Embedded Systems
Professor Thomas Braunl
Associate Lecturer Kieran Quirke-Brown

Tutorial 3 — Assembley, Circuits and Chips

1.
Initial
Registers | Values After . After 2. After 3. After 4.
(PC) $00 502 $03 $05 $07
(R16) $00 542 $42 $42 $42
(R17) $FF SFF $51 $51 $51
($004A) $3C $3C $3C 542 542
($5004B) $1D S1D $1D $1D $51
($0050) $42 542 $42 $42 $42
($0051) SBY $BY SB9 $B9 $B9
2.
1. LDS RI16, $0400
Before After
R16 =876 R16= 589

[$0400] =889 [$0400] = $89

2. LDI RIe6,$04
Before After
R16 =876 R16 = 804
($0400] =S89 [$0400] = $89

CPl RI16, $76

Before Afrer

R16 =576 R16= 576
[$0400] =$89 [50400] = 589
-- [CC]=--—-- 0010

(overflow flag is set to 0, negative is 0,

zero is 1, carry is 0)
Note: The CPI instruction performs subtraction but does not store the
result anywhere. Instead it sets the flags in the Condition Code
Register.

LDS RI16, 50400

STS $0401,R16

Before After

R16 =876 R16 = §89
[S0400] =589 [S0400] = §89
[$0401] =$00 [$0401] = 389

ADD R16,R17
Before After
R16 =576 R16 = $88
R17 =812 R17=%§12
AND R16,R17
Before After
R16 =576 R16=0111 0110 AND 0001 0010 =512
R17=§12 R17=%512
OR RIl16,R17
Before After
R16 =876 R16=0111 0110 OR 0001 0010 = $76
R17=§12 R17=1512
INC R30
Before After

R30 =879 R30=57A

10.

1.

12.

13.

14.

15.

16.

DEC R30
Before
R30 =S00

CLR R30
Before
R30 =§FF

SER R30
Before
R30 =855

SBR RI8, 1

Before
R18 =850

CBR RIS, 7

Before
R18 =SFF

COM R18
Before
R18 =855

NEG RIS
Before
RI18 =855

MOV R18, R1

Before

RI8 =555
R1 =566

After
R30 = 5FF

After
R30 = $00

After
R30 = $FF

here: setting single bit: (0000 0001
After
R18 =551

here: clearing three bits: 0000 0111
Afrer
RI18 = §F8

After
R18 = NOT 0101 0101 = SAA

After
R18 = $AA+1 =5AB

After

RI18 =566
R1 =366

17.

18.

19.

20,

MOVW RI18, RO

Before After

R19 =566 R18 =503
R18 =555 R18 = $02
R1 =503 R1 =503
RO =302 RO =502
LD RI8X

Before After

R18 =555 R18 = $20
X =50450 X =50450

[50450] =520

LD RI8X+
Before

R18 =855

X =50450
[50450] =520

ST -Y,RI8
Before

R18 =855

Y =50450
[$0450] =520
[5044F] =510

[$50450] = 520

After

R18 =520

X =50451
[$0450] = 520

After

R18 = §55

Y = S044F
($0450] = $20
[$044F] = §55

3.

In order to count we need to come up with a circuit for counting. If we look at how
flip flops operate we know that they only transition on a rising clock edge. We also
know we can toggle the current value of a flip flop by wiring the current Q’ output
into D as that is the opposite to its current output.

With this we can count one bit as per the first line. Now if wanted to count higher
bits we need to trigger the clock of the next flip flop when the first bit returns to 0
from 1 which means we want the opposite transition to Q. Again we can use the Q’
output and pass that into the next flip flop (with it’s own D wired to its own Q).
And we can see doing this over and over again will result in higher numbers to count
up to. On the next page we see the circuit for this, drawn out for 4 bits. Using the
data sheet for the provided chip we can find the corresponding pins for each part in
the circuit and label as appropriate. In addition, we have added a pull down resistor
for the input button (this value will be high, around 10K<Q). we have also added in
the LEDs that also have a resistor (330€2, so that the current through the LEDs is less
than 20mA).

4.
Extra NAND chip has been included to remove debounce (on sliders this isn’t an
Issue but on pushbuttons it is, sliders have been use to make it easier to demonstrate)

