
Embedded Systems
Professor Thomas Bräunl
Associate Lecturer Kieran Quirke-Brown

Tutorial 1 – Number Representation

1. Convert the following numbers:

GIVEN CONVERT TO

Decimal 77 Binary, 8-bit signed 0100 1101

Decimal -100 Binary, 8-bit signed 1001 1100

Decimal 99 Hex, 8-bit signed 63

Decimal -23 Hex, 8-bit signed E9

Binary, signed 1101 1100 Hex, 8-bit signed DC

Binary, signed 1101 1100 Decimal -36

Binary fixed pt. 11.0101 Decimal 3.3125

Decimal 0.85 Binary fixed pt. (4 deci.) 0.1101

Decimal FP -16.25 IEEE FP 1 1000 0011 0000 0100

IEEE FP 0 0111 1111 1110000 00000000 00000000 Decimal FP +; exp=0; 1.111 = 1.875

IEEE FP 1 1000 0010 0110000 00000000 00000000 Decimal FP -; exp=3; 1.011 = -11

2. Negate the following 8-bit numbers using 2's complement:

1011 1100 0100 0011 → 0100 0100

1000 0000 0111 1111 → 1000 0000 (overflow, can’t negate -128)

3. Convert the following FP numbers to IEEE FP format (only up to 4 binary

FP digits):

Given Sign, Exponent FP Bit sequence

0 sign = 0; exp = 0 0 0000 0000 0000 0000 0000…

–1 sign = 1; exp = 127 0 0111 1111 0000 0000 0000…

+1.1 sign = 0; exp = 127 0 0111 1111 0001 0000 0000…

–65.75 sign = 1; exp = 133 1 1000 0101 0000 0111 0000…

4. Using kmaps find the equations for the following outputs and state

transitions, draw the relevant circuit.

D2 D1 D0 A B

0 0 0 0 1

0 0 1 1 1

0 1 0 0 0

0 1 1 0 1

1 0 0 1 1

1 0 1 0 0

1 1 0 1 0

Solution:

First we look at the transition states, we know we need 7 states to represent all the

changes of A and B. We determine the number of flip flops we need by working out

the smallest power of two that is greater than 7. In this case 2 to the power of 3 gives

us 8 which is greater than 7 and therefore the number of flipflops we need to

represent the entire system is 3. Starting from 000 we count to 6 in binary (0-6) for

our seven states. Each current state represented by Q2-0 needs to transition to the

next line which we will represent as D2-0 (next state). Now we can define a kmap

for each of the D states to build our combinatorial circuit. We also include any other

possible states but mark them with an X as don’t cares as we shouldn’t be getting

into those states.

Q2 Q1 Q0 D2 D1 D0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 0 0 0

1 1 1 X X X

D2 Kmap

 Q1Q0 00 01 11 10

Q2

0 0 0 1 0

1 1 1 X 0

We can then write an expression for when D2 is 1 by grouping the 1’s (and don’t

cares if needed) into the largest groupings of a power of 2 in either a straight line or

a square.

D2 = Q2Q1’ + Q1Q0

Note the apostrophe indicates active low (when Q1 is 0 then Q1’ is 1).

D1 Kmap

 Q1Q0 00 01 11 10

Q2

0 0 1 0 1

1 0 1 X 0

D1 = Q1’Q0 + Q2’Q1Q0’

D0 Kmap

 Q1Q0 00 01 11 10

Q2

0 1 0 0 1

1 1 0 X 0

Note in this case we can wrap the top right most 1 with the top left 1. Since we are

using the top left 1 twice (once for yellow and once for green) we indicated it with

blue.

D0 = Q1’Q0’ + Q2’Q0’

We now have the foundations of our state circuit from here we just need to work out

the circuits for A and B. Again we can just create a Kmap from using the state table

and the original table to the question.

A Kmap

 Q1Q0 00 01 11 10

Q2

0 0 1 0 0

1 1 0 X 1

A = Q2Q0’ + Q2’Q1’Q0

B Kmap

 Q1Q0 00 01 11 10

Q2

0 1 1 1 0

1 1 0 X 0

B = Q1’Q0’ + Q2’Q0

Now we have all the equations we can implement it in Retro as below. The LEDs for

each output are to confirm their current state.

