
 1

EyeSim VR
User Manual

EyeSim VR Team

August 9, 2022

 2

1 GENERAL INFORMATION

EyeSim lets users simulate multiple mobile robots, including driving robots, boats, sub-
marines and robot manipulators in a realistic way. All robot programs use the RoBIOS-7
library for their sensors and actuators. See this web link and the Appendix of this manual:

http://roblab.org/eyebot/Robios7.html
Robot application programs can be written in either C, C++ or Python – and also C# for
the Oculus Quest. The complied programs will then run in the EyeSim simulator.
For the setup, users can specify the robot environment either as a world file or a maze file
an arbitrary number of objects and robots placed into the scene. All physical interactions
between objects and robots will be realistically simulated by the underlying Unity-3D
physics engine. For Further information, please refer to the textbook “Robot Adventures in
Python and C”, Springer-Verlag, 2020 by Thomas Bräunl.

2 SYSTEM CONFIGURATION

Following is a table of tested OS and prerequisites for each OS. Please note that other
system versions may also work, they are just not tested yet, if your system version cannot
work properly, please file a bug according to section 5 or upgrade your system to the tested
version.
The required supporting software should be installed in their default directory before start
using the simulator.

Operating Systems OS Version Prerequisites

Windows Windows 8.1, 10 None (includes cygwin)

Mac OS 10.10.X Install Xcode and Xquartz

Linux 64bit Install X11 library

 3

3 GETTING STARTED

3.1 Installation
Mac OS:
(1) Download and install XCode:
https://itunes.apple.com/au/app/xcode/id497799835?mt=12

(2) Download and install XQuartz: http://robotics.ee.uwa.edu.au/eyesim/ftp/aux/mac/
or https://www.xquartz.org/
Note: Your system default XQuartz app may need to be removed and reinstall from
above link to include X11.

(3) Run following command in terminal to link the x11 library:
sudo ln -s /opt/X11/include/X11 /usr/local/include/X11

(4) Download and install EyeSim for macOS:
http://robotics.ee.uwa.edu.au/eyesim/ftp/

(5) Download and unzip eyesimX (EyeSim Examples):
https://robotics.ee.uwa.edu.au/eyesim/ftp/

Windows:
(1) Download and install EyeSim for Windows:
http://robotics.ee.uwa.edu.au/eyesim/ftp/

(2) Download cygwin.zip and Xming.zip from:
http://robotics.ee.uwa.edu.au/eyesim/ftp/aux/win/

(3) Unzip cygwin.zip to C:\Program Files (x86)\eyesim\cygwin

(4) Unzip Xming.zip to C:\Program Files (x86)\eyesim\Xming

(5) Download and unzip eyesimX (EyeSim Examples):
https://robotics.ee.uwa.edu.au/eyesim/ftp/

Linux(64bit):
(1) Install X11 library using following command:
 sudo apt-get install libx11-dev

(2) Download the latest EyeSim for Linux: http://robotics.ee.uwa.edu.au/eyesim/ftp/

3) Unarchive the .tar.gz file and run the 'install.sh' script

4) Download and unzip eyesimX (EyeSim Examples):
https://robotics.ee.uwa.edu.au/eyesim/ftp/

 4

3.2 System Menu
When the application is launched, a window as shown in Figure 3-1 will show up to
let you select the resolution and graphics quality, and if windowed check box is ticked,
the simulator will run in a window instead of full screen, you can view the key binds
for control the simulator by choosing the input tab.

Figure 3-1 Configuration window for Mac

The simulator main window shows after the Play! button is clicked, as shown in figure
3-2. The black plane in the middle is where the simulation will be, and the menus on
the upper-left corner help to set up the simulation.

 5

Figure 3-2 Simulator main window

File Simulator Camera Environment Misc Help

Open Terminal Add Robot Birdseye View Add Wall 1v1 Soccer RoBIOS API

Load Sim Add Object Follow Object Remove Wall 2v2 Soccer View Log

Save Sim Add Marker Reset Camera Paint Walls About

Load World View Robots Changelog

Save World View Objects

Create World Save State

Reset World Load State

Load Object Pause

Settings Resume

Exit

Table 3-1
The above table shows the menu functions of simulator, we can load world, save
world, add objects and robots using these menus, detailed information related to
each of the menu item will be introduced later.

 6

4 USING THE SYSTEM
Please make sure you have all the required files/folders as described in section 3.1 before
you proceed. Please make sure you launch the simulator application to perform following
supported functionalities.

4.1 Adjust the Viewpoint
To adjust the simulation plane to a better viewpoint, you can use →←↑↓ arrow keys
and w, s, a, d to move the plane around, and use the number key x and z to zoom in
and out.
You can have a birds eye view of the simulation by choose from menu Camera ->
Birdseye View. And you can reset the camera to normal viewpoint by Camera ->
Reset Camera.

4.2 Load/Reset/Save/Create World
To save the current world, select File -> Save World, simulator will save current
world settings in a file called SavedWorld.wld in the root of the EyeSim folder.
To load a world/maze file as simulation environment, in the main simulator window,
select File-> Load World submenu and then in the popped-up file selector, navigate
to and click on the intended world or maze file (with wld or maz extension). The
simulator will build simulation environment according to the selected file.
To reset the world/maze environment to the default one, select File-> Reset World
submenu. You can use the File -> Create World menu to adjust the dimensions of the
current world.

4.3 Add/Remove Wall
To manually create a customized world, you can select Environment -> Add Wall to
add wall, then you need to click two points in the simulator plane to set the starting
point and ending point of the wall.
To remove any wall, you can choose Environment -> Remove Wall, and then click
on the wall to be removed from environment, the selected wall will turn red when you
move cursor on to it indicating it has been selected.

4.4 Place Robots/Objects/Markers
To place a robot in the simulator, select Simulator-> Add Robot then selection a robot
to add to the simulation.
To place an object (a can or a soccer ball) in the simulator, select Simulator-> Add
Object , then select the kind of object you want to put in the simulation.
Then you can move the cursor with the robot/object stuck on it to any valid place
(robot/object is highlighted in green to indicate a valid placement spot, while in red
not valid), and click your mouse to place it.

 7

Though Simulator-> Add Marker, you can add a colored marker point to the world in
order to mark a position. You can also select a different color after the marker is placed,
by double clicking on it and choose a color in the pop up inspector.

4.5 Inspect Robots/Objects/Markers
User can inspect the current status of any robot/object by double clicking on it, an
inspector window will pop up.

The robot inspector window:
Figure 4-1 shows the inspector window of an object.
The Camera tab provides a camera image, and you can control the level of noise added
to the image, by selecting Salt and Pepper and adjust the two parameters below.
The PSD tab shows the current psd readings of the robot, and you can also add errors
to the PSD sensors by selecting Error Enabled and adjust the parameters of mean and
std. Dev. of error. There's a toggle box called Visualize Sensor, when it is toggled,
simulator will show the PSD sensor ray cast when performing the PSDGet command.
The Driving tab shows the current x,y coordinates of the robot and the rotation value
Phi.
The Control tab can be used to select compiled simulation program files for simulation,
and disconnect the control at any time.

Figure 4-1 Inspector window (robots) Figure 4-2 Inspector window (objects)

The object inspector window:
Figure 4-2 shows the inspector window of an object, the information includes the name,

 8

id of the inspected object, x and y coordinates of the object against the lower-left corner
of the simulation plane, and the rotation parameter.

4.6 Relocate/Rotate a Robot/Object/Marker
You can move a robot, object or marker to any new valid spot after they have been
added to the simulation.
To move a robot/object, you can double click on the target to open the inspector
window, then click on the icon so it becomes grey, a marker doesn't require this
setting to move.
If you want to move the robot/object/marker, you can click on the target and drag your
cursor to the desired spot, then click again to place it.
If you want to rotate the robot/object, you click on the target and drag until it is picked
up and turned green, then use - and = key to control its rotation.

4.7 Relocate/Rotate a Robot/Object/Marker to Specified Value
Sometimes you want to move a robot/object/Marker to a specified position or rotate a
robot/object to a specified degree.
To specify the x,y position or rotation degree of a robot/object/marker, you need to
select submenu Simulator->Pause to make the position or rotation data editable, then
double click on the target to open inspector window, you can see now you can input
or change the position and rotation value of the target, after you typed in each desired
value, you need to click elsewhere to make it work, after finishing the relocation, you
should select Simulator->Resume to return to normal mode.

4.8 View all Robots/Objects
You can inspect all robots/objects in the simulation easier by selecting Simulator->
View Robots/View Objects submenu, this will create a list of all the robots/objects in
the simulation as shown in figure 4-3. You can inspect the current status of any
robot/object by simply clicking on the target in the list, and an inspector window of
that target will pop up.

 9

Figure 4-3 list of robots

4.9 Delete a Robot/Object/Marker
You can delete any robot/object/marker in the simulation by double clicking on the
target to open the inspector window, then click the icon to remove the target from
the simulation.

4.10 Save Sim/Load Sim/Save State/Load State
During the process of your simulation, you may want to save the whole current
simulation including the world, robots, objects and markers, you can select File ->
Save Sim, simulator will automatically save the current simulation to a file called
SavedSim.sim. You can restore the simulation at a later time by using File -> Load
Sim, and select the SavedSim.sim file. Alternately, you can use Similator -> Save
State, and Simulator -> Load State to quickly store and restore the simulation,
without having to save and fetch from a sim file.

4.11 Create & compile programs
To compile example programs, go the subfolders under example folder, where you can
find a file called Makefile together with other program files in C, type the following
command in your terminal to compile all programs in this folder:
 make
You will find one compiled file generated (in .x or .exe extension) for each program.

To compile your robot application program:

Mac OS:
Create a new folder, e.g. called "my" in eyesim folder. Then created a robot programe.g.
in C in this folder (e.g. drive.c).

 10

Open your mac terminal and cd to this folder. Type in following command to compile
this program:

gccsim -o drive.x drive.c
The above command will generate an executable file called “drive.x” in this folder.

Windows:
Create a new folder, e.g. called my at any place you want, and create a program file
called drive.c inside it.
In the simulator main window, select submenu File/Open Terminal , and the Cygwin
terminal will pop up.
You can see your current folder is called tmp under Cygwin folder, you can navigate
to your c disk using command:
 cd /cygdrive/c
Then further navigate to your my folder, and run command.
 gccsim -o drive.x drive.c

Advanced Windows Users (experience with cygwin / linux subsystem):
If you have an installed version of cygwin already on your machine, or are experienced
using the Linux subsystem for Windows, you can use either of these to run your
programs. The EyeSim libraries and header files are available by themselves.

Linux:
Create a new folder, e.g. called "my" in eyesim folder. Then created a robot program
e.g. in C in this folder (e.g. drive.c).
Open your terminal and cd to this folder. Type in following command to compile the
program:

gcc -o drive.x drive.c - L ../lib -I ../include -leyesim -lX11 -lm
The above command will generate an executable file called drive.x in this folder.

Sample Program: Here is a very simple robot program for your reference.
The program will drive a fixed distance of 600mm, then turn about 180˚.

#include "eyebot.h"

int main() {
 VWStraight(600, 30);
 VWWait();
 VWTurn(180,10);
 VWWait();
}

 11

4.12 Start Simulation
Requirements:
There should be at least one robot in the simulation, if not, you should add a new robot
to the simulation according to section 4.3.
There should be a compiled program file (with extension .x) placed in the folder. If
not, you should first create a program file and have it compiled according to section
4.9.
There are two ways to control a robot.

From command line:
For Mac OS/Linux:
Open terminal and navigate the folder of any executable files you have compiled and
run command: ./{your file name} to run the executable programs.
For Windows:
Open the cygwin terminal and navigate (cd) to the directory where the executable file
(e.g. drive.x) is located , then type: ./drive.x in terminal window.

A response in the terminal as shown in figure 4-4 is expected to show, indicating the
simulation is running, and you can watch the simulation in the application.

Figure 4-4 terminal response

Note: Multiple robots with different programs can be simulated concurrently. To start
them, add them all to a “.sim” file.

Select control program from robot inspector window:
By selecting executable programs for each robot in the simulation, we can control
multiple robots at the same time. Double click on any robot in the simulation, the
inspector window will show up (as shown in figure 4-1). Click on the Select Control
button, then navigate and select any compiled program file (with “.x” extension), the
robot simulation will then start. To terminate the robot program, click on the
Disconnect button in the inspector.

4.13 Pause/Resume/Speed up Simulation
You can pause and resume a simulation when the simulation is running, by selecting
Simulator->Pause to pause the current simulation, and Simulator->Resume to resume

 12

the simulation. You can also click on the icons on menu bar : to pause,
resume and speed up the simulation.

4.14 Add Trace to Robot
You can add trace to the robot during a simulation by double clicking on the target
robot to show the inspector window, then click on the icon on the upper right
corner of the inspector window to may it highlighted instead of grey, you will see a
green trace added to the route it has covered.

5 LOADING FILES
EyeSim supports the loading of the following external files:

• .robi files for custom Robots
• .esObj files for custom Objects
• .wld or .maz files for custom environments
• .sim files for preconfigured simulations

These files are standard text documents, with the appropriate extensions, and contain a
series of commands to pass to the simulator. Each command begins with a keyword, as is
followed by arguments separated by whitespace. An argument can be contained by
double quotes (“”) if it contains a whitespace itself (such as a path to a file).

5.1 .robi Files
A .robi file specifies the parameters for a custom robot. Any line that begins with a #
is treated as a comment, and is not processed by EyeSim. The keywords and
corresponding arguments are as follows:

Keyword Arguments Specification
Example

drive One of the following:
DIFFERENTIAL_DRIVE
ACKERMANN_DRIVE
OMNI_DRIVE

name Name of the robot
MyRobot

mass Mass in kg, followed by position center of mass in mm (kg x y z)
5 0 30 -50

speed Maximum linear velocity in mm/s
600

turn Maximum rotational velocity in deg/s
300

 13

model Path to a .obj model, x y z offset (in mm), rotation about x y z
axis (in degrees)
“\Robots\Models\LabBot.obj” 14 0 0 0 90 0

axis Distance between the center of the robot, and the center of the
axis (vertical, horizontal in mm)
22.7 10.8

psd Id number, PSD name, position relative to robot’s center x y z (in
mm), and rotation x y z (in deg)
1 PSD_LEFT 30 0 80 0 90 0

camera Camera position relative to robot x y z (in mm), default pan and
tilt (in deg), max pan and tilt (in deg)
40 50 70 0 0 90 90

wheel Wheel diameter (in mm), maximum rotational velocity (in
deg/s), encoder ticks per revolution, distance between wheels
(track, in mm)
45 3600 540 70

lidar position relative to robot’s center x y z (in mm), and rotation x y
z (in deg), angular range [1…360], tilt angle relative to driving
plane (in deg, between -90 and 90), number of LIDAR points
0 0 0 0 0 0 180 10 360

thruster Id number, thruster name, thruster diameter, max speed, position
relative to robot’s center x y z (in mm), and rotation x y z (in
deg)
1 THRUSTER_LEFT 180 1000 -320 290 -170 90 0 0

fin Id number, fin name, axis, max angle, size x y z (mm), and
position relative to robot’s center x y z (mm)
1 FIN_UPPER Y 90 10 100 100 0 250 -190

buoyancy Volume of robot (m^3)
0.012

turn_offset Offset value
-3

The first non-comment line of a .robi file must be the drive keyword and arguments.
After a robot is loaded, it will be added to the Add Robot submenu (under
Simulator), specified by the name parameter.

5.2 .esObj files
Custom objects can be loaded with .esObj files. These are simple world objects that
interact physically with the robots. The keywords for this type of file is as follows:

 14

Keyword Arguments Specification
Example

name Name of the object
Bottle

obj Path to a .obj file
“\Objects\Models\Bottle.obj”

scale Scale of the object (modifies model size, positive number)
0.1

mass Mass (in kg), center of mass x y z (in mm)
1 0 0 0

collider capsule Center of capsule x y z (in mm), radius (in mm), height (in mm),
vertical axis (character x, y, or z)
0 0 0 1 3 y

collider sphere Center of sphere x y z (in mm), radius (in mm)
0 0 0 1

collider box Center of box x y z (in mm) side length of box x y z (in mm)
0 0 0 2 2 2

buoyancy Volume of object (m^3)
0.0012

fixed N/A

An object consists of multiple colliders, to allow more complicated objects to be
created. All the positions are relative to the center of the model.

5.3 .wld and .maz files
Custom environments can be loaded with .wld and .maz files. A .wld file consists of
a floor, walls, and an optional floor texture. The floor can be specified by the
keyword floor followed by the width and height in mm:
 floor 2000 2000
Or by the width and height keywords
width 2000
height 2000
A texture to apply to the floor is specified by the keyword floor_texture, followed by
a path to a .png file.
Walls have no keyword, and are simply lines with 4 numbers: x1 y1 x2 y2 eg:
 0 0 1000 1000
Will create a diagonal wall from (0, 0) to (1000,1000).

 15

Maze files, specified by .maz, contain an ASCII representation of what the maze
looks like, using the characters | and _, with the very last line being the wall size in
mm. An example of a maze:

5.4 .sim files
A sim file is used to store configurations, for quickly repeating experiments, by
setting up the environment and objects. A sim file can consist of the following
keywords:

Keyword Arguments Specification
Example

world Path to a .wld or .maz file
“\Worlds\MyWorld.wld”

robi Path to a .robi file
“\Robots\MyRobot.robi”

object Path to an .esObj file
“\Objects\MyObject.esObj”

object_name Name of an actual object, position x y (in mm) rotation phi (in
deg), path to executable (if a robot)
labbot 1000 1000 0 “\Programs\Drive.x”
can 1500 1500 0

marker Position of marker x y (in mm), color of marker r g b (0 to 255)
1000 1000 255 0 255

settings Toggle various in-game settings.
VIS – Enable PSD visualization for all robots
TRACE – Enable path tracing for all robots
Parameters can be used together, e.g.:
‘settings VIS TRACE’

Note that for object_name, the keyword is the name of the object itself (ie labbot, s4,
can, etc.) This can also be the name of a robot or object that has been loaded
previously with the robi or obj keywords.

 16

6 ROBOT MANIPULATORS
Apart from driving and swimming robot, EyeSim can also simulate robot manipulators.
The popular UR5 robot is predefined in the library. In a “.sim” file, a UR 5 robot can be
placed with a single line command, e.g. at position 1m, 1m, zero rotation and executable
program file “joints.x”:

 UR5 1000 1000 0 joints.x

The application program can then set each individual robot joint to an angle in range [0,
255] by using the “SEVOSet” command. All joints are labeled from 1, so for the UR5 the
joints are [1, 6]. E.g. for setting joint number 4 to its middle position (128), use the program
command:

SERVOSet(4, 128)

New manipulator designs can be created through a custom “.robi” file. Each manipulator
joint is specified there with four parameters in accordance to the Denavit-Hartenberg (DH)
Notation: d, theta, r, alpha
This example for a single link

 8000(-4000|2000), 0(0|180), 0(0|0), 90(0|0)
means:

 d: length of 800.0 mm, linear joint range is relative;
here range between 8000-4000 = 4000 and 400+2000 = 10000

 theta: angle of 0°, angular joint range is absolute;
here range between 0 and 180 degrees

 r: length 0.0 mm long, no range – so no motion on this parameter
 alpha: angle of 90°, no motion on this parameter

Note:
• Use a colon symbol “:” to separate subsequent joints.
• Use keyword “gripper” to add a standard gripper as end-effector

The following “.robi” script file creates a 4-dof robot (1 linear and 3 rotary joints).
drive MANIPULATOR_DRIVE
name "custom"
parameters 8000(-4000|2000), 0(0|180), 0(0|0), 90(0|0) :
 4000(0|0), 0(0|180), 0(0|0), 90(0|0) :
 2000(0|0), 0(0|180), 0(0|0), 0(0|0)
gripper

To move a joint, use the command SERVOSet: Each limb has 4 parameters (d, theta, r,
alpha), so IDs [1..4] are for the first joint, IDs [5..8] are for the second joint, and so on.

 17

Examples:
• To set ‘d’ of the first limb, its ID would be 1.
• To set ‘theta’ of the third limb, its ID would be 10.
• To set the gripper of a 3-joint manipulator, its ID would be 13 (3*4 + 1).

All parameters can be set between 1 and 255, these scale between the range set upon
creation. For example,

SERVOSet(1, 255);
will extend ‘d’ of the first limb to its maximum length (10000 in the example).

SERVOSet(13, 1);
will open the gripper, assuming it is a 3-joint robot.

Mounting Manipulators onto Robot Vehicles
Mounting of a manipulator is done in the sim file:

1) LabBot 1194 780 89 circles.x
2) Manipulator LittleArm.robi 0 0 0 -45 0 0 mount 1 theta_set.x

First, the vehicle is created in line (1). The Manipulator is then added in line (2). It refers
to the description file “LittleArm.robi”, which contains its specifications.
The next 6 parameters determine the relative position and angle (x, y, z, alpha, beta, gamma)
on the mounted vehicle. The command ‘mount 1’ tells the system onto which robot vehicle
the manipulator is being mounting. Here it mounts the manipulator to the first robot defined
in the simulation.

7 BUG REPORTING
If you have detected any bug or considered any function missing or needed to be improved
while using this EyeSim-VR simulator, you are highly encouraged to report the bug or
suggestion to us for further corrections and improvements.
We are using Bugzilla as an online bug-reporting system, you will see the main page of
Bugzilla as shown in figure 5-1 by accessing following link:
http://robotics.ee.uwa.edu.au/bugzilla/.

 18

 Figure 5-1 Bugzilla

7.1 Create an Account/login
Create account
If it is the first time you are using this system, you should open a new account by
clicking on the Open a New Account icon, then follow the steps to create your account.
(note: sometimes it may take a few minutes for Bugzilla to send the registration email,
please be patient). you will automatically get logged in after you have created your
account.
Log in
You can log in directly if you have an account through the LogIn menu.

7.2 File a Bug
After logging in, you can click the File a Bug icon to report a bug. Then after clicking
on Robot-VR as selected product, you will see a report form as shown in figure 5-2.
Please select the specific component that is related to the bug, and Severity of the bug,
Hardware type of the computer you are using and the OS.
In the Summary section, you are supposed to write a succinct sentence summarizing
the bug.
In the Description section, the details of the bug, like when it occu4rs, what is the
setup of environment, what are the previous actions you have performed, what you
suspect has led to the bug should be presented.
In the Attachment section, you can add attachment like a snapshot of the bug, the
error message or some other supporting files. Then you can click on Submit Bug button
to submit the bug report.

 19

Figure 5-2 Bug report form

 20

Appendix A –– RoBIOS-7 Library Functions
See latest update on: http://roblab.org/eyebot/Robios7.html

LCD	Output	
int LCDPrintf(const char *format, ...); // Print string and arguments on LCD
int LCDSetPrintf(int row, int column, const char *format, ...); // Printf from given position
int LCDClear(void); // Clear the LCD display and display buffers
int LCDSetPos(int row, int column); // Set cursor position in pixels for subsequent printf
int LCDGetPos(int *row, int *column); // Read current cursor position
int LCDSetColor(COLOR fg, COLOR bg); // Set color for subsequent printf
int LCDSetFont(int font, int variation); // Set font for subsequent print operation
int LCDSetFontSize(int fontsize); // Set font-size (7..18) for subsequent print operation
int LCDSetMode(int mode); // Set LCD Mode (0=default)
int LCDMenu(char *st1, char *st2, char *st3, char *st4); // Set menu entries for soft buttons
int LCDMenuI(int pos, char *string, COLOR fg, COLOR bg); // Set menu for i-th entry with color [1..4]
int LCDGetSize(int *x, int *y); // Get LCD resolution in pixels
int LCDPixel(int x, int y, COLOR col); // Set one pixel on LCD
COLOR LCDGetPixel (int x, int y); // Read pixel value from LCD
int LCDLine(int x1, int y1, int x2, int y2, COLOR col); // Draw line
int LCDArea(int x1, int y1, int x2, int y2, COLOR col, int fill); // Draw filled/hollow rectangle
int LCDCircle(int x1, int y1, int size, COLOR col, int fill); // Draw filled/hollow circle
int LCDImageSize(int t); // Define image type for LCD (default QVGA; 0,0; full)
int LCDImageStart(int x, int y, int xs, int ys); // Define image start position and size
int LCDImage(BYTE *img); // Print color image at screen start pos. and size
int LCDImageGray(BYTE *g); // Print gray image [0..255] black..white
int LCDImageBinary(BYTE *b); // Print binary image [0..1] white..black
int LCDRefresh(void); // Refresh LCD output

Keys	
int KEYGet(void); // Blocking read (and wait) for key press (returns KEY1..KEY4)
int KEYRead(void); // Non-blocking read of key press (returns NOKEY=0 if no key)
int KEYWait(int key); // Wait until specified key has been pressed (use ANYKEY for any key)
int KEYGetXY (int *x, int *y); // Blocking read for touch at any position, returns coordinates
int KEYReadXY(int *x, int *y); // Non-blocking read for touch at any position, returns coordinates
 Key Constants: KEY1..KEY4, ANYKEY, NOKEY

Camera	
int CAMInit(int resolution); // Change camera resolution (will also set IP resolution)
int CAMRelease(void); // Stops camera stream
int CAMGet(BYTE *buf); // Read one color camera image
int CAMGetGray(BYTE *buf); // Read gray scale camera image

For	the	following	functions,	the	Python	API	differs	slightly	as	indicated.
def CAMGet () -> POINTER(c_byte):
def CAMGetGray() -> POINTER(c_byte):

Image Processing
int IPSetSize(int resolution); // Set IP resolution using CAM constants (also set by CAMInit)
int IPReadFile(char *filename, BYTE* img); // Read PNM file, return 3:color, 2:gray, 1:b/w, -1:error
int IPWriteFile(char *filename, BYTE* img); // Write color PNM file
int IPWriteFileGray(char *filename, BYTE* gray); // Write gray scale PGM file
void IPLaplace(BYTE* grayIn, BYTE* grayOut); // Laplace edge detection on gray image
void IPSobel(BYTE* grayIn, BYTE* grayOut); // Sobel edge detection on gray image
void IPCol2Gray(BYTE* imgIn, BYTE* grayOut); // Transfer color to gray

 21

void IPGray2Col(BYTE* imgIn, BYTE* colOut); // Transfer gray to color
void IPRGB2Col (BYTE* r, BYTE* g, BYTE* b, BYTE* imgOut); // Transform 3*gray to color
void IPCol2HSI (BYTE* img, BYTE* h, BYTE* s, BYTE* i); // Transform RGB image to HSI
void IPOverlay(BYTE* c1, BYTE* c2, BYTE* cOut); // Overlay c2 onto c1, all color images
void IPOverlayGray(BYTE* g1, BYTE* g2, COLOR col, BYTE* cOut); // Overlay gray image g2 onto g1, using col
COLOR IPPRGB2Col(BYTE r, BYTE g, BYTE b); // PIXEL: RGB to color
void IPPCol2RGB(COLOR col, BYTE* r, BYTE* g, BYTE* b); // PIXEL: color to RGB
void IPPCol2HSI(COLOR c, BYTE* h, BYTE* s, BYTE* i); // PIXEL: RGB to HSI for pixel
BYTE IPPRGB2Hue(BYTE r, BYTE g, BYTE b); // PIXEL: Convert RGB to hue (0 for gray)
void IPPRGB2HSI(BYTE r, BYTE g, BYTE b, BYTE* h, BYTE* s, BYTE* i); // PIXEL: Convert RGB to hue, sat, int

Distance Sensors
int PSDGet(int psd); // Read distance value in mm from PSD sensor [1..6]
int PSDGetRaw(int psd); // Read raw value from PSD sensor [1..6]
int LIDARGet(int distance[]); // Measure distances in [mm]; default 360Â° and 360 points
int LIDARSet(int range, int tilt, int points); // range [1..360Â°], tilt angle down, number of points

Servos and Motors
int SERVOSet(int servo, int angle); // Set servo [1..14] position to [1..255] or power down (0)
int SERVOSetRaw (int servo, int angle); // Set servo [1..14] position bypassing HDT
int SERVORange(int servo, int low, int high); // Set servo [1..14] limits in 1/100 sec
int MOTORDrive(int motor, int speed); // Set motor [1..4] speed in percent [-100 ..+100]
int MOTORDriveRaw(int motor, int speed); // Set motor [1..4] speed bypassing HDT
int MOTORPID(int motor, int p, int i, int d); // Set motor [1..4] PID controller values [1..255]
int MOTORPIDOff(int motor); // Stop PID control loop
int MOTORSpeed(int motor, int ticks); // Set controlled motor speed in ticks/100 sec
int ENCODERRead(int quad); // Read quadrature encoder [1..4]
int ENCODERReset(int quad); // Set encoder value to 0 [1..4]

V-Omega Drive System
int VWSetSpeed(int linSpeed, int angSpeed); // Set fixed linSpeed [mm/s] and [degrees/s]
int VWGetSpeed(int *linSspeed, int *angSpeed); // Read current speeds [mm/s] and [degrees/s]
int VWSetPosition(int x, int y, int phi); // Set robot position to x, y [mm], phi [degrees]
int VWGetPosition(int *x, int *y, int *phi); // Get robot position as x, y [mm], phi [degrees]
int VWStraight(int dist, int lin_speed); // Drive straight, dist [mm], lin. speed [mm/s]
int VWTurn(int angle, int ang_speed); // Turn on spot, angle [degrees], ang. speed [degrees/s]
int VWCurve(int dist, int angle, int lin_speed);// Drive Curve, dist [mm], angle (orientation change)
[degrees], lin. speed [mm/s]
int VWDrive(int dx, int dy, int lin_speed); // Drive x[mm] straight and y[mm] left, x>|y|
int VWRemain(void); // Return remaining drive distance in [mm]
int VWDone(void); // Non-blocking check whether drive is finished (1) or not
(0)
int VWWait(void); // Suspend current thread until drive operation has finished
int VWStalled(void); // Returns number of stalled motor [1..2], 3 if both stalled

Radio Communication
int RADIOInit(void); // Start radio communication
int RADIOGetID(void); // Get own radio ID
int RADIOSend(int id, char* buf); // Send string (Null terminated) to ID destination
int RADIOReceive(int *id_no, char* buf, int size); // Wait for message, then fill in sender ID and data,
returns number of chars received
int RADIOCheck(void); // Check if message is waiting: 0 or 1 (non-blocking); -1 if
error
int RADIOStatus(int IDlist[]); // Returns number of robots (incl. self) and list of IDs in
network

 22

int RADIORelease(void); // Terminate radio communication

ID numbers match last byte of robots' IP addresses.

For	the	following	functions,	the	Python	API	differs	slightly	as	indicated.
def RADIOReceive(int size) -> [id_no, buf] # max 1024 Bytes
def RADIOStatus() -> int IDList[] # max 256 entries

Simulation-Only Commands
The following commands are only available in simulation, not on readl robots.
void SIMGetRobot (int id, int *x, int *y, int *z, int *phi);
void SIMSetRobot (int id, int x, int y, int z, int phi);
void SIMGetObject(int id, int *x, int *y, int *z, int *phi);
void SIMSetObject(int id, int x, int y, int z, int phi);
int SIMGetRobotCount()
int SIMGetObjectCount()

RoBIOS-Only Commands
Simulation is happening at an intermediate level, so the following low-level RoBIOS functions are not
available in simulation: Quadrature encoder, Serial communication, Analog and Digital I/O, IRTV (infrared
TV remote).

