Embedded Systems Professor Thomas Bräunl Associate Lecturer Kieran Quirke-Brown

Tutorial 3 – Assembley, Circuits and Chips

1. Given the following fragment of assembly code Complete the table below.

- 1. LDS R16, \$0050
- 2. LDI R17, \$51
- 3. STS \$004A, R16
- 4. STS \$004B, R17

Degisters	Initial Values	After 1.	After 2.	After 3.	After 4.
Registers		Alter 1.	Altel 2.	Allel 5.	Allel 4.
(PC)	\$00				
(R16)	\$00				
(R17)	\$FF				
(\$004A)	\$3C				
(\$004B)	\$1D				
(\$0050)	\$42				
(\$0051)	\$B9				

Note:

- Word size in program memory is 16 bits
- Word size in data memory is 8 bits
- LDI instruction (opcode+operand) has a length of 16 bits, while LDS and STS have a length of 32bits.
- Therefore LDI instruction takes up only 1 memory word and PC only increments by 1 after execution.

2. What is the value in the following registers and/or memory locations after executing the following instructions?

- LDS R16, \$0400 1. After **Before** R16 = \$76 R16 =[\$0400] =\$89 [\$0400] = 2. LDI R16, \$04 **Before** After R16 = \$76 R16 = [\$0400] =\$89 [\$0400] = 3. CPI R16, \$76 **Before** After R16 = \$76 R16 = [\$0400] =\$89 [\$0400] = [CC] = --(overflow flag is set to 0, negative is 0, zero is 1, carry is 0)
- 4. LDS R16, \$0400 STS \$0401, R16 Before After R16 =\$76 R16 = [\$0400] =\$89 [\$0400] = [\$0401] =\$00 [\$0401] =
- 5. ADD R16, R17 *Before* After R16 =\$76 R16 = R17 =\$12 R17 =

6. AND R16, R17

Before	After
R16 =\$76	R16 = 0111 0110 AND 0001 0010 =
R17 =\$12	R17 =

7.	OR R16, R17 <i>Before</i> R16 =\$76 R17 =\$12	<i>After</i> R16 = 0111 0110 OR 0001 0010 = R17 =
8.	INC R30 <i>Before</i> R30 =\$79	After R30 =
9.	DEC R30 <i>Before</i> R30 =\$00	After R30 =
10.	CLR R30 <i>Before</i> R30 =\$FF	After R30 =
11.	SER R30 <i>Before</i> R30 =\$55	After R30 =
12.	SBR R18, 1 <i>Before</i> R18 =\$50	After R18 =
13.	CBR R18, 7 <i>Before</i> R18 =\$FF	After R18 =
14.	COM R18 <i>Before</i> R18 =\$55	<i>After</i> R18 = NOT 0101 0101 =
15.	NEG R18 <i>Before</i> R18 =\$55	<i>After</i> R18 = \$AA+1 =
16.	MOV R18, R1 <i>Before</i> R18 =\$55	After R18 =

R1 = \$66 R1 =

- 17. MOVW R18, R0 Before After R19 = 66 R18 = R18 = 55 R18 = R1 = 03 R1 = R0 = 202 R0 =
- 18. LD R18,X Before After R18 =\$55 R18 = X =\$0450 X = [\$0450] =\$20 [\$0450] =
- 19. LD R18,X+ *Before* After R18 =\$55 R18 = X =\$0450 X = [\$0450] =\$20 [\$0450] =
- 20. ST -Y,R18 *Before* After R18 =\$55 R18 = Y =\$0450 Y = [\$0450] =\$20 [\$0450] = [\$044F] =\$10 [\$044F] =

3. Draw a wiring diagram of a circuit that can count from 0-9 using two 74HC74 D flipflop chips, a push button, some resistors and some LEDs.

4. Implement the above circuit in tinkercad.