in gray level intensity values of successive 

pixels. Hence, when there is a high difference between two 

neighbouring pixels, a possible edge is detected. An edge detector is 

essentially a high-pass filter. The intensity of the pixels at the borders of 

a shadow also transit from a low to a high value. Due to this, any edge 

detection technique detects this outline of shadows as edges. This 

results in detection of false edges. Similarly, when there is a little 

change in the intensity between two objects, some edge detectors may 

fail in detecting this small difference as an edge of the object. 

 

Edges help in identifying the outline of an object. The primary goal of 

edge detectors is to output the edges required for further image-

processing stages like detecting the object, its  shape, size, and 

orientation. Edge detection is extensively used in the area of surgical 

and medical machines. 

 

Most of the edge detection techniques are based on applying simple 

convolution masks to the entire image in order to compute the first-

order and/or second-order derivative, thus resulting in an edge. A 

derivative is nothing but a calculation of differences in pixel values. 

 

Edge detection can be divided into two types. 

• First-order based edge detection (Gradient) - the first order derivative 

at a pixel is used to decide the presence of an edge. The first order 

derivative is searched for the maximum or the minimum value and 

the pixel containing this value is considered an edge. An example of 

this is the Sobel edge detector. 
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• Second-order based edge detection (Laplacian) - the second order 

derivatives are used to decide the presence of an edge. The pixel that 

has its second order derivative as zero is considered an edge, that is, 

this method searches for zero-crossings. An example of this is the 

Laplace edge detector. 

 

In any of the above cases, a pre-defined template is created, generally of 

size 3 x 3. These templates are convolved with every neighbourhood in 

an image. The convolved value is assigned to the pixel under 

consideration. 

 

 

Figure 20: The general behaviour of an edge and its derivative: The relationship 

changes comparatively with the slope on the function f(t), which is a cross-section of 

an edge in one particular direction [41]. 

  

Consider the image function f(t). The corresponding first-order and 

second order derivatives are given as f’(t) and f’’(t). Whenever the 

first-order derivative (gradient) is local maximum or minimum 

corresponding to an edge pixel, the second-order derivative reaches 

zero. The width of the first and second order derivative is inversely 

proportional to the slope of the image function. This general behaviour 
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of an edge and its derivatives is shown in Figure 20. Pixels having 

gradient values above a certain threshold are considered as edges. 

 

 4.1.  Laplace edge detector 

 

The standard Laplace edge detector calculates the partial second order 

derivatives along x and y direction for every pixel. The sum of these 

derivatives is assigned to the respective pixel, as shown in Equation 19. 

 

∂ ∂
∂ ∂

2 2

2 2

 f  f
L  {  f ( x , y )  }   =     +   

x y
 

Equation 19: Laplace equation [4]. 

 

The edge direction can be formulated as in Equation 20. 

 

θ

 ∂
 ∂ 

∂ 
 ∂ 

2

2
-1

2

2

 f
y ( x  ,  y )  =   t an  
 f

x

 

Equation 20: The edge direction for the Laplace edge detector. 

 

The template form of this equation is shown in Equation 21 (a). This 

template only considers four immediate neighbours of the pixel (top, 

bottom, left, and right). Equation 21 (b) shows the template in which 

eight neighbours of the pixel are considered, that is, the four 

neighbours of Equation 21 (a) and the diagonal pixels. This is useful 

when the diagonal elements and the isolated pixels in the 

neighbourhood are considered for calculations. Equation 21 (c) is used 

when the diagonal elements need to be stressed more than the adjacent 

pixels. Similarly, in Equation 21 (d), the adjacent elements are stressed 

more than the diagonal elements. However, the templates (c) and (d) of 

Equation 21 are seldom used. 
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0 1 0  1 1 1  2 -1 2  -1 2 -1 

1 -4 1  1 -8 1  -1 -4 -1  2 -4 2 

0 1 0  1 1 1  2 -1 2  -1 2 -1 

 (a)    (b)    (c)    (d)  

Equation 21: Laplace Edge Detection Template [4]. 

 

The two-dimensional Laplace template in Equation 21 (a) can be 

decomposed into two separate one-dimensional templates as shown in 

Equation 22. These two one-dimensional components can be applied 

separately to the image in either direction instead of a single two-

dimensional template. 

 

      1 

L
x
= 1 -2 1  L

y
= -2 

      1 

 (a)   (b) 

Equation 22: The Laplace filter: (a) L
x
 - x component, (b) L

y
 - y component. 

 

Equation 22 (a) and (b) shows the x and the y component of the 

Laplacian operator resulting in detection of vertical and horizontal edges 

respectively. 
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(a)      (b) 

  
(c)      (d) 

Figure 21: Laplace edge detector (Equation 21 (a)): (a) Original image , (b) Edge strength 

(Equation 21 (a)), (c) Binary edge strength (Threshold value = 26), (d) Edge direction 

(Equation 20). 

 

  
(a)      (b) 

Figure 22: Laplace edge detector (Equation 21 (a)): (a) Original image , (b) Edge strength 

(Equation 21 (a)). 
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 4.2.  Laplacian of Gaussian (LoG) 

 

The Laplacian of Gaussian (LoG) is the Laplace filter applied on an image 

that has been smoothed through the Gaussian filter. This two-step 

process can be divided into two one-step process to speed up 

calculations. First, the Laplace filter is applied on the Gaussian filter and 

the resulting kernel is applied to the image. This is shown in Equation 

23. 

 

L (G * I) = (L * G) I  

Equation 23: Laplac ian of Gaussian on Image is the same Laplace on the Gaussian of 

the Image. 

 

The Laplace filter from Equation 19 is applied to the two-dimensional 

Gaussian filter from Equation 17 to result in Equation 24. 

 

σ

π σ σ

2 2

2
x + y2 2 -

2
4 2

1 x + y
L o G  ( x , y )  =   ( 1  -  )  e

2
 

Equation 24: The Laplacian of Gaussian (LoG) function [41]. 

 

The kernel formed on selecting the standard deviation (σ ), shows the 

response as shown in Figure 23. 
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Figure 23: The response of the kernel formed for Laplacian of Gaussian (LoG) with a 

standard deviation ‘ σ ’ = 1.4. 

 

As shown in Equation 25, Fisher et al [41] stated a 9 x 9 kernel created 

using the standard deviation, ‘σ ’ = 1.4 to achieve the edge detection. 
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0 0 3 2 2 2 3 0 0  

0 2 3 5 5 5 3 2 0  

3 3 5 3 0 3 5 3 3  

2 5 3 -12 -23 -12 3 5 2  

2 5 0 -23 -40 -23 0 5 2  

2 5 3 -12 -23 -12 3 5 2  

3 3 5 3 0 3 5 3 3  

0 2 3 5 5 5 3 2 0  

0 0 3 2 2 2 3 0 0  

         9 x 9 

Equation 25: The Laplacian of Gaussian (LoG) pre-defined kernel calculated using 

standard deviation ( σ ) = 1.4 [41]. 

 

Generally, a smoothing filter needs to be applied before edge detection, 

in order to achieve better results. In the case of LoG, the smoothing and 

edge detection work at the same time. This is due to having applied the 

Laplace filter on the Gaussian filter. 
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(a)      (b) 

Figure 24: Laplacian of Gaussian 9x9 (Equation 25): (a) Original image, (b) Edge 

strength (Equation 25). 

 

  
(a)      (b) 

Figure 25: Laplacian of Gaussian 9x9 (Equation 25): (a) Original image, (b) Edge 

strength (Equation 25). 

 

Apart from using a standard 9 x 9 kernel, the standard deviation ‘σ ’ = 

1.5, was used for edge detection. The size of the kernel was found using 

Equation 15 as 11 x 11. The results can be seen in Figure  26 and Figure  

27. 
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(a)      (b) 

Figure 26: Laplacian of Gaussian – two dimensional with σ  = 1.5 (Equation 24): (a) 

Original image, (b) Edge strength (Equation 24). 

 

  
(a)      (b) 

Figure 27: Laplacian of Gaussian – two dimensional with σ  = 1.8 (Equation 24): (a) 

Original image, (b) Edge strength (Equation 24). 

LoG with pre-defined kernel (Equation 25) was faster in producing the 

results but LoG with standard deviation (‘σ ’) = 1.5 (Equation 24) showed 

better results. 

 

 4.3.  Difference of Boxes (DoB) 

 

Difference of Boxes (DoB) is similar to LoG with a slight modification. 

Both use the concept of differentiation after smoothing. LoG performs 

Laplace filtering after Gaussian filtering whereas DoB takes the 

difference of two Mean filters of different dimensions. Instead of 

applying two Mean filters and taking difference, it internally computes 

the differences of two Mean filters and then applies the result of this as 

the kernel to the input image. Hence, it calculates two separate 
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smoothing filters and then on computing the differences, edges are 

projected in the output image. 

 

The larger the kernel sizes the thicker are the edges and the higher is 

the noise suppression. The simplest implementation of this detector is 

differencing the Mean 3 x 3 filter with Mean 1 x 1 filter (the pixel by 

itself). The result of this is thinner edges and less noise suppression. 

This is seen in Figure 28. 

 

  
(a)      (b) 

Figure 28: DoB calculated with Mean 3 x 3 and Mean 1 x 1: (a) Original image , (b) Edge 

strength. 

 

In Figure 28 (b), the edges are not clear and more noise is apparent. 

This can be corrected by taking Mean 5 x 5 with Mean 1 x 1 (the pixel 

by itself). This is shown in Figure 29. 

 

  
(a)      (b) 

Figure 29: DoB calculated with Mean 5 x 5 and Mean 1 x 1: (a) Original image , (b) Edge 

strength. 
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Using a Mean filter of even dimension leads to edges not being detected 

in all directions. This can be seen in Figure 30. 

 

  
(a)      (b) 

Figure 30: DoB calculated with Mean 3 x 3 and Mean 2 x 2: (a) Original image , (b) Edge 

strength. 

 

In Figure  30 (b), many edges are missed because of using a Mean filter 

of even dimensions (2 x 2). Therefore, Mean filters with odd dimensions 

should be preferred. It was observed that using Mean filters of higher 

odd dimensions (5 x 5 or 7 x 7) result in better noise suppression. The 

results are shown in Figure 31 and Figure 32. 

 

  
(a)      (b) 

Figure 31: DoB calculated with Mean 5 x 5 and Mean 3 x 3: (a) Original image , (b) Edge 

strength. 
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(a)      (b) 

Figure 32: DoB calculated with Mean 7 x 7 and Mean 3 x 3: (a) Original image , (b) Edge 

strength. 

 

It was observed that as we increase the size of the Mean filters, edges in 

the output of the detectors grew thicker. DoB with Mean 5 x 5 and Mean 

3 x 3 filters gave better results than any other, with respect to quality 

and speed. 

 

 4.4.  Sobel edge detector 

 

The Sobel edge detector calculates the gradient along the x and y 

direction separately. 

 

-1 0 1  -1 -2 -1  0 -1 -2  2 1 0 

-2 0 2  0 0 0  1 0 -1  1 0 -1 

-1 0 1  1 2 1  2 1 0  0 -1 -2 

 (a)    (b)    (c)    (d)  

Equation 26: Sobel Edge Detection Templates [18, 44]. 

 

The Sobel edge detector uses different weights for the position of pixels 

in the masks. This is because it computes the derivatives in one 

direction and at the same time , smoothes the image in another direction 
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(averaging). These weights change with the larger sized filters and 

alteration in the image dimensions. 

 

Generally, in Sobel edge detection, only the first two templates in 

Equation 26 (a) and (b) are considered. Equation 26 (a) shows the 

template required detecting the vertical edges or the edges made 

parallel to the y-axis, termed as S
x
. Similarly, Equation 26 (b) shows the 

template required to detect horizontal edges or edges that are almost 

parallel to the x-axis, termed as S
y
. The remaining two templates, 

Equation 26 (c) and (d), are seldom used to detect diagonal edges in 

respective directions, Equation 26 (a) and (b). 

 

The two-dimensional Sobel x-component, S
x
, in Equation 26 (a) can be 

decomposed into two one-dimensional components, S
x1
 and S

x2
, as 

shown in Equation 27. S
x1
 computes the averaging in the direction of the 

edge and perpendicular to the edge strength while S
x2
 computes the 

first-order differentiation along the direction of edge strength. 

 

 1      

S
x1
= 2  S

x2
= -1 0 1 

 1      

(a)   (b)  

Equation 27: Sobel – x component – S
x
 is separated into: (a) S

x1
 and (b) S

x2
. 

 

Similarly, the Sobel y-component, S
y
, can be composed into S

y1
 and S

y2
 as 

shown in Equation 28. 
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 -1      

S
y1
= 0  S

y2
= 1 2 1 

 1      

(a)   (b)  

Equation 28: Sobel – y component – S
y
 is separated into (a) S

y 1
 and (b) S

y 2
. 

 

Finally, the gradient value is computed by taking the square root of the 

sum of the squares of the gradients in either direction, as shown in 

Equation 29. 

 

( )θ

→

→

 
 
 

 x  x

 y  y

2 2
 x  y

 y-1

 x

S   S obe l  (x ,  y )

S   S o b e l  (x ,  y )

S o b e l  ( x , y )   =    S  +  S

S
x, y   =   t a n

S

 

Equation 29: The Sobel edge calculation [4]. 

 

The edge magnitude is also calculated as the absolute values of S
x
 and S

y
. 

This can be written as Equation 30. 

 

( )  x  yS o b e l  x ,  y   =   S   +   S  

Equation 30: An alternative to calculate Sobel edge magnitude [4]. 

 

Due to the reduction in complexity, the calculation of edge magnitude in 

Equation 30 is faster in calculation of the values than that in Equation 29. 

For better results, the scale factor of 
1
3

 was used for calculations. The 

results of the edge strength’s in x and y directions along with the final 

edge results with edge direction are shown in Figure 33 and Figure 34. 
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(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

Figure 33: Sobel edge detector: (a) Original image , (b) Sobel x-component (Equation 26 

(b)), (c) Sobel y-component (Equation 26 (a)), (d) Sobel in x and y direction - final edge 

strength (Equation 29) with scale factor = 
1
3

, (e) Binary edge strength (Threshold value 

= 38), (f) Edge direction (Equation 29). 



 

 51 

  
(a)      (b) 

Figure 34: Sobel edge detector (Equation 29) with scale factor = 
1
3

: (a) Original image, 

(b) Edge strength (Equation 29). 

 

 4.5.  Robert’s edge detector 

 

Robert’s edge detection technique is the most basic of all the techniques 

discussed. It uses two 2 x 2 masks to find the orthogonal derivatives. 

Extension to the higher image dimensions is not possible in this edge 

detection technique. In addition, the gradient is not shifted by half-a-

pixel in both directions. Due to this, Robert’s edge detector is more 

sensitive to noise compared to other edge detectors. This is reflected in 

its output, which has a higher amount of noise that that of other filters.  

 

1 0  0 1 

0 -1  -1 0 

(a)  (b) 

Equation 31: Robert's Edge Detection Templates [18, 44]. 

 

Equation 31 (a) and (b) computes the orthogonal derivatives, that is, the 

detector calculates derivatives along the diagonals, termed as R
1
 and R

2
 

respectively. R
1
 calculates derivatives along the major diagonal. This 

detects edges parallel to the minor diagonal. Similarly, R
2
 calculates 
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derivates along the minor diagonal, to identify edges parallel to the 

major diagonal. 

 

( ) π
θ

→

→

 
 
 

 1  1

 2  2

 1  2

-1  2

 1

R R o b e r t s ( x ,  y )

R R o b e r t s (x ,  y )

R o b e r t s  ( x ,  y )   =   R   +   R

R
x, y   =   t a n +

R 4

 

Equation 32: The Robert’s edge calculation [45]. 

 

To speed up calculations, the edge magnitude is calculated as the 

absolute values of the orthogonal derivatives. An angle of 
π
4

 was added 

to the result of the edge direction [45]. This is because; the Roberts 

edge detector calculates the intensity fluctuations along diagonals, that 

is, it calculates orthogonal derivatives. 
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(a)      (b) 

  
(c)      (d) 

Figure 35: Robert’s edge detecto r (Equation 32): (a) Original image, (b) Edge strength 

(Equation 32), (c) Binary edge strength (Threshold value = 31), (d) Edge direction 

(Equation 32). 

 

  
(a)      (b) 

Figure 36: Robert’s edge detector (Equation 32): (a) Original image, (b) Edge strength 

(Equation 32). 
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 4.6.  Kirsch edge detector 

 

The Kirsch edge detector works in a similar fashion to the Sobel edge 

detector. The difference is that the weights are assigned to the different 

positions in the templates. In the Kirsch edge detector, weights are 

assigned to all pixel positions except the centre pixel, as shown in 

Equation 33. 

 

3 3 3  3 3 3  -5 3 3  -5 -5 3 

3 0 3  -5 0 3  -5 0 3  -5 0 3 

-5 -5 -5  -5 -5 3  -5 3 3  3 3 3 

 (a)    (b)    (c)    (d)  

Equation 33: Kirsch Edge Detection Templates [18, 44]. 

 

Again, the gradient is calculated along x and y directions, and along the 

diagonals. Equation 33 (a) shows the calculations of the gradient along 

the y-direction; (c) along the x-direction; and (b) and (d) along the 

diagonals. Similar to Equation 30, the edge magnitude of the Kirsch 

edge detector is calculated by adding the absolute values of the 

gradients in the x and y directions, as shown in Equation 34. 

 

θ

→

→

 
 
 

 x  x

 y  y

 x  y

 y-1

 x

K   K i rsch  (x ,  y )

K   K i rsch  (x ,  y )

K i rsch  (x ,  y )   =   K   +   K

K
 ( x , y )   =   t an

K

 

Equation 34: The Kirsch edge calculation. 
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(a)      (b) 

  
(c)      (d) 

Figure 37: Kirsch edge detector (Equation 34) with scale factor = 
1
4

: (a) Original image, 

(b) Edge strength (Equation 34), (c) Binary edge strength (Threshold value = 92), (d) 

Edge direction (Equation 34). 

 

  
(a)      (b) 

Figure 38: Kirsch edge detector (Equation 34) with scale factor = 
1
4

: (a) Original image, 

(b) Edge strength (Equation 34). 
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 4.7.  Prewitt edge detector 

 

The Prewitt edge detector behaves in the same way as the Sobel or 

Kirsch edge detectors. As discussed earlier, the change lies in the 

weights of the masks assigned to the respective pixels of the 

neighbourhood. The masks used in Prewitt edge detection are based on 

the Mean filter. All the values on one side of the pixel are  considered 

positive and the other side equal and negative. The masks used for 

Prewitt edge detector are shown in Equation 35. 

 

1 0 -1  1 1 1  0 -1 -1  1 1 0 

1 0 -1  0 0 0  1 0 -1  1 0 -1 

1 0 -1  -1 -1 -1  1 1 0  0 -1 -1 

 (a)    (b)    (c)    (d)  

Equation 35: Prewitt Edge Detection Templates [18, 44]. 

 

Equation 35 (a) shows the template used to detect the vertical edges, 

termed as Px. Equation 35 (b) shows the template used to detect the 

horizontal edges, termed as Py. Equation 35 (c) and (d) are used to 

compute the edges parallel to the major and minor diagonals, 

respectively: as with the Sobel and Kirsch edge detectors, these 

templates are rarely used. 

 

θ

→

→

 
 
 

 x  x

 y  y

 x  y

 y-1

 x

P   P r e w i t t  ( x ,  y )

P   P r e w i t t  ( x ,  y )

P r e w i t t  ( x ,  y )   =   P   +   P

P
 ( x ,  y )   =   t a n

P

 

Equation 36: The Prewitt edge calculation. 
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The edge strength is the sum of the absolute values of the gradient 

calculated along the x and y directions. Like Sobel, Prewitt edge detector 

templates are separable. The two-dimensional templates shown in 

Equation 35 (a) and (b) can be separated into two one-dimensional 

components. The component in the direction of the edge work as an 

averaging filter and the other component compute the first-order 

differentiation in the direction of the edge response. 

 

  
(a)      (b) 

  
(c)      (d) 

Figure 39: Prewitt edge detector (Equation 36) with scale factor = 
1
2

: (a) Original image , 

(b) Edge strength (Equation 36), (c) Binary edge strength (Threshold value = 51), (d) 

Edge direction (Equation 36). 
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(a)      (b) 

Figure 40: Prewitt edge detector (Equation 36) with scale factor = 
1
2

: (a) Original image , 

(b) Edge strength (Equation 36). 

 

 4.8.  Robinson edge detector 

 

The Robinson detector performs in a different way from the other edge 

detectors. Apart from Laplace (which calculates the second-order 

derivative), Robinson is the only detector that stresses on the centre 

pixel for calculating the first order derivatives. 

 

-1 1 1  1 1 1  1 1 1  -1 -1 1 

-1 -2 1  1 -2 1  -1 -2 1  -1 -2 1 

-1 1 1  -1 -1 -1  -1 -1 1  1 1 1 

 (a)    (b)    (c)    (d)  

Equation 37: Robinson Edge Detection Templates [18, 44]. 

 

Equation 37 (a) is used to detect the vertical edges, termed as Rox. 

Similarly, Equation 37 (b) shows the template for determining the 

horizontal edges in an image, termed as Roy; Equation 37 (c) and 

Equation 37 (d) are the templates used to determine the diagonal edges. 
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θ

→

→

 
 
 

 x x

 y y

 x  y

 y-1

 x

R o   R o b i n s o n  ( x ,  y )

R o   R o b i n s o n  ( x ,  y )

R o b i n s o n  ( x ,  y )   =   R o   +   R o

R o
 ( x ,  y )   =   t a n

R o

 

Equation 38: The Robinson edge calculation. 

 

The edge strength is the sum of the absolute values of the gradient 

calculated along x and y directions.  

 

  
(a)      (b) 

  
(c)      (d) 

Figure 41: Robinson edge detector (Equation 38) with scale factor = 
1
2

: (a) Original 

image , (b) Edge strength (Equation 38), (c) Binary edge strength (Threshold value = 64), 

(d) Edge direction (Equation 38). 
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(a)      (b) 

Figure 42: Robinson edge detector (Equation 38) with scale factor = 
1
2

: (a) Original 

image , (b) Edge strength (Equation 38). 

 

 4.9.  Comparison of edge detectors 

 

Based on quality, Sobel edge detector showed the best results. Kirsch 

edge detector showed good results but the edges detected were very 

thick. Laplace and Robert’s show broken edges at some junctions. LoG 

was the most expensive in computations. On taking an odd and even 

sized mean filters, DoB failed to show edges at certain locations. Hence, 

DoB should be used with odd-sized mean filters. Though Prewitt worked 

faster than Robinson did, their results were of average quality  compared 

to the Sobel and Kirsch detectors. Table 2 shows the results of applying 

the different edge detectors, discussed earlier in the chapter. 

 

The following are some of the key parameters that were selected for 

quantitative measurement of performance of the edge detectors. 

 

• Original speed: This is the maximum speed, measured in fps (frames 

per second), possible with no edge detectors applied to the test 

image in Figure 21 (a). This value remains same for every edge 

detectors as the same image was used for testing all detectors. For 

the image used in these tests, the original speed was at a maximum 

of 130 fps. 
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• Final speed: This is the maximum speed with the particular edge 

detector applied on the image. 

 

• Threshold: All the pixels having a value greater than the threshold 

were projected as edges. This was selected at run-time for the best 

results. The result of applying threshold is shown as binary edge 

strengths in respective edge detectors. The result of overlaying these 

edges on the original image is shown in Figure 86. 

 

• Scale factor: A scale factor is multiplied with the final edge strength 

calculated. This is the scale factor observed to be the best when 

tested at run-time. 

 

 
Final 

Speed 
Threshold 

Scale 

Factor 

Laplace 45.6 26 1 

LoG (9x9)3 22.4 255 1 

LoG4 4.5 230 1 

DoB (Mean 5 x 5 

- Mean 3 x 3)  
18.7 5 1 

DoB (Mean 7 x 7 

- Mean 3 x 3) 
12.2 8 1 

Sobel 40.1 38 1
3

 

Robert’s 47.0 31 1 

Kirsch 33.4 92 1
4

 

Prewitt 39.1 51 
1
2

 

Robinson 38.4 64 1
2

 

Table 2: Comparison of diffe rent edge detectors. 

 

                                                 
3 - Discrete Approximation with ‘σ ’ =1.4 for defining kernel of size 9 x 9 (Equation 25). 
4 - A kernel of size 11 x 11 was created using ‘ σ ’ = 1.5 in Equation 15. 
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 5. Corner detectors 

 5.1.  Introduction and classification 

 

In many applications, finding pairs of corresponding points in two 

images, that is, finding the geometric transformation of each of the two 

points between the two images is useful . Finding the changes in 

position and orientation is part of this calculation. Finding 

correspondence of all the points may be tedious, time-consuming, and 

highly complex. Hence, an effort is made to concentrate on certain 

points in the image, like corners. For example, when a square is 

considered, its transformation can be calculated if the corners are 

known: it is not necessary to know the entire set of points. The input for 

corner detectors is a gray level image and the output is an image in 

which all the corner pixels are marked. The difference between corners 

and edges is that at corners there is a large change in intensity when 

that pixel is compared with the neighbouring pixels in any direction. In 

addition, corners are subject to less variance than edges when any kind 

of transformations are made to the image, for example, rotation. There 

are two basic types of corner detectors: template-based and geometry-

based corner detectors, as outlined by Shen et al [46]. 

 

 5.1.1. Template-based corner detector 

 

In template-based corner detection, a set of templates is created and 

then every pixel and the neighbouring pixels in the template are 

compared to produce certain results. The templates created can be of 

any size lesser than the size of the image. The templates are usually of 

size 3 x 3. When these templates are compared with the pixels of the 

images, it results in information that helps in judging whether a pixel is 

a corner. The templates shown in Figure 43 are the Laplace edge 

detector. Two examples, both of 3 x 3 templates, one with 4-
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neighbourhood, and the second, with 8-neighbourhood, are shown in 

Figure 43. 

 

0 1 0  1 1 1 

1 -4 1  1 -8 1 

0 1 0  1 1 1 

 (a)    (b)  

Figure 43: The Laplace Operator with a 3 x 3 template with (a) 4-neighbourhood and 

(b) 8-neighbourhood. 

 

In Figure  43, the centre of the template is convolved with the pixel of 

the image under consideration and then the neighbouring pixels are 

convolved with the values shown in the template. The result of this 

convolution is the edge value of that pixel under consideration. In this 

way all the pixels that are part of an edge will be shown in the output 

image. This system incurs high computational costs . The number of 

computations for the template shown in Figure  43 (a) and Figure 43 (b) 

will be 5*m*n and 9*m*n respectively, where m*n are the number of the 

pixels of the image. 

 

 5.1.2. Geometry-based corner detector 

 

Geometry-based corner detectors measure the differential geometric 

features that lead to corners. This method involves many steps, such as 

extracting the boundary of the object as a chain code and then looking 

for significant change in the values of the chain code. This change of 

values means the direction of the next pixel is different from the 

previous pixel. This means that the pixel that indicates a change in 

direction is a corner. This is illustrated by Figure 44 and Figure 45. 
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  5 4 4 4 4   

 6      3  

 7      2.  

  0 0 0 0 1   

Figure 44: An object in an image. The boundary is marked gray. The figures shown in 

the pixels show the relative direction of the next pixel from the pixel under 

consideration. 

 

3 2 1 

4 p 0 

5 6 7 

Figure 45: Each pixel is numbered according to the relative direction of that particular 

pixel with pixel under consideration, p. 

 

The run length code starts from the rightmost bottom pixel of the chain, 

which is marked by a dot (.) after the value at that pixel. Using the 

convention shown in Figure 45, the code for the object boundary 

marked in Figure 44 can be written as 2, 3, 4, 4, 4, 4, 5, 6, 7, 0, 0, 0, 0, 

and 1. The first occurrence of the 2, 3, 4, 5, 6, 7, 0 and 1 are considered 

to be corners as the direction of the path changes. This is a time-

consuming method as it is applied to all objects in the image. In 

addition, an error in segmentation while creating the chain will result in 

wrong pixels being identified as corners. If we consider the object 

shown in Figure 44, the computational costs will be 2 * (i + j) where 

(i + j) is the total number of pixels lying on the boundary of the 

object. The computational cost for this will depend on the size, shape, 

and length of the object. 
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 5.2.  Kitchen-Rosenfeld corner detector 

 

Kitchen and Rosenfeld proposed a corner detector [14] that works by 

taking second order derivatives along the direction of an edge.  

 
2 2

x y y x y x y y x x
2 2

x y

I  I  -  2  I  I  I  +  I  I
K R  ( i , j ) =

I  +  I
 

Equation 39: Kitchen-Rosenfeld corner detector. 

 

The Kitchen-Rosenfeld corner detector can be written as Equation 39. 

Here, I
x
 and I

y
, and I

xx
 and I

yy
 are the first-order and second-order 

derivatives along x and y directions, respectively. I
xy
 is the partial order 

derivative along the x and y directions. The first derivative along the x 

direction is calculated and then the derivative of this result is computed 

along the y direction. 

 

On gray-scale images, Kitchen-Rosenfeld is accurate and not very 

sensitive to noise. Applying the corner detector directly to binary images 

did not give good results. However, if the filter was applied after edge 

detection, the results were accurate. In order to view the corners in the 

output image, a threshold is applied to the result of the detector. 

 

  
(a)      (b) 

Figure 46: Kitchen Rosenfeld corner detector (Equation 39): (a) Original image , (b) 

Corners. 
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(a)      (b) 

Figure 47: Kitchen-Rosenfeld corner detector (Equation 39): (a) Original image , (b) 

Corners. 

 

The initial test image in Figure 46 (a) and Figure 47 (a) was smoothed 

using the Mean 3 x 3 filter. Kitchen-Rosenfeld was applied to this result. 

Finally, this result was overlayed on the initial test image. The result of 

overlaying in Figure 47 (b) was tested with threshold value 18 (Figure  

87). 

 

 5.3.  Beaudet corner detector 

 

From Hessian matrix form [12], the derivatives are written as Equation 

40 (a). Equation 40 (b) shows an example of these values. 

 

 
 
  

 x x  x y

 x y  y y

I I

I I    
 
 
 

2 0 1 5
1 5 2 0  

(a)     (b) 

Equation 40: The second-order derivatives along x and y directions and partial 

derivative along x and y direction: (a) Hessian matrix form, (b) An example of the 

Derivatives’ value. 

 

The Beaudet corner detector [13] is different from the others, in that it 

just calculates the determinant (‘det’). The higher the determinant (the 

value ‘det’ obtained from Equation 41), the higher the chance of a 
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pixel being a corner. Hence, from the Hessian matrix form, ‘det’ can be 

calculated as shown in Equation 41. 

 
2

 x x  y y  x yd e t  ( i , j )   =   I  I  -  I  

Equation 41: Beaudet corner detector’s equation for computing the ability of the pixel 

to be a corner. 

 

  
(a)      (b) 

Figure 48: Beaudet corner detector (Equation 41): (a) Original image , (b) Corners. 

 

  
(a)      (b) 

Figure 49: Beaudet corner detector. (Equation 41): (a) Original image , (b) Corners. 

 

The Beaudet corner detector was applied to Figure 48 (a), and Figure 49 

(a). Prior to this, both images were smoothed using the Mean 5 x 5 filter. 

The result in Figure 49 (b) was overlayed at the threshold value 255 

(Figure 87). 
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 5.4.  Plessey corner detector 

 

Based on Equation 40, the determinant (‘detm’) is calculated as 

Equation 43. The value of ‘tracem’ is calculated by adding the major 

diagonal elements. Whether a pixel is a corner can be decided by the 

value of ‘plessey’ that is assigned to every pixel. Equation 42 shows a 

matrix based on first differentials of images was designed, which was 

further used to calculate whether a pixel is a corner. 

 

 
 
  

2
 x  x  y

2
 x  y  y

I I  I
C  =  

I  I I
 

Equation 42: Matrix for calculating first differentials [12]. 

 

Based on this matrix, calculations are made in calculating ‘plessey’ as 

shown by Equation 43. 

 
2 2 2

 x  y  x y

2 2
 x  y

d e t m   =   I  I   -   ( I  I )

t r a c e m   =   I   +   I

p l e s s e y  ( i , j )   =   d e t m  /  t r a c e m

 

Equation 43: The calculation of det and trace, and the ability of the pixels to be corner 

in Plessey corner detector. 

 

The value of ‘plessey’ is more at the junction of the edges, where the 

possibility of a pixel being a corner is high. 
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(a)      (b) 

Figure 50: Plessey corner detector (Equation 43): (a) Original image , (b) Corners. 

 

  
(a)      (b) 

Figure 51: Plessey corner detector (Equation 43): (a) Original image , (b) Corners. 

 

The Mean 3 x 3 filter was applied to Figure 50 (a) and Figure  51 (a) 

followed by the Plessey corner detector. The result in Figure 51 (b) is 

overlayed on the initial image at the threshold value of 43 (Figure 87). 

 

 5.5.  Noble corner detector 

 

The Noble corner detector [16] works in a similar manner to the Plessey 

corner detector. This detector was based on the theoretical formulation 

for the corner detection problem using differential geometry [12]. The 

matrix shown in Equation 42 was modified to another form as seen in 

Equation 44. 
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σ
   
   

     

 22
 x x  x y x  x  y  2

2
 x y  y y x  y  y

I II I  I
C  =   +  

I II  I I
 

Equation 44: Modification in representing the matrix shown in Equation 42 for further 

calculation for Noble  corner detector [12]. 

 

Using this matrix, ‘detm’ and ‘tracem’ are calculated as shown in 

Equation 45. 

 

σ

σ

2 2 2
 x  y  x y

2 2 2 2 2 2
 x x  x y  y y  x y  x x  x y  y y  x y

2 2 2 2 2 2
 x  y  x x  y y  x y

d e t m   =   ( I  I   -   ( I  I ) )

- ( ( I + I ) ( I + I ) - ( I  I + I  I ) )

t r a c e m   =   I   +   I + ( I + I + 2  I )

n o b l e  ( i , j )   =   d e t m  /  t r a c e m

 

Equation 45: The calculation of det and trace, and the ability of the pixels to be corner 

in Noble  corner detector. 

 

In this detector, the value of sigma (‘σ ’) is manually assigned. This 

value was varied at run-time and was tested on every pixel to check 

whether the pixel is a corner. 

 

  
(a)      (b) 

Figure 52: Noble corner detector: (a) Original Image, (b) Corners. 
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(a)      (b) 

Figure 53: Noble corner detector: (a) Original Image, (b) Corners. 

 

The Mean 3 x 3 filter was applied to Figure 52 (a) and Figure  53 (a) 

followed by the Noble corner detector. The result in Figure 53 (b) is 

overlayed on the initial image at the threshold value of 255 (Figure  87). 

 

 5.6.  Harris-Stephens corner detector 

 

Plessey corner detector was slightly modified to result in the Harris-

Stephens corner detector [17]. It is also based on the concept of first 

order differentials. The determinant is calculated and termed as ‘detm’ 

and the sum of the major diagonals of this matrix is termed as ‘tracem’. 

 
2 2 2

 x  y  x y

2 2
 x  y

d e t m   =   I  I   -   ( I  I )

t r a c e m   =   I   +   I
 

Equation 46: Det and Trace derived from the basics of matrices and using the above 

Equation 40. 

 

The Harris-Stephens corner detector is calculated using ‘detm’ and 

‘tracem’ as in Equation 46. This is calculated as in Equation 47. 

 
2h a r r i s  ( i , j )   =   d e t m   -   k  *  ( t r a c e m )  

Equation 47: Harris-Stephens corner detector’s equation for computing the ability of 

the pixel to be a corner [12]. 
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The term ‘harris’ is the calculated value shown in Equation 47. At 

corners, this value is higher than the neighbourhood pixels.  

 

  
(a)      (b) 

Figure 54: Harris-Stephens corner detector (Equation 47): (a) Original image, (b) 

Corners. 

 

  
(a)      (b) 

Figure 55: Harris-Stephens corner detector (Equation 47): (a) Original image, (b) 

Corners. 

 

The Harris-Stephens corner detector was applied to the test image 

shown in Figure 54 (a) and Figure 55 (a). The corner detector was 

applied to the result of Mean 5 x 5 filter applied on the initial image. 

The Mean 5 x 5 filter was necessary because this detector required 

higher blurring. The result shown Figure 54 (b) and Figure 55 (b) was 

overlayed on the initial image with the threshold value of 217 (Figure 87). 
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 5.7.  A corner detector based on the concept of 

zero-crossing 

 

In a zero-crossing edge detector, the second-order derivative of an edge 

response always passes through the origin as shown in Figure  20. That 

means the value to the left of this zero-crossing second-order derivative 

has an opposite polarity from the value to the right. This can be 

illustrated by Figure 20. Apart from being of opposite polarities, ideally, 

these values are equal in magnitude. However, these values are 

generally not the same , due to the change in real-time calculations of 

the edge-response and its derivatives. The first-order derivative has a 

curve similar to a Gaussian distribution curve. Hence, corresponding to 

the position where the second-order derivative turns zero, there is a 

maximum value or maxima in the first-order derivative. 

 

Similarly, an ideal corner has the response similar to a Gaussian 

distribution curve Figure 56. This corner response was used to check 

whether a pixel is a corner. An attempt was made to compute this 

possibility by using the values of the corner responses’ first and second-

order derivatives. 
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Figure 56: A Corner response. 

 

Hence, when a derivative of this corner response is computed, the 

highest value (or the peak) of the initial response corresponds to the 

zero-value in the first-order derivative curve. This is shown in Figure 57. 
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Figure 57: The first-order derivative of the initial corner response shown in Figure 56. 

 

In addition, the second-order derivative of this initial function (corner 

response) has its minima or minimum value at the position where the 

first-order derivative passes through zero. Let us name this concept 

Zero-1. This can be better understood from Figure  58. 
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Figure 58: The second order derivative response of the initial corner response from 

Figure 56. 

 

Adding to the Zero-1 concept, both the second-order derivatives along x 

and y were checked to be equal. This leads to another corner detection 

technique. Let us name this concept Zero-2. 

 

Two corner detectors based on the concepts Zero-1 and Zero-2 were 

tried and tested on several image sequences. 

 

The second-order derivatives of the corner response along the x and y 

directions are not always both equal and minimum in the same position. 

This is because real-time images may have random pixel values 

(intensity). Hence, the Zero-1 concept outperforms the Zero-2 concept 

due to the general behaviour of a corner, where at least one of the 

second-order derivatives of the corner is at minima in that region.  

 

Zero-2 may be preferred over Zero-1 in applications that are constrained 

by memory, as Zero-2 requires less memory for storing its results.  
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(a)      (b) 

Figure 59: A corner detector after Zero-1 concept: (a) Original image , (b) Corners. 

 

  
(a)      (b) 

Figure 60: A corner detector after Zero-2 concept: (a) Original image , (b) Corners. 

 

  
(a)      (b) 

Figure 61: A corner detector after Zero-1 concept: (a) Original image , (b) Corners. 
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(a)      (b) 

Figure 62: A corner detector after Zero-2 concept: (a) Original image , (b) Corners. 

 

The Kitchen-Rosenfeld corner detector was used to get the initial corner 

response for Figure 59 (a), Figure 60 (a), Figure  61 (a), and Figure 62 (a). 

The Zero-1 and Zero-2 concepts were applied to get the result shown in 

Figure 59 (b) and Figure 61 (b), and Figure 60 (b) and Figure 62 (b) 

respectively. For the Zero-1 concept, the Mean 3 x 3 filter was applied 

prior to the corner detection. The results in Figure 61 (b) and Figure 62 

(b) were obtained after applying a threshold of 13 and 71 respectively 

(Figure 87). 

 

 5.8.  A corner detector based on the concept of 

non-maxima suppression 

 

Non-maxima suppression revolves around the concept of deleting pixels 

that are not the maximum in a certain region (neighbourhood or 

direction). Whenever a neighbourhood is considered, all the pixels are 

compared with one another. If the centre pixel (the one that is under 

consideration) is greater than or equal to all the pixels in the 

neighbourhood, then that pixel is retained. If this condition fails, then 

that pixel is deleted. In the end , only the pixels that are greater than or 

equal to the values of the pixels in the neighbourhood are retained. 

 

If non-maxima suppression, as explained above, is applied after a corner 

detector, sharp pixels (pulses) are shown in the output. This output is 
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considered ideal for a corner detector. Let us name this concept 

Maxima-1. 

 

In addition, non-maxima suppression was manipulated with a different 

concept where dilation was applied to the output of a corner detector. 

When applying gray-scale dilation to every neighbourhood in the image, 

the centre pixel of each neighbourhood is assigned the maximum value 

of the neighbourhood. Gray-scale dilation ensures that the value of a 

true corner remains unchanged. After dilation, its outcome is compared 

with the initial values of the corner response (Figure 63). 

 

 

Figure 63: The corner response and the dilated form of the corner response. Here, 

data1 corresponds to the initial corner and data2 corresponds to the dilated form of 

the initial corner response. 

 

If the corner value in the initial response is not the greatest in that 

neighbourhood, then it is not a true corner. On comparison, all the 

pixels having the same values in both the corner response and the 

output of the dilation function and at the same position are identified as 
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corners and are projected in the output image. This can be shown in 

Figure 64. Let us name this concept Maxima-2. 

 

 

Figure 64: The result of the projected values that are equal in corner response and 

dilated form of the corner response from Figure 63. 

 

These concepts might not work accurately on real-time images due to 

factors like noise, resolution of the image, and complexity of the image 

objects.  

 

Maxima-1 compares the intensity values of the pixels in the 

neighbourhood, resulting in projection of one value for every 

neighbourhood. It was observed that when a corner detector is applied 

after an edge detector Maxima-1 shows parts of the edges as corners. 
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(a)      (b) 

Figure 65: A corner detector after Maxima -1 concept: (a) Original image, (b) Corners. 

 

  
(a)      (b) 

Figure 66: A corner detector after Maxima -2 concept: (a) Original image, (b) Corners. 

 

  
(a)      (b) 

Figure 67: A corner detector after Maxima -1 concept: (a) Original image, (b) Corners. 
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(a)      (b) 

Figure 68: A corner detector after Maxima -2 concept: (a) Original image, (b) Corners. 

 

The Kitchen-Rosenfeld corner detector was used to get the initial corner 

response for images in Figure 65 (a), Figure  66 (a), Figure 67 (a), and 

Figure 68 (a). The Maxima-1 and Maxima-2 concepts were applied to get 

the results shown in Figure 65 (b) and Figure 67 (b), and Figure 66 (b) 

and Figure 68 (b) respectively. Prior to applying all these, Mean 3 x 3 

filter was applied. The final results shown in Figure 67 (b), and Figure 68 

(b) were obtained after applying a threshold of 13 and 18 respectively 

(Figure 87). 

 

 5.9.  A corner detector based on pre-defined 

templates 

 

Unlike the detectors discussed previously, this detector identifies 

corners in a binary image. These detectors are used to detect black 

corners in white backgrounds and vice-versa.  

 

If the image is gray-scale, it is first converted into a binary image by 

setting a threshold value. This converts all the values higher than the 

threshold parameter to white and anything lower to black. The corner 

detection is performed using eight corner detector templates (Figure  69). 

These eight corner operators are formed taking the first corner operator 

(a) and then rotating it seven times by 450, resulting in eight operators. 

Each of this eight is applied to each pixel. If any pixel satisfies any of the 
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templates shown in Figure 69, then it is considered a corner. Let us 

name this corner detector Binary-1. 

 

          X   X  

      X         

  X             

 (a)    (b)    (c)    (d)  

X               

    X           

        X     X  

 (a)    (b)    (c)    (d)  

           X --> don’t care 

Figure 69: Templates for Simple binary corner detector (Binary-1) [47]. 

 

To try out this concept, experiments were performed on various images, 

gray-scale and binary with varying threshold values. It should be noted 

that, on converting a gray-scale image to binary, some pertinent data 

might be lost or distorted. Due to this, there is a high possibility of 

wrong points being identified as corners or true corners being missed 

altogether. 

 

It was observed that with increase in the threshold value, the number of 

wrong corners detected also increased.  
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(a)      (b) 

Figure 70: Corner detector based on predefined templates (Figure 69, threshold value 

= 128): (a) Original Image, (b) Corners after converting the original image to binary 

image (threshold value = 128). 

 

  
(a)      (b) 

Figure 71: Corner detector based on predefined templates (Figure 69, threshold value 

= 255): (a) Original Image, (b) Corners after converting the original image to binary 

image (threshold value = 255). 

 

 5.10.  Comparison of corner detectors 

 

Harris-Stephens corner detector showed the best results considering 

corner localization. Plessey corner detector showed better results than 

Kitchen-Rosenfeld. The results of Nobel corner detector were 

comparable to that of Plessey. In the Beaudet corner detector, apart 

from detecting a true corner pixel, even some surrounding pixels are 

detected as corners. This is because, the detector assigns the same 

intensity values to these pixels as that of the true corner pixel. This 

leads to a cluster of neighbouring pixels being labelled as corners. It 
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was observed that where edges of distinct objects intersect, this 

detector identified the junction as multiple corners. Apart from Noble, it 

was observed that the corners obtained by Beaudet corner detector had 

high intensity values. This is because both detectors find corners  using 

only differences and not dividing by any number or expression. The 

detectors derived from the zero-crossing concept (Zero-1 and Zero-2) 

failed to show good results. However, the detectors derived from the 

concept of non-maxima suppression (Maxima-1 and Maxima-2) gave 

good results. The results obtained from Maxima-1 were of better quality 

than that of Maxima-2. Table 3 shows the results of applying the 

different corner detectors, discussed earlier in the chapter. 

 

The following are some of the key parameters that were selected for 

quantitative measurement of performance of the corner detectors. 

 

• Original speed: This is the maximum speed, measured in fps (frames 

per second), possible with no corner detectors applied to the image. 

This value remains same for every corner detectors as the same 

image was used for testing all detectors. For the image used in these 

tests, the original speed was at a maximum of 128 fps. 

 

• Initial correct corners: This is the number of corners that are visible 

in the image. The total number of corners in the original image is 22. 

 

• Final speed: This is the maximum speed with the particular corner 

detector applied on the image. 

 

• Correct corners detected: This is the number of corners that are 

correctly identified by the detector. 

 

• Multiple corners detected: This is the number of corners that are 

identified more than once by the detector. 
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• Extra corners detected (error positive): This is the number of pixels 

incorrectly identified as corners. 

 

• Missed corners (error negative): This is the number of corners, which 

the detector failed to identify. 

 

• Threshold: All the pixels having a value greater than the threshold 

were projected as corners. The results of corners overlayed on the 

test image Figure 47 (a) are shown in Figure 87. For Binary-1 detector, 

threshold was applied to convert the gray-scale image into binary 

image. 

 

• Parameters: For an optimal solution, a corner detector may depend 

on parameter(s), which need to be tuned at run-time. 

 

• Other filters used: In a real image, there might be a significant 

change in the intensity values of the neighbouring pixels, which 

might cause them to be a misidentified as a corner. The reasons for 

this change can be surface texture, lighting effect, etc. Hence, before 

applying any corner detector, an averaging filter may be applied to 

the image. 
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Table 3: Comparison of different corner detectors. 

                                                 
5 - The value of k, from Equation 47, was tested at run-time. 
6 - The value of σ , from Equation 45, was tested at run-time. 
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 6. Thinning filters 

 

In many image-processing tasks, processing on all points will not be 

required. In case of images that are mostly line-based, that is, text or 

line drawings, thinning the image may prove to be beneficial to further 

processing stages. This is because in these stages, the presence of lines 

is important and not their thickness. Hence, thinning plays a key role at 

the image pre-processing stage. “The method of removing redundant 

data from the lines and retaining the lines of required width is called 

thinning or skeletonizing” [6]. This chapter describes three methods that 

remove all unnecessary data but retain the important data required for 

processing. 

 

Thinning methods are morphological operations applied to binary 

images, which in turn produce binary images. The original image may 

contain thick edges or lines that may make subsequent processing time-

consuming. Thinning filters try to reduce the width of these edges or 

lines as much as possible, ideally to one pixel. Detecting and matching 

human fingerprints is one application that may benefit from thinning. 

This is because, in matching fingerprints, detecting the presence and 

shape of certain lines is more essential than their thickness. Another 

application where the same concept can be used is pattern matching or 

pattern recognition. Here, detecting certain lines that make the shape of 

a particular object or pattern is more crucial than the width of the lines 

lying on the outline. Thinning of extended objects is necessary in image 

analysis, where again the shape and pattern may be more important 

than the width of the object. In most cases, when thinning is applied the 

thickness of the original object is lost and cannot be traced back. 

 

Ideally, a thinning procedure should follow some basic principles. These 

are refined from [8] as: 

• The connectivity of the curve or the object should be preserved. 
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• Objects should remain unchanged in their shape, that is, a curve or 

an intersection of curves should remain in the same shape and 

orientation. 

• After thinning, the skeleton of the object should lie approximately 

along the centre of the object. 

• The skeleton of these objects should be as thin as possible. 

• The thinning procedure should be as fast as possible, hence, should 

comprise as few iterations as possible. 

 

 6.1.  Methods implemented 

 

The thinning methods that were implemented and tested are Stefanelli-

Rosenfeld [5], Lü-Wang [26], and Hall-Guo [8]. All these thinning 

methods were implemented as described in [6]. 

 

Thinning can be achieved by directly comparing the pixels of a 

neighbourhood with their magnitudes [6]. An ideal thinning filter deletes 

a pixel if it considers that pixel not to be a part of the skeleton. A 

thinning filter operates on pixels of an image and its neighbourhood. A 

3 x 3 neighbourhood can be explained as: 

 

P1 P2 P3 

P8 P P4 

P7 P6 P5 

Figure 72: The relation of the neighbouring pixels with the pixel under consideration. 

 

Here, pixel P, marked in gray in Figure 72, is the pixel under 

consideration. In each of these filters, the value of pixel PN (1 <= N <= 

8) is considered to be 1 if it is black in colour and 0 if it is white. The 

decision to delete a pixel is made by analysing different logical 

conditions in its 3 x 3 neighbourhood. These conditions are white to 
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black patterns (A(P)), number of black pixels (B(P)), and connectivity 

number (C(P)). 

 

A(P) stands for the number of ‘01’ patterns in the neighbourhood. It 

calculates the number of white to black patterns in the neighbourhood 

of pixel P in a clockwise direction. This can be better understood with 

the help of Equation 48. 

 

A ( P )   = (  ! P 1   & &   P 2 )  +  (  ! P 2   & &   P 3 )  
         +  (  ! P 3   & &   P 4 )  +  (  ! P 4   & &   P 5 )
         + (  ! P 5   & &   P 6 )  +  (  ! P 6   & &   P 7 )  
         +  (  ! P 7   & &   P 8 )  +  (  ! P 8   & &   P 1 )

 

Equation 48: The Computation of A(P). 

 

B(P) stands for the number of black pixels in the neighbourhood. It can 

be calculated from Equation 49. 

 

B ( P )  =  P 1  +  P 2  +  P 3  +  P 4  +  P 5  +  P 6  +  P 7  +  P 8  

Equation 49: The Computation of B(P). 

 

C(P) stands for the connectivity number which represents the number 

of white pixels directly above and below, and to the left and right. It 

does not consider diagonal pixels. For every white pixel (P2, P4, P6 and 

P8) it checks that at least one of the next two pixels (in clockwise 

direction) is black. This calculation is shown in Equation 50. 

 

C (P )   =   (  ! P2   &&   ( P3  OR  P4 ) )  +  (  ! P4   &&   ( P5  OR  P6 ) )  
          +   (  !P6   & &   ( P 7  O R  P 8 ) )  +  (  !P8  &&  (P1  OR P2) )

 

Equation 50: The Computation of C(P). 

 

For example, in Figure 72, for pixel P2, the next two pixels are P3 and 

P4 and for pixel P4, the next two pixels are P5 and P6. Applying the 

concept, if P2 is white, and any of the next two or both pixels are black, 
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then C(P) becomes one. The final value of C(P) depends on the 

calculation for the remaining three pixels, P4, P6, and P8.  

 

Thus, the value of C(P) is always between 0 and 4, inclusive. C(P) is 

exactly 1 if and only if the pixel is a part of contour lines. Similarly, from 

Equation 48, the value of A(P) is between 0 (all pixels black or white) 

and 4 (alternate black and white), inclusive. From Equation 49, the value 

of B(P) is between 0 (all pixels white) and 8 (all pixels black), inclusive. 

Whenever the value of B(P) is one, the pixel P is an end-point of a line 

or an edge. However, when B(P) has a value of more than one, then it is 

difficult to say whether pixel P is an end-point. 

 

 6.2.  Stefanelli-Rosenfeld thinning filter 

 

In this method, [5], first the contour pixels (pixels lying on the 

boundary) are identified and then they are deleted. This process of 

deletion is called ‘peeling’. This method continues until there are no 

contour pixels left, that is, we are left only with final pixels, which are 

part of the skeleton. For any pixel, there are two possibilities; it can be 

either a contour pixel or a final pixel (part of the skeleton) . 

 

For a pixel to be considered as a contour pixel, it must satisfy any of the 

four conditions in Equation 51.  

 

X X X  X W X  X X X  X X X 

X B X  X B X  W B X  X B W 

X W X  X X X  X X X  X X X 

 (a)    (b)    (c)    (d)  

            X -> don’t care 

Equation 51: The condition for a pixel to be a contour pixel [5, 6]. 
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In Equation 51, B stands for black, W stands for white and X stands for 

black or white. This notation is only valid for binary images. The process 

starts only after the operators detect the centre pixel as black (part of 

the object) . Using the notation described in Equation 51 (a), the pixel P6 

(Figure 72) is white. Similarly, in Equation 51 (b), (c), and (d), P2, P8 and 

P4 are white. 

 

For a pixel to be considered as a final pixel, it must satisfy any one of 

the conditions (a1-a4) or any two of the conditions (b1-b4) depending 

upon the direction of the peeling process. These conditions are shown 

in Equation 52. 

 

E F G  W E F  P W E  Q P W 

W B W  P B G  Q B F  R B E 

P Q R  Q R W  R W G  W G F 

 (a1)    (a2)    (a3)    (a4)  

P Q R  P X W  X B W  X W P 

X B W  Q B B  W B X  B B Q 

W B X  R W X  P Q R  W X R 

 (b1)    (b2)    (b3)    (b4)  

Equation 52: The different conditions for a pixel to be a final-pixel [5, 6]. 

 

In Equation 52, B stands for black; W stands for white. At least one of E, 

F and, G, and P, Q, and R should be black. X means that pixel can be 

either black or white.  

 

For every pixel there are four sub-iterations (bottom, top, left, and right) 

running one after the other, checking for the contour pixels and final 

pixels. Table 4 shows the checking of these conditions in each of the 
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four directions. These conditions ensure that no final pixel is 

accidentally deleted. Let us name this algorithm Stefan-1. 

 

Sub-iteration 
Contour-pixel 

type 

Contour-pixel 

condition 

(Equation 51) 

Final-pixel 

condition 

(Equation 52) 

0 Bottom (a) (b1), (b2) 

1 Top (b) (b3), (b4) 

2 Left (c) (b1), (b4) 

3 Right (d) (b2), (b3) 

Table 4: Conditions for the calculation of redundant pixels [6]. 

 

  
(a)      (b) 

Figure 73: Stefanelli-Rosenfeld thinning filter: (a) Original image with binary edges, (b) 

Thinned image. 

 

  
(a)      (b) 

Figure 74: Stefanelli-Rosenfeld thinning filter: (a) Original image with binary edges, (b) 

Thinned image. 
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In addition to the conditions explained in Stefan-1, Stefanelli and 

Rosenfeld [5] proposed another set of conditions that are based on A(P), 

B(P) and C(P). These are shown in Equation 53. 

 

(a)  2  <=  B (P)  <=  6  

(b)  A (P)  =  1 

(c)  P2  .  P4  .  P8  =  0  OR  A (P2)  ! =  1  

and 

(d)  P2  .  P4  .  P6  =  0  OR  A (P4)  ! =  1  

Equation 53: Conditions for a pixel to be deleted [5]. 

 

The decision to delete the pixel is taken when all the conditions for 

Stefan-1 and Equation 53 are satisfied. Let us name this algorithm as 

Stefan-2. The conditions listed in Equation 53 ensures connected 

skeletons which are not sensitive to contour noise [5]. 

 

  
(a)      (b) 

Figure 75: Stefanelli-Rosenfeld thinning filter with factors in Equation 53: (a) Original 

image with binary edges, (b) Thinned image. 
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(a)      (b) 

Figure 76: Stefanelli-Rosenfeld thinning filter with factors in Equation 53: (a) Original 

image with binary edges, (b) Thinned image. 

 

 6.3.  Lü-Wang thinning filter 

 

Lü-Wang [26] is based on two sub-iterations and does not test whether a 

pixel is a final pixel but just decides whether it can be deleted or not, 

that is, whether it is a contour pixel. It uses different conditions for 

deciding whether to delete the pixel. These are shown in Equation 54. 

 

(a)  3  <=  B (P)  <=  6  

(b)  A (P)  =  1 

AND 

(c1)  P2  &&  P4  &&  P6  =  FALSE  OR  P4  &&  P6  &&  P8  =  FALSE  

OR 

(c2)  P2  &&  P4  &&  P8  =  FALSE  OR  P2  &&  P6  &&  P8  =  FALSE  

Equation 54: Conditions for a pixel to be deleted [6, 26]. 

 

For a particular pixel to be deleted, 

• On even sub iterations, (a) AND (b) AND (c1) should be TRUE. 

• On odd sub iterations, (a) AND (b) AND (c2) should be TRUE. 

 

Hence, if the pixel has to be deleted then it has to meet all the criteria. 

In Equation 54, Condition (a) retains the end-points of the lines. 

Condition (b) makes sure that no lines are broken when they pass 
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through P. This is true because when a line passes through P, the 

number of FALSE-TRUE (01, A(P)) will always be greater than one. 

 

Conditions (c1) and (c2) can be rewritten as: 

(c1)  P4  &&  P6  &&  ( P2  ||  P8 )  =  FALSE
(c2)  P2  &&  P8  &&  ( P4  ||  P6 )  =  FALSE

 

Equation 55: Alternative Representation of conditions c1 and c2 of Equation 54 [6]. 

 

Conditions c1 and c2 cause the top-right (northeast) and bottom-left 

(southwest) contour pixels to be deleted alternately. 

 

  
(a)      (b) 

Figure 77: Lü-Wang thinning filter: (a) Original image with binary edges, (b) Thinned 

image. 

 

  
(a)      (b) 

Figure 78: Lü-Wang thinning filter: (a) Original image with binary edges, (b) Thinned 

image. 

 

The disadvantage of this method is that the diagonal lines can produce 

a skeleton that is two pixels wide, that is, thicker than the ideal. 
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 6.4.  Hall-Guo thinning filter 

 

[8] and [7] have a different way of splitting the sub-iterations. At the 

start of the process, this method marks the image like a chessboard 

(alternate black and white pixels). Two sub-iterations delete redundant 

pixels in alternating white and black sub-sections. This method consists 

of a single operator based on the conditions in Equation 56. 

 

 

(a)  C (P)  =  1  

(b)  B (P)  >  1 

AND 

(c)    ( P1  &&  P3  &&  P5  &&  P7 )
   ||  ( P2  &&  P4  &&  P6  &&  P8 )  =   FALSE

 

Equation 56: Conditions for a pixel to be deleted [6, 8]. 

 

In Equation 56, condition (a) avoids the possibility of deleting the pixel 

belonging to the centre of the object; condition (b) avoids deleting the 

end pixels of a line; and condition (c) makes sure that the edge pixels 

are deleted. If the diagonal pixels or the side pixels have all the values 

as ones, then the condition (c) fails. In that case, the pixel P is not 

deleted. Therefore , for the pixel P to meet the condition (c), not all of 

the diagonal pixels or side pixels can be black at the same time. If this 

happens, then the pixel P is the intersecting pixel of two lines. 

 

The advantage of this thinning procedure is that the diagonal lines are 

preserved. Let us name this algorithm as Hall-1. 
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(a)      (b) 

Figure 79: Original Hall-Guo thinning filter (Hall-1): (a) Original image with binary edges, 

(b) Thinned image. 

 

  
(a)      (b) 

Figure 80: Original Hall-Guo thinning filter (Hall-1): (a) Original image with binary edges, 

(b) Thinned image. 

 

The following steps show how the chess labelling of the image was 

implemented. 

 

For every pixel P(i,j) 
 chesslabel = (i + j) % 2. 
 : 
 : 

 Hall-Guo conditions (Equation 56) 

 : 
 : 
 chesslabel = !chesslabel. 
end for. 
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The results seen in Figure  79 and Figure 80, inspired the modification of 

the standard Hall-Guo method to obtain better results. The factor 

‘chesslabel’ was used but in a different way. Instead of considering the 

value for ‘chesslabel’ based on the position of the pixel, it was always 

considered one. In the second iteration, the value was changed to zero. 

However, the factors affecting thinning, as stated in Equation 56, were 

not modified. Let us name this algorithm as Hall-2. 

 

  
(a)      (b) 

Figure 81: Modified Hall-Guo thinning filter (Hall-2): (a) Original image with binary 

edges, (b) Thinned image. 

 

  
(a)      (b) 

Figure 82: Modified Hall-Guo thinning filter (Hall-2): (a) Original image with binary 

edges, (b) Thinned image. 

 

As can be seen from the results of Hall-2 in Figure  81 and Figure  82 and 

Hall-1 in Figure 79 and Figure 80, Hall-2 produces better results. 
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 6.5.  Comparison of thinning filters 

 

The performance of the modified Hall-Guo filter (Hall-2) was observed to 

be better than Hall-1. For the Stefanelli-Rosenfeld thinning filter, Stefan-

2, was observed to be better than Stefan-1. However, Stefan-1 was faster 

than Stefan-2. Considering only the quality of the output, the filter 

proposed by Lü-Wang showed the best results. Table 5 shows the results 

of applying the different thinning filters, discussed earlier in the chapter. 

The following are some of the key parameters that were selected for 

measurement of performance of the thinning detectors. 

 

• Original speed: This is the maximum speed, measured in fps (frames 

per second), possible with no thinning filters applied to the image. 

This value remains same for every thinning filter as the same image 

(Figure 73 (a)) was used for testing all detectors. For the image used 

in these tests, the original speed was at a maximum of 222 fps. 

 

• Other filters and Threshold: Before any of the thinning filters were 

applied, a smoothing filter was used to smooth the image and edges 

of the object were found using the Sobel edge detector. Then, all the 

pixels having a value greater than the threshold (51) were projected 

as edges. The output of the Sobel edge detector is white edges on 

black background. This was negated, as black edges are needed for 

the thinning filters. 

 

• Final speed: This is the maximum speed with a thinning filter applied 

on the result image containing only edges. 
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Final 

Speed 

Stefan-1 10.2 

Stefan-2 9.8 

Lü-Wang 19.1 

Hall-1 23.5 

Hall-2 24.0 

Table 5: Comparison of different thinning filters. 
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 7. Correlation-based optic flow computation 

 

Optic flow is a vector field that shows the direction and magnitude of 

intensity changes of a pixel in an image. It can be used for different 

purposes like finding correspondence between two images, measuring 

tilt angle of moving objects , and obstacle avoidance in robot navigation. 

The definition of obstacle, as given in [48], is “any region in space where 

a vehicle should not or cannot traverse, such as protrusions, 

depressions or steep terrain.” These obstacles can be static or dynamic. 

Like humans, a robot can avoid an obstacle if its location, shape, size, 

and distance to it are known. The degree of change of the size of the 

object is inversely proportional to the distance of that object from the 

robot. A human eye is an example that illustrates this concept. When a 

human eye moves closer to an object, its size appears to increase. 

Nearer objects would appear to change size relatively more compared to 

objects further away. Hence, this change in the size of the object can 

assist in determining the distance to that object. Thus, distance can be 

calculated by computing the change in the intensity of pixels of an 

object in successive images. These changes are calculated using various 

techniques like gradient-based optic flow, correlation-based optic flow, 

and spatiotemporal-based optic flow. 

 

“Correlation is the degree to which two or more quantities are linearly 

associated” [49]. In optic flow computation, correlation is used to find 

similarities between two successive images of a sequence. In essence, 

the displacement of every pixel in the (i+1)th image is calculated with 

respect to its position in the i th image. 
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 7.1.  The working of standard correlation-based 

optic flow 

 

Correlation-based techniques typically use the assumption of 

conservation of the local intensity distribution [11]. It works on two 

successive images of a given scene. Each pixel is identified by its own 

and the neighbouring pixels’ intensities. To compute the optical flow 

vector for each pixel of the i th image, that particular pixel is traced in 

the (i+1)th image. Each pixel is traced by using the sum of the squared 

differences (SSD) function, as formulated in Equation 57. 

 

∑ ∑
n n

2
1 2

i=-n j=-n

M(x + d x , y + d y ) = (I (x + i , y + j ) - I ( x + d x + i , y + d y + j))  

≤ ≤-N dx,dy N  

Equation 57: The calculation for Correlation-based optic flow. 

 

p  pixel under consideration 

M  matching value for each pixel 

Least value of M  best match for that pixel 

I
1 

 first image 

I
2 

 second image 

(x,y)  position of the pixel in the image 

n  range of correlation window on either side 

i  vertical range of correlation window 

j  horizontal range of correlation window 

(dx,dy)  position of the pixel in the search window 

with respect to original position (x,y) 

N  range of search window on either side 

 

Equation 57 can be explained with the help of Figure 83. 
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Figure 83: Two images I
1
 and I

2
 with pixel p and its neighbouring pixels , along with the 

correlation window of size (2n+1) x (2n+1) in I
1
 and I

2
, and search window of size 

(2N+1) x (2N+1) in I
2
. 

 

This tracing technique involves identifying pixel ‘p’ of image I
1
 in image 

I
2
. Now, for every pixel (2N+1) x (2N+1) candidate pixels are possible. 

The region covered by the candidate pixels is called the ‘search window’. 

Candidate pixels are determined by a physical constraint on the 

maximum displacement that can take place between two consecutive 

images in an image sequence, for that pixel. Each of these candidate 

pixels will have some match measure for the pixel under consideration. 

Match measure is a correlation between a small ‘correlation window’ 

around the pixel under consideration in I
1
 and a corresponding window 

around the candidate pixels in I
2
. In this approach, the weighted sum of 

squared differences between the intensities at the corresponding pixels 

in the two windows acts as a match measure. Out of all the candidate 

pixels, the one having the least match measure is considered a ‘best 

match’. 

 

If the best match is found uniquely, the exact displacement vector is 

immediately known. This is true for points in the image that are 

   
 p  
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2n+1 
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sufficiently distinct, such as corners. However, in case of the areas of 

strongly oriented intensity gradients, such as edges, several points have 

values similar to the match measure. It is not possible to disambiguate 

them. Thus, they suffer from what is technically known as the ‘aperture 

problem’. Corner points do not face this problem. 

 

The following algorithm is a simplified description for the correlation-

based optic flow. 

 

1 for every pixel p in image I1 at ‘spacing’ 
2  calculate a neighbourhood of size (2n+1) * (2n+1). 
 
3  compute a smallest value in the neighbourhood for  
 the term M(x,y) in Equation 57 by taking dx=0 and 
 dy=0. 
 
4 for every pixel in ‘search window’ of size (2N+1) * 9
 (2N+1) in image I2 
 
5  calculate M(x+dx,y+dy) from Equation 57. 
 
6  if (M(x+dx,y+dy) of I2 < M(x,y) of I1) 
 
7   M(x,y) = M(x+dx,y+dy). 
8   xoffset = dx. 
9   yoffset = dy. 
 
10  end if 
 
11 end for 
 
12 draw vector from (x,y) to (x+xoffset,y+yoffset) 

 
13 end for 

Algorithm 1: Correlation-based optic flow computation 

 

In Algorithm 1, the term ‘spacing’ gives the positions of the pixels to be 

considered for correlation. This is because it is impractical to perform 
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correlation for every pixel in an image, as this is an expensive process in 

time and space. The term ‘search window’ means the range of possible 

positions for pixel ‘p’ of I
1
 in I

2
. 

 

Figure 84 shows the results of correlation-based optic flow. Here the 

mechanism of SSDs is used to compute the ‘best match’. Figure 84 (a) 

shows the initial test image at frame 1. Figure 84 (b), (d), and (f) are the 

original test image at frames 2, 5, and 13 respectively. Figure 84 (c), (e), 

and (g) are the results on applying the above discussed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 108 

 
(a) 

  
(b)      (c) 

  
(d)      (e) 

  
(f)      (g) 

Figure 84: Optic flow computation using SSD: (a) The initial image at frame 1. (b), (d), 

and (f) are the original images at frame 2, 5 and 13 respectively. (c), (e), and (g) show 

the corresponding optic flow (SSD - Equation 57) results for frame 2, 5, and 13 

respectively. 
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 7.2.  An alternative to standard correlation-based 

optic flow 

 

Instead of taking the sum of the squared differences (SSD), an 

alternative is to take the sum of the absolute values of the differences. 

Let us name this alternative SAD. Equation 57 can thus be re -written as 

in Equation 58. 

 

∑ ∑
n n

1 2
i=-n j=-n

M(x + d x , y + d y ) = I (x + i , y + j ) - I ( x + d x + i , y + d y + j)  

≤ ≤-N dx,dy N  

Equation 58: An alternative to standard Correlation-based optic flow. 

 

Instead of Equation 57, Algorithm 1 now uses Equation 58 to perform 

the calculations to find the best match ‘M’. 

 

Figure 85 shows the results of correlation-based optic flow. Here the 

mechanism of  SSD is used to compute the ‘best match’. Figure 85 (a) 

shows the initial test image at frame 1. Figure 85 (b), (d), and (f) are the 

original test image at frames 2, 5, and 13 respectively. Figure 85 (c), (e), 

and (g) are the results on applying the above discussed method. 
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(a) 

  
(b)   (c) 

  
(d)      (e) 

  
(f)      (g) 

Figure 85: Optic flow computation using SAD. (a) The initial image at frame 1. (b), (d), 

and (f) are the original images at frame 2, 5 and 13 respectively. (c), (e), and (g) show 

the corresponding optic flow results (SAD - Equation 58) for frame 2, 5, and 13 

respectively. 
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 7.3.  Comparison of optic flow algorithms 

 

The performance of SSD based optic flow was observed to be better than 

SAD based optic flow. In quality, SSD had better results and fewer errors 

in the output image. Table 6 shows the results of applying the different 

parameters for each of SSD and SAD based optic flow computations, 

discussed earlier in the chapter. 

 

The following are some of the key parameters that were selected for 

quantitative measurement of performance of SSD and SAD optic flow 

calculations. 

 

• Original speed: This is the maximum speed, measured in fps (frames 

per second), possible with no optic flow method applied to the image. 

This value remains same for both the optic flow methods as the same 

image (Figure 84 (a)) was used for testing the methods. For the 

image used in these tests, the original speed was at a maximum of 

43 fps. 

 

• Final speed: This is the maximum speed with an optic flow method 

applied on the image. 

 

• Spacing: Every ‘spacing’ pixel was considered for correlation. 

 

• Search window: The search area in Image 2 of size (2N+1) x (2N+1) 

used to find the position of the pixel displaced. This is constant for 

every pixel of Image 1 for finding a corresponding match in Image 2. 

 

• Correlation window: The area considered for correlation in Image 1 

and Image 2. This is constant of size (2n+1) x (2n+1) for every 

comparison made between Image 1 and Image 2. 
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Final 

Speed 
Spacing 

Search 

window 

(2N+1) x (2N+1) 

Correlation 

window 

(2n+1) x (2n+1) 

0.6 6 13 x 13 13 x 13 

1.1 7 11 x 11 13 x 13 

2.1 7 9 x 9 11 x 11 

2.1 8 11 x 11 9 x 9 

SSD 

1.5 8 11 x 11 11 x 11 

0.5 6 13 x 13 13 x 13 

0.9 7 11 x 11 13 x 13 

1.8 7 9 x 9 11 x 11 

1.8 8 11 x 11 9 x 9 

SAD 

1.3 8 11 x 11 11 x 11 

Table 6: The parameters and their corresponding values used for SSD (Equation 57) 

and SAD (Equation 58) optic flow calculations. 
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 8. Conclusions and discussions 

 

We have implemented and analysed several image processing 

algorithms related to edge detection, corner detection and thinning. 

Apart from these techniques, smoothing filters were also studied. In 

addition, correlation-based optic flow was also studied and implemented. 

All the experiments were performed on ImprovQT version 5.1 (Figure  1), 

which performs real-time image processing similar to that done by 

robots. 

 

We observed that the Mean filter could perform blurring but could not 

suppress salt and pepper, and impulse noises. The Gaussian smoothing 

filter gave better blurring results compared to the Mean filter, but it also 

failed in reducing salt and pepper, and impulse noises. Unlike the 

previous two, Median filter was able to remove these noises. Unlike 

Gaussian, the Mean filter uniformly assigns weights to the pixels. Hence, 

the Mean filter was faster compared to the Gaussian, when window size 

was kept constant. The Median filter was slower compared to the Mean 

and the Gaussian due to the extra processing required for sorting. It can 

be concluded that different smoothing filters are applicable in different 

circumstances. 

 

In the case of edge detection, the Sobel and Kirsch edge detectors 

showed the best results. Compared to the Sobel edge detector, the 

Kirsch edge detector shows thicker edges. This is because Kirsch 

involves a larger number of pixels in either direction and assigns higher 

weights. However, Sobel is faster compared to Kirsch; hence, Sobel is 

the most widely used edge detector. Apart from these two, Laplace, 

Laplacian of Gaussian (LoG), Difference of Boxes (DoB), Robert’s, Prewitt 

and Robinson edge detectors were implemented. Laplace and Robert’s 

showed broken edges at some junctions. LoG was computationally the 

most expensive and the computation time increased with increase in 

standard deviation ‘σ ’. However, the best results for LoG were obtained 
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with σ  = 1.5. The results given by DoB improved after selecting mean 

filters with higher odd-sized dimensions. The best results were shown 

by using Mean 5 x 5 and Mean 3 x 3 filters. Prewitt and Robinson 

detectors gave average results. 

 

The Harris-Stephens corner detector had the best results with speed 

(29.3 fps), accuracy (100%), and error-rate (9%). It had the best 

localization compared to other popular corner detectors, namely Plessey, 

Kitchen-Rosenfeld, and Beaudet. Plessey and Kitchen-Rosenfeld showed 

the nearly the same error-rate (32% and 36% respectively) but Plessey 

had better accuracy (82%) compared to Kitchen-Rosenfeld (64%). Noble 

showed nearly the same accuracy (86%) as Plessey but was slower with 

speed 21.1 fps. Beaudet detected more corners (91%) but with error-rate 

(32%). In this detector, apart from detecting a true corner pixel, even 

some surrounding pixels are detected as corners. This is because, the 

detector assigns the same intensity values to these pixels as that of the 

true corner pixel. This leads to a cluster of neighbouring pixels being 

labelled as corners. It was observed that where edges of distinct objects 

intersect, this detector identified the junction as multiple corners. In 

addition to these, the Zero-1 and Zero-2 corner detectors, based on the 

zero-crossing concept, were implemented. Both these detectors failed to 

show good results, with accuracy (50%) and (36%) respectively. Zero-1 

outperformed Zero-2 because of the fact that the second order 

derivative of a corner response is not always symmetric along x and y 

directions. Apart from these, corner detectors based on non-maxima 

suppression were implemented. Maxima-1 showed good results with 

accuracy (82%) at the cost of the error-rate (18%). On the other hand, 

Maxima-2 had an accuracy of 64% with the error rate of 50%. On 

selecting a high value for threshold, Binary-1 was able to detect corners 

with accuracy 64%. 

 

Among the thinning filters discussed, the original Hall-Guo (Hall-1) and 

the modified filter (Hall-2) had faster processing speed compared to 

Stefanelli-Rosenfeld (Stefan-1 and Stefan-2) and Lü-Wang. The 
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performance of modified Hall-Guo filter (Hall-2) was observed to be 

better in terms of connectivity, speed, and accuracy than the original 

Hall-Guo filter (Hall-1). In addition, the performance of the Stefanelli-

Rosenfeld thinning filter Stefan-2, was observed to be better than the 

Stefan-1. However, taking quality into consideration, the filter proposed 

by Lü-Wang showed the best results. 

 

A basic form of correlation-based optic flow was implemented to study 

motion analysis. It was experimented with across a varying range of 

various parameters like ‘spacing’, ‘search window’, and ‘correlation 

window’. This was done in order to find the best combination that gave 

reasonably accura te flow vectors at optimal speed. Two techniques for 

measuring match strength (SSD and SAD) were implemented. SSD was 

observed to be faster and more accurate compared to SAD. For SSD, the 

following parameter settings ‘spacing’ of 8, ‘search window’ of 11 x 11 

and ‘correlation window’ of 11 x 11 showed the best results at a speed 

of 1.5 fps. For the same parameter settings, SAD gave results at a speed 

of 1.3 fps. 

 

Studying different image processing algorithms is necessary for 

selecting one that is best suited for an application. Factors to consider 

in selecting an algorithm are like accuracy, speed, and quality of its 

results in comparison to other algorithm of the same family. This thesis 

aims to compare these factors for several image processing techniques. 

It is worth further investigating the re -interpretation of standard corner 

detectors (Zero-1, Zero-2, and Maxima-2) and thinning filters (Hall-2) as 

described in this thesis. As can be seen, the results produced by these 

modified techniques were promising and could prove to be beneficial 

upon refinement. 
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Appendix: Colour Slides 

Edge detectors: 

 

  
(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

  
(g)      (h) 





 

 123 

  
(i)      (j) 

Figure 86: The results of the edge detectors overlayed on the original image (Figure 

21). (a) Laplace (Figure 21, threshold value = 26). (b) LoG with predefined 9 x 9 

template (Figure 24, threshold value = 255). (c) LoG with σ  = 1.5 (Figure 26, threshold 

value = 230). (d) DoB with mean 5 x 5 and mean 3 x 3 (Figure 31, threshold value = 5). 

(e) DoB with mean 7 x 7 and mean 5 x 5 (Figure 32, threshold value = 8). (f) Sobel 

(Figure 33, threshold value = 38). (g) Robert’s (Figure 35, threshold value = 31). (h) 

Kirsch (Figure 37, threshold value = 92). (i) Prewitt (Figure 39, threshold value = 51). (j) 

Robinson (Figure 41, threshold value = 64). 
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Corner detectors: 

  
(a)  (b) 

  
(c)  (d) 

  
(e)  (f) 

  
(g)  (h) 
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(i)      (j) 

Figure 87: The results of the corner detectors overlayed on the original image. (a) 

Kitchen-Rosenfeld (Figure 47, threshold value = 18). (b) Beaudet (Figure 49, threshold 

value = 255). (c) Plessey (Figure 51, threshold value = 43). (d) Noble  (Figure 53, 

threshold value = 255, σ  = 0.35). (e) Harris-Stephens (Figure 55, threshold value = 

217, k = 0.04). (f) Zero-1 (Figure 61, threshold value = 13). (g) Zero-2 (Figure 62, 

threshold value = 71). (h) Maxima-1 (Figure 67, threshold value = 13). (i) Maxima-2 

(Figure 68, threshold value = 18). (j) Binary -1 (Figure 70, threshold value = 255). 
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Thinning filters: 

 

  
(a)      (b) 

  
(c)      (d) 

 
(e) 

Figure 88: The results of the thinning filters overlayed on the original image. The black 

pixels (part of the original edge) are the ones that were deleted by the respective filters. 

(a) Stefan-1 (Figure 73), (b) Stefan-2 (Figure 75), (c) Lü-Wang (Figure 77), (d) Hall -1 

(Figure 79), (e) Hall-2 (Figure 81). 

All the thinning filters were applied to the result of Mean 3 x 3 filter, Sobel edge 

detector, Threshold (value 51) and Negation (for considering black edges). 
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Optic Flow: 

 

  
(a)  (b) 

  
(c)  (d) 

  
(e)  (f) 

Figure 89: The Optic flow computation. (a), (c), and (e) SSD at frames 2, 5, and 13 

respectively (Figure 84). (b), (d), and (f) SAD at frames 2, 5, and 13 respectively (Figure 

85). The factors ‘spacing’ = 8, ‘search window’ = 11 x 11, and ‘correlation window’ = 

11 x 11 was kept constant for both the calculations. 

 


