
GENG5508: Festo
automation lab

Demonstrator: Ken Foo

3

• Introduction to Festo
• Description of lab project
• Introduction to CODESYS
• Sequential Flow Chart (SFC) example
• Practical details and lab preparation

Contents

4

• Festo is a German industrial control and automation company
– Festo Didactic: provides educational and consultation services

• Festo Modular Production System (MPS): miniaturised production line
used for educational purposes

• Simulates production of humidity (hygrometer) sensors

Festo introduction

• Comprised of both
electrical and pneumatic
systems

• Composed of 5 stations:
– Distribution station
– Measuring station
– Pick and place station
– Pressing station
– Sorting station

5

• Task: store and feed workpiece housings

Festo: Distributing station

Conveyor

Optical sensors

Separator (not used)

Pressure control
Stacking magazine

Ejector slide

Workpiece
housings

6

• Task: measure workpiece housing height

Festo: Measuring station
Measurement module

Separator

Lift and rotate module

Gripper

Stopper

7

• Task: insert workpiece insert into workpiece housing

Festo: Pick and place station

Separator
Suction cup Workpiece

insert
(hygrometer)

Horizontal
slide

Vertical
slide

8

• Task: press workpiece insert into housing

Festo: Pressing station

Fluidic muscle press

Rotary driveGripper

9

• Task: sorts assembled workpieces by housing

Festo: Sorting station

Chutes

Detector module

Inductive
proximity
sensor

Fork
light
barrier

Diffuse
light
sensorDeflectors

10

• Each station is programmed by a programmable logic controller (PLC)
module and manually controlled from the control panel

Festo: PLCs and control panels

Control panel Start button

Stop button

Reset button
Key switch (man/auto)

Common ground

Input from
downstream

Output to
upstream

PLC module

Power
switch

Rotary selector

PLCs

Ethernet to router

11

Festo: Video demonstration

12

• The aim of the project is to program one Festo MPS station to complete the
tasks previously outlined

• Students will work in groups of 3–4
• The stations will be programmed using CODESYS
• Partially complete code will be provided – students are required to complete

the missing sections
• The lab consists of three parts:

– Prelab: Read provided documentation and complete prelab questions
– First lab (Week 3): Match variables defined in CODESYS with the corresponding

PLC input, and describe the physical action associated with it
– Second lab (Week 4): Each group in a session will be assigned one station and

complete the code for that station. The code will then be uploaded to the station
to demonstrate functionality.

Project description

13

• CODESYS (COntroller DEvelopment SYStem) is a development
environment for PLCs

• Windows required – not available for MAC!
• Programming is implemented in the open international standard IEC61131-3
• This includes three graphical and two textual languages:

– Ladder diagram (LD, graphical)
– Functional block diagram (FBD, graphical)
– Structured text (ST, textual)
– Instruction list (IL, textual, deprecated)
– Sequential function chart (SFC, graphical)

CODESYS overview

14

CODESYS Main interface

Devices view

D
ev

ic
e

tre
e

Project

Station
Global variable list

Main program

Functional blocks
(sub-programs)

15

• Defines/declares global variables (i.e., variables available in all sub-programs)

Global variable list (Distributing station)

Variable name PLC address Description

PLC
inputs

Other
variables

Text view

Table view

PLC
outputs

16

• PLC loops over Main program every 20ms
• In each cycle, networks in Main are executed sequentially

Main program (Distributing station)

Network 1

Network 2

Local variable declaration

Global variables

FB inputs Function blocks
(FB)

FB outputs

17

• Denoted by in Device tree
• Networks executed sequentially
• Each network executed left-to-right (inputs on left, outputs on right)
• Common functions (AND, OR) and function blocks (SR latch, falling trigger)

included in base library

Functional block diagram (FBD) example

‘not’

Falling trigger: Set
Q=1 when CLK
transitions 1->0 for
one cycle, then
reset Q=0

CLK

Q

S

Q
t

t

R

SR latch: Set Q=1
on rising edge of S,
reset Q=0 on rising
edge of R

18

• Denoted by in Device tree
• Networks executed sequentially
• Each network executed left-to-right
• Each network consists of ‘contacts’, ‘blocks’, and ‘coils’:

– Contacts: analogous to switches. Denoted | | (normally open) or | \ | (normally closed)
– Blocks: implements higher-level functions
– Coils: analogous to devices, e.g. lightbulb. Denoted () (normally off) or (\) (normally on)

Ladder diagram (LD) example

Contacts
(normally open)

Block (on after
time delay)

Coil
(normally off)

19

• Denoted by in Device tree
• Flows from top to bottom, and consists of steps, actions and transitions
• A step may be active or inactive.

– A step becomes active when it is the first step, or when all immediately preceding steps are
active and the transition condition is True.

– A step becomes inactive when the succeeding transition is true
• Actions associated with steps are only executed when the step is active.

Sequential Flow Chart (SFC) example

• Actions have an output and type. Types
include:

– S: Set output to 1
– R: Reset output to 0
– N: Set output to 1 while step is active,

then reset to 0 when step is inactive

Output

Step

Action type

Transition condition

20

SFC example: Baking a cake

• Action types:
– S: sets output high
– N: sets output high while step is active
– R: sets output low

• Step0: oven is set (S) to on and will stay on
until it is reset (R)

• Step1: output xBreakEggs will remain on
only while the condition
xEnoughEggsBroken is not true (N)

• Step2-3: The Boolean True can be used to
proceed immediately from Step 2 to 3

• Step3-4: Functions such as and and not can
be used in the conditions

• Step4: Multiple actions can be associated
with each step (executed sequentially)

• Step4-5: The branch implements or.
Conditions are evaluated left-to-right until
one is true.

• Step5-6: The time taken to complete a step
can also be used as a condition

Step

Transition
condition

Action type
Output

21

• The steps required to connect to Festo MPS are provided at the unit website
in LabA-Festo_CODESYSBasics.pdf

• These steps included:
– Connecting to the router:

• All stations are connected to the same router
• Note: no internet connection available through router

– Assigning the station to a network address in CODESYS
– Logging in to the station in CODESYS
– Uploading computer code to the PLC
– Monitoring variables in real-time

Connecting to Festo MPS

Router
SSID: Festo

Password: festo2010

Laptop 1

Laptop 2

Laptop 3

Distributing station

Measuring station

Pick and place station

Pressing station

Sorting station

x014

x015

x016

x017

x018

Address:

http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/LabA-Festo_CODESYSBasics.pdf

22

• Once connected to a Festo station, the state of variables can be monitored
in real-time (this will be particularly useful for the first lab)

Monitoring variables in real-time

Current
variable
state

23

• Schedule: 2x 3-hour (2 hours supervised) labs
during Weeks 3–4

• Location: Clough Engineering Centre
(Engineering building 224)

• Groups of 3–4
• Preparation:

– Download lab worksheet (LabA-
Festo_Prelab&Instructions.pdf [1]) and do prelab
using Festo PrelabDocumentation/ [2]

– Review LabA-Festo_CODESYSBasics.pdf [3]
– If possible, form groups before lab
– Download CODESYS3.5.13.0.exe [4] and

source code (Festo_Student.projectarchive [5])
and install CODESYS (1 computer per group)

• Charge your laptops! Not many power
points available in venue

Practical details and preparation

[1] http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/LabA-Festo_Prelab&Instructions.pdf
[2] http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/PrelabDocumentation/
[3] http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/LabA-Festo_CODESYSBasics.pdf
[4] http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/CODESYS3.5.13.0.exe
[5] http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/Festo_Student.projectarchive

http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/LabA-Festo_Prelab&Instructions.pdf
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/PrelabDocumentation/
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/LabA-Festo_CODESYSBasics.pdf
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/CODESYS3.5.13.0.exe
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/Festo_Student.projectarchive
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/LabA-Festo_Prelab&Instructions.pdf
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/PrelabDocumentation/
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/LabA-Festo_CODESYSBasics.pdf
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/CODESYS3.5.13.0.exe
http://robotics.ee.uwa.edu.au/courses/robotics/project/festo/LabA-Festo/Festo_Student.projectarchive
Thomas Braunl

Thomas Braunl

Thomas Braunl

