
Chapter 2
Programming with the ARIA API

2.1 Getting Started

The best source of information is the online help document that comes with the
software installation [14]. It is located in /usr/local/Aria and has the name
“Aria-Reference.html”. All the classes that form the ARIA library are listed and
their attributes and methods are described there.

2.1.1 Compiling Programs

ARIA programs are compiled under Linux by using g++ on the command line. All
programs must be linked to the ARIA library “lAria” and the additional libraries
“lpthread” and “ldl”. The ARIA library is located in /usr/local/Aria/lib
and the header files are located in /usr/local/Aria/include. You will need
to add the path /usr/local/Aria/lib to the file /etc/ld.so.conf and
run ldconfig in order to access the libraries. As an example, suppose you have
a control program named “test.cpp” and you wish to create a binary called “test”.
From the directory where “test.cpp” is located, you would type the following:

g++ -Wall -o test -lAria -ldl -lpthread -L/usr/local/
Aria/lib -I/usr/local/Aria/include test.cpp.

Alternatively, a suitable bash script such as the example given below can be written
to save typing:

#!/bin/sh

Short script to compile an ARIA client
Requires 2 arguments, (1) name of binary

13

14 2 Programming with the ARIA API

and (2) name of program to compile

if [$# != 2]; then
echo Require 2 arguments
exit 1

fi

g++ -Wall -o $1 -lAria -ldl -lpthread -L/usr/local/Aria
/lib -I/usr/local/Aria/include $2

2.1.2 Connecting to a Robot

A method for sending and receiving data to and from the server must be specified.
For real robots the server software for low level control runs on the micro-controller
and communication between this and the robot PC is through a serial port. If you
want to test your programs on a simulator first (on a remote PC) and then run them
on a real Pioneer without changing the program, the best way to connect is to use
the ArSimpleConnector and ArArgumentParser classes. The ArSimpleConnector
class first tries to connect to a simulator if one is detected, otherwise it connects
through the serial port of the real robot. For this to work you need to run the control
program on the robot PC itself, i.e. connect to the robot first using ssh and then
run the program. Unfortunately this involves copying the control program from the
remote PC to the robot and recompiling. If you want to run the program directly
from a remote PC you need to use the separate ArNetworking C++ library to create
a server program that runs on the robot PC and a client program that runs on the
remote PC. The server program sets up the services that the client program can then
request. This involves writing a new control program and is beyond the scope of this
guide, which assumes that you will run your program on the robot PC.

Below is an extract of a program that shows how to connect to a robot using Ar-
SimpleConnector.

/* Include files */

#include "Aria.h" 1

#include <stdio.h> 2

/* Main method */

int main(int argc, char **argv) 3

{

/* The robot and its devices */

Aria::init(); //Initialise ARIA library 4

2.1 Getting Started 15

ArRobot robot; //Instantiate robot 5

ArArgumentParser parser(&argc, argv); //Instantiate argument parser 6

ArSimpleConnector connector(& parser); //Instantiate connector 7

/* Connection to robot */

parser.loadDefaultArguments(); //Load default values 8

if (!connector.parseArgs()) //Parse connector arguments 9

{
cout << "Unknown settings\n"; //Exit for errors 10

Aria::exit(0); 11

exit(1); 12

}

if (!connector.connectRobot(&robot)) //Connect to the robot 13

{
cout << "Unable to connect\n"; //Exit for errors 14

Aria::exit(0); 15

exit(1); 16

}

robot.runAsync(true); //Run in asynchronous mode 17

robot.lock(); //Lock robot during set up 18

robot.comInt(ArCommands::ENABLE, 1); //Turn on the motors 19

robot.unlock(); //Unlock the robot 20

Aria::exit(0); //Exit Aria 21

} //End main

“Aria.h” must be included with all programs (line 1) and before the ARIA library
can be used it must be initialised by using Aria::init() (line 4). The ArRobot class
(instantiated here in line 5) is the base class for creating robot objects that you can
then connect devices to. An instance of the class essentially represents the base of
a robot with no sensors attached and only the motors for actuators [12]. However,
MobileRobots describe the class as the “heart” of ARIA as it also functions as the
client-server gateway, constructing and decoding packets and synchronising their
exchange with the micro-controller [14]. Standard server information packets (SIPs)
get sent by the server to the client every 100 milliseconds by default. The ArRobot
class runs a loop (either in the current thread by using the ArRobot::run() method
or in a background thread by using ArRobot::runAsync()), which is synchronised to
the data updates sent from the robot micro-controller. In the above program the Ar-
Robot::runAsync() method is used (line 17) after connection has been established.
Running the robot asynchronously like this ensures that if the connection is lost the
robot will stop.

An ArArgumentParser object is instantiated here in line 6. This is a standard
argument parser for maintaining uniformity between ARIA-based programs. It en-
sures that all the configurable elements of an ARIA program (robot IP address etc.)

16 2 Programming with the ARIA API

are passed to it in the same way [12]. The constructor for ArSimpleConnector takes
a pointer to the ArArgumentParser object (line 7). The loadDefaultArguments()
method of ArArgumentParser is called in line 8. This allocates the default argu-
ments required to connect to a local host (either MobileSim, see Section 3.2 or the
real robot). Once the default arguments are loaded they can be parsed to the ArSim-
pleConnector object by using its parseArgs() method (line 9). The connectRobot()
method can then be used to make the actual connection. A pointer to the ArRobot
object must be supplied as the argument (line 13).

Before running any commands the motors should be placed in an enabled state,
(line 19). It is advisable to lock the robot (line 18) to ensure that the command is
not interfered with by other users, and the robot should be unlocked afterwards (line
20). When the program ends ARIA must be exited using the syntax in line 21. If you
get a segmentation fault when running the program it may be necessary to remake
the files in /usr/local/Aria after installation.

2.2 Instantiating and Adding Devices

In ARIA devices fall into two categories, ranged devices (sonar, laser and bumpers),
which inherit from the ArRangeDevice class and non-ranged devices, (anything
else, e.g. a pan-tilt-zoom camera or a 2D gripper). There are differences in how
these types of device are associated with a robot.

2.2.1 Ranged Devices

Ranged devices are instantiated and then added to the robot using ArRobot’s ad-
dRangeDevice() method, which takes a pointer to the device as its argument. Below
are some extracts of programs that show how to instantiate a sonar device, a laser
device and a set of bumpers, and also how to add them to an ArRobot object called
“robot”.

ArRobot robot; //Instantiate the robot

ArSick laser; //Instantiate its laser

ArSonarDevice sonar; //Instantiate its sonar

ArBumpers bumpers; //Instantiate its bumpers

robot.addRangeDevice(&sonar); //Add sonar to robot

robot.addRangeDevice(&laser); //Add laser to robot

robot.addRangeDevice(&bumpers); //Add bumpers to robot

The laser device requires additional initialisation to other devices as it inherits
from the ArRangeDeviceThreaded class (which inherits from the ArRangeDevice
class). This means that it is a ranged device that can run in its own thread. It there-

2.2 Instantiating and Adding Devices 17

fore requires additional connection to the robot using ArSimpleConnector’s con-
nectLaser() method, see line 8 of the program extract below.

/* Connection to laser */

Aria::init(); //Initialise ARIA library 1

ArRobot robot; //Instantiate robot 2

ArSick laser; //Instantiate laser 3

robot.addRangeDevice(&laser); //Add laser 4

ArArgumentParser parser(&argc, argv); //Instantiate argument parser 5

ArSimpleConnector connector(& parser); //Instantiate connector 6

.

.

. //Connect to robot

.

laser.runAsync(); //Asynchronous laser mode 7

if (!connector.connectLaser(&laser)) //Connect laser to robot 8

{
cout << "Can’t connect to laser\n"; //Exit if error 9

Aria::exit(0); 10

exit(1); 11

}

laser.asyncConnect(); //Asynchronous laser mode 12

Lines 1 to 6 instantiate the various objects and lines 8 to 11 make and check the
connection. Asynchronous connection is specified in lines 7 and 12 and ensures that
the laser will stop if the connection fails. An alternative way of connecting to the
laser is shown below.

connector.setupLaser(&laser);

laser.runAsync();

if (!laser.blockingConnect())

{
cout << "Could not connect to SICK laser... exiting\n");
Aria::exit(0);

exit(1);

}

18 2 Programming with the ARIA API

2.2.2 Non-ranged Devices

Non-ranged devices do not inherit from ArRangeDevice so are not associated with
the ArRobot object in the same way. In fact, non-ranged devices may inherit from
other base classes, for example an ArVCC4 object (Canon VC-C4 pan-tilt-zoom
camera) inherits from the ArPTZ class. In general, the robot is added to non-ranged
devices instead of their being added to the robot. Sometimes this may be done as
part of the initialisation, for example the program extract below shows how a 2D
gripper and Canon VC-C4 pan-tilt-zoom camera are associated with the robot at the
same time as they are instantiated:

ArGripper gripper(&robot); //Instantiate gripper and add robot

ArVCC4 ptz(&robot); //Instantiate Canon VCC4 camera and add robot

On the other hand, the robot is added to a 5D arm object by first instantiating
the arm and then using its setRobot() method to add the robot, see Section 2.3.5 for
further details.

ArP2Arm arm; //Instantiate a 5D arm

arm.setRobot(&robot); //Add robot to arm

An ACTS object (virtual blob finding device) uses its openPort() method both to
add the robot and to set up communication with the ACTS server running on the
robot, see Section 3.1 for further details.

ArACTS 1 2 acts; //Instantiate an ACTS object

acts.openPort(&robot); //Add robot and set up communication

//with ACTS server running on that robot

2.3 Reading and Controlling the Devices

Once devices have been instantiated and added to the robot, they can be controlled.
The rest of this chapter shows how this is achieved in ARIA for the Pioneer’s motors,
sonars, laser, bumpers, 5D arm, 2D gripper and camera. Programming of the ACTS
blob finder is dealt with in Section 3.1.

2.3.1 The Motors

Motion commands can be issued explicitly by using the setVel(), setVel2() and
setRotVel() methods of the ArRobot class; the setVel() method sets the desired trans-
lational velocity of the robot in millimetres per second, setVel2() sets the velocity
of the wheels independently and setRotVel() sets the rotational velocity of the robot

2.3 Reading and Controlling the Devices 19

in degrees per second. In addition there are the setHeading() and setDeltaHeading()
methods, which change the robot’s absolute and relative orientation (in degrees) re-
spectively. There is also a method to move a prescribed distance (move()) and a
method for stopping motion (stop()). If a positive double is supplied as the argu-
ment for move(), the robot moves forwards. If a negative double is supplied the
robot moves backwards. Some examples of these methods are shown below. All
these use a previously declared ArRobot object called “robot”.

robot.setVel(200); //Set translational velocity to 200 mm/s

robot.setRotVel(20); //Set rotational velocity to 20 degrees/s

robot.setVel2(200,250); //Set left wheel speed at 200 mm/s

//Set right wheel speed at 250 mm/s

robot.setHeading(30); //30 degrees relative to start position

robot.setDeltaHeading(60); //60 degrees relative to current orientation

robot.move(200); //Move 200 mm forwards

Other methods of interest are setAbsoluteMaxTransVel() and getAbsoluteMax-
TransVel(), which set and get the robot’s maximum allowed translational speed. This
is useful if you do not want your robot to exceed a given speed for safety reasons.
The methods setAbsoluteMaxRotVel() and getAbsoluteMaxRotVel() do the same
for rotational speed and the methods getVel() and getRotVel() return the robot’s
translational and rotational speeds respectively, as double values.

Note that more complex forms of motion can be achieved by creating action
classes that inherit from ARIA’s ArAction class and adding the actions to the robot.
The actions then provide motion requests that can be evaluated and combined to
produce a final desired motion. In this way complex behaviours can be achieved.
However you can create actions that do not inherit from ArAction if you do not
want to implement this particular behaviour architecture. Further details about Ar-
Actions are provided in Chapter 4. The program below shows user-written methods
“wander()” and “obstacleAvoid()” that implement simple wandering and obstacle
avoidance behaviours respectively. These methods do not inherit from ArAction.

/∗
∗---
∗ Wandering mode

∗---
∗/

void wander(double speed, ArRobot *thisRobot)

{

int rand1; //Whether to change direction

int rand2; //Used to decide angle of turn

int rand3; //Used to decide direction of turn

int dir; //Direction of turn

srand(static cast<unsigned>(time(0))); //Set seed

20 2 Programming with the ARIA API

rand1 = (rand()%2); //Get random no. between 0 and 1

if (rand1 == 0) //1 in 2 chance of turning

{
rand2 = (rand()%10); //Get random no. between 0 and 9

rand3 = (rand()%2); //Get random no. between 0 and 1

switch(rand3) //Get direction based on rand3

{
case 0:dir = -1;break; //Turn right

case 1:dir = 1;break; //Turn left

}
}else
{
dir = 0; //Don’t turn

rand2 = 0;

}

thisRobot->setRotVel(rand2*10*dir/2); //Set rotational speed

thisRobot->setVel(speed); //Set translational speed

}

/∗
∗---
∗ Obstacle avoidance mode

∗---
∗/

void obstacleAvoid(double minAng, double driveSpeed, ArRobot *thisRobot)

{

double avoidAngle; //Angle to turn to avoid obstacle

if (minAng ≥ 0 && minAng < 46) //If obstacle is to the left

{
cout << "TURNING RIGHT!\n";
avoidAngle = -30.0; //Turn right

}

if (minAng > −46 && < 0) //If obstacle is to the right

{
cout << "TURNING LEFT!\n";
avoidAngle = 30.0; //Turn left

}

thisRobot.setRotVel(avoidAngle); //Set rotational speed

thisRobot.setVel(driveSpeed); //Set translational speed

}

2.3 Reading and Controlling the Devices 21

2.3.2 The Sonar Sensors

Sonar devices are instantiated and added to the robot as described in Section 2.2.1.
To obtain the closest current sonar reading within a specified polar region, the cur-
rentReadingPolar() method of the ArRangeDevice class can be called. The polar
region is specified by the startAngle and endAngle attributes (in degrees). This goes
counterclockwise (negative degrees to positive). For example if you want the slice
between -45 and 45 degrees, you must enter it as -45, 45. Figure 2.1 below shows
the angular positions ARIA assigns to each of the sonar on the Pioneer robots. The
closest reading is returned by the method, but is the distance from the object to the
assumed centre of the robot. To obtain the absolute distance the robot radius should
be subtracted. This can be done by calling ArRobot’s getRobotRadius() method.
The angle at which the closest reading was taken is obtained by supplying a pointer
to the double variable holding that value. An example program that implements the
currentReadingPolar() method is shown below:

ArRobot robot; //Instantiate the robot

ArSonarDevice sonar; //Instantiate its sonar

robot.addRangeDevice(&sonar); //Add sonar to robot

.

. //Connect to robot

.

double reading, readingAngle; //To hold minimum reading and angle

reading = sonar.currentReadingPolar(-45,45,&readingAngle);

//Get minimum reading and angle

If raw sonar readings are required then the getSonarReading() method of the Ar-
Robot class can be called. The index number of the particular sonar is used as the ar-
gument. The method returns a pointer to an ArSensorReading object. By calling the
getRange() and getSensorTh() methods of this class you can obtain both the reading
and its angle. If you need all the sonar readings then you should first determine the
number of sonar present using the getNumSonar() method of the ArRobot class and
then call the getSonarReading() method in a loop. An example user-written method
“getSonar()”, which prints all the raw sonar readings and their angles is shown be-
low:

/∗
∗--
∗ Print raw sonar data

∗--
∗/

void getSonar(ArRobot *thisRobot)

{

22 2 Programming with the ARIA API

Fig. 2.1 The angular positions of the sonar sensors

int numSonar; //Number of sonar on the robot

int i; //Counter for looping

numSonar = thisRobot->getNumSonar(); //Get number of sonar

ArSensorReading* sonarReading; //To hold each reading

for (i = 0; i < numSonar; i++) //Loop through sonar

{
sonarReading = thisRobot->getSonarReading(i);

//Get each sonar reading

cout << "Sonar reading " << i << " = " << sonarReading->getRange()

<< " Angle " << i << " = " <<

sonarReading->getSensorTh() << "\n";
}

}

The sonar can be simulated using MobileSim, see Section 3.2.

2.3.3 The Laser Sensor

Laser devices are instantiated, added to the robot and connected as described in sec-
tion 2.2.1. As both the sonar and laser devices inherit from the ArRangeDevice class,
the currentReadingPolar() method can also be used with the laser, see Section 2.3.2.
An example program is shown below:

ArRobot robot; //Instantiate the robot

2.3 Reading and Controlling the Devices 23

ArSick laser; //Instantiate its laser

robot.addRangeDevice(&laser); //Add laser to robot

.

. //Connect to robot

.

double reading, readingAngle; //To hold minimum reading and angle

reading = laser.currentReadingPolar(-45,45,&readingAngle);

//Get minimum reading and angle

Another useful method to invoke is the checkRangeDevicesCurrentPolar() method
of the ArRobot class. This checks all of the robot’s ranged sensors in the specified
range, returning the smallest value. An example using an ArRobot object called
“robot” is shown below.

double reading = robot.checkRangeDevicesCurrentPolar(-45,45);

Fig. 2.2 Laser readings and their positions on the robot (181 readings)

If raw laser readings are required then the procedure is slightly more complex
than for sonar sensors as it involves using lists. The method to call is the ge-
tRawReadings() method of the ArSick class. This returns a pointer to a list of Ar-
SensorReading object pointers. You will need to loop through this list to obtain the
values and angles, so you will also need to declare an iterator object for the list
as well as the list itself. You can then loop through each ArSensorReading pointer
and obtain its reading and angle by calling its getRange() and getSensorTh() meth-
ods. An example user-written method “getLaser()”, which prints all the raw laser
readings and their angles is shown below:

24 2 Programming with the ARIA API

/∗
∗--
∗ Print raw laser data

∗--
∗/

void getLaser(ArSick *thisLaser)

{

/∗ Instantiate sensor reading list and iterator object ∗/
const std::list<ArSensorReading *> *readingsList;

std::list<ArSensorReading *>::const iterator it;

int i = -1; //Loop counter for readings

readingsList = thisLaser->getRawReadings();

//Get list of readings

//Loop through readings

for (it = readingsList->begin(); it != readingsList->end(); it++)

{
i++;

//Output distance and angle

cout << "Laser reading " << i << " = " << (*it)->getRange()

<< " Angle " << i << " = " << (*it)->getSensorTh() << "\n";
}

}

By default the laser should return 181 readings, see Figure 2.2 for the angular
positions of each reading. If you require two readings for each degree then you
should add the argument -laserincrement half when calling your control program.
Further details about the SICK LMS200 laser and its operation can be found in [19].
Note that the laser can be simulated using MobileSim, see Section 3.2.

2.3.4 The Bumpers

Bumpers are instantiated and added to the robot as described in Section 2.2.1. Once
bumpers have been declared you can obtain their state by calling the getStallValue()
method of the ArRobot class. An example program using an ArRobot object called
“robot” is shown below:

int rearBump=0; //State of bumpers and wheels

int numBumpers; //Number of bumpers

numBumpers = robot.getNumRearBumpers(); //Find number of bumpers

rearBump = robot.getStallValue(); //Get stall status

Table 2.1 below shows how to interpret the integer value returned by the getStal-
lValue() method. First convert the integer to a binary number and store it in two bits.

2.3 Reading and Controlling the Devices 25

For example if 6 was returned this would be 0000000000000110. The interpretation
of the integer 6 is that rear bumpers 1 and 2 were bumped. On the Pioneers bumper
1 is the right most rear bumper and bumper 5 is the left most rear bumper, see Fig-
ure 2.3. If an integer value of 32 was returned this would mean that bumper 5 was
bumped. However, if the left wheel was stalled the integer value would be 1. If the
right wheel was stalled it would be 256 and if both were stalled it would be 257.

Fig. 2.3 Rear bumpers on the Pioneer robots

Table 2.1 Interpreting the stall integer

Example binary 0 0 0 0 0 0 1 1 0

Bumper number Right
wheel
stall

- - 5 4 3 2 1 Left
wheel
stall

Decimal component 256 128 64 32 16 8 4 2 1

If you need to check that the correct number of bumpers are being recognised
(there are 5 rear bumpers on Pioneer P3-DX robots), then you can call the get-
NumRearBumpers() method of the ArRobot class, which returns an integer value.
There are also methods for checking the number of front bumpers, getNumFront-
Bumpers(), and for checking whether front and rear bumpers are present, hasFront-
Bumpers() and hasRearBumpers(), which both return boolean values. The program
below shows the implementation of a user-written method “escapeTraps()”, which
uses the bumpers to determine where a bump has occurred and how to escape from
it. The integer value “bumpVal” supplied to the method should be the result of call-
ing ArRobot::getStallValue() . The double value “minRearReading” should be the
smallest reading from the rear sonar, to determine whether the robot should reverse

26 2 Programming with the ARIA API

out of the trap or move forwards. Notice that the method ArUtil::sleep() is called to
allow the robot time to carry out the motion commands; the argument to this is in
milliseconds.

/∗
∗---
∗ Escape traps mode

∗---
∗/

void escapeTraps(int bumpVal, double speed, double minRearReading,

ArRobot *thisRobot)

{

if (bumpVal == 0)

{
cout << "TRAPPED AT FRONT MOVING BACKWARDS!\n";
thisRobot->setRotVel(20);

thisRobot->setVel(-1*speed); //Reverse

ArUtil::sleep(2000);

}else
if (bumpVal > 1 && bumpVal < 63) //If any bumper registers

{
cout << "TRAPPED BEHIND MOVING FORWARDS!\n";
thisRobot->setRotVel(20);

thisRobot->setVel(speed); //Move forwards

ArUtil::sleep(2000);

}else
if (bumpVal == 1 || bumpVal == 256 || bumpVal == 257)

//Either wheel has stalled

{
cout << "TRAPPED - MOVING EITHER FORWARD OR BACKWARDS!\n";

if (minRearReading < 200) //Trapped at back

{
thisRobot->setRotVel(20);

thisRobot->setVel(speed); //Move forwards

ArUtil::sleep(2000);

cout << "GOING FORWARDS TO ESCAPE\n";
}else //Not trapped at back

{
thisRobot->setRotVel(20);

thisRobot->setVel(-1*speed); //Move backwards

ArUtil::sleep(2000);

cout << "GOING BACKWARDS TO ESCAPE\n";
}

}
}

}

Note that the MobileSim simulator does not generate bump signals other than the
right and left wheel stall signals, see Section 3.2.

2.3 Reading and Controlling the Devices 27

2.3.5 The 5D Arm

ArP2Arm is the interface to the AROS/P2OS-based Pioneer arm servers. The arm is
attached to the robot’s micro-controller via an AUX serial port and the arm servers
manage the serial communications with the arm controller [14]. The physical arm
has 6 open-loop servo motors and 5 degrees of freedom, see [18] for more details.
The end effector is a gripper with foam-lined fingers that can manipulate objects
up to 150 g in weight. Table 2.2 lists the joints, which are illustrated in detail in
Figure 2.4 and Figure 2.5.

Table 2.2 Joints list for the Pioneer 5D arm

Joint Number Description

1 Rotating base
2 Pivoting shoulder
3 Pivoting elbow
4 Rotating wrist
5 Gripper mount (pivoting)
6 Gripper fingers

Fig. 2.4 5D arm gripper detail

28 2 Programming with the ARIA API

Fig. 2.5 The joints on the Pioneer

An ArP2Arm object is instantiated and associated with the robot as described
in Section 2.2.2, see also lines 1 to 3 of the program below. Note that the Ar-
Robot object that attaches to it must be run in its own thread, i.e. you should use
ArRobot::runAsync() if you are using the 5D arm. Following instantiation the arm
must be initialised first (line 4). This process communicates with the robot, checking
that an arm is present and in good condition [14]. The servos must also be powered
on (line 8) before the arm can be used. The program below shows how to do this:

ArRobot robot; //Instantiate a robot 1

ArP2Arm arm; //Instantiate a 5D arm 2

arm.setRobot(&robot); //Add arm to robot 3

if (arm.init() != ArP2Arm::SUCCESS) //Initialize the arm 4

{
printf("Arm initialization failed.\n"); 5

Aria::exit(0); 6

exit(1); 7

}
arm.powerOn(); //Turn on the arm 8

ArUtil::sleep(4000); //Wait for arm to stop shaking 9

2.3 Reading and Controlling the Devices 29

Note that the arm can shake for up to 2 seconds after powering on and if it is
told to move before it stops shaking then it can shake even more violently. The
powerOn() method of the ArP2Arm class waits 2 seconds by default but it is advis-
able to include an extra sleep statement as an added precaution (line 9).

The joints in the arm can be controlled by using the ArP2Arm::moveTo() method.
This takes three arguments: an integer which specifies which joint is to be controlled,
a float which specifies the position to move the joint to (in degrees) and an unsigned
char, which specifies the speed of movement. If a velocity of 0 is specified then the
current speed is used. Note that each joint has a -90 to 90 degree range approx-
imately, but this can differ between designs. On the Pioneers all the joints rotate
through at least 180 degrees, except the gripper fingers. The program below shows
commands that move the arm joints (lines 1 to 5) and the fingers (line 6).

arm.moveTo(1,45,40); //Set each joint 1

arm.moveTo(2,50,40); 2

arm.moveTo(3,20,40); 3

arm.moveTo(4,10,40); 4

arm.moveTo(5,15,40); 5

arm.moveTo(6,30,40); //Set gripper 6

ArUtil::sleep(6000); 7

arm.park(); //Home arm and power it off 8

arm.uninit(); //Uninitialize the arm 9

The gripper at the end of the Pioneer arm is treated like the joints, where the an-
gle passed is proportional to the amount of closing, i.e. to move it you just send the
moveTo() command to joint 6. There is a public attribute ArP2Arm::NumJoints that
allows the number of joints to be determined. By declaring a P2ArmJoint object it
is also possible to obtain information about the state of that joint. This is done by
using the getJoint() method of the ArP2Arm class and by reference to the myVel,
myHome, myCenter, myPos, myMin, myMax and myTicksPer90 attributes of the
class. The program extract below illustrates this:

ArRobot robot; ArP2Arm arm;

arm.setRobot(& robot);

if (arm.init() != ArP2Arm::SUCCESS)

{
cout << "Arm did not initialise\n";
exit(1);

}
P2ArmJoint *joint;

for (i=1, i<ArP2Arm::NumJoints; i++)

{
joint = arm.getJoint();

cout << "Joint " << i << "velocity " << myVel << "home "

<< myHome << "\n";
}

30 2 Programming with the ARIA API

After use the arm should be set to its home position, powered off and unini-
tialised. Lines 8 and 9 of the previous program show how this is achieved. The
park() method both homes the arm and powers it off. This can also be accomplished
with the separate methods home() and powerOff(). The home() method takes an in-
teger value as its argument. If -1 is specified all joints are homed at a safe speed. If a
single joint is specified only that joint is homed at the current speed. The powerOff()
method should only be called when the arm is in a good position to power off as it
will go limp. It is safer to use park() as this homes the arm first before it is powered
off.

There are a number of other joint controlling methods that can be used. These
include moveToTicks(), moveStep(), moveStepTicks(), moveVel() and stop(). The
moveToTicks() method works in a similar way to the moveTo() method except the
position is specified in ticks instead of degrees. A tick is the arbitrary position value
that the arm controller uses. It uses a single unsigned byte to represent all the possi-
ble positions in the range of the servo for each joint, so the range is 0 to 255 and this
is mapped to the physical range of the servo. This is a lower level of arm control than
using moveTo(). The moveStep() method also works in a similar way to moveTo()
except that it moves a joint through the specified number of degrees rather than to a
fixed position. The moveStepTo() method moves a joint through a specified number
of ticks. The moveVel() method sets a particular joint to move at a specified velocity.
It takes two integers, the first specifies the joint and the second specifies the veloc-
ity. The desired velocity is actually achieved by varying the time between each tick
movement. Thus, the attribute value supplied is actually the number of milliseconds
to wait between each point in the path; 0 is the fastest, 255 is the slowest and a rea-
sonable range is between 10 and 40. Calling the stop() method simply stops the arm
from moving. This overrides all other actions except for initialisation. The 5D arm
cannot be simulated using MobileSim as a 3D simulator is required for robot arms.

2.3.6 The 2D Gripper

The 2D gripper is instantiated and added to the robot as described in Section 2.2.2.
Physically it is a two degree of freedom manipulation accessory that attaches to the
front of the robot, see Figure 1.3 and Figure 2.6. It has paddles and a lift mechanism
driven by reversible DC motors, with embedded limit switches that sense the paddle
and lift positions. The paddles contain a grip sensor and front and rear infrared
break beam switches that close horizontally until they grasp an object or close on
themselves. Further details about the gripper device can be found in [14].

Table 2.3 shows the commands (i.e., all the methods of the ArGripper class) that
can be used to determine the state of the gripper, the integer values that they return
and how these are interpreted. Note that the getGripState() method returns a value
of 2 (closed) both when the grippers are closed around an object and when they are
fully closed on themselves. The integer value 0 (between open and closed) refers to
their being in a moving state, not to their semi-closure. Note also that the paddles

2.3 Reading and Controlling the Devices 31

are always triggered when the gripper is closed. When the gripper is open they are
triggered only when they are touched with sufficient pressure. Table 2.4 shows the
ArGripper methods that can be used to control the gripper.

Fig. 2.6 The Pioneer 2D gripper

The program extract below shows use of the gripper’s getType() method to check
that a gripper is present before it is deployed for action.

ArRobot (robot); //Instantiate robot

ArGripper gripper(&robot); //Instantiate gripper and add robot

int gripType; //Type of gripper

gripType = gripper.getType(); //Get gripper type

if (gripType != ArGripper::NOGRIPPER) //If gripper is present

{
gripper.gripperDeploy(); //Open and raise gripper

ArUtil::sleep(4000); //Wait while this completes

}

The program sample below shows a user-written method to test the state of the
break beams and the paddles and to close the grippers if they are broken by a can.
After closure, the state of the break beams is tested again to make sure the can was
successfully grabbed. The method returns a boolean value, which indicates whether
the grab was successful or not.

/∗
∗---
∗ Can gripping routine

∗---
∗/

bool canGrip(ArGripper *thisGripper, ArRobot *thisRobot)

{

32 2 Programming with the ARIA API

Table 2.3 Methods to obtain the gripper states

Method Description Returns Interpretation

getGripState() The collective state of 0 Between open and closed
the paddles 1 Open

2 Closed

getPaddleState() The individual state of 0 Not triggered
the paddles 1 Left triggered

2 Right triggered
3 Both triggered

getBreakBeamState() The state of the 0 None broken
break beams 1 Inner beam broken

2 Outer beam broken
3 Both beams broken

getType() Type of gripper 0 Query type (QUERYTYPE)
The returned integer 1 General input output (GENIO)
maps to an ARIA 2 User input output (USERIO)
-defined enumeration 3 Packet requested from robot (GRIPPAC)
value shown in 4 No gripper present (NOGRIPPER)
brackets

Table 2.4 Methods to control the gripper

Command Interpretation

gripOpen() Opens the gripper paddles
gripClose() Closes the gripper paddles
liftUp() Raises the lift to the top
liftDown() Lowers the lift to the bottom
gripperDeploy() Puts the gripper in a deployed position, ready for use
gripStop() Stops the gripper paddles
liftStop() Stops the lift
gripperHalt() Halts the lift and the gripper paddles

int beamState; //State of break beams

int paddleState; //State of the paddles

bool grippedCan = false; //Whether can gripped

beamState = thisGripper->getBreakBeamState(); //Get state of beams

paddleState = thisGripper->getPaddleState(); //Get paddle state

cout << "Gripper state is " << gripState << " \n";
cout << "Beam state is " << beamState << " \n";

/∗ If any beam is broken or paddles are triggered ∗/
if (beamState == 1 || beamState == 2 || beamState == 3 ||

paddleState == 1 || paddleState == 2 || paddleState == 3)

{

2.3 Reading and Controlling the Devices 33

thisRobot->setVel(0);

thisGripper->gripClose(); //Grasp can

ArUtil::sleep(4000);

beamState = thisGripper->getBreakBeamState(); //Get beam state

if (beamState == 1 || beamState == 2 || beamState == 3)

{
grippedCan = true;

thisGripper->liftUp(); //Lift can

ArUtil::sleep(4000);

}else
{
thisGripper->gripOpen(); //Re-open as no can

ArUtil::sleep(2000);

grippedCan = false;

}
}

return grippedCan; //Whether grab succeeded

}

The user-written method below releases a gripped can, reverses and then turns
the robot. Note that the 2D gripper cannot be simulated using MobileSim, see Sec-
tion 3.2.

/∗
∗---
∗ Can dropping routine

∗---
∗/

void canDrop(double speed, ArGripper *thisGripper, ArRobot *thisRobot)

{
thisRobot->setVel(0); //Stop moving

thisGripper->liftDown(); //Lower gripper

ArUtil::sleep(4000);

thisGripper->gripOpen(); //Open gripper

ArUtil::sleep(4000);

thisRobot->setVel(-1*speed); //Reverse slowly

ArUtil::sleep(4000);

thisRobot->setRotVel(90); //Turn away

ArUtil::sleep(2000);

}

2.3.7 The Pan-tilt-zoom Camera

A pan-tilt-zoom camera is instantiated and added to the robot as described in Sec-
tion 2.2.2. Most Pioneers come with a Canon VC-C4 camera (see [21] and [20] for
more details), so the ArVCC4 class, which inherits from the ArPTZ class, must be

34 2 Programming with the ARIA API

used. Once instantiated the camera must first be initialised using the init() method
of the ArVCC4 class. The program extract below shows how to do this:

ArRobot(robot); //Instantiate robot

ArVCC4 ptz(&robot); //Instantiate ptz and add robot

bool ptzInitialized; //Whether ptz initialized

ptzInitialized = ptz.init(); //Initialize ptz

ArUtil::sleep(4000);

Once initialised, the camera can be controlled using the pan(), tilt() and zoom()
methods of the ArVCC4 class. These move the camera to a specified angle in de-
grees, which must be an integer value. In addition, the tiltRel() and panRel() meth-
ods can also be used to tilt or pan the camera relative to its present position. Other
useful methods include, panTiltRel() and panTilt() which perform the pan and tilt
operations together. Here, two integers representing the degrees of pan and tilt re-
spectively are taken as arguments. The current angles of the camera can be obtained
by calling getPan(), getTilt() and getZoom(). The methods getMaxPosPan() and get-
MaxNegPan() retrieve the highest positive and lowest negative values that the cam-
era can pan to (in degrees). The methods getMaxPosTilt() and getMaxNegTilt() do
the same for the tilt angles.

The user-written method below performs a simple camera movement exercise,
panning and tilting the camera through its full range continuously. Note that a pan-
tilt-zoom camera cannot be simulated using MobileSim, see Section 3.2.

/∗
∗---
∗ PTZ exercise mode

∗---
∗/

void ptzExercise(int inc, bool initPTZ, ArVCC4 *thisPTZ)

{

typedef enum //Tilt up or down

{
up U,

down D,

} VertDirection;

typedef enum //Pan left or right

{
left L,

right R,

} HorizDirection;

int panAngle; //Current pan angle

int tiltAngle; //Current tilt angle

int lowPan; //Lowest pan angle

int lowTilt; //Lowest tilt angle

2.3 Reading and Controlling the Devices 35

int highPan; //Highest pan angle

int highTilt; //Highest tilt angle

HorizDirection hDir; //Horizontal direction

VertDirection vDir; //Vertical direction

if (initPTZ == true) //Camera initialization success

{
panAngle = thisPTZ->getPan(); //Get current pan

tiltAngle = thisPTZ->getTilt(); //Get current tilt

highPan = thisPTZ->getMaxPosPan(); //Get max pan

lowPan = thisPTZ->getMaxNegPan(); //Get min pan

highTilt = thisPTZ->getMaxPosTilt(); //Get max tilt

lowTilt = thisPTZ->getMaxNegTilt(); //Get min tilt

cout << "Pan = " << panAngle << " Tilt = " << tiltAngle << "\n";

if (panAngle == highPan && tiltAngle == highTilt)

{
cout << "Changing direction to L and D\n";
hDir = left L; //Change directions

vDir = down D;

}
if (panAngle == lowPan && tiltAngle == lowTilt)

{
cout << "Changing direction to R and U\n";
hDir = right R; //Change directions

vDir = up U;

}
if (hDir == right R) //If going right

{
thisPTZ->panRel(inc); //Increment pan right

}else
{
thisPTZ->panRel(-1*inc); //Increment pan left

}
if (vDir == up U) //If going up

{
thisPTZ->tiltRel(inc); //Increment pan up

}else
{
thisPTZ->tiltRel(-1*inc); //Increment pan down

}
}else
{
cout << "Cannot initialize camera\n"; //Error message

}
}

The next chapter looks at some of the other software packages offered by Mo-
bileRobots including ACTS, Mapper3Basic and the simulator MobileSim.

http://www.springer.com/978-1-84882-863-6

