

EyeSim VR

User’s Manual

EyeSim VR Team

November 3, 2017

[Revised November 13, 2018]

1 GENERAL INFORMATION

This simulator will let users simulate the robots’ execution of functions

specified in RoBIOS-7 file. It accepts and runs customized script files

written in C, and simulates robot behaviors of each command. User can

select or specify a world or maze file for the simulator to build the

simulation environment accordingly. User can also create any number of

robots of any kind provided in the robot models, and the robot added last

will be controlled by the user script. Objects like cans and soccer balls can

also be added to the simulation, and physical interactions between these

objects and robots can also be simulated.

2 SYSTEM CONFIGURATION

Following is a table of tested OS and prerequisites for each OS. Please

note that other system versions may also work, they are just not tested yet, if

your system version cannot work properly, please file a bug according to

section 5 or upgrade your system to the tested version.

The required supporting software should be installed in their default

directory before start using the simulator.

Operating Systems OS Version Prerequisites

Windows Windows 8.1, 10 None

Mac OS 10.10.X Install Xcode and Xquartz

Linux 64bit Install X11 library

3 GETTING STARTED

3.1 Installation

Mac OS:

(1) Download and install XCode:

https://itunes.apple.com/au/app/xcode/id497799835?mt=12

(2) Download and install XQuartz:

http://robotics.ee.uwa.edu.au/eyesim/ftp/aux/mac/ or

https://www.xquartz.org/

 Note: Your system default XQuartz app may need to be

removed and reinstall from above link to include X11.

(3) Run following command in terminal to link the x11 library:

 sudo ln -s /opt/X11/include/X11 /usr/local/include/X11

(4) Download and install EyeSim for macOS:

http://robotics.ee.uwa.edu.au/eyesim/ftp/

(5) Download and unzip eyesimX (EyeSim Examples):

https://robotics.ee.uwa.edu.au/eyesim/ftp/

Windows:

(1) Download and install EyeSim for Windows:

http://robotics.ee.uwa.edu.au/eyesim/ftp/

(2) Download cygwin.zip and Xming.zip from:

http://robotics.ee.uwa.edu.au/eyesim/ftp/aux/win/

(3) Unzip cygwin.zip to C:\Program Files (x86)\eyesim\cygwin

(4) Unzip Xming.zip to C:\Program Files (x86)\eyesim\Xming

(5) Download and unzip eyesimX (EyeSim Examples):

https://robotics.ee.uwa.edu.au/eyesim/ftp/

Linux(64bit):

(1) Install X11 library using following command:

 sudo apt-get install libx11-dev

(2) Download the latest EyeSim for Linux:

http://robotics.ee.uwa.edu.au/eyesim/ftp/

(3) Unarchive the .tar.gz file and run the 'install.sh' script

(4) Download and unzip eyesimX (EyeSim Examples):

https://robotics.ee.uwa.edu.au/eyesim/ftp/

3.2 System Menu

When the application is launched, a window as shown in Figure 3-

1 will show up to let you select the resolution and graphics quality, and

if windowed check box is ticked, the simulator will run in a window

instead of full screen, you can view the keybinds for control the

simulator by choosing the input tab.

Figure 3-1 Configuration window for Mac

The simulator main window shows after the Play! button is clicked,

as shown in figure 3-2. The black plane in the middle is where the

simulation will be, and the menus on the upper-left corner help to set

up the simulation.

Figure 3-2 Simulator main window

File Simulator Camera Environment Misc Help

Open

Terminal

Add Robot Birdseye View Add Wall 1v1 Soccer RoBIOS API

Load Sim Add Object Follow Object Remove

Wall

2v2 Soccer View Log

Save Sim Add Marker Reset Camera Paint Walls About

Load World View Robots Changelog

Save World View Objects

Create World Save State

Reset World Load State

Load Object Pause

Settings Resume

Exit

Table 3-1

This above table shows the menu functions of simulator, we can

load world, save world, add objects and robots using these menus,

detailed information related to each of the menu item will be

introduced later.

4 USING THE SYSTEM

Please make sure you have all the required files/folders as described

in section 3.1 before you proceed. Please make sure you launch the

simulator application to perform following supported functionalities.

4.1 Adjust the Viewpoint

To adjust the simulation plane to a better viewpoint, you can use

→←↑↓ arrow keys and w, s, a, d to move the plane around, and use

the number key x and z to zoom in and out.

You can have a birdseye view of the simulation by choose from

menu Camera -> Birdseye View. And you can reset the camera to

normal viewpoint by Camera -> Reset Camera.

4.2 Load/Reset/Save/Create World

To save the current world, select File -> Save World, simulator

will save current world settings in a file called SavedWorld.wld in the

root of the EyeSim folder.

To load a world/maze file as simulation environment, in the main

simulator window, select File-> Load World submenu and then in the

popped-up file selector, navigate to and click on the intended world or

maze file (with wld or maz extension). The simulator will build

simulation environment according to the selected file.

To reset the world/maze environment to the default one, select

File-> Reset World submenu.

You can use the File -> Create World menu to adjust the

dimensions of the current world.

4.3 Add/Remove Wall

To manually create a customized world, you can select

Environment -> Add Wall to add wall, then you need to click two

points in the simulator plane to set the starting point and ending point

of the wall.

To remove any wall, you can choose Environment -> Remove

Wall, and then click on the wall to be removed from environment, the

selected wall will turn red when you move cursor on to it indicating it

has been selected.

4.4 Place Robots/Objects/Markers

 To place a robot in the simulator, select Simulator-> Add Robot

then selection a robot to add to the simulation.

 To place an object (a can or a soccer ball) in the simulator, select

Simulator-> Add Object , then select the kind of object you want to

put in the simulation.

Then you can move the cursor with the robot/object stuck on it to

any valid place (robot/object is highlighted in green to indicate a valid

placement spot, while in red not valid), and click your mouse to place

it.

Though Simulator-> Add Marker, you can add a colored marker

point to the world in order to mark a position. You can also select a

different color after the marker is placed, by double clicking on it and

choose a color in the pop up inspector.

4.5 Inspect Robots/Objects/Markers

User can inspect the current status of any robot/object by double

clicking on it, an inspector window will pop up.

The robot inspector window:

Figure 4-1 shows the inspector window of an object.

The Camera tab provides a camera image, and you can control the

level of noise added to the image, by selecting Salt and Pepper and

adjust the two parameters below.

The PSD tab shows the current psd readings of the robot, and you

can also add errors to the PSD sensors by selecting Error Enabled

and adjust the parameters of mean and std. Dev. of error. There's a

toggle box called Visualize Sensor, when it is toggled, simulator will

show the PSD sensor ray cast when performing the PSDGet command.

The Driving tab shows the current x,y coordinates of the robot and

the rotation value Phi.

The Control tab can be used to select compiled simulation script

files for simulation, and disconnect the control at any time.

The object inspector window:

Figure 4-2 shows the inspector window of an object, the

information includes the name, id of the inspected object, x and y

coordinates of the object against the lower-left corner of the simulation

plane, and the rotation parameter.

Figure 4-1 Inspector window Figure 4-2 Inspector window

for robots for objects

4.6 Relocate/Rotate a Robot/Object/Marker

You can move a robot, object or marker to any new valid spot after

they have been added to the simulation.

To move a robot/object, you can double click on the target to open

the inspector window, then click on the icon so it becomes grey,

a marker doesn't require this setting to move.

If you want to move the robot/object/marker, you can click on the

target and drag your cursor to the desired spot, then click again to place

it.

If you want to rotate the robot/object, you click on the target and

drag until it is picked up and turned green, then use - and = key to

control its rotation.

4.7 Relocate/Rotate a Robot/Object/Marker to Specified Value

Sometimes you want to move a robot/object/Marker to a specified

position or rotate a robot/object to a specified degree.

To specify the x,y position or rotation degree of a

robot/object/marker, you need to select submenu Simulator->Pause

to make the position or rotation data editable, then double click on the

target to open inspector window, you can see now you can input or

change the position and rotation value of the target, after you typed in

each desired value, you need to click elsewhere to make it work, after

finishing the relocation, you should select Simulator->Resume to

return to normal mode.

4.8 View all Robots/Objects

You can inspect all robots/objects in the simulation easier by

selecting Simulator-> View Robots/View Objects submenu, this will

create a list of all the robots/objects in the simulation as shown in

figure 4-3. You can inspect the current status of any robot/object by

simply clicking on the target in the list, and an inspector window of

that target will pop up.

Figure 4-3 list of robots

4.9 Delete a Robot/Object/Marker

You can delete any robot/object/marker in the simulation by

double clicking on the target to open the inspector window, then click

the icon to remove the target from the simulation.

4.10 Save Sim/Load Sim/Save State/Load State

During the process of your simulation, you may want to save the whole

current simulation including the world, robots, objects and markers,

you can select File -> Save Sim, simulator will automatically save the

current simulation to a file called SavedSim.sim. You can restore the

simulation at a later time by using File -> Load Sim, and select the

SavedSim.sim file. Alternately, you can use Similator -> Save State,

and Simulator -> Load State to quickly store and restore the

simulation, without having to save and fetch from a sim file.

4.11 Create & compile scripts

To compile example scripts, go the subfolders under example

folder, where you can find a file called Makefile together with other

script files in C, type following command in your terminal to

compile all the scripts in this folder:

 make

You will find one compiled file generated (in .x or .exe extension)

for each script file.

To compile your own script file,

For Mac OS:

To compile your own script file You can create a folder called

"myscripts" in eyesim folder. Then created a script file in C in this

folder (for e.g. main.c).

Open your mac terminal and cd to this folder. Type in following

command to compile the script files in this folder, you can also lauch

a terminal window using File -> Terminal :

gccsim -o program main.c

The above command will generate an executable file called

program in this folder.

For Windows:

 Create a folder called myscripts at any place you want, and create

a script file called main.c inside it.

In simulator main window, select submenu File/Open Terminal ,

and the Cygwin terminal will pop up.

 You can see your current folder is called tmp under Cygwin folder,

you can navigate to your c disk using command:

 cd /cygdrive/c

 Then further navigate to your myscripts folder, and run command.

 gccsim -o program main.c

Advanced Windows Users (experience with cygwin / linux subsystem):

 If you have an installed version of cygwin already on your machine,

or are experienced using the Linux subsystem for Windows, you can

use either of these to run your programs. The eyesim libraries and

header files are available by themselves.

For Linux:

To compile your own script file You can create a folder called

"myscripts" in eyesim folder. Then created a script file in C in this

folder (for e.g. main.c).

Open your terminal and cd to this folder. Type in following

command to compile the script files in this folder:

gcc main.c - L ../lib -I ../include -leyesim -lX11 -lm -o program

The above command will generate an executable file called program

in this folder.

Note 1: Appendix A shows a list of RoBIOS-7 functions that are not

supported by the simulator, all other functions in RoBIOS-7 should

work in the script.

Note 2: Following is a very simple sample script for your reference.

#include <stdio.h>

#include "eyebot.h"

int main() {

 VWStraight(600, 30);

 VWWait();

 VWTurn(180,10);

}

4.12 Start Simulation

Requirements:

There should be at least one robot in the simulation, if not, you

should add a new robot to the simulation according to section 4.3.

There should be a compiled script file (with extension .x)placed in

the folder, if not, you should first create a script file and have it

compiled according to section 4.9.

There are two ways to control a robot with script.

From command line:

For Mac OS/Linux:

Open terminal and navigate the folder of any executable files you

have compiled and run command: ./{your file name} to run the

executable script.

For Windows:

Open the cygwin terminal and navigate (cd) to the directory

where the executable file (program.exe) is located , then

run: ./program in terminal.

A response in the terminal as shown in figure 4-4 is expected to

show, indicating the simulation is running, and you can watch the

simulation in the application.

Figure 4-4 terminal response

Note: Currently only one robot can be controlled by the script, if you

have multiple robots added to the simulation plane, only the last added

robot will respond to the script.

Select control script from robot inspector window:

By selecting control script for each robot in the simulation, we can

control multiple robots at the same time. Double click on any robot in

the simulation, the inspector window will show up (as shown in figure

4-1). Click on the Select Control button, than navigate and select any

compiled script file (in .x extension), the robot will simulation the

selected script. To terminate the execution of the rest script commands,

just lick on Disconnect button in the inspector.

4.13 Pause/Resume/Speed up Simulation

You can pause and resume a simulation when the simulation is

running, by select Simulator->Pause to pause the current simulation,

and Simulator->Resume to resume the simulation. You can also click

on the icons on menu bar : to pause, resume and speed

up the simulation.

4.14 Add Trace to Robot

You can add trace to the robot during a simulation by double

clicking on the target robot to show the inspector window, then click

on the icon on the upper right corner of the inspector window to

may it highlighted instead of grey, you will see a green trace added to

the route it has covered.

5 LOADING FILES

EyeSim supports the loading of the following external files:

• .robi files for custom Robots

• .esObj files for custom Objects

• .wld or .maz files for custom environments

• .sim files for preconfigured simulations

These files are standard text documents, with the appropriate extensions,

and contain a series of commands to pass to the simulator. Each

command begins with a keyword, as is followed by arguments separated

by whitespace. An argument can be contained by double quotes (“”) if it

contains a whitespace itself (such as a path to a file).

5.1 .robi Files

A .robi file specifies the parameters for a custom robot. Any line that

begins with a # is treated as a comment, and is not processed by EyeSim.

The keywords and corresponding arguments are as follows:

Keyword Arguments Specification

Example

drive One of the following:

DIFFERENTIAL_DRIVE

ACKERMANN_DRIVE

OMNI_DRIVE

name Name of the robot

MyRobot

mass Mass in kg, followed by position centre of mass in mm (kg x y z)

5 0 30 -50

speed Maximum linear velocity in mm/s

600

turn Maximum rotational velocity in deg/s

300

model Path to a .obj model, x y z offset (in mm), rotation about x y z

axis (in degrees)

“\Robots\Models\LabBot.obj” 14 0 0 0 90 0

axis Distance between the centre of the robot, and the centre of the

axis (vertical, horizontal in mm)

22.7 10.8

psd Id number, PSD name, position relative to robots centre x y z (in

mm), and rotation x y z (in deg)

1 PSD_LEFT 30 0 80 0 90 0

camera Camera position relative to robot x y z (in mm), default pan and

tilt (in deg), max pan and tilt (in deg)

40 50 70 0 0 90 90

wheel Wheel diameter (in mm), maximum rotational velocity (in

deg/s), encoder ticks per revolution, distance between wheels

(track, in mm)

45 3600 540 70

lidar position relative to robots centre x y z (in mm), and rotation x y z

(in deg), angular range [1…360], tilt angle relative to driving

plane (in deg, between -90 and 90), number of LIDAR points

0 0 0 0 0 0 180 10 360

thruster Id number, thruster name, thruster diameter, max speed, position

relative to robots centre x y z (in mm), and rotation x y z (in deg)

1 THRUSTER_LEFT 180 1000 -320 290 -170 90 0 0

fin Id number, fin name, axis, max angle, size x y z (mm), and

position relative to robot’s centre x y z (mm)

1 FIN_UPPER Y 90 10 100 100 0 250 -190

buoyancy Volume of robot (m^3)

0.012

turn_offset Offset value

-3

The first non-comment line of a .robi file must be the drive keyword and

arguments. After a robot is loaded, it will be added to the Add Robot

submenu (under Simulator), specified by the name parameter.

5.2 .esObj files

Custom objects can be loaded with .esObj files. These are simple world

objects that interact physically with the robots. The keywords for this

type of file is as follows:

Keyword Arguments Specification

Example

name Name of the object

Bottle

obj Path to a .obj file

“\Objects\Models\Bottle.obj”

scale Scale of the object (modifies model size, positive number)

0.1

mass Mass (in kg), centre of mass x y z (in mm)

1 0 0 0

collider capsule Centre of capsule x y z (in mm), radius (in mm), height (in mm),

vertical axis (character x, y, or z)

0 0 0 1 3 y

collider sphere Centre of sphere x y z (in mm), radius (in mm)

0 0 0 1

collider box Centre of box x y z (in mm) side length of box x y z (in mm)

0 0 0 2 2 2

buoyancy Volume of object (m^3)

0.0012

fixed N/A

An object consists of multiple colliders, to allow more complicated

objects to be created. All the positions are relative to the centre of the

model.

5.3 .wld and .maz files

Custom environments can be loaded with .wld and .maz files. A .wld file

consists of a floor, walls, and an optional floor texture. The floor can be

specified by the keyword floor followed by the width and height in mm:

 floor 2000 2000

Or by the width and height keywords

width 2000

height 2000

A texture to apply to the floor is specified by the keyword floor_texture,

followed by a path to a .png file.

Walls have no keyword, and are simply lines with 4 numbers: x1 y1 x2

y2 eg:

 0 0 1000 1000

Will create a diagonal wall from (0, 0) to (1000,1000).

Maze files, specified by .maz, contain an ASCII representation of what

the maze looks like, using the characters | and _, with the very last line

being the wall size in mm. An example of a maze:

5.4 .sim files

A sim file is used to store configurations, for quickly repeating

experiments, by setting up the environment and objects. A sim file can

consist of the following keywords:

Keyword Arguments Specification

Example

world Path to a .wld or .maz file

“\Worlds\MyWorld.wld”

robi Path to a .robi file

“\Robots\MyRobot.robi”

object Path to an .esObj file

“\Objects\MyObject.esObj”

object_name Name of an actual object, position x y (in mm) rotation phi (in

deg), path to executable (if a robot)

labbot 1000 1000 0 “\Programs\Drive.x”

can 1500 1500 0

marker Position of marker x y (in mm), color of marker r g b (0 to 255)

1000 1000 255 0 255

settings Toggle various in-game settings.

VIS – Enable PSD visualization for all robots

TRACE – Enable path tracing for all robots

Parameters can be used together, e.g.:

‘settings VIS TRACE’

Note that for object_name, the keyword is the name of the object itself

(ie labbot, s4, can, etc.) This can also be the name of a robot or object

that has been loaded previously with the robi or obj keywords.

6 BUG REPORTING

If you have detected any bug or considered any function missing or

needed to be improved while using this EyeSim-VR simulator, you are

highly encouraged to report the bug or suggestion to us for further

corrections and improvements.

We are using Bugzilla as an online bug-reporting system, you will see

the main page of Bugzilla as shown in figure 5-1 by accessing following

link: http://robotics.ee.uwa.edu.au/bugzilla/.

 Figure 5-1

6.1 Create an Account/login

Create account

If it is the first time you are using this system, you should open a

new account by clicking on the Open a New Account icon, then follow

the steps to create your account. (note: sometimes it may take a few

minutes for Bugzilla to send the registration email, please be patient).

you will automatically get logged in after you have created your

account.

http://robotics.ee.uwa.edu.au/bugzilla/

Log in

You can log in directly if you have an account through the LogIn

menu.

6.2 File a Bug

After logging in, you can click the File a Bug icon to report a bug.

Then after clicking on Robot-VR as selected product, you will see a

report form as shown in figure 5-2. Please select the specific

component that is related to the bug, and Severity of the bug,

Hardware type of the computer you are using and the OS.

In the Summary section, you are supposed to write a succinct

sentence summarizing the bug.

In the Description section, the details of the bug, like when it

occu4rs, what is the setup of environment, what are the previous

actions you have performed, what you suspect has led to the bug

should be presented.

In the Attachment section, you can add attachment like a snapshot

of the bug, the error message or some other supporting files. Then you

can click on Submit Bug button to submit the bug report.

http://robotics.ee.uwa.edu.au/cgi-bin/bugzilla/enter_bug.cgi?product=Robot-VR

Figure 5-2 Bug report form

Appendix A

RoBIOS-7 Functions Not Supported List

Servos and Motors (2 of the functions in RoBIOS-7)

int ENCODERRead(int quad); // Read quadrature encoder [1..4]

int ENCODERReset(int quad); // Set encoder value to 0 [1..4]

USB/Serial Communication (all functions in RoBIOS-7)

int SERInit(int interface, int baud,int handshake); // Init communication (see parameters below), interface

number as in HDT file

int SERSendChar(int interface, char ch); // Send single character

int SERSend(int interface, char *buf); // Send string (Null terminated)

char SERReceiveChar(int interface); // Receive single character

int SERReceive(int interface, char *buf, int size); // Receive String (Null terminated), returns number of

chars received

bool SERCheck(int interface); // Non-blocking check if character is waiting

int SERFlush(int interface); // Flush interface buffers

int SERClose(int interface); // Close Interface

Digital and Analog Input/Output (all functions in RoBIOS-7)

int DIGITALSetup(int io, char direction); // Set IO line [1..16] to i-n/o-ut/I-n pull-up/J-n pull-down

int DIGITALRead(int io); // Read and return individual input line [1..16]

int DIGITALReadAll(void); // Read and return all 16 io lines

int DIGITALWrite(int io, int state); // Write individual output [1..16] to 0 or 1

int ANALOGRead(int channel); // Read analog channel [1..8]

int ANALOGVoltage(void); // Read analog supply voltage in [0.01 Volt]

int ANALOGRecord(int channel, int iterations); // Record analog data (e.g. 8 for microphone) at 1kHz

(non-blocking)

int ANALOGTransfer(BYTE* buffer); // Transfer previously recorded data; returns

number of bytes

IR Remote Control (all functions in Robios-7)

int IRTVGet(void); // Blocking read of IRTV command

int IRTVRead(void); // Non-blocking read, return 0 if nothing

int IRTVFlush(void); // Empty IRTV buffers

int IRTVGetStatus(void); // Checks to see if IRTV is activated (1) or off (0)

