# QUESTION 1 Shortest Paths

(6+1 = 7 points)

Apply the Dijkstra Algorithm for finding the shortest distances from S to A..G

### Distances

| SA = 3.2 | SB = 5.1 | SC = 3.6 |
|----------|----------|----------|
| CG = 7.8 | EG = 5.7 | DG = 5.1 |
| AB = 2.0 | BD = 2.8 | DE = 3.2 |
| EC = 2.2 | CA = 2.2 |          |

| Ready Set =                                  |               |          |   |          | _ |   |              |   |  |
|----------------------------------------------|---------------|----------|---|----------|---|---|--------------|---|--|
| Node                                         | <b>S</b> tart | <u> </u> | В | <u> </u> | D | E | <b>G</b> oal |   |  |
| Distance                                     | 0             |          |   |          |   |   |              |   |  |
| Predecessor                                  | _             |          |   |          |   |   |              | _ |  |
| Shortest Distance S>G<br>Shortest Path S> G: |               |          |   |          |   |   |              |   |  |

# QUESTION 2 Maze Navigation

### Consider this iterative algorithm:

### In which order will the robot visit the maze cells?



#### Consider this recursive algorithm:

void explore()

```
{ "mark current cell";
{ if (front_open && "front cell unmarked")
      { "drive 1 cell forward"; explore(); "drive 1 cell back"; }
if (left_open && "left cell unmarked")
      { "drive 1 cell left"; explore(); "drive 1 cell right"; }
if (right_open && "right cell unmarked")
      { "drive 1 cell right" explore(); "drive 1 cell left"; }
```

# In which order will the robot visit the maze cells?



| Mobile Robots       | PAGE 3         |
|---------------------|----------------|
| Prof. Thomas Bräunl | Sample Midterm |
|                     |                |

{

### Waypoint Navigation

(10 points)

Write a C-function drive\_waypoint that drives a mobile robot from its current position to the next waypoint, with absolute position: wx, wy.

- You can assume that there will be a collision-free path to the waypoint.
- Continually read the robot's current pose using functions VWGetPosition(&x,&y,&phi).

void drive\_waypoint(float wx, float wy)

# Genetic Algorithms

(6 points)

### Write Pseudocode to describe a Genetic Algorithm, to evolve a robot movement.

- Assume the robot movement can be coded by 50 integers: int move[50]
- Use a population of 1,000 genes: int genepool[1000][50]
- Use an array of fitness values: int fitness[1000]
- Assume an evaluation function exits to assign a fitness value to each movement: int eval( int robmove[])
- Assume you have functions available.
   void crossover(int parent1[], int parent2[], int child1[], int child2[]);
   void mutation(robmove[]);
   int select(fit[]);

# Differential-Kinematics

### (2+2 = 4 points)

### For a differential drive vehicle with:

- Wheel radius 4cm
- Left/right wheels are 15cm apart

# (a) Forward

### Calculate v and $\omega$ for

 $\theta$ <sup>'</sup>L = 2.2 rev/s  $\theta$ <sup>'</sup>R = 1.5 rev/s

v =\_\_\_\_\_ m/s  $\omega =$ \_\_\_\_\_ rad/s

# (b) Inverse

Calculate  $\theta_L$  and  $\theta_R$  for:

- v = 1.5 m/s
- $\omega = -45 \text{ deg/s}$  (careful with units!)

 $\theta_{L}^{\prime} =$ \_\_\_\_\_ rev/s  $\theta_{R}^{\prime} =$ \_\_\_\_\_ rev/s

# Ackermann-Kinematics

# (2+2 = 4 points)

#### For an Ackermann-steering vehicle:

- Assume wheel radius is 4cm
- Front/back wheels are 20cm apart

### (a) Forward

Calculate the resulting angular velocity.

- v = 1 m/s
- Steering angle 10°

ω = \_\_\_\_\_ rad/s

# (b) Inverse

What steering angle is required for a desired angular velocity.

- $\omega = 2 \text{ rad/s}$
- v = 2 m/s

 $\alpha$  = \_\_\_\_\_ deg

| Mobile<br>Prof. T             | Robots<br>homas Bräunl                                        |                                                           |                                                  | Samp                        | PAGE 7<br>le Midterm |  |  |  |
|-------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-----------------------------|----------------------|--|--|--|
| QUES                          | TION 7                                                        | Omni-Kinema                                               | atics                                            | (2+2+2+2 = 2                | 8 points)            |  |  |  |
| For ar                        | For an omni-directional vehicle with 4 driven Mecanum wheels: |                                                           |                                                  |                             |                      |  |  |  |
| •<br>•<br>•                   | Assume wheel ra<br>Left/right wheels<br>Front/back whee       | adius is 4cm<br>are 15cm apart<br>Is are 20cm apart       |                                                  |                             |                      |  |  |  |
| <b>Forwa</b><br>What i<br>(a) | ard<br>is the resulting sp<br>$\Theta_{FL} = 360^{\circ}/s$   | eed for individual $\Theta^{\circ}_{FR} = -360^{\circ}/s$ | wheel speeds:<br>$\Theta'_{BL} = -360^{\circ}/3$ | s Θ' <sub>BR</sub> = 360°/s |                      |  |  |  |
|                               | v <sub>x</sub> =                                              | Vy =                                                      | ω =                                              |                             |                      |  |  |  |
| (b)                           | Θ'FL = 180°/S                                                 | Θ' <sub>FR</sub> = 180°/s                                 | Θʻ <sub>BL</sub> = 180°/s                        | Θ' <sub>BR</sub> = 180°/s   |                      |  |  |  |
|                               | v <sub>x</sub> =                                              | Vy =                                                      | ω =                                              |                             |                      |  |  |  |

# Inverse

Calculate the four individual wheel speeds in °/s for desired vehicle speeds:

(c)  $v_x = 1m/s, v_y = 1m/s, \omega = 0$ 

 $\Theta'_{FL} = \Theta'_{FR} = \Theta'_{BL} = \Theta'_{BR} =$ 

(d) 
$$v_x = 2m/s, v_y = 0m/s, \omega = 30^{\circ}/s$$

 $\Theta$ 'FL =  $\Theta$ 'FR =  $\Theta$ 'BL =  $\Theta$ 'BR =