
Digital and Embedded Systems
Professor Thomas Bräunl

Tutorial Optional B – Stack

1. Stack
A stack data structure can use either the ATMega's system stack (using the stack
pointer SP) or a user-defined stack (using index registers X, Y or Z).

Following the Atmel convention of post-decrement for push and pre-increment
for pop, implement your own subroutines mypush and mypop. Use X as a user
stack-pointer and R16 as contents to be pushed/poped.

2. PUSH and POP
Execute the following Atmel code, draw the stack contents, and find out the
register contents at the end. Assume SP is initialized with $04FF.

LDI R16, $10
 LDI R17, $20

PUSH R16
 PUSH R17
 NOP
 POP R16
 POP R17

Contents of: R16 ___________________

X
next free (lower address)

SP

R17 ___________________
SP ______________

3. Machine Code and Status Register
Consider the machine program shown below. Fill in the instruction and parameters
column by finding each instruction in the instruction set.

Address Code Instruction Parameters
0 2700
1 2711
2 0000
3 9100
4 0400
5 9110
6 0401
7 0F01
8 9300
9 0402

Fill in the blanks in the program execution table below. Each line corresponds to a
single instruction.
Enter the contents of the program counter, registers, memory locations and status
register flags after each instruction is executed. Status flags N, Z, V and C stand
for the negative, zero, overflow and carry flag, respectively.

Note:

• Assume all flags are initially set to zero.
• The PC only increments by 1 or 2, depending whether an instruction takes 1

or 2 words (2 or 4 bytes).

(before ex)

PC R16 R17 $0400 $0401 $0402 V N Z C
0 $4A $7E $55 $AC $42 0 0 0 0
1 $55 $AC
2 $55 $AC
3 $55 $AC
5 $55 $AC
7 $55 $AC
8 $55 $AC
A $55 $AC

