QUESTION 1 *Manipulator* **(2+3+3+3 = 11 points)**

Consider the following robot manipulator:

(a) Graphically sketch the work area (reachable area) of this manipulator. How would you best verbally describe this shape?

(b) Describe the Transformation from Base to Tool-Tip using $Rot_{axis}(\alpha)$ and $Trans(x,y,z)$.

 $T =$

(c) Derive 3 Homogeneous Transformation for this manipulator as 4x4 matrices*.*

(d) For the special case that Q**1=90° and** Q**3=–90°, simplify to a single 4x4 transformation. What is the 3D-position of the tool-tip in this case for** Q**2=90°?**

 T90,90 =

QUESTION 2 *Inverse Kinematics* **(10 points)**

Simply the robot manipulator from before by fixing θ 1 = 0, L1=0, L2=0, L3=1, L4=1

(a) Graphically sketch the work area (reachable area) of this manipulator. How would you best verbally describe this shape?

(b) Derive and q2 **and** q3 **from given x, y, z coordinates of the end-effector.**

QUESTION 3 *DH* **Consider the following robot manipulator:**

Choose your own starting axes ! Remember you can shift θ 2 !

(a) Complete the Denavit-Hartenberg table for this given manipulator (ignore L4). Remember that joints q**i should be along the z-axis, and links Li (if possible) along the x-axis.**

(b) Write the manipulator forward kinematics as a sequence of DH Trans and Rot transformations.

(c) Write 0 1T, 1 2T and 2 3T (ignoring L4) as DH 4x4 matrices.

$$
i - 1T = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 & a_{i-1} \\ \sin \theta_i \cdot \cos \alpha_{i-1} & \cos \theta_i \cdot \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -\sin \alpha_{i-1} \cdot d_i \\ \sin \theta_i \cdot \sin \alpha_{i-1} & \cos \theta_i \cdot \sin \alpha_{i-1} & \cos \alpha_{i-1} & \cos \alpha_{i-1} \cdot d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

 0 ₁T =

 1 ₂T =

 2 ₃T =

QUESTION 4 *Velocity Propagation* **(10 points)**

For the manipulator shown above:

- \bullet Set L1=0
- Use the DH-Notation

(a) Calculate all velocities

 1_{ω_1} , 1_{ν_1}

 2_{02} , 2_{V2}

 3_{03} , $3_{\sqrt{3}}$

 $4_{\text{O}_4, 4_{\text{V}_4}$

and write down the formula only for how to calculate $0v_4$

(b) Build the Jacobian $3J(\theta_1, \theta_2, \theta_3)$

QUESTION 4 *Reliability* **(10 points)**

Reliability of combinatorial systems

- Assume a system of *n* identical components *x* that all have the same reliability *r*.
- SER(..) denotes subassemblies in series (no redundancy)
- PAR(..) denotes subassemblies in parallel (full redundancy)

Note:

- $R(t) = e^{-\lambda t}$
- MTTF = $1/\lambda$
- MTTF = $\int_0^\infty R(t) dt$

(a) Compute the reliability in terms of *r* **for the component system: SER(PAR(x, x, x, x), PAR(x, x))**

(b) For a constant failure rate λ

Assume each component x has the failure rate $\lambda = 0.02$ failures per day.

- Calculate MTTF for a single component x.
- Calculate $R_X(t)$ at $t = 0$
- Calculate $R_X(t)$ at $t = M T T F$
- Plot the graph $R_x(t)$ in range [0, 100] days

(c) Calculate MTTF for these configurations

- Calculate MTTF for SER(x,x).
- Calculate MTTF for $PAR(x, x)$.