
Mobile Robotics
AUTO4508

Group Project
Autonomous Navigation

2024 - Weeks 7-12



Overview

1.Equipment
2.Tasks to complete
3.General approach
4.Hardware
5.Operating system
6.Frameworks
7.Dev notes



Equipment 

 Pioneer 3-AT Outdoor Mobile Robot Platform

 Industrial Linux PC with onboard screen

 GPS: not useful for this project

 IMU: Phidget Spatial 3/3/3

 Camera: Stereo Camera OAK-D V2

 Lidar: SICK TIMS7XXs

 Software: Ubuntu, ARIA or ROS



Tasks to complete 1/3
 Each team will be given a number of GPS waypoints that 

the robot has to visit, before returning to its starting 
position.

 Whenever a waypoint has been reached (within 
reasonable accuracy), the robot must take a photo of the 
marker object at the waypoint (e.g. an orange cone) and then 
head towards the next waypoint. Always leave this marker to 
the robot’s right side.

 At each waypoint, an additional object of interest, e.g. a 
traffic sign or a large coloured bucket, will be displayed at a 
fixed height, but at an undetermined distance. Identify the 
object of interest and calculate its distance from the 
waypoint marker.

 Upon completion of the waypoint course, print all marker 
photos and object distance measurements on the screen.



Tasks to complete 2/3
 Record the robot’s driving path and display it graphically on the 

robot’s display with all detected markers, objects of interest and any 
obstacles.

 Implement a user interface with graphics and text on the robot’s 
display that always displays the robot’s internal status and intended 
actions.

 At all times, avoid collisions with markers, objects of interest and any 
other stationary or moving obstacles, such as walls, vehicles, people, 
bikes, etc.

 For safety reasons, implement a Bluetooth link between the robot’s 
on-board PC and a gamepad controller:

 Button ‘A’ enable automated mode. In automated mode, use the back pedals as 
a dead-man switch. If released, the robot has to stop.

 Button ‘B’ enable manual mode (disable automated mode). In manual mode, the 
steering controls can be used to manually drive the robot forward/backward and 
left/right.



Tasks to complete 3/3
 Project design report (pdf), which includes

 Report on which team member did what

 Software design description/design choices

 Diagrams, photos, screenshots, plots, etc.

 Include page numbers

 Max 10 pages plus 1 Title page

 Do NOT include Program code, Table of contents, Half-empty pages, etc.

 User Manual (pdf)

 Max 5 pages, no Title page

 As if it was sold to a customer

 Source code, via email to lab demonstrator, clearly marking any imported code with 
referencing the source.



General approach 1/2
 This group project will require a very substantial workload within a 

short time-frame, through:

 Catching up with required knowledge to program the robots (Ubuntu, 
Docker and ROS2).

 Development of the code to perform the tasks.

 Reporting and presentation.

 It is not a competition, team work within the group, and communication 
& collaboration on a general basis with other teams is encouraged and 
will prove necessary.

 Do not reinvent the wheel ! Research the internet, as all the tasks are 
one way or another already documented.

 Ideal approach is to build out of open sources, and only code the last 
segments. You may not have the time to complete all tasks otherwise.

 Stressed out work does not produce good and repeatable results. 



General approach 2/2

 Even the best plan never survives the first contact with the 
enemy… Be adaptable, prepare for contingencies !

 Make use of all personnel resources within your group. 
Communicate your availability and status to your team 
mates.

 Work at least in pairs for heavy/technical tasks, so the 
knowledge basis is not centralised. 

 Do not let yourself or anyone slack down, and ensure the 
workload is shared evenly.

 Do not estimate that you are done when your personal task 
list is complete! Get involved in some other part of the team’s 
project. 

 Keep time up your sleeve for real life testing !



Hardware - Pioneer AT3 robot

 Pioneer 3-AT is a small four-wheel, 
four-motor skid-steer robot ideal for 
all-terrain operation or laboratory 
experimentation.

 The Pioneer 3-AT comes complete 
with one battery, emergency stop 
switch, wheel encoders and a 
micro-controller with ARCOS 
firmware.

 The robot is heavy (20kg), and 
needs to be lifted carefully (proper 
lifting techniques). Do not lift using 
the camera.

 Communications to the micro 
controller are done via serial port 
(RS232). 



Hardware - PC

 The robot is mounted with an industrial grade 
PC outfitted with a 32GB of RAM. 

 The hard drive is a Cactus 1 TB m.2 SSD.

 2x USB3 and 4 usb 2.0, 2x serial ports, and 
other industrial connectors.

 WiFi adapter on board.



Hardware – OAK-D Camera

 4 TOPS of processing power 
(1.4 TOPS for AI)

 Run any AI model, even custom 
architectured/built ones

 Encoding: H.264, H.265, 
MJPEG - 4K/30FPS, 
1080P/60FPS

 Computer vision: warp/dewarp, 
resize, crop, edge detection, 
feature tracking

 Stereo depth perception at 120 
FPS with filtering

 Object tracking: 2D and 3D 
tracking



Hardware – Bluetooth controller

 PC has onboard Bluetooth card.

 The controller is DualShock IV clone.



Hardware – LIDAR

 Sick LIDAR TiM7xx, connected via ethernet 
cable with set ip address 192.168.0.1.



Operating systems
 The operating system in use on the robots is 

Ubuntu 22.04 LTS, although any other OS on the 
ground control station can be used.

 Ubuntu command line tutorials



Frameworks - Intro

 There are two software frameworks to use for the 
robot.

 Aria – Library used to control the Pioneer AT3 robot
(the basic drive commands are done for you).

 ROS2 – Industry standard robotics framework.

Any programming 
language can be used 
but you will get the 
most help in python or 
c++



Frameworks - Aria

 AriaCoda is a C++ library used to communicate 
with Pioneer mobile robot controllers, many 
sensors and other accessory devices, and 
includes various useful tools for mobile 
robotics applications.

 Much of the library is mostly C++, but has C, 
Python and Java wrappers.

 AriaCoda is based on the deprecated ARIA 
library.

 Link: https://github.com/reedhedges/AriaCoda



Frameworks – ROS2
 ROS (Robot Operating System) provides libraries and tools to help 

software developers create robot applications. 

 It provides hardware abstraction, device drivers, libraries, visualisers, 
message-passing, package management, and more. 

 It will take a steep 
learning curve, but once 
familiar with the concepts, 
ROS may provide most of 
the required functionalities 
almost out of the box.



Dev notes - Ubuntu
 Ubuntu 22.04 on all bots, with all the build essential and compile support

 SSH server installed so possible to SSH, RDP or SFTP into the machine 
remotely.

 users have been already added to the dialout group, and does not 
require to sudo into the various ports. 



Dev notes – Aria barebone

 The official Aria lib is deprecated and the compiling of ArNetworking was causing 
issues as properly obsolete.

 Using AriaCoda, which is a lightweight open source continuation of Aria, but fully 
functional.

 https://github.com/reedhedges/AriaCoda.git

 Read the readme.md file !

 All examples compiled directly with make and operational (teleop drive, battery 
monitor encoders, GPS, and co, etc).

 The examples compiled binaries are in the /Aria/examples folder, and the CLIs 
are listed in the devnotes.

 A couple of CLIs:

 sudo ./teleopActionsExample -rp /dev/ttyUSB0

 sudo ./gpsExample -gpsPort /dev/ttyACM0 -rp /dev/ttys1



Dev notes – DepthAi barebone

 DepthAi required to use the depth camera

 The install process mostly used the following tutorial:

 https://github.com/luxonis/depthai

 Python demo and examples in the subdirs. All working, again a couple of CLIs in the devnotes

 python3 depthai_demo.py -gt cv

 WARNING !

 As part of the install process, the procedure requires the following CLI:

 python3 install_requirements.py

 However it does install PyQt5 binding packages that clash with the ROS rqt visualiser. 

 The following packages may require to be removed after the install of the prerequisites:

 pip uninstall PyQt5

 pip uninstall PyQt5-sip

 pip uninstall PyQtWebEngine



Dev notes – RosAria
 RosAria was developed for ROS1:

 http://wiki.ros.org/ROSARIA/Tutorials/How_to_use_ROSARIA

 If you wish to add more functionality or adapt the aria code you can 
but you will need to rewrite the code for ROS2.

 The node compiles without issue, providing Aria or AriaCoda is 
already available system wide.

 CLIs for starting rosaria and teleop node :

 ros2 run ariaNode –rp /dev/ttyUSB0

 There is a series of ROS parameters that will need to be passed to 
ensure that the odometry is configured properly. 



Dev notes – depthai-ros
 depthai-ros compiles in a colcon workspace, following the tutorial:

 https://github.com/luxonis/depthai-ros

 Can use –j2 flag to reduce the compile time load.

 export ROS_PARALLEL_JOBS=-j2

 CLIs for testing (ROS launch file) with rviz:

 ros2 launch depthai_examples stereo_node.launch

 Note the amount of RAM used (system monitor), close to 1GB for 
rviz alone, and only with a point cloud. Rviz would be better off 
running on the ground control station, to avoid depleting the robbot’s
RAM and swap.

 Note that the demo nodes publishes already an attitude. 



Dev notes – ROS GPS

 Navsat node installed directly from deb packages:

 sudo apt-get install ros-noetic-nmea-navsat-driver

 The node is started as follows:

 rosrun nmea_navsat_driver nmea_serial_driver _port:=/dev/ttyACM0 _baud:=9600



This node is not the only option to publish the 
GPS data. If more in depth parametric and 
accessibility for other programs are required, 
the preferred method would then be to use a 
gpsd daemon and a corresponding ros-gpsd 
node.



RoadMap
Subjects to explore in priority over the next week:

 Bluetooth pairing of the game-pads

 joy node: https://index.ros.org/p/joy/

 teleop_twist_joy: https://index.ros.org/p/teleop_twist_joy/github-ros2-teleop_twist_joy/

 Phidgets IMU node: http://wiki.ros.org/phidgets_imu

 Transforms broadcasters for the sensors: http://wiki.ros.org/tf

 Nav stack setup: http://wiki.ros.org/navigation/Tutorials/RobotSetup

 ROS functionalities such as ros services

All the above can be supplemented by a good dose of tutorials on Youtube. Run your code at 
home using the simulation setup in gazebo, and get familiarised with the general navigation 
concepts !

Good Luck !



This work is licensed under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.


