

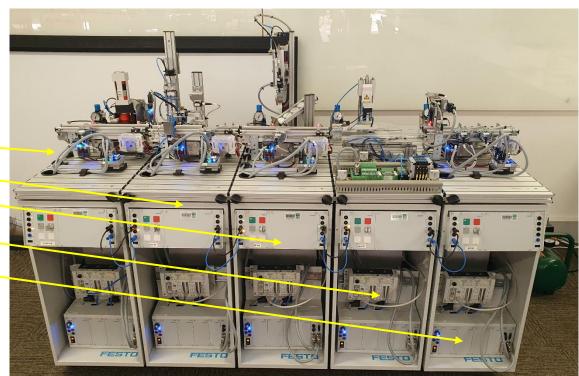
GENG5508: Festo automation lab

00000

00

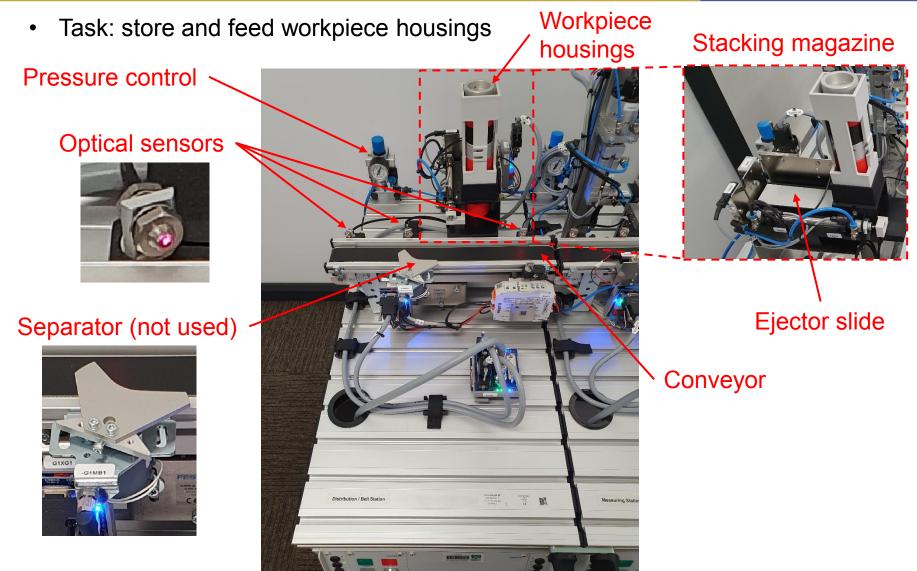
Demonstrator: Ken Foo

Contents

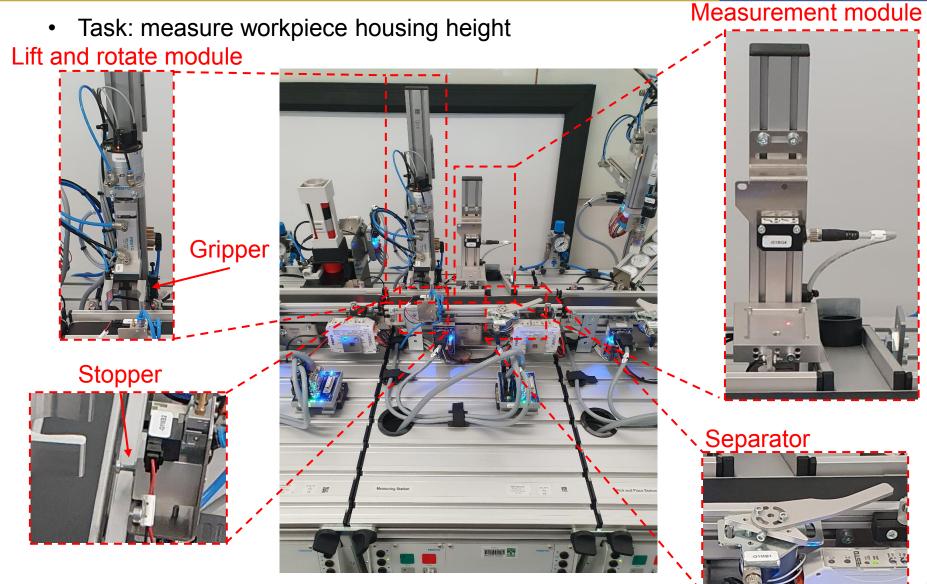


- Introduction to Festo
- Description of lab project
- Introduction to CODESYS
- Sequential Flow Chart (SFC) example
- Practical details and lab preparation

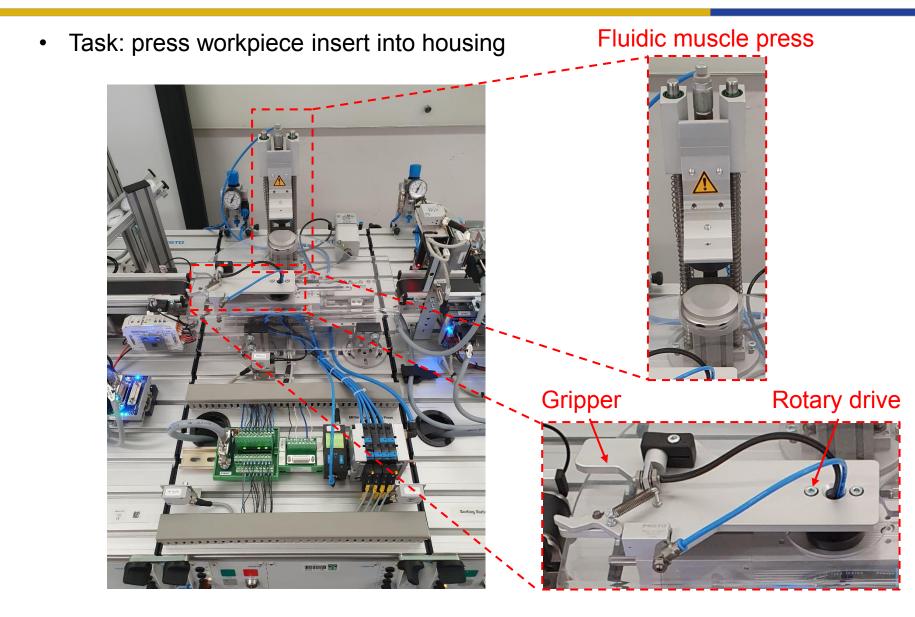
Festo introduction



- Festo is a German industrial control and automation company
 - Festo Didactic: provides educational and consultation services
- Festo Modular Production System (MPS): miniaturised production line used for educational purposes
- Simulates production of humidity (hygrometer) sensors
- Comprised of both electrical and pneumatic systems
- Composed of 5 stations:
 - Distribution station—
 - Measuring station -
 - Pick and place station
 - Pressing station
 - Sorting station

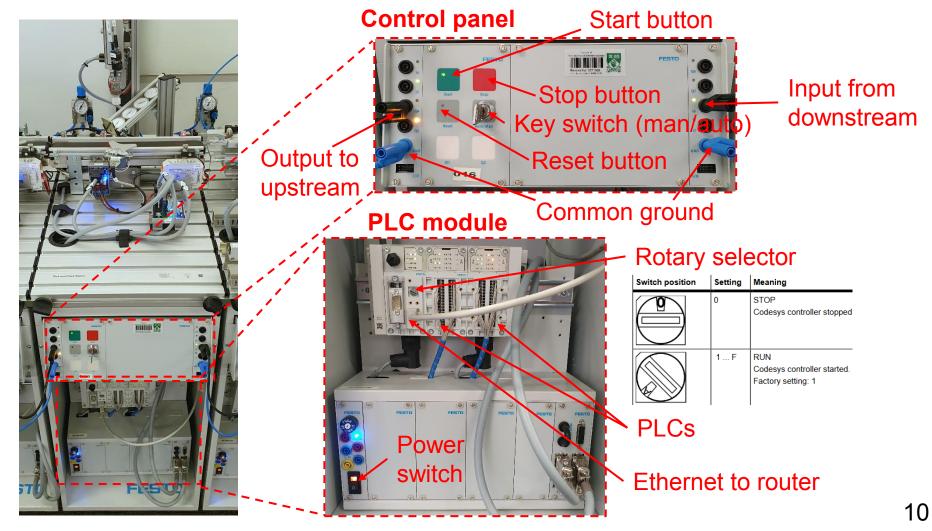

Festo: Distributing station


Festo: Measuring station

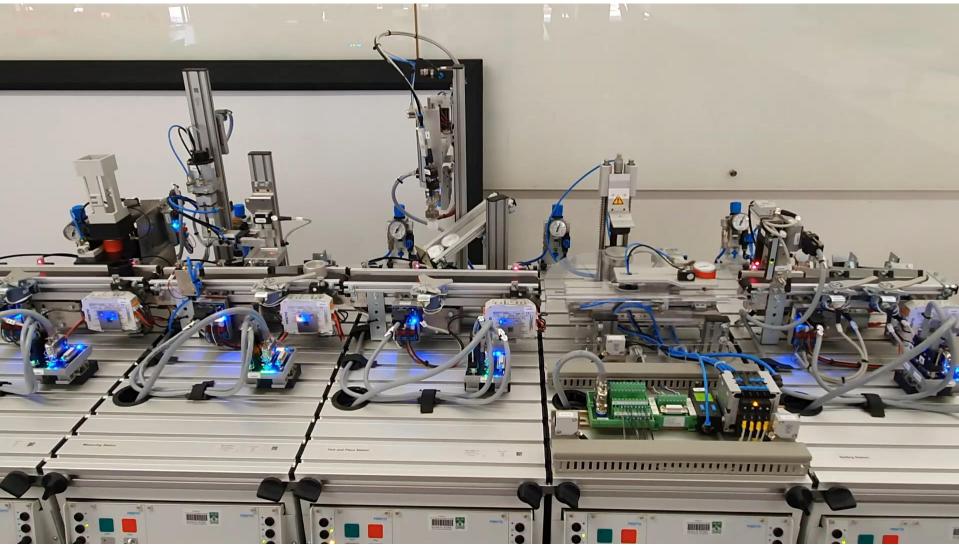

Festo: Pick and place station

Festo: Pressing station

Festo: Sorting station



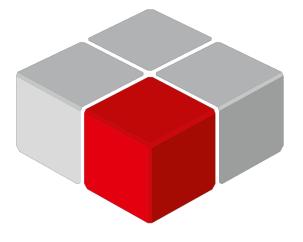
Festo: PLCs and control panels



• Each station is programmed by a programmable logic controller (PLC) module and manually controlled from the control panel

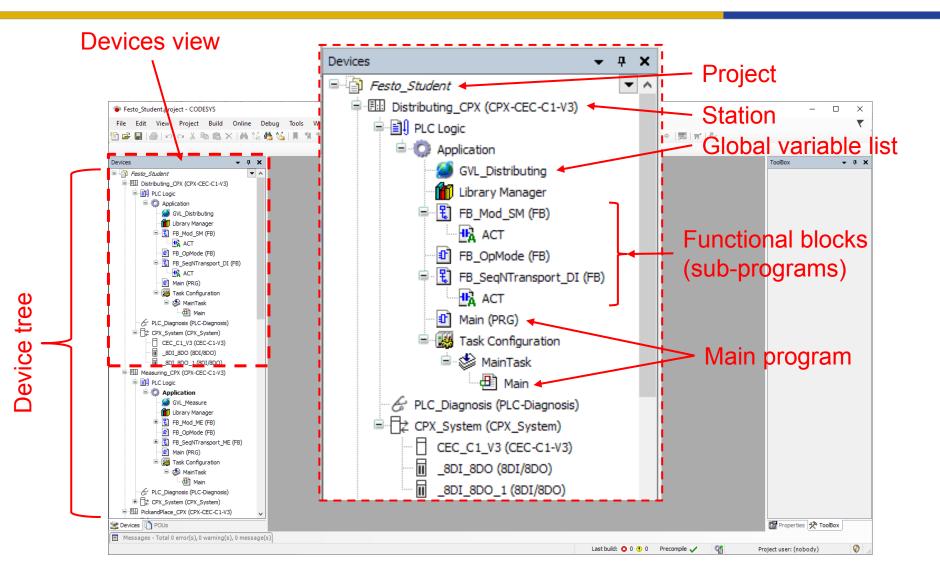
Festo: Video demonstration

Project description



- The aim of the project is to program one Festo MPS station to complete the tasks previously outlined
- Students will work in groups of 3–4
- The stations will be programmed using CODESYS
- Partially complete code will be provided students are required to complete the missing sections
- The lab consists of three parts:
 - Prelab: Read provided documentation and complete prelab questions
 - First lab (Week 3): Match variables defined in CODESYS with the corresponding PLC input, and describe the physical action associated with it
 - Second lab (Week 4): Each group in a session will be assigned one station and complete the code for that station. The code will then be uploaded to the station to demonstrate functionality.

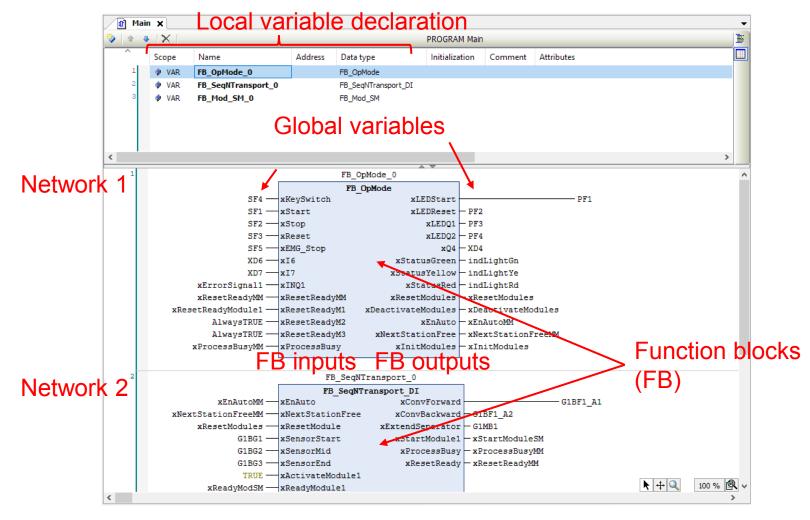
CODESYS overview


- CODESYS (<u>CO</u>ntroller <u>DE</u>velopment <u>SYS</u>tem) is a development environment for PLCs
- Windows required not available for MAC!
- Programming is implemented in the open international standard IEC61131-3
- This includes three graphical and two textual languages:
 - Ladder diagram (LD, graphical)
 - Functional block diagram (FBD, graphical)
 - Structured text (ST, textual)
 - Instruction list (IL, textual, deprecated)
 - Sequential function chart (SFC, graphical)

CODESYS

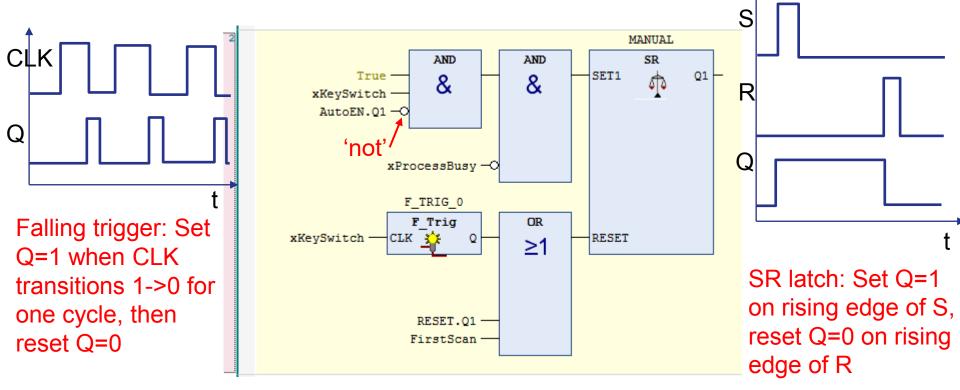
CODESYS Main interface

Global variable list (Distributing station)

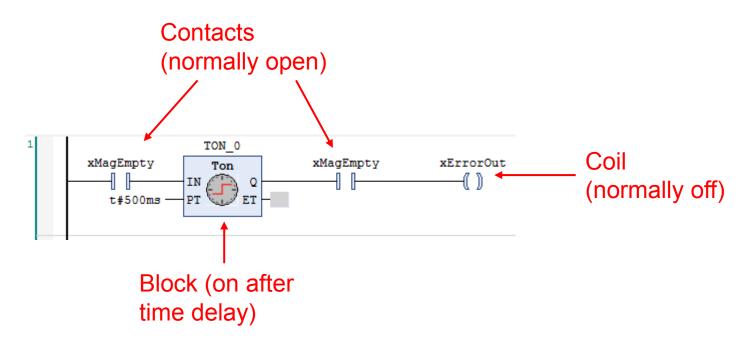

Defines/declares global variables (i.e., variables available in all sub-programs) •

	1.00	riable r	name P	LC a	addres	SS	Description	Text v	/iew
	🦻 🕆 🗣	$ \mathbf{X} $	+						
	^ s	Scope	Name	Address	Data type	Initialization	Comment At	tribu ^ 🔲	
ſ	1 🧯	🗿 VAR_GLOBAL	G1BG1	%IX1.0	BOOL		Werkstück bei Bandanfang / workpiece AT conveyor start		
	2 🥻	VAR_GLOBAL	G1BG2	%IX1.1	BOOL		Werkstück bei Bandmitte / workpiece AT conveyor center	Table v	
PLC inputs	3 🧯	VAR_GLOBAL	G1BG3	%IX1.2	BOOL		Werkstück bei Bandende / workpiece AT conveyor end		
	4 🧯	VAR_GLOBAL	C2BG1	%IX1.4	BOOL		Schieber eingefahren / slide retracted		
	5 🧯	VAR_GLOBAL	C2BG2	%IX1.5	BOOL		Schieber ausgefahren / slide extended		
	6 🧯	VAR_GLOBAL	C2BG3	%IX1.6	BOOL		Magazin leer / magazine empty		
	7 🧯	VAR_GLOBAL	SF1	%IX2.0	BOOL		Taster Start / Start button		
	8 🧯	🗿 VAR_GLOBAL	SF2	%IX2.1	BOOL		Taster Stop (Öffner) / Stop Button (normally closed)		
	9 🧯	🗿 VAR_GLOBAL	SF4	%IX2.2	BOOL		Schlüsselschalter Auto-Manuell / Key Switch auto-manual		
	10 🧯	VAR_GLOBAL	SF3	%IX2.3	BOOL		Taster Richten / Reset button		
	11 🧯	VAR_GLOBAL	SF5	%IX2.5	BOOL		Not Aus Schlagtaster / Emergency Stop		
	12 🧯	VAR_GLOBAL	XD6	%IX2.6	BOOL		Folgestation belegt/dwonstream station busy		
	13 🧯	🗿 VAR_GLOBAL	XD7	%IX2.7	BOOL		Folgestation belegt/ dwonstream station busy		
	14 🧯	🗿 VAR_GLOBAL	G1BF1_A1	%QX0.0	BOOL		Bandmotor vorwärts / Conveyor motor forward		
	15 🧯	🗿 VAR_GLOBAL	G1BF1_A2	%QX0.1	BOOL		Bandmotor rückwärts / Conveyor motor backkwards		
	16 🧯	🗿 VAR_GLOBAL	G1MB1	%QX0.2	BOOL		Vereinzler ausfahren / Extend separator		
	17 🧯	🗿 VAR_GLOBAL	C2MB1	%QX0.4	BOOL		Schieber ausfahren / Extend slide		
	18 🧯	🗿 VAR_GLOBAL	PF1	%QX1.0	BOOL		Leuchtmelder Start / Start indicator light		
PLC	19 🧯	🗿 VAR_GLOBAL	PF2	%QX1.1	BOOL		Leuchtmelder Reset / Reset indicator light		
outputs	20 🧯	🗿 VAR_GLOBAL	PF3	%QX1.2	BOOL		Leuchte Q1 / Indicator light Q1		
		🧕 VAR_GLOBAL	PF4	%QX1.3	BOOL		Leuchte Q2 / Indicator light Q2		
	22 🧯	🗿 VAR_GLOBAL	XD4	%QX1.4	BOOL		Station frei / Station free		
	23 🧯	🗿 VAR_GLOBAL	indLightGn	%QX1.5	BOOL		Ampel grün / indicator lights green		
	24	🧕 VAR_GLOBAL	indLightYe	%QX1.6	BOOL		Ampel gelb / indicator lights yellow		
	25 🧯	🧕 VAR_GLOBAL	indLightRd	%QX1.7	BOOL		Apel rot / indicator lights red		
	26	🧕 VAR_GLOBAL	xResetModules		BOOL		Alle Module resetten / Reset all Moduls		
		🧕 VAR_GLOBAL	xResetReadyModule1		BOOL		Module 1 ist in reset Position / Modul 1 is in reset posisition		
Other		🧕 VAR_GLOBAL	xResetReadyModule2		BOOL		Module 2 ist in reset Position / Modul 2 is in reset posisition		
		🧕 VAR_GLOBAL	xResetReadyModule3		BOOL		Module 3 ist in reset Position / Modul 3 is in reset posisition		
variables		VAR_GLOBAL	xEnAutoMM		BOOL		Automatikmodus aktiv / Automode activated		
		VAR_GLOBAL	xDeactivateModules		BOOL				
		VAR_GLOBAL	xProcessBusyMM		BOOL		Station arbeitet / Station is busy		
l	33 🥻	🗿 VAR GLOBAL	xResetReadyMM		BOOL		Modul SeqTransport ist fertig / Modul SeqTransport is ready	×	15
	<							>	15

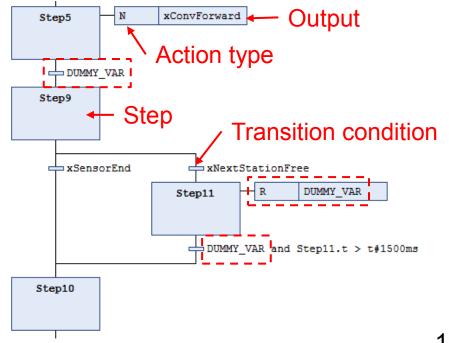
Main program (Distributing station)

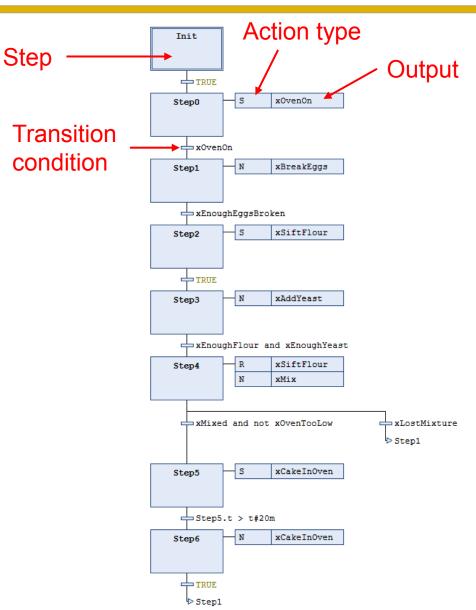

- PLC loops over Main program every 20ms
- · In each cycle, networks in Main are executed sequentially

Functional block diagram (FBD) example


- Denoted by 1 in Device tree
- Networks executed sequentially
- Each network executed left-to-right (inputs on left, outputs on right)
- Common functions (AND, OR) and function blocks (SR latch, falling trigger) included in base library

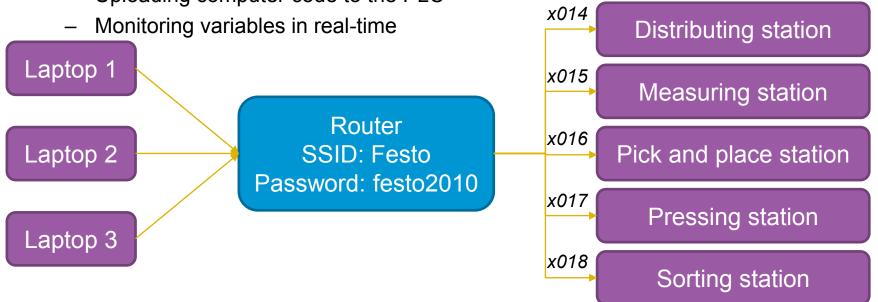
Ladder diagram (LD) example


- Denoted by
 in Device tree
- Networks executed sequentially
- Each network executed left-to-right
- Each network consists of 'contacts', 'blocks', and 'coils':
 - Contacts: analogous to switches. Denoted | | (normally open) or | \ | (normally closed)
 - Blocks: implements higher-level functions
 - Coils: analogous to devices, e.g. lightbulb. Denoted () (normally off) or (\) (normally on)


Sequential Flow Chart (SFC) example

- Denoted by **1** in Device tree
- Flows from top to bottom, and consists of steps, actions and transitions
- A step may be active or inactive.
 - A step becomes active when it is the first step, or when all immediately preceding steps are active and the transition condition is True.
 - A step becomes inactive when the succeeding transition is true
- Actions associated with steps are only executed when the step is active.
- Actions have an output and type. Types include:
 - S: Set output to 1
 - R: Reset output to 0
 - N: Set output to 1 while step is active, then reset to 0 when step is inactive

SFC example: Baking a cake



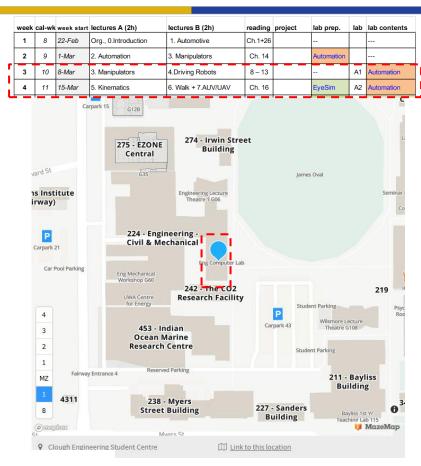
- Action types:
 - S: sets output high
 - N: sets output high while step is active
 - R: sets output low
- Step0: oven is set (S) to on and will stay on until it is reset (R)
- Step1: output *xBreakEggs* will remain on only while the condition *xEnoughEggsBroken* is not true (N)
- Step2-3: The Boolean *True* can be used to proceed immediately from Step 2 to 3
- Step3-4: Functions such as *and* and *not* can be used in the conditions
- Step4: Multiple actions can be associated with each step (executed sequentially)
- Step4-5: The branch implements *or*. Conditions are evaluated left-to-right until one is true.
- Step5-6: The time taken to complete a step can also be used as a condition

Connecting to Festo MPS

- The steps required to connect to Festo MPS are provided at the unit website in <u>LabA-Festo_CODESYSBasics.pdf</u>
- These steps included:
 - Connecting to the router:
 - · All stations are connected to the same router
 - Note: no internet connection available through router
 - Assigning the station to a network address in CODESYS
 - Logging in to the station in CODESYS
 - Uploading computer code to the PLC

Address:

Monitoring variables in real-time


• Once connected to a Festo station, the state of variables can be monitored in real-time (this will be particularly useful for the first lab)

	Distributing_CPX	🔋 FI	B_SeqNTransport_[DI 🛛 🖉 🎯 GVL	_Distributing) 🗙 🔁 Main
	Distributing_CPX.App	lication.GVL	_Distributing			
	Expression	Туре	Value	Prepared value	Address	Comment
	G1BG1	BIT	FALSE		%DX1.0	Werkstück bei Bandanfang / workpiece AT conveyor start
	G1BG2	BIT	FALSE		%DX1.1	Werkstück bei Bandmitte / workpiece AT conveyor center
	G1BG3	BIT	TRUE		%DX1.2	Werkstück bei Bandende / workpiece AT conveyor end
	C2BG1	BIT	TRUE		%DX1.4	Schieber eingefahren / slide retracted
	C2BG2	BIT	FALSE		%DX1.5	Schieber ausgefahren / slide extended
	C2BG3	BIT	TRUE		%IX1.6	Magazin leer / magazine empty
	SF1	BIT	FALSE		%DX2.0	Taster Start / Start button
	SF2	BIT	TRUE		%DX2.1	Taster Stop (Öffner) / Stop Button (normally closed)
	SF4	BIT	FALSE		%DX2.2	Schlüsselschalter Auto-Manuell / Key Switch auto-manual
	SF3	BIT	FALSE		%DX2.3	Taster Richten / Reset button
	SF5	BIT	TRUE		%DX2.5	Not Aus Schlagtaster / Emergency Stop
	XD6	BIT	FALSE		%DX2.6	Folgestation belegt/ dwonstream station busy
	XD7	BIT	FALSE		%DX2.7	Folgestation belegt/ dwonstream station busy
	G1BF1_A1	BIT	FALSE		%QX0.0	Bandmotor vorwärts / Conveyor motor forward
	G1BF1_A2	BIT	FALSE		%QX0.1	Bandmotor rückwärts / Conveyor motor backkwards
	G1MB1	BIT	FALSE		%QX0.2	Vereinzler ausfahren / Extend separator
	C2MB1	BIT	FALSE		%QX0.4	Schieber ausfahren / Extend slide
rent	PF1	BIT	FALSE		%QX1.0	Leuchtmelder Start / Start indicator light
	PF2	BIT	FALSE		%QX1.1	Leuchtmelder Reset / Reset indicator light
	PF3	BIT	FALSE		%QX1.2	Leuchte Q1 / Indicator light Q1
مامام	PF4	BIT	FALSE		%QX1.3	Leuchte Q2 / Indicator light Q2
iable — te	🧭 XD4	BIT	FALSE		%QX1.4	Station frei / Station free
	indLightGn	BIT	FALSE		%QX1.5	Ampel grün / indicator lights green
	indLightYe	BIT	FALSE		%QX1.6	Ampel gelb / indicator lights yellow
	indLightRd	BIT	FALSE		%QX1.7	Apel rot / indicator lights red
	xResetModules	BOOI	FALSE			Alle Module resetten / Reset all Moduls
	xResetReadyMod	BOOI	FALSE			Module 1 ist in reset Position / Modul 1 is in reset posisition
	xResetReadyMod	BOOI	FALSE			Module 2 ist in reset Position / Modul 2 is in reset posisition
	xResetReadyMod	BOOI	FALSE			Module 3 ist in reset Position / Modul 3 is in reset posisition
	xEnAutoMM	BOOI	FALSE			Automatikmodus aktiv / Automode activated
	xDeactivateModu	BOOI	TRUE			
	xProcessBusyMM	BOOI	FALSE			Station arbeitet / Station is busy
	xResetReadyMM	BOOI	FALSE			Modul SeqTransport ist fertig / Modul SeqTransport is ready
	xNextStationFree	BOOI	FALSE			Nächste Station ist frei / Next Station is free
	xReadyModSM	BOOI	FALSE			Modul ist fertig / Modul is ready
	StartModuleSM	BOOI	FALSE			Modul starten / Start modul
		BOOI	FALSE			Moduel auf Inischritt setzten / Set moduls to init step
	AlwaysTRUE	BOOI	TRUE			Immer true / Always true
	AlwaysFALSE	BOOI	FALSE			Immer false / Always false
		BOOI	TRUE			Error Signal 1 / Error signal 1
		BOOI	FALSE			Error Signal 2 / Error signal 2
	🚳 xErrorSignal3	BOO	FALSE			Error Signal 3 / Error signal 3

Practical details and preparation

- Schedule: 2x 3-hour (2 hours supervised) labs during Weeks 3–4
- Location: Clough Engineering Centre (Engineering building 224)
- Groups of 3-4
- Preparation:
 - Download lab worksheet (<u>LabA-</u> <u>Festo_Prelab&Instructions.pdf</u> [1]) and do prelab using Festo <u>PrelabDocumentation/</u> [2]
 - Review <u>LabA-Festo_CODESYSBasics.pdf</u> [3]
 - If possible, form groups before lab
 - Download <u>CODESYS3.5.13.0.exe</u> [4] and source code (<u>Festo_Student.projectarchive</u> [5]) and install CODESYS (1 computer per group)
 - Charge your laptops! Not many power points available in venue

