Digital and Embedded Systems Professor Thomas Bräunl Associate Lecturer Kieran Quirke-Brown

Tutorial 6 - System Control in C

1. Implement a complete C program for on-off motor control (bangbang control).

- The motor output pin is GPIO1.
- The encoder input pin is GPIO2.
- The motor is spinning only in one direction, so no motor direction pin is required and a single encoder input is sufficient.

Note:

- The main program has to initialize pins
- The encoder needs to be setup as a interrupt to avoid wasting the CPUusage
- The motor routine reads the encoder, calculates the current speed, then decides whether the motor should be switched on or off.

Example Solution:

```
int count = 0;
void tickCount() {
    count++;
void setMotor() {
   static int enc_old = 0;
    const int v_des = 80;  //assumed speed is 80 ticks per second
   int v_act = (count - enc_old) * 100; //this gives ticks/sec as the function runs at 100 times a second
    if (v_act > v_des) {
        digitalWrite(1, LOW);
        digitalWrite(1, HIGH);
    enc_old = count;
void setup() {
   pinMode(1, OUTPUT);
   pinMode(2, INPUT);
   attachInterrupt(2, tickCount, RISING); //updates count when there is a rising edge on encoder input
   hw timer t *My timer = timerBegin(0, 80, true);
   timerAttachInterrupt(My_timer, &setMotor, true);
    timerAlarmWrite(My_timer, 100000, true); //run 100 times a second
    timerAlarmEnable(My_timer);
void loop() {
```

2. Implement a C program that controls the temperature in the room using Hysteresis control.

- The heater output pin is GPIO1.
- The heater is controlled through an SCR which requires PWM control, set this up as a separate function.
- The cooling system uses an analogue controlled Chilled water valve onoutput pin GPIO3.
- The temperature input pin is GPIO2 and is an analogue value.
- The requirements for heater control is that if the room temperature falls below 20 degrees the heater should turn on at 20%. The heater output should increase as the temperature gets lower than 20 degrees where it will be running at 100% by 17 degrees.
- The chilled water valve should be controlled as follows:
 - o If the temperature gets to 25 degrees then the chilled water valve should open to 30%. The valve should continue to open until it reaches 100% at 27 degrees.

Example Solution:

```
ledcAttach(1, 100, 8); //use ledc to write a PWM output easily
    pinMode(2, INPUT);
    pinMode(3, OUTPUT);
void loop() {
    int temp = analogRead(2);
    static bool heating = false, cooling = false;
    int output = 0;
    if (temp > 25) {
        output = min(max(30 + (temp - 27.0 / 2.0) * 70, 30), 100); //ensure value is between 30 and 100
        analogWrite(3, output);
        cooling = true;
    } else if (temp < 20) {
        output = \min(\max(20 + (20 - \text{temp }/ 3.0) * 80, 20), 100); //ensure value is between 20 and 100
        output = 255 * (output / 100.0); //convert output value to duty cycle.
        ledcWrite(1, output);
        heating = true;
        if (temp > 23 && heating) {
            output = 0;
            ledcWrite(1, output);
        heating = false;
} else if (temp < 23 && cooling) {
            output = 0;
            analogWrite(3, output);
            cooling = false;
```