
Sourcery CodeBench Lite

ARM GNU/Linux

Sourcery CodeBench Lite 2011.09-70

Getting Started

Sourcery CodeBench Lite: ARM GNU/Linux: Sourcery
CodeBench Lite 2011.09-70: Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery CodeBench Lite, Code-
Sourcery's customized and validated version of the GNU Toolchain. Sourcery CodeBench Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery CodeBench from
the command line.

Table of Contents
Preface .. v

1. Intended Audience ... vi
2. Organization ... vi
3. Typographical Conventions .. vii

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Configuring Sourcery CodeBench Lite for the Target System 2
1.3. Building Your Program ... 2
1.4. Running and Debugging Your Program .. 2

2. Installation and Configuration ... 4
2.1. Terminology ... 5
2.2. System Requirements ... 5
2.3. Downloading an Installer ... 6
2.4. Installing Sourcery CodeBench Lite .. 6
2.5. Installing Sourcery CodeBench Lite Updates ... 9
2.6. Setting up the Environment .. 9
2.7. Uninstalling Sourcery CodeBench Lite ... 11

3. Sourcery CodeBench Lite for ARM GNU/Linux ... 13
3.1. Included Components and Features .. 14
3.2. Library Configurations .. 14
3.3. Compiling for ARMv4T and ARMv5T Systems ... 15
3.4. Target Kernel Requirements ... 15
3.5. Target Dynamic Loader Requirements .. 15
3.6. Using Sourcery CodeBench Lite on GNU/Linux Targets 16
3.7. Using GDB Server for Debugging ... 18
3.8. GLIBC Backtrace Support ... 20
3.9. Using VFP Floating Point .. 20
3.10. Fixed-Point Arithmetic .. 21
3.11. ABI Compatibility .. 22
3.12. Object File Portability ... 23

4. Using Sourcery CodeBench from the Command Line .. 24
4.1. Building an Application ... 25
4.2. Running Applications on the Target System ... 25
4.3. Running Applications from GDB .. 26

5. Sourcery CodeBench Debug Sprite .. 27
5.1. Probing for Debug Devices .. 28
5.2. Invoking Sourcery CodeBench Debug Sprite ... 28
5.3. Sourcery CodeBench Debug Sprite Options .. 29
5.4. Remote Debug Interface Devices ... 30
5.5. Actel FlashPro Devices ... 30
5.6. Debugging a Remote Board ... 31
5.7. Supported Board Files ... 31
5.8. Board File Syntax .. 32

6. Next Steps with Sourcery CodeBench ... 36
6.1. Sourcery CodeBench Knowledge Base ... 37
6.2. Example Programs ... 37
6.3. Manuals for GNU Toolchain Components ... 37

A. Sourcery CodeBench Lite Release Notes .. 39
A.1. Changes in Sourcery CodeBench Lite for ARM GNU/Linux 40

B. Sourcery CodeBench Lite Licenses ... 47
B.1. Licenses for Sourcery CodeBench Lite Components ... 48

iii

B.2. Sourcery CodeBench Software License Agreement .. 49
B.3. Attribution .. 52

iv

Sourcery CodeBench Lite

Preface
This preface introduces the Sourcery CodeBench Lite Getting Started guide. It explains the
structure of this guide and describes the documentation conventions used.

v

1. Intended Audience
This guide is written for people who will install and/or use Sourcery CodeBench Lite. This guide
provides a step-by-step guide to installing Sourcery CodeBench Lite and to building simple applica-
tions. Parts of this document assume that you have some familiarity with using the command-line
interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Sourcery CodeBench Lite for the first time.
You may use this chapter as an abbreviated guide to the rest
of this manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Sourcery CodeBench Lite. This section describes the available
installation options and explains how to set up your environ-
ment so that you can build applications.

Chapter 3, “Sourcery CodeBench
Lite for ARM GNU/Linux”

This chapter contains information about using Sourcery
CodeBench Lite that is specific to ARM GNU/Linux targets.
You should read this chapter to learn how to best use Sourcery
CodeBench Lite on your target system.

Chapter 4, “Using Sourcery
CodeBench from the Command
Line”

This chapter explains how to build applications with Sourcery
CodeBench Lite using the command line. In the process of
reading this chapter, you will build a simple application that
you can use as a model for your own programs.

Chapter 5, “Sourcery CodeBench
Debug Sprite”

This chapter describes the use of the Sourcery CodeBench
Debug Sprite for remote debugging. The Sprite is provided
for debugging of the Linux kernel on the target board. This
chapter includes information about the debugging devices and
boards supported by the Sprite for ARM GNU/Linux.

Chapter 6, “Next Steps with Sourcery
CodeBench”

This chapter describes where you can find additional docu-
mentation and information about using Sourcery CodeBench
Lite and its components. It also provides information about
Sourcery CodeBench subscriptions. CodeSourcery customers
with Sourcery CodeBench subscriptions receive comprehens-
ive support for Sourcery CodeBench.

Appendix A, “Sourcery CodeBench
Lite Release Notes”

This appendix contains information about changes in this re-
lease of Sourcery CodeBench Lite for ARM GNU/Linux. You
should read through these notes to learn about new features
and bug fixes.

Appendix B, “Sourcery CodeBench
Lite Licenses”

This appendix provides information about the software li-
censes that apply to Sourcery CodeBench Lite. Read this ap-
pendix to understand your legal rights and obligations as a
user of Sourcery CodeBench Lite.

vi

Preface

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vii

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Sourcery
CodeBench Lite for the first time.You may use this chapter as an abbreviated guide to the
rest of this manual.

1

Sourcery CodeBench Lite for ARM GNU/Linux is intended for developers working on embedded
GNU/Linux applications. It may also be used for Linux kernel development and debugging, or to
build a GNU/Linux distribution.

Follow the steps given in this chapter to install Sourcery CodeBench Lite and build and run your
first application program. The checklist given here is not a tutorial and does not include detailed in-
structions for each step; however, it will help guide you to find the instructions and reference inform-
ation you need to accomplish each step. Note that this checklist is also oriented towards application
debugging rather than kernel debugging.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery CodeBench Lite in Chapter 3, “Sourcery CodeBench Lite for ARM GNU/Linux”.

1.1. Installation and Set-Up
Install Sourcery CodeBench Lite on your host computer. You may download an installer
package from the Sourcery CodeBench web site1, or you may have received an installer on CD. The
installer is an executable program that pops up a window on your computer and leads you through
a series of dialogs to configure your installation. When the installation is complete, it offers to launch
the Getting Started guide. For more information about installing Sourcery CodeBench Lite, including
host system requirements and tips to set up your environment after installation, refer to Chapter 2,
“Installation and Configuration”.

1.2. Configuring Sourcery CodeBench Lite for
the Target System
Identify your target libraries. Sourcery CodeBench Lite supports libraries optimized for different
targets. Libraries are selected automatically by the linker, depending on the processor and other options
you have specified. Refer to Section 3.2, “Library Configurations” for details.

Install runtime libraries on your target machine. In order to run programs built with the
Sourcery CodeBench runtime libraries on target hardware, you must install these libraries, the
Sourcery CodeBench dynamic linker, and other runtime support files -- collectively referred to as
the sysroot -- on your GNU/Linux target system. Typically, this involves either using third-party
tools to build a complete root filesystem including the Sourcery CodeBench sysroot, or using special
commands when linking or running your program so it can find the sysroot installed in another loc-
ation on the target. Refer to Section 3.6, “Using Sourcery CodeBench Lite on GNU/Linux Targets”
for full discussion of these options.

1.3. Building Your Program
Build your program with Sourcery CodeBench command-line tools. Create a simple test
program, and follow the directions in Chapter 4, “Using Sourcery CodeBench from the Command
Line” to compile and link it using Sourcery CodeBench Lite.

1.4. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

1 http://www.codesourcery.com/gnu_toolchains/

2

Quick Start

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Run your program on the ARM GNU/Linux target. To run a program using the included
Sourcery CodeBench libraries, you must install the sysroot on the target, as previously discussed.
Copy the executable for your program to the target system. The method you use for launching your
program depends on how you have installed the libraries and built your program. In some cases, you
may need to invoke the Sourcery CodeBench dynamic linker explicitly. Refer to Section 3.6, “Using
Sourcery CodeBench Lite on GNU/Linux Targets” for details.

Debug your program on the target using GDB server. You can use GDB server on a remote
target to debug your program. When debugging a program that uses the included Sourcery CodeBench
libraries, you must use the gdbserver executable included in the sysroot, and similar issues with
respect to the dynamic linker as discussed previously apply. See Section 3.7, “Using GDB Server
for Debugging” for detailed instructions. Once you have started GDB server on the target, you can
connect to it from the debugger on your host system. Refer to Section 4.3, “Running Applications
from GDB” for instructions on remote debugging from command-line GDB.

3

Quick Start

Chapter 2
Installation and Configuration
This chapter explains how to install Sourcery CodeBench Lite.You will learn how to:

1. Verify that you can install Sourcery CodeBench Lite on your system.

2. Download the appropriate Sourcery CodeBench Lite installer.

3. Install Sourcery CodeBench Lite.

4. Configure your environment so that you can use Sourcery CodeBench Lite.

4

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
CodeBench while the term target system refers to the system on which the code produced by Sourcery
CodeBench runs. The target system for this version of Sourcery CodeBench is
arm-none-linux-gnueabi.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery CodeBench, then the host and target systems are the same. On the other hand, if you
are developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery CodeBench supports the following host operating systems and architectures:

• Microsoft Windows XP (SP1), Windows Vista, and Windows 7 systems using IA32, AMD64,
and Intel 64 processors.

• GNU/Linux systems using IA32, AMD64, or Intel 64 processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), SuSE Enterprise Linux 8 (and later), and Ubuntu 8.04
(and later).

Sourcery CodeBench is built as a 32-bit application. Therefore, even when running on a 64-bit host
system, Sourcery CodeBench requires 32-bit host libraries. If these libraries are not already installed
on your system, you must install them before installing and using Sourcery CodeBench Lite. Consult
your operating system documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery CodeBench graphical installer is incompatible with the dash shell, which is
the default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Sourcery CodeBench Lite on these systems, you must make /bin/sh a symbolic
link to one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery
CodeBench Lite toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Sourcery CodeBench Lite, you must have at least 512MB of available
memory.

The amount of disk space required for a complete Sourcery CodeBench Lite installation directory
depends on the host operating system and the number of target libraries included. When you start
the graphical installer, it checks whether there is sufficient disk space before beginning to install.
Note that the graphical installer also requires additional temporary disk space during the installation

5

Installation and Configuration

process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer
prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPDIR environment variable, or /tmp if that is not set.

2.2.3.Target System Requirements

See Chapter 3, “Sourcery CodeBench Lite for ARM GNU/Linux” for requirements that apply to the
target system.

2.3. Downloading an Installer
If you have received Sourcery CodeBench Lite on a CD, or other physical media, then you do not
need to download an installer. You may skip ahead to Section 2.4, “Installing Sourcery CodeBench
Lite”.

You can download Sourcery CodeBench Lite from the Sourcery CodeBench web site1. This free
version of Sourcery CodeBench, which is made available to the general public, does not include all
the functionality of CodeSourcery's product releases. If you prefer, you may instead purchase or re-
gister for an evaluation of CodeSourcery's product toolchains at the Sourcery CodeBench Portal2.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery CodeBench installer is provided
as an executable with the .exe extension. For GNU/Linux systems Sourcery CodeBench Lite is
provided as an executable installer package with the .bin extension. You may also install from a
compressed archive with the .tar.bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery CodeBench Lite
The method used to install Sourcery CodeBench Lite depends on your host system and the kind of
installation package you have downloaded.

2.4.1. Using the Sourcery CodeBench Lite Installer on Microsoft Win-
dows

If you have received Sourcery CodeBench Lite on CD, insert the CD in your computer. On most
computers, the installer then starts automatically. If your computer has been configured not to auto-
matically run CDs, open My Computer, and double click on the CD. If you downloaded Sourcery
CodeBench Lite, double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery CodeBench Lite. The installer
is intended to be self-explanatory and on most pages the defaults are appropriate.

1 http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

6

Installation and Configuration

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Running the Installer. The graphical installer guides you through the steps to
install Sourcery CodeBench Lite.

You may want to change the install directory pathname and customize the shortcut installation.

Choose Install Folder. Select the pathname to your install directory.

7

Installation and Configuration

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Sourcery CodeBench Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

2.4.2. Using the Sourcery CodeBench Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

8

Installation and Configuration

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery CodeBench Lite. For addi-
tional details on running the installer, see the discussion and screen shots in the Microsoft Windows
section above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery CodeBench Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery CodeBench Lite from a compressed
archive. You may install Sourcery CodeBench Lite using any user account and in any directory to
which you have write access. This guide assumes that you have decided to install Sourcery CodeBench
Lite in the $HOME/CodeSourcery subdirectory of your home directory and that the filename of
the package you have downloaded is /path/to/package.tar.bz2. After installation the
toolchain will be in $HOME/CodeSourcery/sourceryg++-2011.09.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery CodeBench Lite Updates
If you have already installed an earlier version of Sourcery CodeBench Lite for ARM GNU/Linux
on your system, it is not necessary to uninstall it before using the installer to unpack a new version
in the same location. The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery CodeBench commands for the ARM GNU/Linux target all begin
with arm-none-linux-gnueabi. This means that you can install Sourcery CodeBench for
multiple target systems in the same directory without conflicts.

2.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

9

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

If you installed Sourcery CodeBench Lite using the graphical installer then you may skip this step.
The installer does this setup for you.

In order to use the Sourcery CodeBench tools from the command line, you should add them to your
PATH. In the instructions that follow, replace installdir with the full pathname of your Sourcery
CodeBench Lite installation directory, including the drive letter.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;installdir\bin"

To set the PATH on a system running Microsoft Windows 7, from the desktop bring up the Start
menu and right click on Computer. Select Properties and click on Advanced system
settings. Go to the Advanced tab, then click on the Environment Variables button.
Select the PATH variable and click Edit. Add the string ;installdir\bin to the end, and click
OK.

To set the PATH on older versions of Microsoft Windows, from the desktop bring up the Start
menu and right click on My Computer. Select Properties, go to the Advanced tab, then click
on the Environment Variables button. Select the PATH variable and click the Edit. Add
the string ;installdir\bin to the end, and click OK.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> arm-none-linux-gnueabi-g++ -v

Verify that the last line of the output contains: Sourcery CodeBench Lite 2011.09-70.

2.6.1.2. Working with Cygwin

Sourcery CodeBench Lite does not require Cygwin or any other UNIX emulation environment. You
can use Sourcery CodeBench directly from the Windows command shell. You can also use Sourcery
CodeBench from within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery CodeBench is not a Cygwin application, it does not,
by default, recognize Cygwin paths.

If you are using Sourcery CodeBench from Cygwin, you should set the CYGPATH environment
variable. If this environment variable is set, Sourcery CodeBench Lite automatically translates
Cygwin path names into Windows path names. To set this environment variable, type the following
command in a Cygwin shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery CodeBench relies on the cygpath utility provided with
Cygwin. You must provide Sourcery CodeBench with the full path to cygpath if cygpath is not
in your PATH. For example:

> export CYGPATH=c:/cygwin/bin/cygpath

10

Installation and Configuration

directs Sourcery CodeBench Lite to use c:/cygwin/bin/cygpath as the path conversion utility.
The value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery CodeBench Lite using the graphical installer then you may skip this step.
The installer does this setup for you.

Before using Sourcery CodeBench Lite you should add it to your PATH. The command you must
use varies with the particular command shell that you are using. If you are using the C Shell (csh
or tcsh), use the command:

> setenv PATH installdir/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=installdir/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, replace installdir
with the full pathname of your Sourcery CodeBench Lite installation directory.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
CodeBench manual pages, which provide additional information about using Sourcery CodeBench.
To set the MANPATH environment variable, follow the same steps shown above, replacing PATH
with MANPATH, and bin with share/doc/sourceryg++-arm-none-linux-gnueabi/
man.

You can test that your PATH is set up correctly by running the following command:

> arm-none-linux-gnueabi-g++ -v

Verify that the last line of the output contains: Sourcery CodeBench Lite 2011.09-70.

2.7. Uninstalling Sourcery CodeBench Lite
The method used to uninstall Sourcery CodeBench Lite depends on the method you originally used
to install it. If you have modified any files in the installation it is recommended that you back up
these changes. The uninstall procedure may remove the files you have altered. In particular, the
arm-none-linux-gnueabi directory located in the install directory will be removed entirely
by the uninstaller.

2.7.1. Using the Sourcery CodeBench Lite Uninstaller on Microsoft
Windows

You should use the provided uninstaller to remove a Sourcery CodeBench Lite installation originally
created by the graphical installer. Start the graphical uninstaller by invoking the Uninstall executable
located in your installation directory, or use the uninstall shortcut created during installation. After
the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery CodeBench Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery CodeBench Lite installation directory with the -i
console command-line option.

11

Installation and Configuration

To uninstall third-party drivers bundled with Sourcery CodeBench Lite, first disconnect the associated
hardware device. Then use Uninstall a program (Vista and newer) or Add or Remove
Programs (older versions of Windows) to remove the drivers separately. Depending on the device,
you may need to reboot your computer to complete the driver uninstall.

2.7.2. Using the Sourcery CodeBench Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery CodeBench Lite installation originally
created by the executable installer script. Start the graphical uninstaller by invoking the executable
Uninstall shell script located in your installation directory. After the uninstaller starts, follow the on-
screen dialogs to uninstall Sourcery CodeBench Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery CodeBench Lite from a .tar.bz2 file, you can uninstall it by manually
deleting the installation directory created in the install procedure.

12

Installation and Configuration

Chapter 3
Sourcery CodeBench Lite for ARM
GNU/Linux
This chapter contains information about features of Sourcery CodeBench Lite that are
specific to ARM GNU/Linux targets. You should read this chapter to learn how to best use
Sourcery CodeBench Lite on your target system.

13

3.1. Included Components and Features
This section briefly lists the important components and features included in Sourcery CodeBench
Lite for ARM GNU/Linux, and tells you where you may find further information about these features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.6.1GNU Compiler Collection

Includes assembler, linker, and other utilities.
Separate manuals included.

2.21.53GNU Binary Utilities

Debugging support and simulators

Separate manual included.7.2.50GNU Debugger

Provided for kernel debugging only. See
Chapter 5, “Sourcery CodeBench Debug Sprite”.

2011.09-70Sourcery CodeBench Debug Sprite
for ARM

Included with GDB. See Section 3.7, “Using GDB
Server for Debugging”.

N/AGDB Server

Target libraries

Separate manual included.2.13GNU C Library

3.0.1Linux Kernel Headers

Other utilities

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery CodeBench Lite for ARM GNU/Linux includes the following library configuration.

ARMv5TE - Little-Endian, Soft-Float, GLIBC

defaultCommand-line option(s):

./Sysroot subdirectory:

lib/ld-linux.so.3Dynamic linker:

ARMv4T - Little-Endian, Soft-Float, GLIBC

-march=armv4tCommand-line option(s):

armv4t/Sysroot subdirectory:

lib/ld-linux.so.3Dynamic linker:

This should also be used for ARMv5T cores such as the
ARM1020T.

Notes:

ARMv7-A Thumb-2 - Little-Endian, Soft-Float, GLIBC

-mthumb -march=armv7-aCommand-line option(s):

thumb2/Sysroot subdirectory:

lib/ld-linux.so.3Dynamic linker:

14

Sourcery CodeBench Lite for ARM GNU/Linux

Sourcery CodeBench includes copies of run-time libraries that have been built with optimizations
for different target architecture variants or other sets of build options. Each such set of libraries is
referred to as a multilib. When you link a target application, Sourcery CodeBench selects the multilib
matching the build options you have selected.

Each multilib corresponds to a sysroot directory which contains the files that should be installed on
the target system. The sysroot contains the dynamic linker used to run your applications on the target
as well as the libraries. Refer to Section 3.6, “Using Sourcery CodeBench Lite on GNU/Linux Targets”
for instructions on how to install and use these support files on your target GNU/Linux system. You
can find the sysroot directories provided with Sourcery CodeBench in the
arm-none-linux-gnueabi/libc directory of your installation. In the tables below, the dy-
namic linker pathname is given relative to the corresponding sysroot.

3.3. Compiling for ARMv4T and ARMv5T Sys-
tems
By default Sourcery CodeBench generates Linux binaries that require an ARMv5TE or later CPU.
To build applications or libraries capable of running on ARMv4T or early ARMv5 CPUs, use the
-march=armv4t or -march=armv5t command-line options. These options also select libraries
for ARMv4T processors; see Section 3.2, “Library Configurations” for details.

Code compiled for ARMv4T is ABI compatible with ARMv5 code. Code and binaries compiled for
different architectures may be mixed freely.

3.4.Target Kernel Requirements
The GNU C library supplied with Sourcery CodeBench Lite uses the EABI-based kernel syscall in-
terface. This means applications compiled with Sourcery CodeBench require at least a 2.6.16 kernel
with EABI syscalls enabled.

To provide VFP and Advanced SIMD registers, gdbserver requires support from the Linux kernel.
Linux 2.6.30 includes the necessary support; for older versions, visit the Sourcery CodeBench
Knowledge Base1.

3.5.Target Dynamic Loader Requirements
The compiler supplied in Sourcery CodeBench Lite emits TLS Descriptor sequences to access thread-
local storage in position-independent code. This is a new TLS access model, with a specification at
http://www.codesourcery.com/publications/RFC-TLSDESC-ARM.txt. It improves the performance
of shared objects and position-independent executables. This model requires dynamic loader support.
The loader included with Sourcery CodeBench Lite (lib/ld-linux.so.3) includes the necessary
support. Support for the older ARM EABI-specified access sequence is still provided and thus object
files and executables built by EABI-compliant toolchains, including earlier versions of Sourcery
CodeBench Lite, will continue to function. If you need to use an older dynamic loader that lacks
TLS Descriptor support, you must compile all your code with -mtls-dialect=arm. This option
selects the previous TLS access method.

1 http://support.codesourcery.com/GNUToolchain/kbentry117

15

Sourcery CodeBench Lite for ARM GNU/Linux

http://support.codesourcery.com/GNUToolchain/kbentry117
http://support.codesourcery.com/GNUToolchain/kbentry117
http://www.codesourcery.com/publications/RFC-TLSDESC-ARM.txt
http://support.codesourcery.com/GNUToolchain/kbentry117

3.6. Using Sourcery CodeBench Lite on
GNU/Linux Targets
In order to run and debug programs produced by Sourcery CodeBench on a GNU/Linux target, you
must install runtime support files on the target. You may also need to set appropriate build options
so that your executables can find the correct dynamic linker and libraries at runtime.

The runtime support files, referred to as the sysroot, are found in the arm-none-linux-gnueabi/
libc directory of your Sourcery CodeBench Lite installation. The sysroot consists of the contents
of the etc, lib, sbin, and usr directories. There may be other directories in
arm-none-linux-gnueabi/libc that contain additional sysroots customized for particular
combinations of command-line compiler flags, or multilibs. Refer to Section 3.2, “Library Configur-
ations” for a list of the included multilibs in this version of Sourcery CodeBench Lite, and the cor-
responding sysroot directory pathnames.

Note for Windows Host Users

The sysroots provided in Windows host packages for Sourcery CodeBench are not directly
usable on the GNU/Linux target because of differences between the Windows and
GNU/Linux file systems. Some files that are hard links, or copies, in the sysroot as installed
on the Windows file system should be symbolic links on the GNU/Linux target. Additionally,
some files in the sysroot that should be marked executable on the GNU/Linux target are
not marked executable on Windows. If you intend to use the sysroot provided with Sourcery
CodeBench on a Windows host system as the basis for your GNU/Linux target filesystem,
you must correct these issues after copying the sysroot to the target.

You have these choices for installing the sysroot on the target:

• You can install the files in the filesystem root on the target (that is, installing the files directly in
/etc/, /lib/, and so on). All applications on the target then automatically use the Sourcery
CodeBench libraries. This method is primarily useful when you are building a GNU/Linux root
filesystem from scratch. If your target board already has a GNU/Linux filesystem installed, over-
writing the existing C library files is not recommended, as this may break other applications on
your system, or cause it to fail to boot.

• You can install the sysroot in an alternate location and build your application with the -rpath
and --dynamic-linker linker options to specify the sysroot location.

• You can install the sysroot in an alternate location and explicitly invoke your application through
the dynamic linker to specify the sysroot location. If you are just getting started with Sourcery
CodeBench Lite, this may be the easiest way to get your application running, but this method does
not support use of the debugger.

Setting the environment variable LD_LIBRARY_PATH on the target is not sufficient, since executables
produced by Sourcery CodeBench depend on the Sourcery CodeBench dynamic linker included in
the sysroot as well as the Sourcery CodeBench runtime libraries.

3.6.1. Installing the Sysroot

If you are modifying an existing system, rather than creating a new system from scratch, you should
place the sysroot files in a new directory, rather than in the root directory of your target system.

16

Sourcery CodeBench Lite for ARM GNU/Linux

If you choose to overwrite your existing C library, you may not be able to boot your system. You
should back up your existing system before overwriting the C library and ensure that you can restore
the backup even with your system offline.

The next step is to identify the correct sysroot subdirectory in the Sourcery CodeBench Lite install
directory on your host system. The sysroot you copy to the target must be the one that corresponds
to the linker options you are using to build your applications. The tables in Section 3.2, “Library
Configurations” tell you which sysroot subdirectories correspond to which sets of command-line
options. From the command line, you can identify the appropriate sysroot for your program by in-
voking the compiler with -print-sysroot added to your other build options. This causes GCC
to print the host sysroot pathname and exit.

The mechanism you use for copying the sysroot to your target board depends on its hardware and
software configuration. You may be able to use FTP or SSH with a server already running on your
target. If your target board does not have networking configured, you may be able to copy files using
an SD card or USB memory stick, or via a file transfer utility over a serial line. The instructions that
come with your board may include specific suggestions.

When running Sourcery CodeBench on a GNU/Linux host, as an alternative to copying files to the
target system, you may be able to NFS-mount the Sourcery CodeBench Lite installation directory
from your host system on the target system. It is especially convenient for debugging if you can
make the sysroot pathname on the target system be identical to that on the GNU/Linux host system;
refer to Section 3.7.3, “Setting the Sysroot in the Debugger” for further discussion of this issue.

Otherwise, you must copy files from the appropriate sysroot subdirectory in the
arm-none-linux-gnueabi/libc directory of your Sourcery CodeBench Lite install to the
target system. In many cases, you do not need to copy all of the files in the sysroot. For example,
the usr/include subdirectory contains files that are only needed if you will actually be running
the compiler on your target system. You do not need these files for non-native compilers. You also
do not need any .o or .a files; these are used by the compiler when linking programs, but are not
needed to run programs. You should definitely copy all .so files and the executable files in usr/
bin and sbin.

3.6.2. Using Linker Options to Specify the Sysroot Location

If you have installed the sysroot on the target in a location other than the file system root, you can
use the -rpath and --dynamic-linker linker options to specify the sysroot location.

If you are using Sourcery CodeBench from the command line, follow these steps:

1. First find the correct sysroot directory, dynamic linker, and library subdirectory for your selected
multilib. Refer to Section 3.2, “Library Configurations”. In the following steps, sysroot is the
absolute path to the sysroot directory on the target corresponding to your selected multilib. For
the default multilib, the dynamic linker path relative to the sysroot is lib/ld-linux.so.3,
and the library subdirectory is lib. This is used in the example below.

2. When invoking arm-none-linux-gnueabi-gcc to link your executable, include the com-
mand-line options:

-Wl,-rpath=sysroot/lib:sysroot/usr/lib \
-Wl,--dynamic-linker=sysroot/lib/ld-linux.so.3

where sysroot is the absolute path to the sysroot directory on the target corresponding to your
selected multilib.

17

Sourcery CodeBench Lite for ARM GNU/Linux

3. Copy the executable to the target and execute it normally.

Note that if you specify an incorrect path for --dynamic-linker, the common failure mode
seen when running your application on the target is similar to

> ./factorial
./factorial: No such file or directory

or

> ./factorial
./factorial: bad ELF interpreter: No such file or directory

This can be quite confusing since it appears from the error message as if it is the ./factorial
executable that is missing rather than the dynamic linker it references.

3.6.3. Specifying the Sysroot Location at Runtime

You can invoke the Sourcery CodeBench dynamic linker on the target to run your application without
having to compile it with specific linker options.

To do this, follow these steps:

1. Build your application on the host, without any additional linker options, and copy the executable
to your target system.

2. Find the correct sysroot directory, dynamic linker, and library subdirectory for your selected
multilib. Refer to Section 3.2, “Library Configurations”. In the following steps, sysroot is the
absolute path to the sysroot directory on the target corresponding to your selected multilib. For
the default multilib, the dynamic linker is lib/ld-linux.so.3, and the library subdirectory
is lib. This is used in the example below.

3. On the target system, invoke the dynamic linker with your executable as:

> sysroot/lib/ld-linux.so.3 \
 --library-path sysroot/lib:sysroot/usr/lib \
/path/to/your-executable

where sysroot is the absolute path to the sysroot directory on the target corresponding to your
selected multilib.

Invoking the linker in this manner requires that you provide either an absolute pathname to your
executable, or a relative pathname prefixed with ./. Specifying only the name of a file in the
current directory does not work.

3.7. Using GDB Server for Debugging
The GDB server utility provided with Sourcery CodeBench Lite can be used to debug a GNU/Linux
application. While Sourcery CodeBench runs on your host system, gdbserver and the target ap-
plication run on your target system. Even though Sourcery CodeBench and your application run on
different systems, the debugging experience when using gdbserver is very similar to debugging
a native application.

18

Sourcery CodeBench Lite for ARM GNU/Linux

3.7.1. Running GDB Server

The GDB server executables are included in the sysroot in ABI-specific subdirectories of
sysroot/usr. Use the executable from the sysroot and library subdirectory that match your pro-
gram. See Section 3.2, “Library Configurations” for details.

You must copy the sysroot to your target system as described in Section 3.6.1, “Installing the Sysroot”.
You must also copy the executable you want to debug to your target system.

If you have installed the sysroot in the root directory of the filesystem on the target, you can invoke
gdbserver as:

> gdbserver :10000 program arg1 arg2 ...

where program is the path to the program you want to debug and arg1 arg2 ... are the argu-
ments you want to pass to it. The :10000 argument indicates that gdbserver should listen for
connections from GDB on port 10000. You can use a different port, if you prefer.

If you have installed the sysroot in an alternate directory, invoking gdbserver becomes more
complicated. You must build your application using the link-time options to specify the location of
the sysroot, as described in Section 3.6.2, “Using Linker Options to Specify the Sysroot Location”.
You must also invoke gdbserver itself using the dynamic linker provided in the Sourcery
CodeBench sysroot, as described in Section 3.6.3, “Specifying the Sysroot Location at Runtime”.
In other words, the command to invoke gdbserver in this case would be similar to:

> sysroot/lib/ld-linux.so.3 \
 --library-path sysroot/lib:sysroot/usr/lib \
sysroot/usr/lib/bin/gdbserver :10000 program arg1 arg2 ...

3.7.2. Connecting to GDB Server from the Debugger

You can connect to GDB server by using the following command from within GDB:

(gdb) target remote target:10000

where target is the host name or IP address of your target system.

When your program exits, gdbserver exits too. If you want to debug the program again, you must
restart gdbserver on the target. Then, in GDB, reissue the target command shown above.

3.7.3. Setting the Sysroot in the Debugger

In order to debug shared libraries, GDB needs to map the pathnames of shared libraries on the target
to the pathnames of equivalent files on the host system. Debugging of multi-threaded applications
also depends on correctly locating copies of the libraries provided in the sysroot on the host system.

In some situations, the target pathnames are valid on the host system. Otherwise, you must tell GDB
how to map target pathnames onto the equivalent host pathnames.

In the general case, there are two GDB commands required to set up the mapping:

(gdb) set sysroot-on-target target-pathname
(gdb) set sysroot host-pathname

19

Sourcery CodeBench Lite for ARM GNU/Linux

This causes GDB to replace all instances of the target-pathname prefix in shared library path-
names reported by the target with host-pathname to get the location of the equivalent library on
the host.

If you have installed the sysroot in the root filesystem on the target, you can omit the set
sysroot-on-target command, and use only set sysroot to specify the location on the
host system.

Refer to Section 3.6.1, “Installing the Sysroot” for more information about installing the sysroot on
the target. Note that if you have installed a stripped copy of the provided libraries on the target, you
should give GDB the location of an unstripped copy on the host.

3.8. GLIBC Backtrace Support
Sourcery CodeBench supports the backtrace function from GLIBC. Backtracing is supported
regardless of optimization, with or without a frame pointer, and in both ARM and Thumb modes.

In order to support backtracing, Sourcery CodeBench enables generation of unwind tables by default
when compiling. These tables are used for any stack traversal, including backtrace, C++ exception
handling, and POSIX thread cancellation. Where none of these are required, you can reduce applic-
ation size by compiling with -fno-unwind-tables.

Some stand-alone programs, including bootloaders and the Linux kernel, cannot be built with unwind
tables. To accommodate these programs, Sourcery CodeBench suppresses unwind tables for C code
if the -ffreestanding option is used. Unwind tables are also suppressed if the -mabi option
is provided, as this option is not generally used in user-space programs. To override this behavior,
specify -funwind-tables on the arm-none-linux-gnueabi-gcc command line.

3.9. Using VFP Floating Point
3.9.1. Enabling Hardware Floating Point

GCC provides three basic options for compiling floating-point code:

• Software floating point emulation, which is the default. In this case, the compiler implements
floating-point arithmetic by means of library calls.

• VFP hardware floating-point support using the soft-float ABI. This is selected by the
-mfloat-abi=softfp option. When you select this variant, the compiler generates VFP
floating-point instructions, but the resulting code uses the same call and return conventions as
code compiled with software floating point.

• VFP hardware floating-point support using the VFP ABI, which is the VFP variant of the Procedure
Call Standard for the ARM® Architecture (AAPCS). This ABI uses VFP registers to pass function
arguments and return values, resulting in faster floating-point code. To use this variant, compile
with -mfloat-abi=hard.

You can freely mix code compiled with either of the first two variants in the same program, as they
both use the same soft-float ABI. However, code compiled with the VFP ABI is not link-compatible
with either of the other two options. If you use the VFP ABI, you must use this option to compile
your entire program, and link with libraries that have also been compiled with the VFP ABI. For
example, you may need to use the VFP ABI in order to link your program with other code compiled
by the ARM RealView® compiler, which uses this ABI.

20

Sourcery CodeBench Lite for ARM GNU/Linux

Sourcery CodeBench Lite for ARM GNU/Linux includes libraries built with software floating point,
which are compatible with VFP code compiled using the soft-float ABI. While the compiler is capable
of generating code using the VFP ABI, no compatible runtime libraries are provided in Sourcery
CodeBench Lite. However, VFP hard-float libraries built with both ABIs are available to Sourcery
CodeBench Standard and Professional Edition subscribers.

Note that, in addition to selecting hard/soft float and the ABI via the -mfloat-abi option, you
can also compile for a particular FPU using the -mfpu option. For example, -mfpu=neon selects
VFPv3 with NEON coprocessor extensions.

3.9.2. NEON SIMD Code

Sourcery CodeBench includes support for automatic generation of NEON SIMD vector code.
Autovectorization is a compiler optimization in which loops involving normal integer or floating-
point code are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mfpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery CodeBench also includes support for manual generation of NEON SIMD code using C
intrinsic functions. These intrinsics, the same as those supported by the ARM RealView® compiler,
are defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section
of the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must
be specified to use these intrinsics; -ftree-vectorize is not required.

3.9.3. Half-Precision Floating Point

Sourcery CodeBench for ARM GNU/Linux includes support for half-precision (16-bit) floating
point, including the new __fp16 data type in C and C++, support for generating conversion instruc-
tions when compiling for processors that support them, and library functions for use in other cases.

To use half-precision floating point, you must explicitly enable it via the -mfp16-format command-
line option to the compiler. For more information about __fp16 representations and usage from C
and C++, refer to the GCC manual.

3.10. Fixed-Point Arithmetic
Sourcery CodeBench for ARM GNU/Linux includes experimental support for fixed-point arithmetic
using a set of new data types, as described in the draft ISO/IEC technical report TR 18037. This
support is provided for all ARM targets, and uses specialized instructions where available, e.g. sat-
urating add and subtract operations on ARMv6T2 and above. Library functions are used for operations
which are not natively supported on the target architecture.

This feature is a GNU extension, so is only available when the selected language standard includes
GNU extensions (e.g. -std=gnu90, which is the default). Furthermore, only C is supported, not
C++.

TR 18037 leaves up to the implementation the sizes of various quantities within the new data types
it defines. For Sourcery CodeBench for ARM GNU/Linux, these are, briefly:

• short _Fract: One sign bit, 7 fractional bits

• _Fract: One sign bit, 15 fractional bits

21

Sourcery CodeBench Lite for ARM GNU/Linux

• long _Fract: One sign bit, 31 fractional bits

• unsigned short _Fract: 8 fractional bits

• unsigned _Fract: 16 fractional bits

• unsigned long _Fract: 32 fractional bits

• short _Accum: One sign bit, 7 fractional bits, 8 integral bits

• _Accum: One sign bit, 15 fractional bits, 16 integral bits

• long _Accum: One sign bit, 31 fractional bits, 32 integral bits

• unsigned short _Accum: 8 fractional bits, 8 integral bits

• unsigned _Accum: 16 fractional bits, 16 integral bits

• unsigned long _Accum: 32 fractional bits, 32 integral bits

These values (and various other useful constants) are also defined in the header file stdfix.h for
use in your programs. Note that there is currently no support for the new standard-library functions
described in TR 18037, nor for the pragmas controlling precision of operations.

Fixed-point extensions are not currently supported by GDB, nor are they compliant with the ARM
EABI (which does not specify anything about fixed-point types at present). Code using fixed-point
types cannot be expected to interact properly (across ABI boundaries) with code generated by other
compilers for the ARM architecture.

3.11. ABI Compatibility
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery CodeBench and ARM RealView®.

Sourcery CodeBench implements the ABI as described in these documents, which are available from
the ARM Information Center2:

• BSABI - ARM IHI 0036B (28 October 2009)

• BPABI - ARM IHI 0037B (28 October 2009)

• EHABI - ARM IHI 0038A (28 October 2009)

• CLIBABI - ARM IHI 0039B (4 November 2009)

• AADWARF - ARM IHI 0040A (28 October 2009)

• CPPABI - ARM IHI 0041C (5 October 2009)

• AAPCS - ARM IHI 0042D (16 October 2009)

• RTABI - ARM IHI 0043C (19 October 2009)

• AAELF - ARM IHI 0044D (28 October 2009)

2 http://infocenter.arm.com

22

Sourcery CodeBench Lite for ARM GNU/Linux

http://infocenter.arm.com
http://infocenter.arm.com

• ABI Addenda - ARM IHI 0045C (4 November 2009)

Sourcery CodeBench currently produces DWARF version 2, rather than DWARF version 3 as spe-
cified in AADWARF.

3.12. Object File Portability
It is possible to create object files using Sourcery CodeBench for ARM EABI that are link-compatible
with the GNU C library provided with Sourcery CodeBench for ARM GNU/Linux as well as with
the CodeSourcery C Library or Newlib C Library provided with ARM bare-metal toolchains. These
object files are additionally link-compatible with other ARM C Library ABI-compliant static linking
environments and toolchains.

To use this feature, when compiling your files with the bare-metal ARM EABI toolchain define the
preprocessor constant _AEABI_PORTABILITY_LEVEL to 1 before including any system header
files. For example, pass the option -D_AEABI_PORTABILITY_LEVEL=1 on your compilation
command line. No special options are required when linking the resulting object files. When building
applications for ARM EABI, files compiled with this definition may be linked freely with those
compiled without it.

Files compiled in this manner may not use the functions fgetpos or fsetpos, or reference the
type fpos_t. This is because Newlib assumes a representation for fpos_t that is not AEABI-
compliant.

Note that object files are only portable from bare-metal toolchains to GNU/Linux, and not vice versa;
object files compiled for ARM GNU/Linux targets cannot be linked into ARM EABI executables.

23

Sourcery CodeBench Lite for ARM GNU/Linux

Chapter 4
Using Sourcery CodeBench from
the Command Line
This chapter demonstrates the use of Sourcery CodeBench Lite from the command line.

24

4.1. Building an Application
This chapter explains how to build an application with Sourcery CodeBench Lite using the command
line. As elsewhere in this manual, this section assumes that your target system is arm-none-linux-
gnueabi, as indicated by the arm-none-linux-gnueabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a
file named main.c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

int main () {
 int i;
 int n;
 for (i = 0; i < 10; ++i) {
 n = factorial (i);
 printf ("factorial(%d) = %d\n", i, n);
 }
 return 0;
}

Compile and link this program using the command:

> arm-none-linux-gnueabi-gcc -o factorial main.c

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-none-linux-gnueabi-gcc with
arm-none-linux-gnueabi-g++.)

4.2. Running Applications on the Target System
You may need to install the Sourcery CodeBench runtime libraries and dynamic linker on the target
system before you can run your application. Refer to Chapter 3, “Sourcery CodeBench Lite for ARM
GNU/Linux” for specific instructions.

To run your program on a GNU/Linux target system, use the command:

> factorial

You should see:

factorial(0) = 1
factorial(1) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720

25

Using Sourcery CodeBench from the Command Line

factorial(7) = 5040
factorial(8) = 40320
factorial(9) = 362880

4.3. Running Applications from GDB
You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system.

When starting GDB, give it the pathname to the program you want to debug as a command-line ar-
gument. For example, if you have built the factorial program as described in Section 4.1, “Building
an Application”, enter:

> arm-none-linux-gnueabi-gdb factorial

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.3.1. Connecting to the Sourcery CodeBench Debug Sprite

The Sourcery CodeBench Debug Sprite is a program that runs on the host system to support hardware
debugging devices. You can use the Debug Sprite to run and debug programs on a target board
without an operating system, or to debug an operating system kernel. See Chapter 5, “Sourcery
CodeBench Debug Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

(gdb) target remote | arm-none-linux-gnueabi-sprite arguments

Refer to Section 5.2, “Invoking Sourcery CodeBench Debug Sprite” for a full description of the
Sprite arguments.

4.3.2. Connecting to an External GDB Server

Sourcery CodeBench Lite includes a program called gdbserver that can be used to debug a program
running on a remote ARM GNU/Linux target. Follow the instructions in Chapter 3, “Sourcery
CodeBench Lite for ARM GNU/Linux” to install and run gdbserver on your target system.

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host:port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

26

Using Sourcery CodeBench from the Command Line

Chapter 5
Sourcery CodeBench Debug Sprite
This chapter describes the use of the Sourcery CodeBench Debug Sprite for remote debug-
ging. The Sprite is provided for debugging of the Linux kernel on the target board. This
chapter includes information about the debugging devices and boards supported by the
Sprite for ARM GNU/Linux.

27

Sourcery CodeBench Lite contains the Sourcery CodeBench Debug Sprite for ARM GNU/Linux.
This Sprite is provided to allow debugging of programs running on a bare board. You can use the
Sprite to debug a program when there is no operating system on the board, or for debugging the op-
erating system itself. If the board is running an operating system, and you wish to debug a program
running on that OS, you should use the facilities provided by the OS itself (for instance, using
gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 5.2, “Invoking Sourcery CodeBench Debug Sprite” for information about the specific devices
supported by this version of Sourcery CodeBench Lite.

Note for Linux users

The Debug Sprite provided with Sourcery CodeBench Lite allows remote debugging of the
Linux kernel running on the target. For remote debugging of application programs, you
should use gdbserver instead. See Chapter 3, “Sourcery CodeBench Lite for ARM
GNU/Linux” for details about how to install and run gdbserver on the target.

Important

The Sourcery CodeBench Debug Sprite is not part of the GNU Debugger and is not free or
open-source software. You may use the Sourcery CodeBench Debug Sprite only with the
GNU Debugger. You may not distribute the Sourcery CodeBench Debug Sprite to any third
party.

5.1. Probing for Debug Devices
Before running the Sourcery CodeBench Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery CodeBench Debug Sprite recog-
nizes your debug hardware. From the command line, invoke the Sprite with the -i option:

> arm-none-linux-gnueabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

Sourcery CodeBench Debug Sprite for ARM
 (Sourcery CodeBench Lite 2011.09-70)
armusb: [speed=<n:0-7>] Stellaris USB
 armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
 rdi:/// - RDI Device

This shows that Stellaris USB and RDI devices are supported. The exact set of supported devices
depends on your host system and the version of Sourcery CodeBench you have installed; refer to
Section 5.2, “Invoking Sourcery CodeBench Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

5.2. Invoking Sourcery CodeBench Debug Sprite
The Debug Sprite is invoked as follows:

> arm-none-linux-gnueabi-sprite [options] device-url board-file

28

Sourcery CodeBench Debug Sprite

The device-url specifies the debug device to use to communicate with the board. It follows the
standard format:

scheme:scheme-specific-part[?device-options]

Most device URL schemes also follow the regular format:

scheme:[//hostname:[port]]/path[?device-options]

The meanings of hostname, port, path and device-options parts depend on the scheme
and are described below. The following schemes are supported in Sourcery CodeBench Lite for
ARM GNU/Linux:

rdi Use an RDI debugging device. Refer to Section 5.4, “Remote Debug Interface
Devices”.

flashpro Use a FlashPro debugging device. Refer to Section 5.5, “Actel FlashPro Devices”.

The optional ?device-options portion is allowed in all schemes. These allow additional device-
specific options of the form name=value. Multiple options are concatenated using &.

The board-file specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If board-file refers to a file (via a relative
or absolute pathname), it is read. Otherwise, board-file can be a board name, and the toolchain's
board directory is searched for a matching file. See Section 5.7, “Supported Board Files” for the list
of supported boards, or invoke the Sprite with the -b option to list the available board files. You
can also write a custom board file; see Section 5.8, “Board File Syntax” for more information about
the file format.

Both the device-url and board-file command-line arguments are required to correctly
connect the Sprite to a target board.

5.3. Sourcery CodeBench Debug Sprite Options
The following command-line options are supported by the Sourcery CodeBench Debug Sprite:

-b Print a list of board-file files in the board config directory.

-h Print a list of options and their meanings. A list of device-url syntaxes
is also shown.

-i Print a list of the accessible devices. If a device-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the device-url. For
each discovered device, the device-url is printed along with a description
of that device.

-l [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-none-linux-gnueabi-sprite ... command,
you do not need this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead

29

Sourcery CodeBench Debug Sprite

makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

-q Do not print any messages.

-v Print additional messages.

If any of -b, -i or -h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

5.4. Remote Debug Interface Devices
Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the device-url is specified as follows:

rdi:[///][?device-options]

The following device-options are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI
target you wish to use.

rdi-config=configfile Specify a file containing configuration information for library.
The format of this file is specific to the RDI library you are using,
but tends to constitute a list of key=value pairs. Consult the
documentation of your RDI library for details.

5.5. Actel FlashPro Devices
On Windows hosts, Sourcery CodeBench Lite supports FlashPro devices used with Actel Cortex-
M1 development kits.

For FlashPro devices, the device-url has the following form:

flashpro:[//usb12345/][?jtagclock=rate]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the -i switch, as follows:

> arm-none-linux-gnueabi-sprite -i flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
rate is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If
you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

5.5.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro

30

Sourcery CodeBench Debug Sprite

software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery CodeBench Debug Sprite by running the following command:

> arm-none-linux-gnueabi-sprite -i
flashpro: [jtagclock=<n:93750-4000000>] FlashPro
 flashpro://usb12345/ - FlashPro Device
 ...

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

5.6. Debugging a Remote Board
You can run the Sourcery CodeBench Debug Sprite on a different machine from the one on which
GDB is running. For example, if your board is connected to a machine in your lab, you can run the
debugger on your laptop and connect to the remote board. The Sourcery CodeBench Debug Sprite
must run on the machine that is connected to the target board. You must have Sourcery CodeBench
installed on both machines.

To use this mode, you must start the Sprite with the -l option and specify the port on which you
want it to listen. For example:

> arm-none-linux-gnueabi-sprite -l :10000 device-url board-file

starts the Sprite listening on port 10000.

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host:10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery CodeBench Debug Sprite in this way, please
refer to the Sourcery CodeBench Knowledge Base1.

5.7. Supported Board Files
The Sourcery CodeBench Debug Sprite for ARM GNU/Linux includes support for the following
target boards. Specify the appropriate board-file as an argument when invoking the Sprite from
the command line.

ConfigBoard

armulatorARMulator (RDI)

zynq7000Xilinx Zynq-7000

1 https://support.codesourcery.com/GNUToolchain/kbentry132

31

Sourcery CodeBench Debug Sprite

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

5.8. Board File Syntax
The board-file can be a user-written XML file to describe a non-standard board. The Sourcery
CodeBench Debug Sprite searches for board files in the arm-none-linux-gnueabi/lib/
boards directory in the installation. Refer to the files in that directory for examples.

The file's DTD is:

<!-- Board description files

 Copyright (c) 2007-2009 CodeSourcery, Inc.

 THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
 SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

 You may not use or distribute this file without the express
 written permission of CodeSourcery or its authorized
 distributor. This file is licensed only for use with
 Sourcery CodeBench. No other use is permitted.
 -->

<!ELEMENT board
 (category?, properties?, feature?, initialize?, memory-map?, \
debuggerDefaults?)>

<!-- Board category to group boards list into the tree -->
<!ELEMENT category (#PCDATA)>

<!ELEMENT properties
 (description?, property*)>

<!ELEMENT initialize
 (write-register | write-memory | delay
 | wait-until-memory-equal | wait-until-memory-not-equal)* >
<!ELEMENT write-register EMPTY>
<!ATTLIST write-register
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT write-memory EMPTY>
<!ATTLIST write-memory
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT delay EMPTY>
<!ATTLIST delay
 time CDATA #REQUIRED>
<!ELEMENT wait-until-memory-equal EMPTY>
<!ATTLIST wait-until-memory-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

32

Sourcery CodeBench Debug Sprite

<!ELEMENT wait-until-memory-not-equal EMPTY>
<!ATTLIST wait-until-memory-not-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

<!ELEMENT memory-map (memory-device)*>
<!ELEMENT memory-device (property*, description?, sectors*)>
<!ATTLIST memory-device
 address CDATA #REQUIRED
 size CDATA #REQUIRED
 type CDATA #REQUIRED
 device CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>
<!ELEMENT sectors EMPTY>
<!ATTLIST sectors
 size CDATA #REQUIRED
 count CDATA #REQUIRED>

<!-- Definition of default option values for each debug interface -->
<!ELEMENT debuggerDefaults (debugInterface*)>
<!ELEMENT debugInterface (option*)>
<!ATTLIST debugInterface
 name CDATA #REQUIRED
>
<!ELEMENT option EMPTY>
<!ATTLIST option
 name CDATA #REQUIRED
 defaultValue CDATA #REQUIRED
>

<!ENTITY % gdbtarget SYSTEM "gdb-target.dtd">
%gdbtarget;

All values can be provided in decimal, hex (with a 0x prefix) or octal (with a 0 prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must
use a ms or us suffix.

The following elements are available:

<board> This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

33

Sourcery CodeBench Debug Sprite

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vfp property specifies that the CPU of the
target board has VFP registers.

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system
registers.

system-v7-m The system-v7-m property specifies that the CPU
of the target board has ARMv7-M architecture system
registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>
element may be one of arm7, arm9, arm11, and
cortex.

system-clock This property specifies the target clock frequency (in
Hertz) after reset. It is used to configure flash program-
ming algorithms.

<initialize> The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

<feature> This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

<memory-map> This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

<memory-device> This element specifies a region of memory. It has four attributes:
address, size, type and device. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The device attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

<write-register> This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

<write-memory> This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

34

Sourcery CodeBench Debug Sprite

<delay> This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

<description> This element encapsulates a human-readable description of its enclosing
element.

<property> The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

35

Sourcery CodeBench Debug Sprite

Chapter 6
Next Steps with Sourcery
CodeBench
This chapter describes where you can find additional documentation and information about
using Sourcery CodeBench Lite and its components.

36

6.1. Sourcery CodeBench Knowledge Base
The Sourcery CodeBench Knowledge Base is available to registered users at the Sourcery CodeBench
Portal1. Here you can find solutions to common problems including installing Sourcery CodeBench,
making it work with specific targets, and interoperability with third-party libraries. There are also
additional example programs and tips for making the most effective use of the toolchain and for
solving problems commonly encountered during debugging. The Knowledge Base is updated fre-
quently with additional entries based on inquiries and feedback from customers.

6.2. Example Programs
Sourcery CodeBench Lite includes some bundled example programs. You can find the source code
for these examples in the share/sourceryg++-arm-none-linux-gnueabi-examples
directory of your Sourcery CodeBench installation.

6.2.1. Other Examples

The subdirectories contain a number of small, target-independent test programs. You may find these
programs useful as self-contained test cases when experimenting with configuring the correct compiler
and debugger settings for your target, or when learning how to use the debugger or other features of
the Sourcery CodeBench toolchain.

6.3. Manuals for GNU Toolchain Components
Sourcery CodeBench Lite includes the full user manuals for each of the GNU toolchain components,
such as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material
for new users as well as serving as a complete reference for command-line options, supported exten-
sions, and the like.

When you install Sourcery CodeBench Lite, links to both the PDF and HTML versions of the
manuals are created in the shortcuts folder you select. If you elected not to create shortcuts when
installing Sourcery CodeBench Lite, the documentation can be found in the share/doc/
sourceryg++-arm-none-linux-gnueabi/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery CodeBench Lite includes a Unix-style
manual page for each toolchain component. You can view these by invoking the man command with
the pathname of the file you want to view. For example, you can first go to the directory containing
the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-linux-gnueabi/man/man1

Then you can invoke man as:

> man ./arm-none-linux-gnueabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery CodeBench man pages to your MANPATH environment variable. This should
go in your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment”
for instructions. Then you can invoke man with just the command name rather than a pathname.

1 https://support.codesourcery.com/GNUToolchain/

37

Next Steps with Sourcery CodeBench

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Finally, note that every command-line utility program included with Sourcery CodeBench Lite can
be invoked with a --help option. This prints a brief description of the arguments and options to
the program and exits without doing further processing.

38

Next Steps with Sourcery CodeBench

Appendix A
Sourcery CodeBench Lite Release
Notes
This appendix contains information about changes in this release of Sourcery CodeBench
Lite for ARM GNU/Linux.You should read through these notes to learn about new features
and bug fixes.

39

A.1. Changes in Sourcery CodeBench Lite for
ARM GNU/Linux
This section documents Sourcery CodeBench Lite changes for each released revision.

A.1.1. Changes in Sourcery CodeBench Lite 2011.09-70

New Sourcery CodeBench Lite branding. Sourcery G++ has been renamed to Sourcery
CodeBench. This change affects the names of the default installation directory and installer-created
shortcuts, but no internal pathnames or tool names within the installation directory have been changed.

Internal compiler error with NEON intrinsics. A compiler bug has been fixed that caused in-
ternal compiler errors when using certain NEON intrinsics.

GCC version 4.6. Sourcery CodeBench Lite for ARM GNU/Linux is now based on GCC version
4.6. For more information about changes from GCC version 4.5 that was included in previous releases,
see http://gcc.gnu.org/gcc-4.6/changes.html.

ARM VFP9-S errata workaround. A compiler workaround for ARM Errata Notice GENC-
010704 (760019: Canceled FDIV or FSQRT can be executed twice) has been implemented.

Map file name demangling bug fix. GCC now properly passes the --demangle and
--no-demangle options to the linker to control map file output. The default behavior on all hosts
is now to demangle C++ names.

GCC stack usage improvement. GCC now generates better code for stack allocation in some
cases when compiling with -fno-strict-aliasing.

Binutils version 2.21. Sourcery CodeBench Lite for ARM GNU/Linux is now based on binutils
version 2.21.

Assembler crash. The assembler now warns when there is line information for the *ABS* section,
rather than crash. This can occur when the .offset directive is used incorrectly.

Linux kernel headers update. Linux kernel header files have been updated to version 2.6.39.

Linux kernel headers update. Linux kernel header files have been updated to version 3.0.1.

Fix for crash in GDB maint print arch. A bug in the GDB command maint print
arch that sometimes caused GDB to crash has been fixed.

GDB interrupt handling bug fix. A bug in GDB has been fixed that caused it to sometimes fail
to interrupt lengthy single-step operations (as by a Ctrl+C when using GDB from the command
line).

Fix GDB crash during connection to debug agent. A bug has been fixed that caused GDB to
crash while connecting to any debug agent through standard IO where the debug agent had detected
an early error and terminated the communication.

Improved disassembler performance in the debugger. GDB's disassembler has been improved
to use more efficient memory access on remote targets.

Fix GDB crash in debugging Thumb assembly routines. A bug in GDB has been fixed that
caused a crash when debugging Thumb assembly routines that switch stacks by writing the stack
pointer in the function prologue.

40

Sourcery CodeBench Lite Release Notes

Debug Sprite option defaults. The Sourcery CodeBench Debug Sprite now uses default option
values specified in board configuration files. Options included in the device URL override the default
values.

Changes to host operating system requirements. The minimum required Microsoft Windows
OS needed to run Sourcery CodeBench Lite is now Windows XP (SP1).

A.1.2. Changes in Sourcery G++ Lite 2011.03-41

Variable Length Array (VLA) alignment bug. A compiler bug that resulted in incorrectly
aligned variable length arrays (VLA) in leaf functions has been fixed.

Cortex-R5 support. Sourcery G++ now includes support for ARM Cortex-R5 processors. To
compile for these processors, use -mcpu=cortex-r5.

Inline assembly and volatile fields. A bug has been fixed that caused the compiler to incorrectly
reject inline asm statements referring to volatile class/struct fields with errors such as error:
output number 1 not directly addressable.

Fixed-point arithmetic support. Experimental compiler support has been added for fixed-point
arithmetic on ARM, as described in the draft ISO/IEC technical report TR 18037. Specialized instruc-
tions defined in recent architecture versions for performing saturating arithmetic, etc. are used when
available, but are not a prerequisite for using the new language features. See Section 3.10, “Fixed-
Point Arithmetic” for further details.

C++ constructor bug fix. A compiler bug has been fixed that caused incorrect code for C++
constructors for some class hierarchies that use virtual inheritance and include empty classes. At
runtime, the incorrect constructors resulted in memory corruption or other errors.

Thumb debug information fix. A compiler bug that resulted in incorrect debug information for
Thumb code has been fixed. The incorrect information prevented single stepping through some code.

Internal compiler error with pointer casting. A compiler bug has been fixed that caused internal
compiler errors when accessing double-word memory locations with casted pointers under ARM
mode.

Unaligned access support. The compiler now generates more efficient code for accessing packed
data structures and for copying small blocks of unaligned data when targeting architectures that
permit unaligned word/halfword accesses. This feature can be controlled by the
-munaligned-access and -mno-unaligned-access options, and is enabled by default
for ARMv6 processors and above, except for ARMv6-M.

Internal compiler error under Thumb mode. A compiler bug has been fixed that caused internal
compiler errors when generating Thumb code.

EGLIBC version 2.13. Sourcery G++ Lite for ARM GNU/Linux now includes EGLIBC version
2.13 library which is based on GNU C Library version 2.13. For more information about changes,
see http://www.eglibc.org/news#eglibc_2_13.

A.1.3. Changes in Sourcery G++ Lite 2011.03-18

GCC fixes for -fstrict-volatile-bitfields. GCC now honors
-fstrict-volatile-bitfields when a bitfield is not declared volatile initially, but an object
including bit fields is cast to volatile. Also, a bug was fixed that caused incorrect code to be generated
for some stores to volatile bit fields when -fstrict-volatile-bitfields is enabled.

41

Sourcery CodeBench Lite Release Notes

Compiler optimization improvements. The compiler has been enhanced with a number of op-
timization improvements, including:

• Smaller and faster code for compound conditionals.

• Removal of superfluous sign and zero extensions.

• Improved code for multiply-and-accumulate operations on ARM.

Internal compiler error with NEON intrinsics. A compiler bug has been fixed that caused in-
ternal compiler errors when using certain NEON intrinsics.

GCC version 4.5.2. Sourcery G++ Lite for ARM GNU/Linux is now based on GCC version
4.5.2.

GCC code generation bug for casts to volatile types. A compiler bug has been fixed that
sometimes caused incorrect code for references to pointers to types with volatile casts.

Incorrect optimization fix. An optimizer bug that in rare cases caused incorrect code to be gen-
erated for complex AND and OR expressions containing redundant subexpressions has been fixed.

Incorrect C++ warning fixed. A bug in GCC has been fixed that caused spurious warnings about
lambda expressions in C++ code that does not use them.

GCC fixes for NEON in big-endian mode. Several compiler bugs have been fixed that could
lead to incorrect code when using NEON in big-endian mode. The problems only manifested when
using the auto-vectorizer (enabled by default at the -O3 optimization level) with the
-mvectorize-with-neon-quad option.

GCC fix for thread-local storage. A compiler optimization bug has been fixed that affected ac-
cesses to thread-local storage. The bug resulted in assembler errors of the form symbol `.LPIC2'
is already defined.

Incorrect code for built-in comparison functions. A bug has been fixed that sometimes caused
GCC's built-in comparison functions, such as __builtin_isgreaterequal, to incorrectly
raise exceptions when invoked on unordered floating-point arguments.

C++ exception handling. A defect in the implementation of the EH-ABI specification has been
fixed. The defect affected the catching of pointer types in code generated by the ARM RealView®
compiler but using the Sourcery G++ runtime libraries. The fix also retains backward compatibility
with existing GCC-compiled code.

GCC bug where accesses to volatile structure fields are optimized away. A bug has been
fixed where accesses to volatile fields of a structure were sometimes incorrectly optimized away if
the structure instance was defined as non-volatile.

Internal compiler error fixes. Two bugs have been fixed that caused compiler crashes in rare
cases. The first bug involved code with multiple comparison operations, and the second one involved
char to int conversion.

Thumb-2 assembler validation fix. The assembler now correctly rejects Thumb-2 ADD, ADDS,
SUB, and SUBS instructions that have an invalid shift operand. Previously, invalid shift values were
accepted and generated unpredictable instructions.

Objdump fix for multiple input files. The Objdump utility did not produce correct disassembly
when processing multiple input files. This has been fixed.

42

Sourcery CodeBench Lite Release Notes

popen bug fix. GLIBC's popen function no longer causes a deadlock situation when invoked
from more than one thread.

strstr and strcasestr bug fixes. A problem has been fixed that caused GLIBC's strstr
and strcasestr functions to return wrong results on certain inputs.

Linux kernel headers update. Linux kernel header files have been updated to version 2.6.38.

Improved GDB startup times when debugging remote targets . GDB has been enhanced to
reduce the startup times when working with remote targets via GDBServer, especially when the
target uses a large number of shared libraries.

A.1.4. Changes in Sourcery G++ Lite 2010.09-50

GCC fix for duplicated symbols. A GCC optimizer bug that caused multiple definitions of local
symbols has been fixed. Code affected by the bug was rejected by the assembler.

NEON code generation fix. A GCC bug has been fixed that resulted in an assembler error VFP/
Neon double precision register expected.

Static data size improvement at -Os. When optimizing for size, the compiler no longer implicitly
adds padding bytes to align static and local arrays on word boundaries. This fixes static data size
regressions introduced since GCC 4.4. The additional alignment is still used when optimizing for
speed.

New -fstrict-volatile-bitfields option. The compiler has a new option,
-fstrict-volatile-bitfields, which forces access to a volatile structure member using
the width that conforms to its type. This option is enabled by default to conform to the ARM EABI.
Refer to the GCC manual for details.

Internal compiler error fixes. A bug has been fixed that caused the compiler to crash on code
containing a typedef alias for __builtin_va_list with option
-femit-struct-debug-baseonly. This bug affected compiling the Linux kernel. A second
bug has been fixed that caused a crash when compiling code using C99 variable-length arrays. Ad-
ditionally, a compiler crash on code using 64-bit integer multiplications with NEON vectorization
enabled has also been fixed.

NEON narrowing-move instructions. The compiler now supports narrowing-move instructions
when auto-vectorizing for NEON. Loops accessing arrays of char or short values are now more
likely to be vectorized.

Improved support for atomic memory builtins. The compiler support for built-in atomic
memory access operations on ARMv7 targets has been improved. These builtins are documented in
the GCC manual.

Improved thread-local storage access. Sourcery G++ Lite now implements the TLS Descriptor
access model, which provides faster access to thread-local storage from shared libraries and position-
independent executables. This GCC option, which is enabled by default, additionally requires support
from the dynamic loader. Code built with older versions of Sourcery G++ continues to work with
the included loader. For more information, refer to Section 3.5, “Target Dynamic Loader Require-
ments”.

Linker debug information fix. A bug in linker processing of debug information has been fixed.
The bug sometimes prevented the Sourcery G++ debugger from displaying source code if the execut-
able was linked with the --gc-sections option.

43

Sourcery CodeBench Lite Release Notes

Absolute branch bug fixes. A bug that caused the assembler to crash on a branch to an absolute
address has been fixed. Linker handling of the resulting relocations has also been improved. Previously
this caused an invalid switch to ARM mode on ARMv7-M devices.

VMOV instruction bug fix. A bug that caused the assembler to incorrectly reject certain valid
immediate operands for the VMOV instruction has been fixed.

A.1.5. Changes in Sourcery G++ Lite 2010.09-29

Changes to Sourcery G++ version numbering. Sourcery G++ product and Lite toolchains now
uniformly use a version numbering scheme of the form 2011.09-70. The major and minor parts of
the version number, in this case 2011.09, identify the release branch, while the final component is
a build number within the branch. There are also new preprocessor macros defined by the compiler
for the version number components so that you may conditionalize code for Sourcery G++ or partic-
ular Sourcery G++ versions. Details are available in the Sourcery G++ Knowledge Base1.

GCC fix for reference to undefined label. A bug in the optimizer that caused GCC to emit ref-
erences to undefined labels has been fixed.

Precision improvement with vectorization enabled. The GCC auto-vectorizer no longer uses
NEON floating-point instructions unless the -funsafe-math-optimizations option (implied
by -ffast-math) is specified. This is because NEON hardware does not fully support the IEEE
754 standard for floating-point arithmetic. In particular, very small quantities may be flushed to zero.

Alignment attributes. A bug has been fixed that caused the compiler to ignore alignment attributes
of C++ static member variables where the attribute was present on the definition, but not the declar-
ation.

naked attribute semantics. The naked function attribute now also implies the noinline
and noclone attributes. This fixes bugs resulting from invalid optimizations of functions with this
attribute.

Stack corruption bug fix. A bug in GCC has been fixed that caused stack corruption in functions
with the interrupt attribute.

GCC bug fix for push multiple instruction generation. A bug has been fixed that caused GCC
to generate incorrect push multiple instructions, causing an assembler warning register range
not in ascending order.

Thumb-2 internal compiler error fix. A bug has been fixed that caused the compiler to crash
when compiling Thumb-2 code using 64-bit integer arithmetic.

Compiler optimization improvements. The compiler has been enhanced with a number of op-
timization improvements, including:

• More efficient assignment for structures containing bitfields.

• Better code for initializing C++ arrays with explicit element initializers.

• Improved logic for eliminating/combining redundant comparisons in code with nested conditionals.

• Better selection of loop variables, resulting in fewer temporaries and more efficient register usage.

• More optimization of references to globals in position-independent code.

1 https://support.codesourcery.com/GNUToolchain/kbentry1

44

Sourcery CodeBench Lite Release Notes

https://support.codesourcery.com/GNUToolchain/kbentry1
https://support.codesourcery.com/GNUToolchain/kbentry1

• Various Thumb code generation improvements.

• Better code when constant addresses are used as arguments to inline assembly statements.

• Better code for copying small constant strings.

• Improved tuning for Cortex-M4 processors.

• Cortex-A9 specific tuning for VFP and NEON instructions.

• Use of more NEON features.

Preprocessor symbols for floating-point calling convention. Built-in preprocessor symbols
__ARM_PCS and __ARM_PCS_VFP are now defined to indicate the current floating-point calling
convention.

GCC version 4.5.1. Sourcery G++ Lite for ARM GNU/Linux is now based on GCC version
4.5.1. For more information about changes from GCC version 4.4 that was included in previous re-
leases, see http://gcc.gnu.org/gcc-4.5/changes.html.

C++ locale support. The C++ standard library now includes locale support.

New -Wdouble-promotion warning option. The compiler has a new option,
-Wdouble-promotion, which enables warnings about implicit promotions of float values to
double. This option is useful when compiling code for processors (such as ARM Cortex-M4) that
have hardware support for single-precision floating-point arithmetic only, where unintentional use
of double precision results in dramatically slower code.

Linker bug fix. A bug that caused the linker error relocation truncated to fit:
R_ARM_THM_JUMP24 when linking some Thumb-2 applications has been fixed.

Assembler PC-relative store fix. A bug that caused the assembler to reject some valid PC-relative
store instructions has been fixed. It now issues a warning instead for architectures where these in-
structions are deprecated.

ARMv7-A linker bug fix. A bug in the linker support for --fix-cortex-a8, which is enabled
by default when linking ARMv7-A objects, has been fixed. Programs affected by the bug sometimes
crashed with segmentation fault or illegal instruction errors.

Smaller C++ programs with -g. An assembler bug has been fixed that caused unnecessary
references to exception-handling routines from C++ programs when debug information is enabled.
For programs that do not otherwise use exceptions, this change results in smaller code size.

Additional validation in the assembler. The assembler now diagnoses an error, instead of pro-
ducing an invalid object file, when directives such as .hidden are missing operands.

Assembler PC-relative load fix. An assembler bug that caused the assembler to reject some
references to global symbols has been fixed. This bug affected Thumb instructions of the form ldr
r0, symbol.

Strip bug fix. A bug in the strip and objcopy utilities, which resulted in stripped object files
that the linker could not recognize, has been fixed.

Binutils update. The binutils package has been updated to version 2.20.51.20100809 from the
FSF trunk. This update includes numerous bug fixes.

45

Sourcery CodeBench Lite Release Notes

More efficient process creation functions. The system and popen functions provided by
GLIBC have been improved to require less memory when memory overcommit is disabled in the
Linux kernel.

Optimized string and memory functions. The performance of GLIBC's string and memory
functions, including strstr and memmem, have been significantly improved for large inputs.

Linux kernel headers update. Linux kernel header files have been updated to version 2.6.35.2.

Improved support for debugging RealView® C++ programs . GDB has been enhanced to
handle some debug information contained in binaries produced by the ARM RealView® compiler.
Formerly, GDB sometimes crashed on programs which use C++ templates. Another bug has been
fixed that caused GDB to fail to place breakpoints in binaries produced by the ARM RealView®
compiler when the source file location for the breakpoint was specified as an absolute pathname.

GDB update. The included version of GDB has been updated to 7.2.50.20100908. This update
adds numerous bug fixes and new features, including improved C++ language support, a new command
to save breakpoints to a file, a new convenience variable $_thread that holds the number of the
current thread, among many other improvements.

GDB crash fix. A bug has been fixed that caused GDB to crash on launch if the environment
variable CYGPATH is set to a program that does not exist or cannot be executed.

A.1.6. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ARM GNU/Linux, please
refer to the Getting Started guide packaged with those releases.

46

Sourcery CodeBench Lite Release Notes

Appendix B
Sourcery CodeBench Lite
Licenses
Sourcery CodeBench Lite contains software provided under a variety of licenses. Some
components are “free” or “open source” software, while other components are proprietary.
This appendix explains what licenses apply to your use of Sourcery CodeBench Lite. You
should read this appendix to understand your legal rights and obligations as a user of
Sourcery CodeBench Lite.

47

B.1. Licenses for Sourcery CodeBench Lite
Components
The table below lists the major components of Sourcery CodeBench Lite for ARM GNU/Linux and
the license terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery CodeBench Lite. Sourcery
CodeBench Lite may contain free or open-source components not included in the list below; for a
definitive list, consult the source package corresponding to this release of Sourcery CodeBench Lite.

LicenseComponent

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Compiler Collection

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Binary Utilities

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Debugger

CodeSourcery LicenseSourcery CodeBench Debug Sprite for
ARM

GNU Lesser General Public License 2.1
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

GNU C Library

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Linux Kernel Headers

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Make

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Core Utilities

The CodeSourcery License is available in Section B.2, “Sourcery CodeBench Software License
Agreement”.

Important

Although some of the licenses that apply to Sourcery CodeBench Lite are “free software”
or “open source software” licenses, none of these licenses impose any obligation on you to
reveal the source code of applications you build with Sourcery CodeBench Lite. You can
develop proprietary applications and libraries with Sourcery CodeBench Lite.

Sourcery CodeBench Lite may include some third party example programs and libraries in the
share/sourceryg++-arm-none-linux-gnueabi-examples subdirectory. These examples
are not covered by the Sourcery CodeBench Software License Agreement. To the extent permitted
by law, these examples are provided by CodeSourcery as is with no warranty of any kind, including
implied warranties of merchantability or fitness for a particular purpose. Your use of each example
is governed by the license notice (if any) it contains.

48

Sourcery CodeBench Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

B.2. Sourcery CodeBench™ Software License
Agreement
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

Mentor Graphics. If You are not acting on behalf of Yourself as an individual, then “You”
means Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery CodeBench™ Lite Edition (the “Software”).

3. Definitions.

3.1. Mentor Graphics Proprietary Components. The components of the Software that
are owned and/or licensed by Mentor Graphics and are not subject to a “free software”
or “open source” license, such as the GNU Public License. The Mentor Graphics Propri-
etary Components of the Software include, without limitation, the Sourcery CodeBench
Installer, any Sourcery CodeBench Eclipse plug-ins, the CodeSourcery C Library
(CSLIBC), and any Sourcery CodeBench Debug Sprite. For a complete list, refer to the
Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The Mentor Graphics Proprietary Components that
are intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
CSLIBC and the CodeSourcery Common Startup Code Sequence (CS3). For a complete
list, refer to the Getting Started Guide included with the distribution.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the Mentor Graphics Proprietary Components of
the Software, (b) to transmit the Mentor Graphics Proprietary Components over an internal
computer network, (c) to copy the Mentor Graphics Proprietary Components for Your internal
use only, and (d) to distribute the Redistributable Component(s) in binary form only and only
as part of Licensee object code developed with the Software that provides substantially different
functionality than the Redistributable Component(s).

5. Restrictions. You may not: (i) copy or permit others to use the Mentor Graphics Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the Mentor
Graphics Proprietary Components of the Software to any third party, except as expressly provided
above; or (iii) reverse engineer, decompile, or disassemble the Mentor Graphics Proprietary
Components of the Software, except to the extent this restriction is expressly prohibited by ap-
plicable law.

5.1.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by Mentor Graphics. Sourcery

49

Sourcery CodeBench Lite Licenses

CodeBench includes components provided under various different licenses. The Getting Started
Guide provides an overview of which license applies to different components, and, for compon-
ents subject to the Eclipse Public License, contains information on how to obtain the source
code. Definitive licensing information for each “free software” or “open source” component is
available in the relevant source file.

7. Mentor Graphics Trademarks. Notwithstanding any provision in a “free software” or
“open source” license agreement applicable to a component of the Software that permits You
to distribute such component to a third party in source or binary form, You may not use any
Mentor Graphics trademark, whether registered or unregistered, including without limitation,
CodeSourcery™, Sourcery CodeBench™, the CodeSourcery crystal ball logo, or the Sourcery
CodeBench splash screen, or any confusingly similar mark, in connection with such distribution,
and You may not recompile the Open Source Software Components with the
--with-pkgversion or --with-bugurl configuration options that embed Mentor
Graphics trademarks in the resulting binary.

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. Mentor Graphics may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the Mentor Graphics Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of Mentor Graphics, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. Mentor Graphics owns and/or has licensed the Mentor Graphics Proprietary
Components of the Software and all intellectual property rights embodied therein, including
copyrights and valuable trade secrets embodied in its design and coding methodology. The
Mentor Graphics Proprietary Components of the Software are protected by United States
copyright laws and international treaty provisions. Mentor Graphics also owns all rights, title
and interest in and with respect to its trade names, domain names, trade dress, logos, trademarks,
service marks, and other similar rights or interests in intellectual property. This Agreement
provides You only a limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. MENTOR GRAPHICS AND ITS LI-
CENSORS PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS.
MENTOR GRAPHICS DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED. MENTOR GRAPHICS SPECIFICALLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE
IS NO WARRANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE
WILL BE UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFT-
WARE WILL MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY,
ACCURACY, PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION,
INSTALLATION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY
CONSTITUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE
SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

50

Sourcery CodeBench Lite Licenses

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL MENTOR GRAPHICS
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
MENTOR GRAPHICS' LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE
WHATSOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE
AMOUNT PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS
ONE YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to

51

Sourcery CodeBench Lite Licenses

this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of Mentor Graphics and shall not have the power or authority
to bind or obligate Mentor Graphics in any manner to any third party.

21. Force Majeure. Neither Mentor Graphics nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

B.3. Attribution
This version of Sourcery CodeBench Lite may include code based on work under the following
copyright and permission notices:

B.3.1. Android Open Source Project

/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the

52

Sourcery CodeBench Lite Licenses

 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

53

Sourcery CodeBench Lite Licenses

	Sourcery CodeBench Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery CodeBench Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery CodeBench Lite
	2.4.1. Using the Sourcery CodeBench Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery CodeBench Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery CodeBench Lite from a Compressed Archive

	2.5. Installing Sourcery CodeBench Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery CodeBench Lite
	2.7.1. Using the Sourcery CodeBench Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery CodeBench Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery CodeBench Lite for ARM GNU/Linux
	3.1. Included Components and Features
	3.2. Library Configurations
	3.3. Compiling for ARMv4T and ARMv5T Systems
	3.4. Target Kernel Requirements
	3.5. Target Dynamic Loader Requirements
	3.6. Using Sourcery CodeBench Lite on GNU/Linux Targets
	3.6.1. Installing the Sysroot
	3.6.2. Using Linker Options to Specify the Sysroot Location
	3.6.3. Specifying the Sysroot Location at Runtime

	3.7. Using GDB Server for Debugging
	3.7.1. Running GDB Server
	3.7.2. Connecting to GDB Server from the Debugger
	3.7.3. Setting the Sysroot in the Debugger

	3.8. GLIBC Backtrace Support
	3.9. Using VFP Floating Point
	3.9.1. Enabling Hardware Floating Point
	3.9.2. NEON SIMD Code
	3.9.3. Half-Precision Floating Point

	3.10. Fixed-Point Arithmetic
	3.11. ABI Compatibility
	3.12. Object File Portability

	Chapter 4 Using Sourcery CodeBench from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications from GDB
	4.3.1. Connecting to the Sourcery CodeBench Debug Sprite
	4.3.2. Connecting to an External GDB Server

	Chapter 5 Sourcery CodeBench Debug Sprite
	5.1. Probing for Debug Devices
	5.2. Invoking Sourcery CodeBench Debug Sprite
	5.3. Sourcery CodeBench Debug Sprite Options
	5.4. Remote Debug Interface Devices
	5.5. Actel FlashPro Devices
	5.5.1. Installing FlashPro Windows drivers

	5.6. Debugging a Remote Board
	5.7. Supported Board Files
	5.8. Board File Syntax

	Chapter 6 Next Steps with Sourcery CodeBench
	6.1. Sourcery CodeBench Knowledge Base
	6.2. Example Programs
	6.2.1. Other Examples

	6.3. Manuals for GNU Toolchain Components

	Appendix A Sourcery CodeBench Lite Release Notes
	A.1. Changes in Sourcery CodeBench Lite for ARM GNU/Linux
	A.1.1. Changes in Sourcery CodeBench Lite 2011.09-70
	A.1.2. Changes in Sourcery G++ Lite 2011.03-41
	A.1.3. Changes in Sourcery G++ Lite 2011.03-18
	A.1.4. Changes in Sourcery G++ Lite 2010.09-50
	A.1.5. Changes in Sourcery G++ Lite 2010.09-29
	A.1.6. Changes in Older Releases

	Appendix B Sourcery CodeBench Lite Licenses
	B.1. Licenses for Sourcery CodeBench Lite Components
	B.2. Sourcery CodeBench Software License Agreement
	B.3. Attribution
	B.3.1. Android Open Source Project

