
A comparison of image processing algorithms for

edge detection, corner detection and thinning

SIDDHARTH AVINASH PAREKH

This thesis is presented for the degree of Master of Engineering Science of

THE UNIVERSITY OF WESTERN AUSTRALIA

CENTRE FOR INTELLIGENT INFORMATION PROCESSING SYSTEMS (CIIPS)

SCHOOL OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

THE UNIVERITY OF WESTERN AUSTRALIA

JULY 2004

 iii

Abstract

Image processing plays a key role in vision systems. Its function is to

extract and enhance pertinent information from raw data. In robotics,

processing of real-time data is constrained by limited resources. Thus, it

is important to understand and analyse image processing algorithms for

accuracy, speed, and quality. The theme of this thesis is an

implementation and comparative study of algorithms related to various

image processing techniques like edge detection, corner detection and

thinning. A re-interpretation of a standard technique, non-maxima

suppression for corner detectors was attempted. In addition, a thinning

filter, Hall-Guo, was modified to achieve better results. Generally, real

time data is corrupted with noise. This thesis also incorporates few

smoothing filters that help in noise reduction. Apart from comparing

and analysing algorithms for these techniques, an attempt was made to

implement correlation-based optic flow.

 v

Contents

1. Introduction ...1

2. Literature review...11

3. Smoothing filters ..17

3.1. Mean filter...17

3.2. Gaussian filter..21

3.3. Median filter...30

3.4. Comparison of smoothing filters ..33

4. Edge detectors ...35

4.1. Laplace edge detector...37

4.2. Laplacian of Gaussian (LoG)..40

4.3. Difference of Boxes (DoB)..44

4.4. Sobel edge detector...47

4.5. Robert’s edge detector ...51

4.6. Kirsch edge detector..54

4.7. Prewitt edge detector..56

4.8. Robinson edge detector ...58

4.9. Comparison of edge detectors ...60

5. Corner detectors ...63

5.1. Introduction and classification...63

5.1.1. Template-based corner detector..................................63

5.1.2. Geometry-based corner detector.................................64

5.2. Kitchen-Rosenfeld corner detector..66

5.3. Beaudet corner detector...67

5.4. Plessey corner detector ..69

 vii

5.5. Noble corner detector...70

5.6. Harris-Stephens corner detector..72

5.7. A corner detector based on the concept of zero-crossing ..74

5.8. A corner detector based on the concept of non-maxima

suppression..79

5.9. A corner detector based on pre-defined templates83

5.10. Comparison of corner detectors ..85

6. Thinning filters..89

6.1. Methods implemented ..90

6.2. Stefanelli-Rosenfeld thinning filter..92

6.3. Lü-Wang thinning filter...96

6.4. Hall-Guo thinning filter...98

6.5. Comparison of thinning filters ...101

7. Correlation-based optic flow computation....................................103

7.1. The working of standard correlation-based optic flow104

7.2. An alternative to standard correlation-based optic flow....109

7.3. Comparison of optic flow algorithms111

8. Conclusions and discussions ..113

References...117

Appendix: Colour Slides...121

 ix

Acknowledgements

I am grateful to my supervisor Thomas Bräunl for his help and guidance

throughout this work. He made sure that I was always on track and did

not lose sight of my final goal.

I would like to thank Peter Kovesi, Mike Alder, and Les Kitchen for

helping me understand concepts in corner detectors.

The help provided by the staff at CIIPS and School of Electrical,

Electronic and Computer Engineering is greatly appreciated. Special

thanks to Brenda, Janice, Doris, Clive, Vickie, Alex, and Sandra.

Margaret and Krystyna at UWA Students’ Services assisted in proof

reading and structuring on writing. Had I not taken their advice on

writing, this work would have been very different.

It was a pleasure to work in the same lab as Joshua, Alistair, Adrian, Jia

Lei, Christopher, Antonio, Jochen, Norman, Stefan, Pierre, Charlène,

Andreas, Frédéric, Axelle, David, Nicholas, and James.

Talking about image processing with Martin and Tzu Yen was very

valuable. Thanks for all your efforts and time. Thanks to Leon for

upgrading ImprovQT to version 5.1 thus greatly simplifying my work.

This work would not have been possible without the support of my

friends and family. I am very grateful to my parents for encouraging me

at all stages of my life . Their support is immeasurable. Parija, you have

been a great partner in my life. Thanks for everything.

 1

 1. Introduction

“Image processing is the capturing and manipulation of images in order

to enhance or extract information” [1]. It is an important step for many

different fields including robot vision. The images captured by a robot

are subjected to various kinds of processing in order to obtain relevant

information. The results from the image processing act as an input for

the next phase of the application. These can be like navigation and

localization, where captured images are a key source of input.

Image processing techniques operate on pixels, transforming them in

some manner and producing the result. A pixel, short for picture

elements, is the basic representation of image data in an electronic

format. An image is simply a collection of data represented in arrays of

pixels. Image processing techniques are generally called filters. Filters

work upon areas in an image called neighbourhoods. A neighbourhood

is a set of pixels surrounding one pixel that is of interest. Generally, the

neighbourhood is of size 3 x 3 in which the centre pixel is the point of

interest.

Most of the operations performed on neighbourhoods are based on the

concept of convolution. Mathematically, convolution is “an integral that

expresses the amount of overlap of one function g as it is shifted over

another function f” [2].

τ τ τ∫
t

0

f * g = f () g (t -) d

Equation 1: A convolution function.

In filtering, an image is convolved with a pre-defined kernel. A kernel is

a template of size m x n representing a set of weights assigned to the

pixels of a neighbourhood.

 2

Noise is unwanted data within the image that distorts it. Noise can occur

due to reasons like errors in digitization, and imperfect capturing of

images. Smoothing is used to suppress noise and to blur an image.

Smoothing filters are essentially a low-pass filter, which retain low values

and suppress high values. An image contains locations where there are

sharp intensity fluctuations between successive pixels. Blurring is the

result of reduction in these fluctuations.

Sharpening filters are used to segment an image. It is essentially a high-

pass filter, which attenuates low values and preserves high values. Low

values result from differentiation of image sections where the spread of

intensity values is within a constant range. In an image, an edge is an

abrupt change in gray level intensity values of successive pixels. High-

pass filtering enhances these features in an image. High values are the

result of differentiation in those sections where there is a significant

change in intensity values. In image processing, differentiation is

approximated by taking differences. The basic types of differences are:

• Forward Difference

In forward difference, the current (previous) pixel is subtracted from the

next (current) pixel and the result is assigned to the current pixel. In

Equation 2, ‘ ∂ x1 I ’ is the derivative of the current pixel where the

current pixel is subtracted from the next pixel. ‘∂ x2 I ’ is the derivative

of the current pixel where the previous pixel is subtracted from the

current pixel. The result is assigned to the current pixel. Hence, the

direction of difference is from right to left.

∂

∂
 x 1 x + 1 x

 x 2 x x -1

 I = I - I

 I = I - I

Equation 2: Forward difference method.

The equation for ‘∂ x2 I ’ corresponds to the template shown in Equation

3.

 3

 -1

H
x
= -1 1 H

y
= 1

 (a) (b)

Equation 3: Template for forward difference for ‘ ∂ x2 I ’.

• Backward Difference

In backward difference, the next (current) pixel is subtracted from the

current (previous) pixel and the result is assigned to the current pixel. In

Equation 4, ‘∂ x3 I ’ is the derivative of the current pixel where the next

pixel is subtracted from the current pixel. In case of ‘∂ x4 I ’, the current

pixel is subtracted from the previous pixel. The result is assigned to the

current pixel. Hence, the direction of difference is from left to right.

∂

∂
 x 3 x x + 1

 x 4 x -1 x

 I = I - I

 I = I - I

Equation 4: Backward difference method.

The equation for ‘∂ x3 I ’ is corresponding to template shown in Equation

5.

H
x
= 1 -1 H

y
= 1

 -1

 (a) (b)

Equation 5: Template for backward difference for ‘ ∂ x3 I ’.

• Central Difference

In central difference, the previous half-a-pixel (next pixel) is subtracted

from the next half-a-pixel (previous pixel) and the result is assigned to

 4

the current pixel. In Equation 6, ‘∂ x 5 I ’ is the derivative of the current

pixel where the next pixel is subtracted from the current pixel. In case

of ‘ ∂ x 6 I ’, the previous pixel is subtracted from the next pixel. The

result is assigned to the current pixel. Hence, the direction of difference

is from left to right.

∂

∂

 x 5 1 1 x + x -
 2 2

 x 6 x + 1 x - 1

 I = I - I

 1
 I = (I - I)

 2

Equation 6: Central difference method.

The previous two difference methods compute approximations at the

previous or next half-a-pixel location, as shown in Equation 3 and

Equation 5. In the central difference method, approximation is made at

the previous and next half-a-pixel location. This can be expanded to

‘ ∂ x 7 I ’ which is the difference of the next pixel and the previous pixel

as shown in Equation 8.

∂ x 7 x + 1 x -1 I = I - I

Equation 7: Re-interpretation of the central difference method.

 -1

H
x
= -1 0 1 H

y
= 0

 1

 (a) (b)

Equation 8: Template for central difference for ‘ ∂ x 7 I ’.

The term ‘
1
2

’ in Equation 6 for ‘ ∂ x 6 I ’ can be neglected. This is

because the pixels in the real images have random intensity values.

Hence, ‘ ∂ x 7 I ’ was preferred over the discussed difference methods.

 5

Often, when filters are applied to images, the values of pixels go out of

a valid range, for example less than 0 or greater than gray-level value

255. In order to ensure that this does not happen, a factor is applied.

Normalization factor is the process of bringing the pixel values of an

image within a defined range. This concept is used in smoothing filters

to ensure that on addition, values do not exceed gray-level value 255. In

edge detectors, a scale factor may be applied to its result to ensure that

the strengths of all the edges do not exceed the gray-level value 255.

This simplifies distinguishing strong edges from weak edges.

In this study, the resources used were mainly computer based. A suite of

image processing software called ImprovQT [3] was used for

implementing various techniques and testing them.

Improv (Image Processing for Robot Vision) , originally written by Dr.

Thomas Bräunl at The University of Stuttgart, is currently at version 5.1.

Improv is a Linux-based application. It is a tool for real-time image

processing. It can work accurately on a low-resolution camera, which is

required by mobile robots. It has the ability to use synthetic images or

live images captured by a camera. Applying filters on images in Improv

is as good as using them on robots.

The latest version of Improv comes with the ability to integrate plug-ins

in an easy manner. This makes the image processing sequence

completely customisable in a user-friendly manner. A screenshot of

ImprovQT 5.1 is shown in Figure 1.

 6

Figure 1: ImprovQT 5.1 [3].

Figure 1 is an example of a simplest form of Improv. Improv can handle

a number of sub-windows; default value is six.

0 1 2

3 4 5

Figure 2: Order of sub-windows in ImprovQT 5.1.

There are many advantages of testing an image processing application

on Improv before downloading it on robots. The main advantage is that

 7

intermediate steps involved in image processing can be systematically

tested and modified. At any stage, a number of plug-ins can be added or

removed from the processing to achieve better results. The output of

image processing steps in Improv is the same as the output obtained on

implementing the same steps on a robot.

As given in [4], “fundamental steps in image processing are

• Acquisition – acquiring a digital image.

• Pre-processing – improving the images in ways that increase the

chance for success of the other processes.

• Segmentation – partitioning an image into its constituent parts or

objects.

• Representation (boundary and regional) and description (feature

selection) – Representation converts the data to a form suitable for

computer processing. Description extracts features for differentiating

one class of object from another.

• Recognition and interpretation – Recognition assigns a label to an

object based on information provided by its descriptors.

Interpretation assigns meaning to an ensemble of recognised

objects.”

This thesis focuses on image pre-processing and segmentation. The

different types of filters experimented and listed here are smoothing

filters, edge detectors, corner detectors, and thinning filters.

An ideal image is one that is free from noise. Smoothing is the process

of blurring and noise reduction. Types of smoothing filters implemented

in this thesis are:

• Mean filter,

• Gaussian filter, and

• Median filter.

Edge detection is the process of highlighting edges in an image. Edges

correspond to the outline of an object. This property of an object is

 8

useful in object detection. However, in many cases edges do not

correspond to object boundaries, for example shadows, and textures. In

such cases, false edges are detected. Even when edges correspond to

boundaries, detection techniques fail if two pixels of different

overlapping objects have similar intensity values. Types of edge

detectors implemented in this thesis are:

• Laplace,

• Laplacian of Gaussian (LoG),

• Difference of Boxes (DoB),

• Sobel,

• Robert’s,

• Kirsch,

• Prewitt, and

• Robinson.

Corner detectors are used to identify corners in an image. Corners are

the junctions of edges. Analogous to edges false corners may be

detected in regions having shadows or textures. The standard corner

detectors discussed in this thesis are:

• Kitchen-Rosenfeld,

• Beaudet,

• Plessey,

• Noble, and

• Harris-Stephens.

Apart from these, an attempt was made to realize the concepts of non-

maxima suppression for corners detectors. In addition, corner detectors

based on derivatives of corner response were also implemented.

Thinning filters are used to thin edges and lines in an image. This is

because we may only be interested in the presence of lines, not in their

thickness. Thinning filters try to reduce the width of edges or lines as

much as possible, ideally to one pixel. The filters implemented in this

thesis are:

 9

• Stefanelli-Rosenfeld,

• Lü-Wang, and

• Hall-Guo.

The standard Stefanelli-Rosenfeld algorithm [5] was modified to speed

up calculations as explained in [6]. Similarly, the Hall-Guo algorithm [7,

8] was adapted to obtain much better and faster results.

Finally, Optic flow was also implemented. Optic flow is a vector field that

shows the direction and magnitude of intensity changes of a pixel in an

image. In this thesis, correlation-based optic flow was implemented. It

was utilized to find similarities between two successive images of a

sequence. The concepts of sum of the squared differences (SSD) [9-11]

and sum of the absolute differences (SAD) [10] were applied in obtaining

optic flow.

All these filters were implemented as plug-ins in ImprovQT [3]. A

number of different combinations of these filters were experimented on

test images. This was done in order to achieve better results and speed

up computation. The images considered for these tests were real and

synthetic gray-scale. These algorithms and techniques were compared,

and tested on various images.

 11

 2. Literature review

A number of sources regarding image processing techniques and

algorithms were reviewed and studied. The filters implemented in this

thesis were motivated by this review.

Deriche and Giraudon [12] proposed a new scale-space based approach

that combines Laplacian and Beaudet’s measure for corner and vertex

detection.

According to the authors, there are two groups of corner detectors:

• The first group extracts the edges as a chain code and then searches

for points having maximum curvature. Thus, it involves an extra

calculation for detecting edges.

• The second group is based on approaches that operate directly on a

gray-level image. They either find “interest points” or work on the

measurements of gradients and curvatures of the surface.

Their work analyses several corner detectors based on the second group.

This work gave a good starting point for implementing the Beaudet [13],

Kitchen-Rosenfeld [14], Plessey [15], Noble [16], and Harris-Stephens

[17] corner detectors. This work highlights similarities and differences

between Kitchen-Rosenfeld and Zuniga-Haralick, and Plessey, Noble and

Harris-Stephens corner detectors. As shown in the paper, Zuniga-

Haralick is based on the facet model while Kitchen-Rosenfeld is an

operator that directly computes whether a pixel is a corner. Zuniga-

Haralick differs from Kitchen-Rosenfeld with an expression 2 2
x yI + I in

the denominator (Equation 39). Plessey (Equation 43) was proposed by

Harris; and Noble gave a theoretical formulation for this detector using

differential geometry (Equation 45). Harris and Stephens made a slight

modification to the original Plessey (Equation 47). The authors state that

none of these corner detectors has good corner localization. Their

approach attempts to correct this.

 12

“Interest points” are better explained by Sonka et al [18] as an

investigation among a much smaller number of points of an image.

These points are expected to have some typical local property. For

example, if square objects are present in an image then corners are very

good interest points. The web-site mentions corner operators Moravec

(based on interest points), Zuniga-Haralick (based on the facet model as

explained in [12]), and Kitchen-Rosenfeld. Deriche and Giraudon [12]

give a different representation of the Zuniga-Haralick corner operator.

Kovesi helped in further understanding Harris corner detector [19, 20].

The papers by Cooper et al [21, 22] was also a source of understanding

of Kitchen-Rosenfeld corner detector and few other concepts for corners.

A number of edge detectors and smoothing filters were listed by Sonka

et al [18]. These were Laplace, Laplacian of Gaussian (LoG) Sobel,

Robert’s, Prewitt, Kirsch, and Robinson. Their description of the

Laplacian of Gaussian (LoG) edge detector and Gaussian mean filter was

useful in their implementation. Bräunl [6] gives a good explanation and

skeleton code for the Laplace and Sobel edge detectors along with their

edge directions. Bernd [23] gave a good start towards understanding the

Difference of Boxes (DoB) edge detector.

The discussions on smoothing filters like Mean, Gaussian, and Median in

Sonka et al [18], Gonzalez et al [4], and Jain et al [24] assisted in the

implementation of these filters.

In fields like fingerprint and pattern matching, the shape of the lines or

objects is more important than its thickness. When the thickness

changes uniformly throughout the image, these applications can

produce results by neglecting the thickness, as suggested by Alt [25]. In

general, the input for these applications does not exhibit a uniform

change in thickness.

To perform matching without thickness affecting the process, thinning

was proposed by Stefanelli and Rosenfeld [5]. They stressed on the

 13

presence and shape of line-based objects, rather than their thickness.

One method to achieve thinning is to find the “medial line” of the

objects and to delete pixels not on the medial line. They proposed two

algorithms for identifying the medial-line. In the first method, at each

iteration, all contour points (points lying on the outline of the object)

except the final points (points lying on the medial line) of the object are

deleted. This method has a disadvantage that it can yield non-connected

or even no medial line for connected figures. To overcome this, the

second method has four sub-iterations; at each sub-iteration, only a part

of the contour is removed.

Lü-Wang [26] proposed an improved version of the algorithm introduced

by Zhang and Suen [27]. They pointed out the disadvantages in [27] and

overcame these by preserving necessary and essential lines which

should not be deleted. The process of thinning was divided into two

sub-iterations with conditions acting on each of the sub-iteration. The

conditions for each sub-iteration were different to ensure that in the first

sub-iteration only the southeast pixels are deleted. The second sub-

iteration concentrated on deleting pixels on the northwest boundary.

They pointed out difference in the approach from [27], by swapping the

order of the sub-iterations. This method overcomes the problem of

preserving important structures, which were part or whole of a pattern.

This was accomplished by manipulating the conditions proposed by

Zhang-Suen [27].

Guo and Hall proposed two parallel thinning algorithms [8]. They

proposed a two sub-iteration process for deleting unwanted pixels.

Alternately, these sub-iterations concentrated on deleting northeast and

southwest pixels, and applying a thinning operator to one of two

subfields. Their work did not concentrate on recovering the original

image unlike a few other approaches that focussed on image recovery as

proposed by Arcelli et al [28]. This is because they stated that image

recovery after thinning is not always necessary. They pointed out that

the fully parallel thinning algorithms, which are restricted to 3 x 3

 14

operators, have difficulty in preserving the connectivity. Hence, few

authors [5, 8, 27] partially serialized their algorithms by dividing an

iteration into several distinct sub-iterations or by partitioning the image

into distinct subfields [29]. Guo and Hall pointed out that by defining

distinct subfields these algorithms applied thinning operators to

different parts of an image. In addition, they pointed out that on using 3

x 3 local operators, algorithms defining two sub-iterations achieved

optimal results. They pointed out that the thinning filter proposed by Lü

and Wang [26], and Zhang and Suen [27] outperforms the one proposed

by Stefanelli and Rosenfeld [5]. The original algorithm [27] and its

improved version [26] was modified by Guo and Hall to overcome the

problems of maintaining connectivity. The modified algorithm had a

variable that was useful in endpoint detection while the second

algorithm proposed by them had a scheme of dividing the image in a

checkerboard fashion as described by Holt et al [30]. The medial curve

of thinness produced by the two algorithms was comparable but the

second algorithm was faster. This thesis concentrates on studying the

second algorithm.

In his PhD thesis, Camus [10] presented optical flow algorithms for real-

time robots. He pointed out limitations of robotic systems that affect

optical flow calculations. These are like restricted sensing capacity,

limited computational power, and restricted mobility . This has resulted

in limited implementation of optic flow for practical applications. The

success of an optical flow algorithm is measured by how well it fulfils

the three basic requirements of robotic vision; robustness, speed, and

accuracy. According to Camus, accuracy can be optimised once the first

two requirements are met.

In his thesis, he has discussed the limitations and implementation of

gradient-based, velocity -tuned filter based, and correlation-based

techniques for computing optical flow. The algorithms based on

correlation-based optical flow are shown to be robust in practice but are

practically infeasible due to the high computational costs. He tried

 15

tackling the problems of correlation-based approach by devising a

space-time trade off to this algorithm. His modification reduces the

running time of the algorithm from quadratic-time to linear-time. His

work gave a good start for understanding correlation-based optic flow.

Correlating successive frames helps to analyse the motion of an object.

However due to the aperture problem it may not be possible to obtain

the correct optical flow vector for all the corresponding image frames.

This problem cannot be solved completely. However, by correlating the

pixel’s neighbourhood in successive frames and then finding the

corresponding match of a pixel helps to minimise the aperture problem.

To find the corresponding match of a pixel a maximum possible

displacement is presumed. Camus [10] assumed this value to be seven

for his experiments while Wei-Härle [31] assumed the value to be five.

The match strength was calculated as the sum of the match values

between each pixel in the displaced patch in the first image and the

corresponding pixel in the actual patch in the second image. Camus

implemented two techniques to compute match strength. These are SAD,

which takes the absolute differences between the two pixels’ intensity

values and SSD, which takes the squared differences of their respective

intensity values. The lowest value of the match strength was considered

the best match. Moravec used a variance of normalized cross-correlation

(NCC) to calculate match measure for stereo matching. Camus stated

that NCC and SAD were insensitive to contrast. However, he observed

that NCC did not produce good results. In addition to these techniques,

Singh [11] listed direct cross correlation and mean normalized cross

correlation.

 Temizer [32] calculated optic flow by first applying a Gaussian

smoothing filter to blur (smooth) the image. A Laplacian filter was then

applied to obtain the edges from the images. After applying these filters,

the displacements are calculated by correlation as explained by

Nishihara [33]. Temizer evaluated the best match by comparing the

number of matching pixels in two patches with some (percentage)

 16

threshold. If the number is greater than the threshold, then the two

patches are considered to match.

A practical implementation of correlation-based optical flow was used

for obstacle avoidance as outlined by Grünewald et al [34] and for object

detection as discussed by Batavia et al [35].

To implement edge and corner detectors, understanding the concept of

applying derivatives was necessary. Sonka et al [18], Gonzalez et al [4]

and Jain et al [24] were helpful in clearing these concepts. Kreyszig [36]

and Mathworld [37] helped in clarifying general mathematical concepts.

Mathworld [37] and Gonzalez et al [4] helped in the understanding of

convolution and correlation.

There was a constant source of inspiration from [38], [39], and [40].

 17

 3. Smoothing filters

Smoothing filters are used to blur an image and reduce noise. There are

different types of such filters that can be applied for different kinds of

problems. The filters discussed here are the Mean, Gaussian, and

Median filters. The Mean and Gaussian are linear filters whereas Median

is a non-linear filter. In linear filters, the output pixel value is calculated

using the weighted sum of the input pixels. A non-linear filter does not

calculate the weighted sum of pixels in the neighbourhood. It assigns a

value to the output pixel, which is directly based on the values of the

pixels in the neighbourhood.

 3.1. Mean filter

The Mean filter calculates the mean (arithmetic) value in the

neighbourhood of a pixel under consideration and assigns it to the pixel.

If the dime nsions of the template used are odd (e.g. 3 x 3), then the

pixel under consideration is the centre pixel. If not, then a decision has

to be made about selecting which pixel to consider. When selecting this

pixel for the first neighbourhood, consistency has to be followed in

maintaining the relative position of the pixel in successive

neighbourhoods of the image.

Equation 9 shows the mean function that is applied to every pixel of the

image. Here, f (i,j) is the output image at pixel (i,j) and g (i,j)

is the input image. k is the index in the template and n is the number of

the elements of the neighbourhood.
1
n

 is the normalization factor that

makes sure that the output image values are within the range.

 18

∑
n

 k
k = 1

 1
f (i , j) = g (i , j)

 n

Equation 9: Mean function [24].

An example of the mean 3 x 3 filter is shown in Equation 10.

1 1 1

1 1 1
1
9

1 1 1

 3 x 3

Equation 10: Mean filter 3 x 3.

In general, a square template looks like Equation 11.

 1 1 1 ….
…. 1

1 1 1 ….
….

1

1 1 1 ….
….

1
1

K x K

::::
::::

::::
::::

::::
::::

::::
::::

::::
::::

 1 1 1 ….
….

1

 K x K

Equation 11: Mean filter K x K.

 19

A rectangular template looks like Equation 12.

 0 1 2 . . . N

1 1 1 ….
….

1

1 1 1 ….
….

1

::::
::::

::::
::::

::::
::::

::::
::::

::::
::::

1
M x N

0

1

:

M 1 1 1 ….
….

1

 M x N

Equation 12: Mean filter M x N.

In Mean filtering, the larger the template size, the more the blurring in

the result image and more time is consumed in calculations. This can be

explained by assuming the filter’s template size to be 1 x 1. Upon

filtering, the value of the centre pixel is replaced by the mean value,

which is its own value. Hence, in the end, we get the same image

without any smoothing and a very fast process. On inc reasing the size of

the template, say to 3 x 3, the mean of the centre pixel is no longer its

own value. It is now calculated from the expanded neighbourhood, that

is, the value of the other pixels in the neighbourhood starts affecting

the mean calculation. In addition, the process takes more time. For this

reason, the larger the template size, the more the blurring and the

better the smoothing. Generally, Mean filters based on the 3 x 3

template have shown the best performance in speed and blurring effect.

In certain templates, the centre pixel is given more stress, i.e. its value

is considered higher than the neighbourhood pixels. Such a template

may look like Equation 13.

 20

1 1 1

1 2 1
1

10

1 1 1

Equation 13: Mean filter with variable weights [24].

This helps bring about a better approximation of noise in the

neighbourhood. This may often be required at further image processing

stages.

(a) (b)

Figure 3: Mean 3 x 3 filter (Equation 10): (a) Original image , (b) Smoothed image.

(a) (b)

Figure 4: Mean 5 x 5 filter (Equation 11, K = 5): (a) Original image, (b) Smoothed image.

 21

(a) (b)

Figure 5: The effect of Salt and Pepper noise on an image: (a) Original image corrupted

with noise, (b) Smoothed image with Mean 3 x 3 filter (Equation 10).

(a) (b)

Figure 6: The effect of Salt and Pepper noise on an image: (a) Original image corrupted

with noise, (b) Smoothed image with Mean 5 x 5 filter (Equation 11, K = 5).

 3.2. Gaussian filter

The Gaussian filter is similar to the Mean filter with the difference of the

weights assigned to every pixel in the kernel. The standard one-

dimensional Gaussian filter is defined as Equation 14.

σ

π σ

2

2
 - x

 21
G (x) = e

2

Equation 14: Gaussian function - one-dimensional [18, 41].

The Gaussian function is used to form the kernel, which is convolved

with every pixel in the image. ‘σ ’ is the standard deviation, a variable

 22

factor which indicates the width of the Gaussian curve over a set of

pixels, generally ‘3 σ ’. The window size (size of the kernel) is calculated

by Equation 15.

σw i n d o w s i z e = 1 + 2 * c e i l (3 *)

Equation 15: Calculation of “window size” in Gaussian filtering [42].

The Gaussian curve response for one-dimension with mean 0 and with

different sets of ‘σ ’ is shown in Figure 7, Figure 8, and Figure 9.

Figure 7: Gaussian One-dimensional Curve with mean 0 and standard deviation (σ) =

0.3 (Equation 14).

In the above Figure 7, the curve is steep. This is due to the value of

standard deviation ‘σ ’.

 23

Figure 8: Gaussian One-dimensional Curve with mean 0 and standard deviation (σ) =

0.5 (Equation 14).

Figure 9: Gaussian One-dimensional Curve with mean 0 and standard deviation (σ) =

1.0 (Equation 14).

 24

As seen from Figure 7, Figure 8, and Figure 9, the higher the value of

sigma ‘σ ’, the shallower the gradient of the curve. For this reason, the

Gaussian curve in Figure 9 (σ = 1.0) is smoother than the curve in

Figure 8 (σ = 0.5) which is smoother than the Figure 7 (σ = 0.3).

The one-dimensional Gaussian filters along the x and the y directions

acting together on the image results in one two-dimensional Gaussian

filter. The relation is shown in Equation 16.

G (x , y) = G (x) G (y)

Equation 16: Two one-dimensional Gaussian filter resulting in one two-dimensional

Gaussian filter.

Using the same value of ‘σ ’, applying the two-dimensional Gaussian

filter has the same effect as applying the one-dimensional Gaussian filter

twice, once each in the x and y directions. A two-dimensional Gaussian

function can be written as Equation 17.

σ

π σ

2 2

2

 - (x + y)

 2
2

1
G (x , y) = e

2

Equation 17: Gaussian function - two-dimensional [18, 41].

The one-dimensional Gaussian function along the x and the y directions

can be applied in either way, that is, x after y or y after x, to result in

two-dimensional Gaussian function. Both are shown in Figure 10.

 25

(a) (b)

(c) (d)

(e) (f)

Figure 10: The result of the Gaussian function applied to the image: (a) Original image ,

(b) Gaussian x on original image (Equation 14), (c) Gaussian y on original image

(Equation 14), (d) Gaussian x after y on original image, (e) Gaussian y after x on

orig inal image , (f) Gaussian two-dimensional function on original image (Equation 17).

The value of standard deviation ‘ σ ’ used in all these results is 1.5 (Figure 7).

In Figure 10, (d), (e), and (f) exhibit the same result on applying the filter

to (a). Figure 10 (b) and (c) are the results of applying Gaussian function

along the x and the y directions respectively. Figure 10 (d) and (e) are

the results of applying Gaussian function x after y and y after x

respectively. Figure 10 (f) is the result of applying two-dimensional

 26

Gaussian function on the original image (a). In all these Gaussian

functions, the value of σ was taken 1.5.

Similar to the one-dimensional Gaussian function, the two-dimensional

function is used to form a kernel, which is then convolved with every

pixel in the image. The window size is calculated as given by Equation

15. Unlike the one-dimensional Gaussian, the two-dimensional

convolution kernel is a square template whose size is given by

windowsize * windowsize.

Figure 11: Gaussian Two-dimensional Curve with mean 0 and σ = 0.3 (Equation 17).

 27

Figure 12: Gaussian Two-dimensional Curve with mean 0 and σ = 0.5 (Equation 17).

Figure 13: Gaussian Two-dimensional Curve with mean 0 and σ = 1.0 (Equation 17).

 28

The value of ‘σ ’ affects the slope of the curve in Figure 11, 16, and 17,

just as in the case of Gaussian one-dimensional filter. The higher the

value of ‘σ ’, the smoother the resulting image.

As outlined by Fisher et al [41], a two-dimensional Gaussian function is a

discrete approximation with the value σ = 1.4 as shown in Equation 18.

 2 4 5 4 2

4 9 12 9 4

5 12 15 12 5
1

155

4 9 12 9 4

 2 4 5 4 2

 5 x 5

Equation 18: Discrete approximation to Gaussian function with σ = 1.4 [41].

The result of the discrete approximation of Gaussian function with σ =

1.4 along with σ = 1.5 is shown in Figure 14. Figure 14 (a) shows the

original image. Figure 14 (b) and (c) are the two-dimensional Gaussian

function approximated at σ = 1.4 and σ = 1.5 respectively.

It can be clearly seen that the image in Figure 14 (b) is less blurred than

Figure 14 (c). It was observed that it took longer to produce the result in

Figure 14 (c) compared to Figure 14 (b). This is due to the kernel size;

where latter uses a 5 x 5 kernel size to smooth the image, the former

takes a 11 x 11 kernel size to smooth the image.

 29

(a)

(b) (c)

Figure 14: Two-dimensional Gaussian functions on an image: (a) Original image, (b)

Gaussian function at σ = 1.4 (5 x 5 template from Equation 17), (c) Gaussian function

with σ = 1.5 (11 x 11 template using Equation 15 and Equation 18).

 30

(a)

 (b) (c)

Figure 15: The effect on Salt and Pepper noise on an image: (a) Original image

corrupted with noise, (b) Smoothed image with Gaussian function at σ = 1.4 (5 x 5

template from Equation 17), (c) Smoothed image with Gaussian function with σ = 1.5

(11 x 11 template using Equation 15 and Equation 18).

 3.3. Median filter

Not only does the Median filter reduce the noise in the image, it also

reduces the contrast of the edges. Compared to the Mean and Gaussian

filters, the Median filter has less blurring effect at edges. The Median

filter calculates the median of the neighbourhood for the pixel under

consideration and assigns this value to the same position in the output

image. Generally, the Median filter uses templates of size 3 x 3. The

process for each pixel under consideration is as follows:

• Consider the neighbourhood values.

• Sort them in ascending or descending order.

• Estimate the median using the following criteria:

 31

o If there are an odd number of pixels in the template, the

median is the centre of the sorted values.

o If there is an even number of pixels in the template, the

median is the average of the two centre pixels of the sorted

values.

• Assign this median value to the pixel in the same location in the

output image.

32 78 59 - - -

24 90 35 - 49 -

68 49 12 - - -

 (a) (b)

Figure 16: Median filter: (a) The pixels values in the input image, (b) The result of

applying a median filter to the pixel under consideration in the output image.

This result value (49) replaces the old value (90).

Suppose we take the centre pixel (value 90) in Figure 16 as the pixel

under consideration.

Median (at the centre pixel) = median (32, 78, 59, 24, 90, 35, 68, 49,

12)

First, the values are sorted in ascending order:

Sort (32, 78, 59, 24, 90, 35, 68, 49, 12) = 12, 24, 32, 35, 49, 59, 68,

78, 90.

On sorting, we get value 49 as the median value for the neighbourhood.

The initial value of the pixel under consideration, 90, is replaced with

the median value, 49.

 32

The Median filter is not optimal in speed, as it has to sort the

neighbourhood values for every pixel before the median can be decided.

(a) (b)

Figure 17: Median filter: (a) Original image, (b) Image after applying Median filter.

(a) (b)

Figure 18: Median filter on salt and pepper noise: (a) Original image, (b) Image after

applying Median filter.

(a) (b)

Figure 19: Median filter on impulse noise: (a) Original image, (b) Image after applying

Median filter.

 33

As seen in Figure 17, Median filtering preserves the edges but reduces

the sharpness formed by a corner. At the junctions of edges, Median

filter shows a curved shape and that corner cannot be clearly detected

by a corner detector. This is the reason why a median filter is not

preferred in corner detection.

 3.4. Comparison of smoothing filters

The Mean and Gaussian filters blurred the image to some extent to

remove the inconsistency in the fluctuations of neighbouring pixel

values. However, they were not able to remove the salt and pepper and

impulse noises. Compared to the Mean filter, Gaussian filter had a better

blurring effect due to the different weights assigned to different

positions of pixels. While Median filter did not blur the image as much,

it was able to suppress salt and pepper, and impulse noises. In the

Median filter, it was observed that the intersection of edges were no

longer as sharp as in the original image. Comparatively, it preserved the

quality of edges. This is because, the median value is not calculated

using the weighted sum of pixels like the Mean and Gaussian filters but

is taken as one of neighbourhood pixel values. Table 1 compares the

speed of different smoothing filters applied on the test image (Figure 3

(a)).

The following are some of the key parameters that were selected for

measurement of performance of smoothing filters.

• Original speed: This is the maximum speed, measured in fps (frames

per second), possible with no smoothing filters applied to the image.

This value remains same for every smoothing filter as the same

image (Figure 3 (a)) was used for testing all filters. For the image

used in these tests, the original speed was at a maximum of 222 fps.

 34

• Final speed: This is the maximum speed with the particular

smoothing filter applied on the image.

• Parameters: For an optimal solution, a smoothing filter may depend

on parameter(s), which need to be tuned at run-time.

• Type: The smoothing filters were classified into either of the two

types, linear and non-linear.

Final

Speed
Parameters Type

Mean

3 x 3
53.0 - Linear

Mean

5 x 5
46.0 - Linear

Gaussian Two-

Dimensional
2.8 σ = 1.51 Linear

Gaussian

5 x 5
26.9 σ = 1.42 Linear

Median 27.6 - Non-Linear

Table 1: Comparison of different smoothing filters.

1 - A kernel of size 11 x 11 was created using Equation 15 with ‘σ ’ = 1.5.

2 - Discrete Approximation with ‘σ ’ =1.4 for defining kernel of size 5 x 5 (Equation 18).

 35

 4. Edge detectors

Edge detection, the ability to determine the edge of an object [43], is a

primary step in many image enhancement procedures. In an image, an

edge is an abrupt change in gray level intensity values of successive

pixels. Hence, when there is a high difference between two

neighbouring pixels, a possible edge is detected. An edge detector is

essentially a high-pass filter. The intensity of the pixels at the borders of

a shadow also transit from a low to a high value. Due to this, any edge

detection technique detects this outline of shadows as edges. This

results in detection of false edges. Similarly, when there is a little

change in the intensity between two objects, some edge detectors may

fail in detecting this small difference as an edge of the object.

Edges help in identifying the outline of an object. The primary goal of

edge detectors is to output the edges required for further image-

processing stages like detecting the object, its shape, size, and

orientation. Edge detection is extensively used in the area of surgical

and medical machines.

Most of the edge detection techniques are based on applying simple

convolution masks to the entire image in order to compute the first-

order and/or second-order derivative, thus resulting in an edge. A

derivative is nothing but a calculation of differences in pixel values.

Edge detection can be divided into two types.

• First-order based edge detection (Gradient) - the first order derivative

at a pixel is used to decide the presence of an edge. The first order

derivative is searched for the maximum or the minimum value and

the pixel containing this value is considered an edge. An example of

this is the Sobel edge detector.

 36

• Second-order based edge detection (Laplacian) - the second order

derivatives are used to decide the presence of an edge. The pixel that

has its second order derivative as zero is considered an edge, that is,

this method searches for zero-crossings. An example of this is the

Laplace edge detector.

In any of the above cases, a pre-defined template is created, generally of

size 3 x 3. These templates are convolved with every neighbourhood in

an image. The convolved value is assigned to the pixel under

consideration.

Figure 20: The general behaviour of an edge and its derivative: The relationship

changes comparatively with the slope on the function f(t), which is a cross-section of

an edge in one particular direction [41].

Consider the image function f(t). The corresponding first-order and

second order derivatives are given as f’(t) and f’’(t). Whenever the

first-order derivative (gradient) is local maximum or minimum

corresponding to an edge pixel, the second-order derivative reaches

zero. The width of the first and second order derivative is inversely

proportional to the slope of the image function. This general behaviour

 37

of an edge and its derivatives is shown in Figure 20. Pixels having

gradient values above a certain threshold are considered as edges.

 4.1. Laplace edge detector

The standard Laplace edge detector calculates the partial second order

derivatives along x and y direction for every pixel. The sum of these

derivatives is assigned to the respective pixel, as shown in Equation 19.

∂ ∂
∂ ∂

2 2

2 2

 f f
L { f (x , y) } = +

x y

Equation 19: Laplace equation [4].

The edge direction can be formulated as in Equation 20.

θ

 ∂
 ∂ 

∂ 
 ∂ 

2

2
-1

2

2

 f
y (x , y) = t an
 f

x

Equation 20: The edge direction for the Laplace edge detector.

The template form of this equation is shown in Equation 21 (a). This

template only considers four immediate neighbours of the pixel (top,

bottom, left, and right). Equation 21 (b) shows the template in which

eight neighbours of the pixel are considered, that is, the four

neighbours of Equation 21 (a) and the diagonal pixels. This is useful

when the diagonal elements and the isolated pixels in the

neighbourhood are considered for calculations. Equation 21 (c) is used

when the diagonal elements need to be stressed more than the adjacent

pixels. Similarly, in Equation 21 (d), the adjacent elements are stressed

more than the diagonal elements. However, the templates (c) and (d) of

Equation 21 are seldom used.

 38

0 1 0 1 1 1 2 -1 2 -1 2 -1

1 -4 1 1 -8 1 -1 -4 -1 2 -4 2

0 1 0 1 1 1 2 -1 2 -1 2 -1

 (a) (b) (c) (d)

Equation 21: Laplace Edge Detection Template [4].

The two-dimensional Laplace template in Equation 21 (a) can be

decomposed into two separate one-dimensional templates as shown in

Equation 22. These two one-dimensional components can be applied

separately to the image in either direction instead of a single two-

dimensional template.

 1

L
x
= 1 -2 1 L

y
= -2

 1

 (a) (b)

Equation 22: The Laplace filter: (a) L
x
 - x component, (b) L

y
 - y component.

Equation 22 (a) and (b) shows the x and the y component of the

Laplacian operator resulting in detection of vertical and horizontal edges

respectively.

 39

(a) (b)

(c) (d)

Figure 21: Laplace edge detector (Equation 21 (a)): (a) Original image , (b) Edge strength

(Equation 21 (a)), (c) Binary edge strength (Threshold value = 26), (d) Edge direction

(Equation 20).

(a) (b)

Figure 22: Laplace edge detector (Equation 21 (a)): (a) Original image , (b) Edge strength

(Equation 21 (a)).

 40

 4.2. Laplacian of Gaussian (LoG)

The Laplacian of Gaussian (LoG) is the Laplace filter applied on an image

that has been smoothed through the Gaussian filter. This two-step

process can be divided into two one-step process to speed up

calculations. First, the Laplace filter is applied on the Gaussian filter and

the resulting kernel is applied to the image. This is shown in Equation

23.

L (G * I) = (L * G) I

Equation 23: Laplac ian of Gaussian on Image is the same Laplace on the Gaussian of

the Image.

The Laplace filter from Equation 19 is applied to the two-dimensional

Gaussian filter from Equation 17 to result in Equation 24.

σ

π σ σ

2 2

2
x + y2 2 -

2
4 2

1 x + y
L o G (x , y) = (1 -) e

2

Equation 24: The Laplacian of Gaussian (LoG) function [41].

The kernel formed on selecting the standard deviation (σ), shows the

response as shown in Figure 23.

 41

Figure 23: The response of the kernel formed for Laplacian of Gaussian (LoG) with a

standard deviation ‘ σ ’ = 1.4.

As shown in Equation 25, Fisher et al [41] stated a 9 x 9 kernel created

using the standard deviation, ‘σ ’ = 1.4 to achieve the edge detection.

 42

0 0 3 2 2 2 3 0 0

0 2 3 5 5 5 3 2 0

3 3 5 3 0 3 5 3 3

2 5 3 -12 -23 -12 3 5 2

2 5 0 -23 -40 -23 0 5 2

2 5 3 -12 -23 -12 3 5 2

3 3 5 3 0 3 5 3 3

0 2 3 5 5 5 3 2 0

0 0 3 2 2 2 3 0 0

 9 x 9

Equation 25: The Laplacian of Gaussian (LoG) pre-defined kernel calculated using

standard deviation (σ) = 1.4 [41].

Generally, a smoothing filter needs to be applied before edge detection,

in order to achieve better results. In the case of LoG, the smoothing and

edge detection work at the same time. This is due to having applied the

Laplace filter on the Gaussian filter.

 43

(a) (b)

Figure 24: Laplacian of Gaussian 9x9 (Equation 25): (a) Original image, (b) Edge

strength (Equation 25).

(a) (b)

Figure 25: Laplacian of Gaussian 9x9 (Equation 25): (a) Original image, (b) Edge

strength (Equation 25).

Apart from using a standard 9 x 9 kernel, the standard deviation ‘σ ’ =

1.5, was used for edge detection. The size of the kernel was found using

Equation 15 as 11 x 11. The results can be seen in Figure 26 and Figure

27.

 44

(a) (b)

Figure 26: Laplacian of Gaussian – two dimensional with σ = 1.5 (Equation 24): (a)

Original image, (b) Edge strength (Equation 24).

(a) (b)

Figure 27: Laplacian of Gaussian – two dimensional with σ = 1.8 (Equation 24): (a)

Original image, (b) Edge strength (Equation 24).

LoG with pre-defined kernel (Equation 25) was faster in producing the

results but LoG with standard deviation (‘σ ’) = 1.5 (Equation 24) showed

better results.

 4.3. Difference of Boxes (DoB)

Difference of Boxes (DoB) is similar to LoG with a slight modification.

Both use the concept of differentiation after smoothing. LoG performs

Laplace filtering after Gaussian filtering whereas DoB takes the

difference of two Mean filters of different dimensions. Instead of

applying two Mean filters and taking difference, it internally computes

the differences of two Mean filters and then applies the result of this as

the kernel to the input image. Hence, it calculates two separate

 45

smoothing filters and then on computing the differences, edges are

projected in the output image.

The larger the kernel sizes the thicker are the edges and the higher is

the noise suppression. The simplest implementation of this detector is

differencing the Mean 3 x 3 filter with Mean 1 x 1 filter (the pixel by

itself). The result of this is thinner edges and less noise suppression.

This is seen in Figure 28.

(a) (b)

Figure 28: DoB calculated with Mean 3 x 3 and Mean 1 x 1: (a) Original image , (b) Edge

strength.

In Figure 28 (b), the edges are not clear and more noise is apparent.

This can be corrected by taking Mean 5 x 5 with Mean 1 x 1 (the pixel

by itself). This is shown in Figure 29.

(a) (b)

Figure 29: DoB calculated with Mean 5 x 5 and Mean 1 x 1: (a) Original image , (b) Edge

strength.

 46

Using a Mean filter of even dimension leads to edges not being detected

in all directions. This can be seen in Figure 30.

(a) (b)

Figure 30: DoB calculated with Mean 3 x 3 and Mean 2 x 2: (a) Original image , (b) Edge

strength.

In Figure 30 (b), many edges are missed because of using a Mean filter

of even dimensions (2 x 2). Therefore, Mean filters with odd dimensions

should be preferred. It was observed that using Mean filters of higher

odd dimensions (5 x 5 or 7 x 7) result in better noise suppression. The

results are shown in Figure 31 and Figure 32.

(a) (b)

Figure 31: DoB calculated with Mean 5 x 5 and Mean 3 x 3: (a) Original image , (b) Edge

strength.

 47

(a) (b)

Figure 32: DoB calculated with Mean 7 x 7 and Mean 3 x 3: (a) Original image , (b) Edge

strength.

It was observed that as we increase the size of the Mean filters, edges in

the output of the detectors grew thicker. DoB with Mean 5 x 5 and Mean

3 x 3 filters gave better results than any other, with respect to quality

and speed.

 4.4. Sobel edge detector

The Sobel edge detector calculates the gradient along the x and y

direction separately.

-1 0 1 -1 -2 -1 0 -1 -2 2 1 0

-2 0 2 0 0 0 1 0 -1 1 0 -1

-1 0 1 1 2 1 2 1 0 0 -1 -2

 (a) (b) (c) (d)

Equation 26: Sobel Edge Detection Templates [18, 44].

The Sobel edge detector uses different weights for the position of pixels

in the masks. This is because it computes the derivatives in one

direction and at the same time , smoothes the image in another direction

 48

(averaging). These weights change with the larger sized filters and

alteration in the image dimensions.

Generally, in Sobel edge detection, only the first two templates in

Equation 26 (a) and (b) are considered. Equation 26 (a) shows the

template required detecting the vertical edges or the edges made

parallel to the y-axis, termed as S
x
. Similarly, Equation 26 (b) shows the

template required to detect horizontal edges or edges that are almost

parallel to the x-axis, termed as S
y
. The remaining two templates,

Equation 26 (c) and (d), are seldom used to detect diagonal edges in

respective directions, Equation 26 (a) and (b).

The two-dimensional Sobel x-component, S
x
, in Equation 26 (a) can be

decomposed into two one-dimensional components, S
x1
 and S

x2
, as

shown in Equation 27. S
x1
 computes the averaging in the direction of the

edge and perpendicular to the edge strength while S
x2
 computes the

first-order differentiation along the direction of edge strength.

 1

S
x1
= 2 S

x2
= -1 0 1

 1

(a) (b)

Equation 27: Sobel – x component – S
x
 is separated into: (a) S

x1
 and (b) S

x2
.

Similarly, the Sobel y-component, S
y
, can be composed into S

y1
 and S

y2
 as

shown in Equation 28.

 49

 -1

S
y1
= 0 S

y2
= 1 2 1

 1

(a) (b)

Equation 28: Sobel – y component – S
y
 is separated into (a) S

y 1
 and (b) S

y 2
.

Finally, the gradient value is computed by taking the square root of the

sum of the squares of the gradients in either direction, as shown in

Equation 29.

()θ

→

→

 
 
 

 x x

 y y

2 2
 x y

 y-1

 x

S S obe l (x , y)

S S o b e l (x , y)

S o b e l (x , y) = S + S

S
x, y = t a n

S

Equation 29: The Sobel edge calculation [4].

The edge magnitude is also calculated as the absolute values of S
x
 and S

y
.

This can be written as Equation 30.

() x yS o b e l x , y = S + S

Equation 30: An alternative to calculate Sobel edge magnitude [4].

Due to the reduction in complexity, the calculation of edge magnitude in

Equation 30 is faster in calculation of the values than that in Equation 29.

For better results, the scale factor of
1
3

 was used for calculations. The

results of the edge strength’s in x and y directions along with the final

edge results with edge direction are shown in Figure 33 and Figure 34.

 50

(a) (b)

(c) (d)

(e) (f)

Figure 33: Sobel edge detector: (a) Original image , (b) Sobel x-component (Equation 26

(b)), (c) Sobel y-component (Equation 26 (a)), (d) Sobel in x and y direction - final edge

strength (Equation 29) with scale factor =
1
3

, (e) Binary edge strength (Threshold value

= 38), (f) Edge direction (Equation 29).

 51

(a) (b)

Figure 34: Sobel edge detector (Equation 29) with scale factor =
1
3

: (a) Original image,

(b) Edge strength (Equation 29).

 4.5. Robert’s edge detector

Robert’s edge detection technique is the most basic of all the techniques

discussed. It uses two 2 x 2 masks to find the orthogonal derivatives.

Extension to the higher image dimensions is not possible in this edge

detection technique. In addition, the gradient is not shifted by half-a-

pixel in both directions. Due to this, Robert’s edge detector is more

sensitive to noise compared to other edge detectors. This is reflected in

its output, which has a higher amount of noise that that of other filters.

1 0 0 1

0 -1 -1 0

(a) (b)

Equation 31: Robert's Edge Detection Templates [18, 44].

Equation 31 (a) and (b) computes the orthogonal derivatives, that is, the

detector calculates derivatives along the diagonals, termed as R
1
 and R

2

respectively. R
1
 calculates derivatives along the major diagonal. This

detects edges parallel to the minor diagonal. Similarly, R
2
 calculates

 52

derivates along the minor diagonal, to identify edges parallel to the

major diagonal.

() π
θ

→

→

 
 
 

 1 1

 2 2

 1 2

-1 2

 1

R R o b e r t s (x , y)

R R o b e r t s (x , y)

R o b e r t s (x , y) = R + R

R
x, y = t a n +

R 4

Equation 32: The Robert’s edge calculation [45].

To speed up calculations, the edge magnitude is calculated as the

absolute values of the orthogonal derivatives. An angle of
π
4

 was added

to the result of the edge direction [45]. This is because; the Roberts

edge detector calculates the intensity fluctuations along diagonals, that

is, it calculates orthogonal derivatives.

 53

(a) (b)

(c) (d)

Figure 35: Robert’s edge detecto r (Equation 32): (a) Original image, (b) Edge strength

(Equation 32), (c) Binary edge strength (Threshold value = 31), (d) Edge direction

(Equation 32).

(a) (b)

Figure 36: Robert’s edge detector (Equation 32): (a) Original image, (b) Edge strength

(Equation 32).

 54

 4.6. Kirsch edge detector

The Kirsch edge detector works in a similar fashion to the Sobel edge

detector. The difference is that the weights are assigned to the different

positions in the templates. In the Kirsch edge detector, weights are

assigned to all pixel positions except the centre pixel, as shown in

Equation 33.

3 3 3 3 3 3 -5 3 3 -5 -5 3

3 0 3 -5 0 3 -5 0 3 -5 0 3

-5 -5 -5 -5 -5 3 -5 3 3 3 3 3

 (a) (b) (c) (d)

Equation 33: Kirsch Edge Detection Templates [18, 44].

Again, the gradient is calculated along x and y directions, and along the

diagonals. Equation 33 (a) shows the calculations of the gradient along

the y-direction; (c) along the x-direction; and (b) and (d) along the

diagonals. Similar to Equation 30, the edge magnitude of the Kirsch

edge detector is calculated by adding the absolute values of the

gradients in the x and y directions, as shown in Equation 34.

θ

→

→

 
 
 

 x x

 y y

 x y

 y-1

 x

K K i rsch (x , y)

K K i rsch (x , y)

K i rsch (x , y) = K + K

K
 (x , y) = t an

K

Equation 34: The Kirsch edge calculation.

 55

(a) (b)

(c) (d)

Figure 37: Kirsch edge detector (Equation 34) with scale factor =
1
4

: (a) Original image,

(b) Edge strength (Equation 34), (c) Binary edge strength (Threshold value = 92), (d)

Edge direction (Equation 34).

(a) (b)

Figure 38: Kirsch edge detector (Equation 34) with scale factor =
1
4

: (a) Original image,

(b) Edge strength (Equation 34).

 56

 4.7. Prewitt edge detector

The Prewitt edge detector behaves in the same way as the Sobel or

Kirsch edge detectors. As discussed earlier, the change lies in the

weights of the masks assigned to the respective pixels of the

neighbourhood. The masks used in Prewitt edge detection are based on

the Mean filter. All the values on one side of the pixel are considered

positive and the other side equal and negative. The masks used for

Prewitt edge detector are shown in Equation 35.

1 0 -1 1 1 1 0 -1 -1 1 1 0

1 0 -1 0 0 0 1 0 -1 1 0 -1

1 0 -1 -1 -1 -1 1 1 0 0 -1 -1

 (a) (b) (c) (d)

Equation 35: Prewitt Edge Detection Templates [18, 44].

Equation 35 (a) shows the template used to detect the vertical edges,

termed as Px. Equation 35 (b) shows the template used to detect the

horizontal edges, termed as Py. Equation 35 (c) and (d) are used to

compute the edges parallel to the major and minor diagonals,

respectively: as with the Sobel and Kirsch edge detectors, these

templates are rarely used.

θ

→

→

 
 
 

 x x

 y y

 x y

 y-1

 x

P P r e w i t t (x , y)

P P r e w i t t (x , y)

P r e w i t t (x , y) = P + P

P
 (x , y) = t a n

P

Equation 36: The Prewitt edge calculation.

 57

The edge strength is the sum of the absolute values of the gradient

calculated along the x and y directions. Like Sobel, Prewitt edge detector

templates are separable. The two-dimensional templates shown in

Equation 35 (a) and (b) can be separated into two one-dimensional

components. The component in the direction of the edge work as an

averaging filter and the other component compute the first-order

differentiation in the direction of the edge response.

(a) (b)

(c) (d)

Figure 39: Prewitt edge detector (Equation 36) with scale factor =
1
2

: (a) Original image ,

(b) Edge strength (Equation 36), (c) Binary edge strength (Threshold value = 51), (d)

Edge direction (Equation 36).

 58

(a) (b)

Figure 40: Prewitt edge detector (Equation 36) with scale factor =
1
2

: (a) Original image ,

(b) Edge strength (Equation 36).

 4.8. Robinson edge detector

The Robinson detector performs in a different way from the other edge

detectors. Apart from Laplace (which calculates the second-order

derivative), Robinson is the only detector that stresses on the centre

pixel for calculating the first order derivatives.

-1 1 1 1 1 1 1 1 1 -1 -1 1

-1 -2 1 1 -2 1 -1 -2 1 -1 -2 1

-1 1 1 -1 -1 -1 -1 -1 1 1 1 1

 (a) (b) (c) (d)

Equation 37: Robinson Edge Detection Templates [18, 44].

Equation 37 (a) is used to detect the vertical edges, termed as Rox.

Similarly, Equation 37 (b) shows the template for determining the

horizontal edges in an image, termed as Roy; Equation 37 (c) and

Equation 37 (d) are the templates used to determine the diagonal edges.

 59

θ

→

→

 
 
 

 x x

 y y

 x y

 y-1

 x

R o R o b i n s o n (x , y)

R o R o b i n s o n (x , y)

R o b i n s o n (x , y) = R o + R o

R o
 (x , y) = t a n

R o

Equation 38: The Robinson edge calculation.

The edge strength is the sum of the absolute values of the gradient

calculated along x and y directions.

(a) (b)

(c) (d)

Figure 41: Robinson edge detector (Equation 38) with scale factor =
1
2

: (a) Original

image , (b) Edge strength (Equation 38), (c) Binary edge strength (Threshold value = 64),

(d) Edge direction (Equation 38).

 60

(a) (b)

Figure 42: Robinson edge detector (Equation 38) with scale factor =
1
2

: (a) Original

image , (b) Edge strength (Equation 38).

 4.9. Comparison of edge detectors

Based on quality, Sobel edge detector showed the best results. Kirsch

edge detector showed good results but the edges detected were very

thick. Laplace and Robert’s show broken edges at some junctions. LoG

was the most expensive in computations. On taking an odd and even

sized mean filters, DoB failed to show edges at certain locations. Hence,

DoB should be used with odd-sized mean filters. Though Prewitt worked

faster than Robinson did, their results were of average quality compared

to the Sobel and Kirsch detectors. Table 2 shows the results of applying

the different edge detectors, discussed earlier in the chapter.

The following are some of the key parameters that were selected for

quantitative measurement of performance of the edge detectors.

• Original speed: This is the maximum speed, measured in fps (frames

per second), possible with no edge detectors applied to the test

image in Figure 21 (a). This value remains same for every edge

detectors as the same image was used for testing all detectors. For

the image used in these tests, the original speed was at a maximum

of 130 fps.

 61

• Final speed: This is the maximum speed with the particular edge

detector applied on the image.

• Threshold: All the pixels having a value greater than the threshold

were projected as edges. This was selected at run-time for the best

results. The result of applying threshold is shown as binary edge

strengths in respective edge detectors. The result of overlaying these

edges on the original image is shown in Figure 86.

• Scale factor: A scale factor is multiplied with the final edge strength

calculated. This is the scale factor observed to be the best when

tested at run-time.

Final

Speed
Threshold

Scale

Factor

Laplace 45.6 26 1

LoG (9x9)3 22.4 255 1

LoG4 4.5 230 1

DoB (Mean 5 x 5

- Mean 3 x 3)
18.7 5 1

DoB (Mean 7 x 7

- Mean 3 x 3)
12.2 8 1

Sobel 40.1 38 1
3

Robert’s 47.0 31 1

Kirsch 33.4 92 1
4

Prewitt 39.1 51
1
2

Robinson 38.4 64 1
2

Table 2: Comparison of diffe rent edge detectors.

3 - Discrete Approximation with ‘σ ’ =1.4 for defining kernel of size 9 x 9 (Equation 25).
4 - A kernel of size 11 x 11 was created using ‘ σ ’ = 1.5 in Equation 15.

 63

 5. Corner detectors

 5.1. Introduction and classification

In many applications, finding pairs of corresponding points in two

images, that is, finding the geometric transformation of each of the two

points between the two images is useful . Finding the changes in

position and orientation is part of this calculation. Finding

correspondence of all the points may be tedious, time-consuming, and

highly complex. Hence, an effort is made to concentrate on certain

points in the image, like corners. For example, when a square is

considered, its transformation can be calculated if the corners are

known: it is not necessary to know the entire set of points. The input for

corner detectors is a gray level image and the output is an image in

which all the corner pixels are marked. The difference between corners

and edges is that at corners there is a large change in intensity when

that pixel is compared with the neighbouring pixels in any direction. In

addition, corners are subject to less variance than edges when any kind

of transformations are made to the image, for example, rotation. There

are two basic types of corner detectors: template-based and geometry-

based corner detectors, as outlined by Shen et al [46].

 5.1.1. Template-based corner detector

In template-based corner detection, a set of templates is created and

then every pixel and the neighbouring pixels in the template are

compared to produce certain results. The templates created can be of

any size lesser than the size of the image. The templates are usually of

size 3 x 3. When these templates are compared with the pixels of the

images, it results in information that helps in judging whether a pixel is

a corner. The templates shown in Figure 43 are the Laplace edge

detector. Two examples, both of 3 x 3 templates, one with 4-

 64

neighbourhood, and the second, with 8-neighbourhood, are shown in

Figure 43.

0 1 0 1 1 1

1 -4 1 1 -8 1

0 1 0 1 1 1

 (a) (b)

Figure 43: The Laplace Operator with a 3 x 3 template with (a) 4-neighbourhood and

(b) 8-neighbourhood.

In Figure 43, the centre of the template is convolved with the pixel of

the image under consideration and then the neighbouring pixels are

convolved with the values shown in the template. The result of this

convolution is the edge value of that pixel under consideration. In this

way all the pixels that are part of an edge will be shown in the output

image. This system incurs high computational costs . The number of

computations for the template shown in Figure 43 (a) and Figure 43 (b)

will be 5*m*n and 9*m*n respectively, where m*n are the number of the

pixels of the image.

 5.1.2. Geometry-based corner detector

Geometry-based corner detectors measure the differential geometric

features that lead to corners. This method involves many steps, such as

extracting the boundary of the object as a chain code and then looking

for significant change in the values of the chain code. This change of

values means the direction of the next pixel is different from the

previous pixel. This means that the pixel that indicates a change in

direction is a corner. This is illustrated by Figure 44 and Figure 45.

 65

 5 4 4 4 4

 6 3

 7 2.

 0 0 0 0 1

Figure 44: An object in an image. The boundary is marked gray. The figures shown in

the pixels show the relative direction of the next pixel from the pixel under

consideration.

3 2 1

4 p 0

5 6 7

Figure 45: Each pixel is numbered according to the relative direction of that particular

pixel with pixel under consideration, p.

The run length code starts from the rightmost bottom pixel of the chain,

which is marked by a dot (.) after the value at that pixel. Using the

convention shown in Figure 45, the code for the object boundary

marked in Figure 44 can be written as 2, 3, 4, 4, 4, 4, 5, 6, 7, 0, 0, 0, 0,

and 1. The first occurrence of the 2, 3, 4, 5, 6, 7, 0 and 1 are considered

to be corners as the direction of the path changes. This is a time-

consuming method as it is applied to all objects in the image. In

addition, an error in segmentation while creating the chain will result in

wrong pixels being identified as corners. If we consider the object

shown in Figure 44, the computational costs will be 2 * (i + j) where

(i + j) is the total number of pixels lying on the boundary of the

object. The computational cost for this will depend on the size, shape,

and length of the object.

 66

 5.2. Kitchen-Rosenfeld corner detector

Kitchen and Rosenfeld proposed a corner detector [14] that works by

taking second order derivatives along the direction of an edge.

2 2

x y y x y x y y x x
2 2

x y

I I - 2 I I I + I I
K R (i , j) =

I + I

Equation 39: Kitchen-Rosenfeld corner detector.

The Kitchen-Rosenfeld corner detector can be written as Equation 39.

Here, I
x
 and I

y
, and I

xx
 and I

yy
 are the first-order and second-order

derivatives along x and y directions, respectively. I
xy
 is the partial order

derivative along the x and y directions. The first derivative along the x

direction is calculated and then the derivative of this result is computed

along the y direction.

On gray-scale images, Kitchen-Rosenfeld is accurate and not very

sensitive to noise. Applying the corner detector directly to binary images

did not give good results. However, if the filter was applied after edge

detection, the results were accurate. In order to view the corners in the

output image, a threshold is applied to the result of the detector.

(a) (b)

Figure 46: Kitchen Rosenfeld corner detector (Equation 39): (a) Original image , (b)

Corners.

 67

(a) (b)

Figure 47: Kitchen-Rosenfeld corner detector (Equation 39): (a) Original image , (b)

Corners.

The initial test image in Figure 46 (a) and Figure 47 (a) was smoothed

using the Mean 3 x 3 filter. Kitchen-Rosenfeld was applied to this result.

Finally, this result was overlayed on the initial test image. The result of

overlaying in Figure 47 (b) was tested with threshold value 18 (Figure

87).

 5.3. Beaudet corner detector

From Hessian matrix form [12], the derivatives are written as Equation

40 (a). Equation 40 (b) shows an example of these values.

 
 
  

 x x x y

 x y y y

I I

I I
 
 
 

2 0 1 5
1 5 2 0

(a) (b)

Equation 40: The second-order derivatives along x and y directions and partial

derivative along x and y direction: (a) Hessian matrix form, (b) An example of the

Derivatives’ value.

The Beaudet corner detector [13] is different from the others, in that it

just calculates the determinant (‘det’). The higher the determinant (the

value ‘det’ obtained from Equation 41), the higher the chance of a

 68

pixel being a corner. Hence, from the Hessian matrix form, ‘det’ can be

calculated as shown in Equation 41.

2

 x x y y x yd e t (i , j) = I I - I

Equation 41: Beaudet corner detector’s equation for computing the ability of the pixel

to be a corner.

(a) (b)

Figure 48: Beaudet corner detector (Equation 41): (a) Original image , (b) Corners.

(a) (b)

Figure 49: Beaudet corner detector. (Equation 41): (a) Original image , (b) Corners.

The Beaudet corner detector was applied to Figure 48 (a), and Figure 49

(a). Prior to this, both images were smoothed using the Mean 5 x 5 filter.

The result in Figure 49 (b) was overlayed at the threshold value 255

(Figure 87).

 69

 5.4. Plessey corner detector

Based on Equation 40, the determinant (‘detm’) is calculated as

Equation 43. The value of ‘tracem’ is calculated by adding the major

diagonal elements. Whether a pixel is a corner can be decided by the

value of ‘plessey’ that is assigned to every pixel. Equation 42 shows a

matrix based on first differentials of images was designed, which was

further used to calculate whether a pixel is a corner.

 
 
  

2
 x x y

2
 x y y

I I I
C =

I I I

Equation 42: Matrix for calculating first differentials [12].

Based on this matrix, calculations are made in calculating ‘plessey’ as

shown by Equation 43.

2 2 2

 x y x y

2 2
 x y

d e t m = I I - (I I)

t r a c e m = I + I

p l e s s e y (i , j) = d e t m / t r a c e m

Equation 43: The calculation of det and trace, and the ability of the pixels to be corner

in Plessey corner detector.

The value of ‘plessey’ is more at the junction of the edges, where the

possibility of a pixel being a corner is high.

 70

(a) (b)

Figure 50: Plessey corner detector (Equation 43): (a) Original image , (b) Corners.

(a) (b)

Figure 51: Plessey corner detector (Equation 43): (a) Original image , (b) Corners.

The Mean 3 x 3 filter was applied to Figure 50 (a) and Figure 51 (a)

followed by the Plessey corner detector. The result in Figure 51 (b) is

overlayed on the initial image at the threshold value of 43 (Figure 87).

 5.5. Noble corner detector

The Noble corner detector [16] works in a similar manner to the Plessey

corner detector. This detector was based on the theoretical formulation

for the corner detection problem using differential geometry [12]. The

matrix shown in Equation 42 was modified to another form as seen in

Equation 44.

 71

σ
   
   

     

 22
 x x x y x x y 2

2
 x y y y x y y

I II I I
C = +

I II I I

Equation 44: Modification in representing the matrix shown in Equation 42 for further

calculation for Noble corner detector [12].

Using this matrix, ‘detm’ and ‘tracem’ are calculated as shown in

Equation 45.

σ

σ

2 2 2
 x y x y

2 2 2 2 2 2
 x x x y y y x y x x x y y y x y

2 2 2 2 2 2
 x y x x y y x y

d e t m = (I I - (I I))

- ((I + I) (I + I) - (I I + I I))

t r a c e m = I + I + (I + I + 2 I)

n o b l e (i , j) = d e t m / t r a c e m

Equation 45: The calculation of det and trace, and the ability of the pixels to be corner

in Noble corner detector.

In this detector, the value of sigma (‘σ ’) is manually assigned. This

value was varied at run-time and was tested on every pixel to check

whether the pixel is a corner.

(a) (b)

Figure 52: Noble corner detector: (a) Original Image, (b) Corners.

 72

(a) (b)

Figure 53: Noble corner detector: (a) Original Image, (b) Corners.

The Mean 3 x 3 filter was applied to Figure 52 (a) and Figure 53 (a)

followed by the Noble corner detector. The result in Figure 53 (b) is

overlayed on the initial image at the threshold value of 255 (Figure 87).

 5.6. Harris-Stephens corner detector

Plessey corner detector was slightly modified to result in the Harris-

Stephens corner detector [17]. It is also based on the concept of first

order differentials. The determinant is calculated and termed as ‘detm’

and the sum of the major diagonals of this matrix is termed as ‘tracem’.

2 2 2

 x y x y

2 2
 x y

d e t m = I I - (I I)

t r a c e m = I + I

Equation 46: Det and Trace derived from the basics of matrices and using the above

Equation 40.

The Harris-Stephens corner detector is calculated using ‘detm’ and

‘tracem’ as in Equation 46. This is calculated as in Equation 47.

2h a r r i s (i , j) = d e t m - k * (t r a c e m)

Equation 47: Harris-Stephens corner detector’s equation for computing the ability of

the pixel to be a corner [12].

 73

The term ‘harris’ is the calculated value shown in Equation 47. At

corners, this value is higher than the neighbourhood pixels.

(a) (b)

Figure 54: Harris-Stephens corner detector (Equation 47): (a) Original image, (b)

Corners.

(a) (b)

Figure 55: Harris-Stephens corner detector (Equation 47): (a) Original image, (b)

Corners.

The Harris-Stephens corner detector was applied to the test image

shown in Figure 54 (a) and Figure 55 (a). The corner detector was

applied to the result of Mean 5 x 5 filter applied on the initial image.

The Mean 5 x 5 filter was necessary because this detector required

higher blurring. The result shown Figure 54 (b) and Figure 55 (b) was

overlayed on the initial image with the threshold value of 217 (Figure 87).

 74

 5.7. A corner detector based on the concept of

zero-crossing

In a zero-crossing edge detector, the second-order derivative of an edge

response always passes through the origin as shown in Figure 20. That

means the value to the left of this zero-crossing second-order derivative

has an opposite polarity from the value to the right. This can be

illustrated by Figure 20. Apart from being of opposite polarities, ideally,

these values are equal in magnitude. However, these values are

generally not the same , due to the change in real-time calculations of

the edge-response and its derivatives. The first-order derivative has a

curve similar to a Gaussian distribution curve. Hence, corresponding to

the position where the second-order derivative turns zero, there is a

maximum value or maxima in the first-order derivative.

Similarly, an ideal corner has the response similar to a Gaussian

distribution curve Figure 56. This corner response was used to check

whether a pixel is a corner. An attempt was made to compute this

possibility by using the values of the corner responses’ first and second-

order derivatives.

 75

Figure 56: A Corner response.

Hence, when a derivative of this corner response is computed, the

highest value (or the peak) of the initial response corresponds to the

zero-value in the first-order derivative curve. This is shown in Figure 57.

 76

Figure 57: The first-order derivative of the initial corner response shown in Figure 56.

In addition, the second-order derivative of this initial function (corner

response) has its minima or minimum value at the position where the

first-order derivative passes through zero. Let us name this concept

Zero-1. This can be better understood from Figure 58.

 77

Figure 58: The second order derivative response of the initial corner response from

Figure 56.

Adding to the Zero-1 concept, both the second-order derivatives along x

and y were checked to be equal. This leads to another corner detection

technique. Let us name this concept Zero-2.

Two corner detectors based on the concepts Zero-1 and Zero-2 were

tried and tested on several image sequences.

The second-order derivatives of the corner response along the x and y

directions are not always both equal and minimum in the same position.

This is because real-time images may have random pixel values

(intensity). Hence, the Zero-1 concept outperforms the Zero-2 concept

due to the general behaviour of a corner, where at least one of the

second-order derivatives of the corner is at minima in that region.

Zero-2 may be preferred over Zero-1 in applications that are constrained

by memory, as Zero-2 requires less memory for storing its results.

 78

(a) (b)

Figure 59: A corner detector after Zero-1 concept: (a) Original image , (b) Corners.

(a) (b)

Figure 60: A corner detector after Zero-2 concept: (a) Original image , (b) Corners.

(a) (b)

Figure 61: A corner detector after Zero-1 concept: (a) Original image , (b) Corners.

 79

(a) (b)

Figure 62: A corner detector after Zero-2 concept: (a) Original image , (b) Corners.

The Kitchen-Rosenfeld corner detector was used to get the initial corner

response for Figure 59 (a), Figure 60 (a), Figure 61 (a), and Figure 62 (a).

The Zero-1 and Zero-2 concepts were applied to get the result shown in

Figure 59 (b) and Figure 61 (b), and Figure 60 (b) and Figure 62 (b)

respectively. For the Zero-1 concept, the Mean 3 x 3 filter was applied

prior to the corner detection. The results in Figure 61 (b) and Figure 62

(b) were obtained after applying a threshold of 13 and 71 respectively

(Figure 87).

 5.8. A corner detector based on the concept of

non-maxima suppression

Non-maxima suppression revolves around the concept of deleting pixels

that are not the maximum in a certain region (neighbourhood or

direction). Whenever a neighbourhood is considered, all the pixels are

compared with one another. If the centre pixel (the one that is under

consideration) is greater than or equal to all the pixels in the

neighbourhood, then that pixel is retained. If this condition fails, then

that pixel is deleted. In the end , only the pixels that are greater than or

equal to the values of the pixels in the neighbourhood are retained.

If non-maxima suppression, as explained above, is applied after a corner

detector, sharp pixels (pulses) are shown in the output. This output is

 80

considered ideal for a corner detector. Let us name this concept

Maxima-1.

In addition, non-maxima suppression was manipulated with a different

concept where dilation was applied to the output of a corner detector.

When applying gray-scale dilation to every neighbourhood in the image,

the centre pixel of each neighbourhood is assigned the maximum value

of the neighbourhood. Gray-scale dilation ensures that the value of a

true corner remains unchanged. After dilation, its outcome is compared

with the initial values of the corner response (Figure 63).

Figure 63: The corner response and the dilated form of the corner response. Here,

data1 corresponds to the initial corner and data2 corresponds to the dilated form of

the initial corner response.

If the corner value in the initial response is not the greatest in that

neighbourhood, then it is not a true corner. On comparison, all the

pixels having the same values in both the corner response and the

output of the dilation function and at the same position are identified as

 81

corners and are projected in the output image. This can be shown in

Figure 64. Let us name this concept Maxima-2.

Figure 64: The result of the projected values that are equal in corner response and

dilated form of the corner response from Figure 63.

These concepts might not work accurately on real-time images due to

factors like noise, resolution of the image, and complexity of the image

objects.

Maxima-1 compares the intensity values of the pixels in the

neighbourhood, resulting in projection of one value for every

neighbourhood. It was observed that when a corner detector is applied

after an edge detector Maxima-1 shows parts of the edges as corners.

 82

(a) (b)

Figure 65: A corner detector after Maxima -1 concept: (a) Original image, (b) Corners.

(a) (b)

Figure 66: A corner detector after Maxima -2 concept: (a) Original image, (b) Corners.

(a) (b)

Figure 67: A corner detector after Maxima -1 concept: (a) Original image, (b) Corners.

 83

(a) (b)

Figure 68: A corner detector after Maxima -2 concept: (a) Original image, (b) Corners.

The Kitchen-Rosenfeld corner detector was used to get the initial corner

response for images in Figure 65 (a), Figure 66 (a), Figure 67 (a), and

Figure 68 (a). The Maxima-1 and Maxima-2 concepts were applied to get

the results shown in Figure 65 (b) and Figure 67 (b), and Figure 66 (b)

and Figure 68 (b) respectively. Prior to applying all these, Mean 3 x 3

filter was applied. The final results shown in Figure 67 (b), and Figure 68

(b) were obtained after applying a threshold of 13 and 18 respectively

(Figure 87).

 5.9. A corner detector based on pre-defined

templates

Unlike the detectors discussed previously, this detector identifies

corners in a binary image. These detectors are used to detect black

corners in white backgrounds and vice-versa.

If the image is gray-scale, it is first converted into a binary image by

setting a threshold value. This converts all the values higher than the

threshold parameter to white and anything lower to black. The corner

detection is performed using eight corner detector templates (Figure 69).

These eight corner operators are formed taking the first corner operator

(a) and then rotating it seven times by 450, resulting in eight operators.

Each of this eight is applied to each pixel. If any pixel satisfies any of the

 84

templates shown in Figure 69, then it is considered a corner. Let us

name this corner detector Binary-1.

 X X

 X

 X

 (a) (b) (c) (d)

X

 X

 X X

 (a) (b) (c) (d)

 X --> don’t care

Figure 69: Templates for Simple binary corner detector (Binary-1) [47].

To try out this concept, experiments were performed on various images,

gray-scale and binary with varying threshold values. It should be noted

that, on converting a gray-scale image to binary, some pertinent data

might be lost or distorted. Due to this, there is a high possibility of

wrong points being identified as corners or true corners being missed

altogether.

It was observed that with increase in the threshold value, the number of

wrong corners detected also increased.

 85

(a) (b)

Figure 70: Corner detector based on predefined templates (Figure 69, threshold value

= 128): (a) Original Image, (b) Corners after converting the original image to binary

image (threshold value = 128).

(a) (b)

Figure 71: Corner detector based on predefined templates (Figure 69, threshold value

= 255): (a) Original Image, (b) Corners after converting the original image to binary

image (threshold value = 255).

 5.10. Comparison of corner detectors

Harris-Stephens corner detector showed the best results considering

corner localization. Plessey corner detector showed better results than

Kitchen-Rosenfeld. The results of Nobel corner detector were

comparable to that of Plessey. In the Beaudet corner detector, apart

from detecting a true corner pixel, even some surrounding pixels are

detected as corners. This is because, the detector assigns the same

intensity values to these pixels as that of the true corner pixel. This

leads to a cluster of neighbouring pixels being labelled as corners. It

 86

was observed that where edges of distinct objects intersect, this

detector identified the junction as multiple corners. Apart from Noble, it

was observed that the corners obtained by Beaudet corner detector had

high intensity values. This is because both detectors find corners using

only differences and not dividing by any number or expression. The

detectors derived from the zero-crossing concept (Zero-1 and Zero-2)

failed to show good results. However, the detectors derived from the

concept of non-maxima suppression (Maxima-1 and Maxima-2) gave

good results. The results obtained from Maxima-1 were of better quality

than that of Maxima-2. Table 3 shows the results of applying the

different corner detectors, discussed earlier in the chapter.

The following are some of the key parameters that were selected for

quantitative measurement of performance of the corner detectors.

• Original speed: This is the maximum speed, measured in fps (frames

per second), possible with no corner detectors applied to the image.

This value remains same for every corner detectors as the same

image was used for testing all detectors. For the image used in these

tests, the original speed was at a maximum of 128 fps.

• Initial correct corners: This is the number of corners that are visible

in the image. The total number of corners in the original image is 22.

• Final speed: This is the maximum speed with the particular corner

detector applied on the image.

• Correct corners detected: This is the number of corners that are

correctly identified by the detector.

• Multiple corners detected: This is the number of corners that are

identified more than once by the detector.

 87

• Extra corners detected (error positive): This is the number of pixels

incorrectly identified as corners.

• Missed corners (error negative): This is the number of corners, which

the detector failed to identify.

• Threshold: All the pixels having a value greater than the threshold

were projected as corners. The results of corners overlayed on the

test image Figure 47 (a) are shown in Figure 87. For Binary-1 detector,

threshold was applied to convert the gray-scale image into binary

image.

• Parameters: For an optimal solution, a corner detector may depend

on parameter(s), which need to be tuned at run-time.

• Other filters used: In a real image, there might be a significant

change in the intensity values of the neighbouring pixels, which

might cause them to be a misidentified as a corner. The reasons for

this change can be surface texture, lighting effect, etc. Hence, before

applying any corner detector, an averaging filter may be applied to

the image.

 88

Bi
n
ar

y-
1

2
0

.6

1
4
 (

6
4

%
)

0

0

8

8
 (
3

6
%

)

2
5
5

-

M
ea

n

3
 x

 3

M
ax

im
a-

2

2
5

.2

1
4

 (
6

4
%

)

0

0

8

8
 (
3

6
%

)

1
8

-

M
ea

n

3
 x

 3

M
ax

im
a-

1

1
9

.1

1
8

 (
8

2
%

)

0

0

4

4
 (

1
8

%
)

1
3

-

M
ea

n

3
 x

 3

Ze
ro

-2

1
4

.5

8
 (

3
6

%
)

1

2

1
4

1
7

 (
7

7
%

)

7
1

- -

Ze
ro

-1

1
4

.8

1
1

 (
5

0
%

)

0

0

1
1

1
1

 (
5

0
%

)

1
3

-

M
ea

n
3
 x

 3

H
ar

ri
s

St
ep

h
en

s

2
9

.3

2
2

 (
1

0
0%

)

2

0

0

2
 (
9
%

)

2
1
7

0
.0

4
5

M
ea

n

5
 x

 5

N
o
b

le

2
1

.1

1
9
 (
8
6
%

)

8

0

3

1
1
 (

5
0
%

)

2
5
5

0
.3

5
6

M
ea

n
3
 x

 3

Pl
es

se
y

2
8
.2

1
8

 (
8

2
%

)

3

0

4

7
 (
3

2
%

)

4
3

-

M
ea

n

3
 x

 3

Be
au

d
et

3
0

.6

2
0

 (
9

1
%

)

8

0

2

1
0
 (

4
5
%

)

2
5
5

-

M
ea

n

5
 x

 5

K
it

ch
en

R

o
se

n
fe

ld

2
9

.4

1
4

 (
6

4
%

)

0

0

8

8
 (

3
6

%
)

1
8

-

M
ea

n

3
 x

 3

Fi
n

al
 S

p
ee

d

C
o
rr

ec
t

co
rn

er
s

d
et

ec
te

d

(2
2

)

M
u
lt

ip
le

co

rn
er

s
d

et
ec

te
d

Er
ro

r
p

o
si

ti
ve

Er
ro

r
n

eg
at

iv
e

T
o
ta

l
Er

ro
r

(2
2

)

T
h
re

sh
o
ld

Pa
ra

m
et

er
s

O
th

er
 F

ilt
er

s
u
se

d

Table 3: Comparison of different corner detectors.

5 - The value of k, from Equation 47, was tested at run-time.
6 - The value of σ , from Equation 45, was tested at run-time.

 89

 6. Thinning filters

In many image-processing tasks, processing on all points will not be

required. In case of images that are mostly line-based, that is, text or

line drawings, thinning the image may prove to be beneficial to further

processing stages. This is because in these stages, the presence of lines

is important and not their thickness. Hence, thinning plays a key role at

the image pre-processing stage. “The method of removing redundant

data from the lines and retaining the lines of required width is called

thinning or skeletonizing” [6]. This chapter describes three methods that

remove all unnecessary data but retain the important data required for

processing.

Thinning methods are morphological operations applied to binary

images, which in turn produce binary images. The original image may

contain thick edges or lines that may make subsequent processing time-

consuming. Thinning filters try to reduce the width of these edges or

lines as much as possible, ideally to one pixel. Detecting and matching

human fingerprints is one application that may benefit from thinning.

This is because, in matching fingerprints, detecting the presence and

shape of certain lines is more essential than their thickness. Another

application where the same concept can be used is pattern matching or

pattern recognition. Here, detecting certain lines that make the shape of

a particular object or pattern is more crucial than the width of the lines

lying on the outline. Thinning of extended objects is necessary in image

analysis, where again the shape and pattern may be more important

than the width of the object. In most cases, when thinning is applied the

thickness of the original object is lost and cannot be traced back.

Ideally, a thinning procedure should follow some basic principles. These

are refined from [8] as:

• The connectivity of the curve or the object should be preserved.

 90

• Objects should remain unchanged in their shape, that is, a curve or

an intersection of curves should remain in the same shape and

orientation.

• After thinning, the skeleton of the object should lie approximately

along the centre of the object.

• The skeleton of these objects should be as thin as possible.

• The thinning procedure should be as fast as possible, hence, should

comprise as few iterations as possible.

 6.1. Methods implemented

The thinning methods that were implemented and tested are Stefanelli-

Rosenfeld [5], Lü-Wang [26], and Hall-Guo [8]. All these thinning

methods were implemented as described in [6].

Thinning can be achieved by directly comparing the pixels of a

neighbourhood with their magnitudes [6]. An ideal thinning filter deletes

a pixel if it considers that pixel not to be a part of the skeleton. A

thinning filter operates on pixels of an image and its neighbourhood. A

3 x 3 neighbourhood can be explained as:

P1 P2 P3

P8 P P4

P7 P6 P5

Figure 72: The relation of the neighbouring pixels with the pixel under consideration.

Here, pixel P, marked in gray in Figure 72, is the pixel under

consideration. In each of these filters, the value of pixel PN (1 <= N <=

8) is considered to be 1 if it is black in colour and 0 if it is white. The

decision to delete a pixel is made by analysing different logical

conditions in its 3 x 3 neighbourhood. These conditions are white to

 91

black patterns (A(P)), number of black pixels (B(P)), and connectivity

number (C(P)).

A(P) stands for the number of ‘01’ patterns in the neighbourhood. It

calculates the number of white to black patterns in the neighbourhood

of pixel P in a clockwise direction. This can be better understood with

the help of Equation 48.

A (P) = (! P 1 & & P 2) + (! P 2 & & P 3)
 + (! P 3 & & P 4) + (! P 4 & & P 5)
 + (! P 5 & & P 6) + (! P 6 & & P 7)
 + (! P 7 & & P 8) + (! P 8 & & P 1)

Equation 48: The Computation of A(P).

B(P) stands for the number of black pixels in the neighbourhood. It can

be calculated from Equation 49.

B (P) = P 1 + P 2 + P 3 + P 4 + P 5 + P 6 + P 7 + P 8

Equation 49: The Computation of B(P).

C(P) stands for the connectivity number which represents the number

of white pixels directly above and below, and to the left and right. It

does not consider diagonal pixels. For every white pixel (P2, P4, P6 and

P8) it checks that at least one of the next two pixels (in clockwise

direction) is black. This calculation is shown in Equation 50.

C (P) = (! P2 && (P3 OR P4)) + (! P4 && (P5 OR P6))
 + (!P6 & & (P 7 O R P 8)) + (!P8 && (P1 OR P2))

Equation 50: The Computation of C(P).

For example, in Figure 72, for pixel P2, the next two pixels are P3 and

P4 and for pixel P4, the next two pixels are P5 and P6. Applying the

concept, if P2 is white, and any of the next two or both pixels are black,

 92

then C(P) becomes one. The final value of C(P) depends on the

calculation for the remaining three pixels, P4, P6, and P8.

Thus, the value of C(P) is always between 0 and 4, inclusive. C(P) is

exactly 1 if and only if the pixel is a part of contour lines. Similarly, from

Equation 48, the value of A(P) is between 0 (all pixels black or white)

and 4 (alternate black and white), inclusive. From Equation 49, the value

of B(P) is between 0 (all pixels white) and 8 (all pixels black), inclusive.

Whenever the value of B(P) is one, the pixel P is an end-point of a line

or an edge. However, when B(P) has a value of more than one, then it is

difficult to say whether pixel P is an end-point.

 6.2. Stefanelli-Rosenfeld thinning filter

In this method, [5], first the contour pixels (pixels lying on the

boundary) are identified and then they are deleted. This process of

deletion is called ‘peeling’. This method continues until there are no

contour pixels left, that is, we are left only with final pixels, which are

part of the skeleton. For any pixel, there are two possibilities; it can be

either a contour pixel or a final pixel (part of the skeleton) .

For a pixel to be considered as a contour pixel, it must satisfy any of the

four conditions in Equation 51.

X X X X W X X X X X X X

X B X X B X W B X X B W

X W X X X X X X X X X X

 (a) (b) (c) (d)

 X -> don’t care

Equation 51: The condition for a pixel to be a contour pixel [5, 6].

 93

In Equation 51, B stands for black, W stands for white and X stands for

black or white. This notation is only valid for binary images. The process

starts only after the operators detect the centre pixel as black (part of

the object) . Using the notation described in Equation 51 (a), the pixel P6

(Figure 72) is white. Similarly, in Equation 51 (b), (c), and (d), P2, P8 and

P4 are white.

For a pixel to be considered as a final pixel, it must satisfy any one of

the conditions (a1-a4) or any two of the conditions (b1-b4) depending

upon the direction of the peeling process. These conditions are shown

in Equation 52.

E F G W E F P W E Q P W

W B W P B G Q B F R B E

P Q R Q R W R W G W G F

 (a1) (a2) (a3) (a4)

P Q R P X W X B W X W P

X B W Q B B W B X B B Q

W B X R W X P Q R W X R

 (b1) (b2) (b3) (b4)

Equation 52: The different conditions for a pixel to be a final-pixel [5, 6].

In Equation 52, B stands for black; W stands for white. At least one of E,

F and, G, and P, Q, and R should be black. X means that pixel can be

either black or white.

For every pixel there are four sub-iterations (bottom, top, left, and right)

running one after the other, checking for the contour pixels and final

pixels. Table 4 shows the checking of these conditions in each of the

 94

four directions. These conditions ensure that no final pixel is

accidentally deleted. Let us name this algorithm Stefan-1.

Sub-iteration
Contour-pixel

type

Contour-pixel

condition

(Equation 51)

Final-pixel

condition

(Equation 52)

0 Bottom (a) (b1), (b2)

1 Top (b) (b3), (b4)

2 Left (c) (b1), (b4)

3 Right (d) (b2), (b3)

Table 4: Conditions for the calculation of redundant pixels [6].

(a) (b)

Figure 73: Stefanelli-Rosenfeld thinning filter: (a) Original image with binary edges, (b)

Thinned image.

(a) (b)

Figure 74: Stefanelli-Rosenfeld thinning filter: (a) Original image with binary edges, (b)

Thinned image.

 95

In addition to the conditions explained in Stefan-1, Stefanelli and

Rosenfeld [5] proposed another set of conditions that are based on A(P),

B(P) and C(P). These are shown in Equation 53.

(a) 2 <= B (P) <= 6

(b) A (P) = 1

(c) P2 . P4 . P8 = 0 OR A (P2) ! = 1

and

(d) P2 . P4 . P6 = 0 OR A (P4) ! = 1

Equation 53: Conditions for a pixel to be deleted [5].

The decision to delete the pixel is taken when all the conditions for

Stefan-1 and Equation 53 are satisfied. Let us name this algorithm as

Stefan-2. The conditions listed in Equation 53 ensures connected

skeletons which are not sensitive to contour noise [5].

(a) (b)

Figure 75: Stefanelli-Rosenfeld thinning filter with factors in Equation 53: (a) Original

image with binary edges, (b) Thinned image.

 96

(a) (b)

Figure 76: Stefanelli-Rosenfeld thinning filter with factors in Equation 53: (a) Original

image with binary edges, (b) Thinned image.

 6.3. Lü-Wang thinning filter

Lü-Wang [26] is based on two sub-iterations and does not test whether a

pixel is a final pixel but just decides whether it can be deleted or not,

that is, whether it is a contour pixel. It uses different conditions for

deciding whether to delete the pixel. These are shown in Equation 54.

(a) 3 <= B (P) <= 6

(b) A (P) = 1

AND

(c1) P2 && P4 && P6 = FALSE OR P4 && P6 && P8 = FALSE

OR

(c2) P2 && P4 && P8 = FALSE OR P2 && P6 && P8 = FALSE

Equation 54: Conditions for a pixel to be deleted [6, 26].

For a particular pixel to be deleted,

• On even sub iterations, (a) AND (b) AND (c1) should be TRUE.

• On odd sub iterations, (a) AND (b) AND (c2) should be TRUE.

Hence, if the pixel has to be deleted then it has to meet all the criteria.

In Equation 54, Condition (a) retains the end-points of the lines.

Condition (b) makes sure that no lines are broken when they pass

 97

through P. This is true because when a line passes through P, the

number of FALSE-TRUE (01, A(P)) will always be greater than one.

Conditions (c1) and (c2) can be rewritten as:

(c1) P4 && P6 && (P2 || P8) = FALSE
(c2) P2 && P8 && (P4 || P6) = FALSE

Equation 55: Alternative Representation of conditions c1 and c2 of Equation 54 [6].

Conditions c1 and c2 cause the top-right (northeast) and bottom-left

(southwest) contour pixels to be deleted alternately.

(a) (b)

Figure 77: Lü-Wang thinning filter: (a) Original image with binary edges, (b) Thinned

image.

(a) (b)

Figure 78: Lü-Wang thinning filter: (a) Original image with binary edges, (b) Thinned

image.

The disadvantage of this method is that the diagonal lines can produce

a skeleton that is two pixels wide, that is, thicker than the ideal.

 98

 6.4. Hall-Guo thinning filter

[8] and [7] have a different way of splitting the sub-iterations. At the

start of the process, this method marks the image like a chessboard

(alternate black and white pixels). Two sub-iterations delete redundant

pixels in alternating white and black sub-sections. This method consists

of a single operator based on the conditions in Equation 56.

(a) C (P) = 1

(b) B (P) > 1

AND

(c) (P1 && P3 && P5 && P7)
 || (P2 && P4 && P6 && P8) = FALSE

Equation 56: Conditions for a pixel to be deleted [6, 8].

In Equation 56, condition (a) avoids the possibility of deleting the pixel

belonging to the centre of the object; condition (b) avoids deleting the

end pixels of a line; and condition (c) makes sure that the edge pixels

are deleted. If the diagonal pixels or the side pixels have all the values

as ones, then the condition (c) fails. In that case, the pixel P is not

deleted. Therefore , for the pixel P to meet the condition (c), not all of

the diagonal pixels or side pixels can be black at the same time. If this

happens, then the pixel P is the intersecting pixel of two lines.

The advantage of this thinning procedure is that the diagonal lines are

preserved. Let us name this algorithm as Hall-1.

 99

(a) (b)

Figure 79: Original Hall-Guo thinning filter (Hall-1): (a) Original image with binary edges,

(b) Thinned image.

(a) (b)

Figure 80: Original Hall-Guo thinning filter (Hall-1): (a) Original image with binary edges,

(b) Thinned image.

The following steps show how the chess labelling of the image was

implemented.

For every pixel P(i,j)
 chesslabel = (i + j) % 2.
 :
 :

 Hall-Guo conditions (Equation 56)

 :
 :
 chesslabel = !chesslabel.
end for.

 100

The results seen in Figure 79 and Figure 80, inspired the modification of

the standard Hall-Guo method to obtain better results. The factor

‘chesslabel’ was used but in a different way. Instead of considering the

value for ‘chesslabel’ based on the position of the pixel, it was always

considered one. In the second iteration, the value was changed to zero.

However, the factors affecting thinning, as stated in Equation 56, were

not modified. Let us name this algorithm as Hall-2.

(a) (b)

Figure 81: Modified Hall-Guo thinning filter (Hall-2): (a) Original image with binary

edges, (b) Thinned image.

(a) (b)

Figure 82: Modified Hall-Guo thinning filter (Hall-2): (a) Original image with binary

edges, (b) Thinned image.

As can be seen from the results of Hall-2 in Figure 81 and Figure 82 and

Hall-1 in Figure 79 and Figure 80, Hall-2 produces better results.

 101

 6.5. Comparison of thinning filters

The performance of the modified Hall-Guo filter (Hall-2) was observed to

be better than Hall-1. For the Stefanelli-Rosenfeld thinning filter, Stefan-

2, was observed to be better than Stefan-1. However, Stefan-1 was faster

than Stefan-2. Considering only the quality of the output, the filter

proposed by Lü-Wang showed the best results. Table 5 shows the results

of applying the different thinning filters, discussed earlier in the chapter.

The following are some of the key parameters that were selected for

measurement of performance of the thinning detectors.

• Original speed: This is the maximum speed, measured in fps (frames

per second), possible with no thinning filters applied to the image.

This value remains same for every thinning filter as the same image

(Figure 73 (a)) was used for testing all detectors. For the image used

in these tests, the original speed was at a maximum of 222 fps.

• Other filters and Threshold: Before any of the thinning filters were

applied, a smoothing filter was used to smooth the image and edges

of the object were found using the Sobel edge detector. Then, all the

pixels having a value greater than the threshold (51) were projected

as edges. The output of the Sobel edge detector is white edges on

black background. This was negated, as black edges are needed for

the thinning filters.

• Final speed: This is the maximum speed with a thinning filter applied

on the result image containing only edges.

 102

Final

Speed

Stefan-1 10.2

Stefan-2 9.8

Lü-Wang 19.1

Hall-1 23.5

Hall-2 24.0

Table 5: Comparison of different thinning filters.

 103

 7. Correlation-based optic flow computation

Optic flow is a vector field that shows the direction and magnitude of

intensity changes of a pixel in an image. It can be used for different

purposes like finding correspondence between two images, measuring

tilt angle of moving objects , and obstacle avoidance in robot navigation.

The definition of obstacle, as given in [48], is “any region in space where

a vehicle should not or cannot traverse, such as protrusions,

depressions or steep terrain.” These obstacles can be static or dynamic.

Like humans, a robot can avoid an obstacle if its location, shape, size,

and distance to it are known. The degree of change of the size of the

object is inversely proportional to the distance of that object from the

robot. A human eye is an example that illustrates this concept. When a

human eye moves closer to an object, its size appears to increase.

Nearer objects would appear to change size relatively more compared to

objects further away. Hence, this change in the size of the object can

assist in determining the distance to that object. Thus, distance can be

calculated by computing the change in the intensity of pixels of an

object in successive images. These changes are calculated using various

techniques like gradient-based optic flow, correlation-based optic flow,

and spatiotemporal-based optic flow.

“Correlation is the degree to which two or more quantities are linearly

associated” [49]. In optic flow computation, correlation is used to find

similarities between two successive images of a sequence. In essence,

the displacement of every pixel in the (i+1)th image is calculated with

respect to its position in the i th image.

 104

 7.1. The working of standard correlation-based

optic flow

Correlation-based techniques typically use the assumption of

conservation of the local intensity distribution [11]. It works on two

successive images of a given scene. Each pixel is identified by its own

and the neighbouring pixels’ intensities. To compute the optical flow

vector for each pixel of the i th image, that particular pixel is traced in

the (i+1)th image. Each pixel is traced by using the sum of the squared

differences (SSD) function, as formulated in Equation 57.

∑ ∑
n n

2
1 2

i=-n j=-n

M(x + d x , y + d y) = (I (x + i , y + j) - I (x + d x + i , y + d y + j))

≤ ≤-N dx,dy N

Equation 57: The calculation for Correlation-based optic flow.

p pixel under consideration

M matching value for each pixel

Least value of M best match for that pixel

I
1

 first image

I
2

 second image

(x,y) position of the pixel in the image

n range of correlation window on either side

i vertical range of correlation window

j horizontal range of correlation window

(dx,dy) position of the pixel in the search window

with respect to original position (x,y)

N range of search window on either side

Equation 57 can be explained with the help of Figure 83.

 105

 x

 y

Figure 83: Two images I
1
 and I

2
 with pixel p and its neighbouring pixels , along with the

correlation window of size (2n+1) x (2n+1) in I
1
 and I

2
, and search window of size

(2N+1) x (2N+1) in I
2
.

This tracing technique involves identifying pixel ‘p’ of image I
1
 in image

I
2
. Now, for every pixel (2N+1) x (2N+1) candidate pixels are possible.

The region covered by the candidate pixels is called the ‘search window’.

Candidate pixels are determined by a physical constraint on the

maximum displacement that can take place between two consecutive

images in an image sequence, for that pixel. Each of these candidate

pixels will have some match measure for the pixel under consideration.

Match measure is a correlation between a small ‘correlation window’

around the pixel under consideration in I
1
 and a corresponding window

around the candidate pixels in I
2
. In this approach, the weighted sum of

squared differences between the intensities at the corresponding pixels

in the two windows acts as a match measure. Out of all the candidate

pixels, the one having the least match measure is considered a ‘best

match’.

If the best match is found uniquely, the exact displacement vector is

immediately known. This is true for points in the image that are

 p

2n+1

2n+1

I1

2N+1

 p

 2N+1

I2

 106

sufficiently distinct, such as corners. However, in case of the areas of

strongly oriented intensity gradients, such as edges, several points have

values similar to the match measure. It is not possible to disambiguate

them. Thus, they suffer from what is technically known as the ‘aperture

problem’. Corner points do not face this problem.

The following algorithm is a simplified description for the correlation-

based optic flow.

1 for every pixel p in image I1 at ‘spacing’
2 calculate a neighbourhood of size (2n+1) * (2n+1).

3 compute a smallest value in the neighbourhood for
 the term M(x,y) in Equation 57 by taking dx=0 and
 dy=0.

4 for every pixel in ‘search window’ of size (2N+1) * 9
 (2N+1) in image I2

5 calculate M(x+dx,y+dy) from Equation 57.

6 if (M(x+dx,y+dy) of I2 < M(x,y) of I1)

7 M(x,y) = M(x+dx,y+dy).
8 xoffset = dx.
9 yoffset = dy.

10 end if

11 end for

12 draw vector from (x,y) to (x+xoffset,y+yoffset)

13 end for

Algorithm 1: Correlation-based optic flow computation

In Algorithm 1, the term ‘spacing’ gives the positions of the pixels to be

considered for correlation. This is because it is impractical to perform

 107

correlation for every pixel in an image, as this is an expensive process in

time and space. The term ‘search window’ means the range of possible

positions for pixel ‘p’ of I
1
 in I

2
.

Figure 84 shows the results of correlation-based optic flow. Here the

mechanism of SSDs is used to compute the ‘best match’. Figure 84 (a)

shows the initial test image at frame 1. Figure 84 (b), (d), and (f) are the

original test image at frames 2, 5, and 13 respectively. Figure 84 (c), (e),

and (g) are the results on applying the above discussed method.

 108

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 84: Optic flow computation using SSD: (a) The initial image at frame 1. (b), (d),

and (f) are the original images at frame 2, 5 and 13 respectively. (c), (e), and (g) show

the corresponding optic flow (SSD - Equation 57) results for frame 2, 5, and 13

respectively.

 109

 7.2. An alternative to standard correlation-based

optic flow

Instead of taking the sum of the squared differences (SSD), an

alternative is to take the sum of the absolute values of the differences.

Let us name this alternative SAD. Equation 57 can thus be re -written as

in Equation 58.

∑ ∑
n n

1 2
i=-n j=-n

M(x + d x , y + d y) = I (x + i , y + j) - I (x + d x + i , y + d y + j)

≤ ≤-N dx,dy N

Equation 58: An alternative to standard Correlation-based optic flow.

Instead of Equation 57, Algorithm 1 now uses Equation 58 to perform

the calculations to find the best match ‘M’.

Figure 85 shows the results of correlation-based optic flow. Here the

mechanism of SSD is used to compute the ‘best match’. Figure 85 (a)

shows the initial test image at frame 1. Figure 85 (b), (d), and (f) are the

original test image at frames 2, 5, and 13 respectively. Figure 85 (c), (e),

and (g) are the results on applying the above discussed method.

 110

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 85: Optic flow computation using SAD. (a) The initial image at frame 1. (b), (d),

and (f) are the original images at frame 2, 5 and 13 respectively. (c), (e), and (g) show

the corresponding optic flow results (SAD - Equation 58) for frame 2, 5, and 13

respectively.

 111

 7.3. Comparison of optic flow algorithms

The performance of SSD based optic flow was observed to be better than

SAD based optic flow. In quality, SSD had better results and fewer errors

in the output image. Table 6 shows the results of applying the different

parameters for each of SSD and SAD based optic flow computations,

discussed earlier in the chapter.

The following are some of the key parameters that were selected for

quantitative measurement of performance of SSD and SAD optic flow

calculations.

• Original speed: This is the maximum speed, measured in fps (frames

per second), possible with no optic flow method applied to the image.

This value remains same for both the optic flow methods as the same

image (Figure 84 (a)) was used for testing the methods. For the

image used in these tests, the original speed was at a maximum of

43 fps.

• Final speed: This is the maximum speed with an optic flow method

applied on the image.

• Spacing: Every ‘spacing’ pixel was considered for correlation.

• Search window: The search area in Image 2 of size (2N+1) x (2N+1)

used to find the position of the pixel displaced. This is constant for

every pixel of Image 1 for finding a corresponding match in Image 2.

• Correlation window: The area considered for correlation in Image 1

and Image 2. This is constant of size (2n+1) x (2n+1) for every

comparison made between Image 1 and Image 2.

 112

Final

Speed
Spacing

Search

window

(2N+1) x (2N+1)

Correlation

window

(2n+1) x (2n+1)

0.6 6 13 x 13 13 x 13

1.1 7 11 x 11 13 x 13

2.1 7 9 x 9 11 x 11

2.1 8 11 x 11 9 x 9

SSD

1.5 8 11 x 11 11 x 11

0.5 6 13 x 13 13 x 13

0.9 7 11 x 11 13 x 13

1.8 7 9 x 9 11 x 11

1.8 8 11 x 11 9 x 9

SAD

1.3 8 11 x 11 11 x 11

Table 6: The parameters and their corresponding values used for SSD (Equation 57)

and SAD (Equation 58) optic flow calculations.

 113

 8. Conclusions and discussions

We have implemented and analysed several image processing

algorithms related to edge detection, corner detection and thinning.

Apart from these techniques, smoothing filters were also studied. In

addition, correlation-based optic flow was also studied and implemented.

All the experiments were performed on ImprovQT version 5.1 (Figure 1),

which performs real-time image processing similar to that done by

robots.

We observed that the Mean filter could perform blurring but could not

suppress salt and pepper, and impulse noises. The Gaussian smoothing

filter gave better blurring results compared to the Mean filter, but it also

failed in reducing salt and pepper, and impulse noises. Unlike the

previous two, Median filter was able to remove these noises. Unlike

Gaussian, the Mean filter uniformly assigns weights to the pixels. Hence,

the Mean filter was faster compared to the Gaussian, when window size

was kept constant. The Median filter was slower compared to the Mean

and the Gaussian due to the extra processing required for sorting. It can

be concluded that different smoothing filters are applicable in different

circumstances.

In the case of edge detection, the Sobel and Kirsch edge detectors

showed the best results. Compared to the Sobel edge detector, the

Kirsch edge detector shows thicker edges. This is because Kirsch

involves a larger number of pixels in either direction and assigns higher

weights. However, Sobel is faster compared to Kirsch; hence, Sobel is

the most widely used edge detector. Apart from these two, Laplace,

Laplacian of Gaussian (LoG), Difference of Boxes (DoB), Robert’s, Prewitt

and Robinson edge detectors were implemented. Laplace and Robert’s

showed broken edges at some junctions. LoG was computationally the

most expensive and the computation time increased with increase in

standard deviation ‘σ ’. However, the best results for LoG were obtained

 114

with σ = 1.5. The results given by DoB improved after selecting mean

filters with higher odd-sized dimensions. The best results were shown

by using Mean 5 x 5 and Mean 3 x 3 filters. Prewitt and Robinson

detectors gave average results.

The Harris-Stephens corner detector had the best results with speed

(29.3 fps), accuracy (100%), and error-rate (9%). It had the best

localization compared to other popular corner detectors, namely Plessey,

Kitchen-Rosenfeld, and Beaudet. Plessey and Kitchen-Rosenfeld showed

the nearly the same error-rate (32% and 36% respectively) but Plessey

had better accuracy (82%) compared to Kitchen-Rosenfeld (64%). Noble

showed nearly the same accuracy (86%) as Plessey but was slower with

speed 21.1 fps. Beaudet detected more corners (91%) but with error-rate

(32%). In this detector, apart from detecting a true corner pixel, even

some surrounding pixels are detected as corners. This is because, the

detector assigns the same intensity values to these pixels as that of the

true corner pixel. This leads to a cluster of neighbouring pixels being

labelled as corners. It was observed that where edges of distinct objects

intersect, this detector identified the junction as multiple corners. In

addition to these, the Zero-1 and Zero-2 corner detectors, based on the

zero-crossing concept, were implemented. Both these detectors failed to

show good results, with accuracy (50%) and (36%) respectively. Zero-1

outperformed Zero-2 because of the fact that the second order

derivative of a corner response is not always symmetric along x and y

directions. Apart from these, corner detectors based on non-maxima

suppression were implemented. Maxima-1 showed good results with

accuracy (82%) at the cost of the error-rate (18%). On the other hand,

Maxima-2 had an accuracy of 64% with the error rate of 50%. On

selecting a high value for threshold, Binary-1 was able to detect corners

with accuracy 64%.

Among the thinning filters discussed, the original Hall-Guo (Hall-1) and

the modified filter (Hall-2) had faster processing speed compared to

Stefanelli-Rosenfeld (Stefan-1 and Stefan-2) and Lü-Wang. The

 115

performance of modified Hall-Guo filter (Hall-2) was observed to be

better in terms of connectivity, speed, and accuracy than the original

Hall-Guo filter (Hall-1). In addition, the performance of the Stefanelli-

Rosenfeld thinning filter Stefan-2, was observed to be better than the

Stefan-1. However, taking quality into consideration, the filter proposed

by Lü-Wang showed the best results.

A basic form of correlation-based optic flow was implemented to study

motion analysis. It was experimented with across a varying range of

various parameters like ‘spacing’, ‘search window’, and ‘correlation

window’. This was done in order to find the best combination that gave

reasonably accura te flow vectors at optimal speed. Two techniques for

measuring match strength (SSD and SAD) were implemented. SSD was

observed to be faster and more accurate compared to SAD. For SSD, the

following parameter settings ‘spacing’ of 8, ‘search window’ of 11 x 11

and ‘correlation window’ of 11 x 11 showed the best results at a speed

of 1.5 fps. For the same parameter settings, SAD gave results at a speed

of 1.3 fps.

Studying different image processing algorithms is necessary for

selecting one that is best suited for an application. Factors to consider

in selecting an algorithm are like accuracy, speed, and quality of its

results in comparison to other algorithm of the same family. This thesis

aims to compare these factors for several image processing techniques.

It is worth further investigating the re -interpretation of standard corner

detectors (Zero-1, Zero-2, and Maxima-2) and thinning filters (Hall-2) as

described in this thesis. As can be seen, the results produced by these

modified techniques were promising and could prove to be beneficial

upon refinement.

 117

References

[1] "Chapter II, Digital Learning Center Glossary of Terms: Section I -

Glossary," in Kodak - Digital Learning Centre.

http://www.kodak.com/US/en/digital/dlc/book4/chapter2/glossaryI.sht

ml

[2] E. W. Weisstein, "Convolution," in MathWorld--A Wolfram Web

Resource.

http://mathworld.wolfram.com/Convolution.html

[3] T. Bräunl, "Improv - Image Processing for Robot Vision."

http://www.robotics.ee.uwa.edu.au/improv/index.html

[4] R. Gonzalez and R. Woods, Digital Image Processing: Addison-

Wesley Publishing Company, 1992.

[5] R. Stefanelli and A. Rosenfeld, "Some Parallel Thinning Algorithms

for Digital Pictures," Journal of the Association for Computing Machinery,

vol. 18, pp. 255-264, 1971.

[6] T. Bräunl, S. Freyer, W. Raph, and M. Reinhardt, Parallel Image

Processing: Springer-Verlag Berlin Heidelberg New York, 2001.

[7] R. W. Hall, "Fast Parallel Thinning Algorithms: Parallel Speed and

Connectivity Preservation," Communications of the Association for

Computing Machinery, vol. 32, pp. 124-131, 1989.

[8] Z. Guo and R. W. Hall, "Parallel Thinning with Two-Subiteration

Algorithms," Communications of the Association for Computing

Machinery, vol. 32, pp. 359-373, 1989.

[9] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer

Vision: Prentice Hall, 1998.

[10] T. Camus, "Real-time Optical flow," in Department of Computer

Science: Brown University, 1994.

[11] A. Singh, Optical Flow Computation: A Unified Perspective: IEEE

Computer Society Press, 1991.

[12] R. Deriche and G. Giraudon, "A computational approach for corner

and vertex detection," The International Journal of Computer Vision, vol.

10, pp. 101-124, 1993.

 118

[13] P. R. Beaudet, "Rotational Invariant Image Operators," International

Conference on Pattern Recognition, pp. 579-583, 1978.

[14] L. Kitchen and A. Rosenfeld, "Gray-level corner detection," Pattern

Recognition Letters, vol. 1, pp. 95-102, 1982.

[15] C. Harris, "Determination of ego-motion from matched points,"

presented at Proceedings Alvey Vision Conference, Cambridge, UK, 1987.

[16] J. A. Noble, "Finding corners," Image and Vision Computing, vol. 6,

pp. 121-128, 1988.

[17] C. Harris and M. Stephens, "A combined corner and edge

detector," Proceedings 4th Alvey Vision Conference, pp. 189-192, 1988.

[18] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and

Machine Vision, Second ed: PWS Publishing, 1999.

[19] P. Kovesi, "Matlab functions for computer vision and image

analysis."

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns

[20] P. Kovesi, "Phase Congruency Detects Corners and Edges,"

presented at The Australian Pattern Recognition Society Conference:

DICTA, Sydney, 2003.

[21] J. Cooper, S. Venkatesh, and L. Kitchen, "The Dissimilarity Corner

Detector," Fifth International Conference on Advanced Robotics'91, pp.

1377-1382, 1991.

[22] J. Cooper, S. Venkatesh, and L. Kitchen, "Early Jump-out Corner

Detectors," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. PAMI-15, pp. 823-828, 1993.

[23] J. Bernd, Digital image processing : concepts, algorithms, and

scientific applications, 3rd ed: Springer-Verlag, 1995.

[24] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision: New York :

McGraw-Hill, 1995.

[25] F. L. Alt, "Digital pattern recognition by moments," Journal of

Association for Computing Machiney, vol. 9, pp. 240-258, 1962.

[26] H. E. Lü and P. S. P. Wang, "A Comment on "A Fast Parallel

Algorithm for Thinning Digital Patterns"," Communications of the

Association for Computing Machinery, vol. 29, pp. 239-242, 1986.

 119

[27] T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning

digital patterns," Communications of the Association for Computing

Machinery, vol. 27, pp. 236-239, 1984.

[28] C. Arcelli and G. S. Di Baja, "A width-independent fast thinning

algorithm," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.

7, pp. 463-474, 1985.

[29] K. Preston and M. J. B. Duff, Modern Cellular Automata. New York:

Plenum, 1984.

[30] A. Rosenfeld and A. Kak, "Digital Picture Processing," in Academic

Press, vol. 2. New York, 1982.

[31] J. Wei and N. Härle, "Use of temporal redundancy of motion

vectors for the increase of optical flow calculation speed sa a

contribution to real-time robot vision," Queensland University of

Technology 1997.

[32] S. Temizer, "Optical flow based robot navigation."

http://www.ai.mit.edu/people/lpk/mars/temizer_2001/Optical_Flow/

[33] H. K. Nishihara, "Real-Time Implementation of a Sign-Correlation

Algorithm for Image-Matching," in Technical report, Teleos Research,

1990.

[34] M. Grünewald and J. Sitte, "A Resource-Efficient Approach to

Obstacle Avoidance via Optical Flow," presented at Proceedings of the

5th International Heinz Nixdorf Symposium: Autonomous Minirobots for

Research and Edutainment (AMIRE), Heinz Nixdorf Institute, 2001.

[35] P. H. Batavia, D. A. Pomerleau, and C. E. Thorpe, "Detecting

Overtaking Vehicles with Implicit Optical Flow," Carnegie Mellon

University 1998.

[36] E. Kreyszig, Advanced engineering mathematics, 8th ed. New

York: John Wiley, 1999.

[37] "Mathworld," Wolfram Web Resource.

http://mathworld.wolfram.com/

[38] A. Jain, Fundamentals of Digital Image Processing: Prentice-Hall,

1989.

[39] R. Klette and P. Zamperoni, Handbook of Image Procssing

Operators: John Wiley & Sons, 1996.

 120

[40] J. R. Parker, Algorithms for Image Processing and Computer Vision.

New York: Wiley Computer Publishing, 1997.

[41] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, "Image Processing

Operator Worksheets," HIPR2, 2003.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/wksheets.htm

[42] B. Woodham, "Image Understanding I: Image Analysis."

http://www.cs.ubc.ca/~woodham/cpsc505/examples/log.html

[43] "Glossary," Image Processing Solutions.

http://www.ipsimaging.com/support/glossary.htm

[44] M. Jiang, "Digital Image Processing," Department of Information

Science, School of Mathematics, Peking University.

http://ct.radiology.uiowa.edu/~jiangm/courses/dip/html/dip.html

[45] J. R. Parker, Practical computer vision using C. New York: Wiley

Computer Publishing, 1994.

[46] F. Shen and H. Wang, "Real Time Gray Level Corner Detector,"

presented at Proc. 6th International Conference on Control, Automation,

Robotics and Vision (ICARCV2000), Singapore, 2000.

[47] T. C. Manjunath, Fundamentals of Robotics: Nandu Printers and

Publishers Private Limited, 2001.

[48] G.-S. Young, T.-H. Hong, M. Herman, and J. C. S. Yang, "New visual

invariants for obstacle detection using optical flow induced from general

motion," 1992.

[49] E. W. Weisstein, "Correlation," in MathWorld--A Wolfram Web

Resource.

http://mathworld.wolfram.com/Correlation.html

 121

Appendix: Colour Slides

Edge detectors:

(a) (b)

(c) (d)

(e) (f)

(g) (h)

 123

(i) (j)

Figure 86: The results of the edge detectors overlayed on the original image (Figure

21). (a) Laplace (Figure 21, threshold value = 26). (b) LoG with predefined 9 x 9

template (Figure 24, threshold value = 255). (c) LoG with σ = 1.5 (Figure 26, threshold

value = 230). (d) DoB with mean 5 x 5 and mean 3 x 3 (Figure 31, threshold value = 5).

(e) DoB with mean 7 x 7 and mean 5 x 5 (Figure 32, threshold value = 8). (f) Sobel

(Figure 33, threshold value = 38). (g) Robert’s (Figure 35, threshold value = 31). (h)

Kirsch (Figure 37, threshold value = 92). (i) Prewitt (Figure 39, threshold value = 51). (j)

Robinson (Figure 41, threshold value = 64).

 125

Corner detectors:

(a) (b)

(c) (d)

(e) (f)

(g) (h)

 127

(i) (j)

Figure 87: The results of the corner detectors overlayed on the original image. (a)

Kitchen-Rosenfeld (Figure 47, threshold value = 18). (b) Beaudet (Figure 49, threshold

value = 255). (c) Plessey (Figure 51, threshold value = 43). (d) Noble (Figure 53,

threshold value = 255, σ = 0.35). (e) Harris-Stephens (Figure 55, threshold value =

217, k = 0.04). (f) Zero-1 (Figure 61, threshold value = 13). (g) Zero-2 (Figure 62,

threshold value = 71). (h) Maxima-1 (Figure 67, threshold value = 13). (i) Maxima-2

(Figure 68, threshold value = 18). (j) Binary -1 (Figure 70, threshold value = 255).

 129

Thinning filters:

(a) (b)

(c) (d)

(e)

Figure 88: The results of the thinning filters overlayed on the original image. The black

pixels (part of the original edge) are the ones that were deleted by the respective filters.

(a) Stefan-1 (Figure 73), (b) Stefan-2 (Figure 75), (c) Lü-Wang (Figure 77), (d) Hall -1

(Figure 79), (e) Hall-2 (Figure 81).

All the thinning filters were applied to the result of Mean 3 x 3 filter, Sobel edge

detector, Threshold (value 51) and Negation (for considering black edges).

 131

Optic Flow:

(a) (b)

(c) (d)

(e) (f)

Figure 89: The Optic flow computation. (a), (c), and (e) SSD at frames 2, 5, and 13

respectively (Figure 84). (b), (d), and (f) SAD at frames 2, 5, and 13 respectively (Figure

85). The factors ‘spacing’ = 8, ‘search window’ = 11 x 11, and ‘correlation window’ =

11 x 11 was kept constant for both the calculations.

