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Tutorial 1 – Number Representation      
 
1. Convert the following numbers: 

GIVEN CONVERT TO  

Decimal 77 Binary, 8-bit signed 0100 1101  

Decimal -100 Binary, 8-bit signed 1001 1100  

Decimal 99 Hex, 8-bit signed 63  

Decimal -23 Hex, 8-bit signed E9  

Binary, signed 1101 1100 Hex, 8-bit signed DC  

Binary, signed 1101 1100 Decimal -36  

Binary fixed pt. 11.0101 Decimal 3.3125  

Decimal 0.85 Binary fixed pt. (4 deci.) 0.1101  

Decimal FP -16.25 IEEE FP 1 1000 0011 0000 0100  

IEEE FP 0 0111 1111 1110000 00000000 00000000 Decimal FP +; exp=0; 1.111 = 1.875 

IEEE FP 1 1000 0010 0110000 00000000 00000000 Decimal FP -; exp=3; 1.011 = -11 

 



2. Negate the following 8-bit numbers using 2's complement: 

 

1011 1100 0100 0011 → 0100 0100 

 

1000 0000 0111 1111 → 1000 0000 (overflow, can’t negate -128) 

 

 

 

3. Convert the following FP numbers to IEEE FP format (only up to 4 binary 

FP digits): 

 

Given Sign, Exponent FP Bit sequence      

 

0 sign = 0; exp = 0 0 0000 0000 0000 0000 0000… 

 

–1 sign = 1; exp = 127 0 0111 1111 0000 0000 0000… 

 

+1.1 sign = 0; exp = 127 0 0111 1111 0001 0000 0000… 

 

–65.75 sign = 1; exp = 133 1 1000 0101 0000 0111 0000… 

 

 

4. Using kmaps find the equations for the following outputs and state 

transitions, draw the relevant circuit. 

 

 

D2 D1 D0 A B 

0 0 0 0 1 

0 0 1 1 1 

0 1 0 0 0 

0 1 1 0 1 

1 0 0 1 1 

1 0 1 0 0 

1 1 0 1 0 

 



Solution:  

 

First we look at the transition states, we know we need 7 states to represent all the 

changes of A and B. We determine the number of flip flops we need by working out 

the smallest power of two that is greater than 7. In this case 2 to the power of 3 gives 

us 8 which is greater than 7 and therefore the number of flipflops we need to 

represent the entire system is 3. Starting from 000 we count to 6 in binary (0-6) for 

our seven states. Each current state represented by Q2-0 needs to transition to the 

next line which we will represent as D2-0 (next state). Now we can define a kmap 

for each of the D states to build our combinatorial circuit. We also include any other 

possible states but mark them with an X as don’t cares as we shouldn’t be getting 

into those states. 

 

Q2 Q1 Q0 D2 D1 D0 

0 0 0 0 0 1 

0 0 1 0 1 0 

0 1 0 0 1 1 

0 1 1 1 0 0 

1 0 0 1 0 1 

1 0 1 1 1 0 

1 1 0 0 0 0 

1 1 1 X X X 

 

 

D2 Kmap 

 

 Q1Q0 00 01 11 10 

Q2      

0  0 0 1 0 

1  1 1 X 0 

 

We can then write an expression for when D2 is 1 by grouping the 1’s (and don’t 

cares if needed) into the largest groupings of a power of 2 in either a straight line or 

a square. 

 

D2 = Q2Q1’ + Q1Q0 

 

Note the apostrophe indicates active low (when Q1 is 0 then Q1’ is 1). 

 



D1 Kmap 

 

 Q1Q0 00 01 11 10 

Q2      

0  0 1 0 1 

1  0 1 X 0 

 

D1 = Q1’Q0 + Q2’Q1Q0’ 

 

D0 Kmap 

 

 Q1Q0 00 01 11 10 

Q2      

0  1 0 0 1 

1  1 0 X 0 

 

Note in this case we can wrap the top right most 1 with the top left 1. Since we are 

using the top left 1 twice (once for yellow and once for green) we indicated it with 

blue. 

 

D0 = Q1’Q0’ + Q2’Q0’ 

 

We now have the foundations of our state circuit from here we just need to work out 

the circuits for A and B. Again we can just create a Kmap from using the state table 

and the original table to the question. 

 

A Kmap 

 

 Q1Q0 00 01 11 10 

Q2      

0  0 1 0 0 

1  1 0 X 1 

 

 

A = Q2Q0’ + Q2’Q1’Q0 

 

 

 

 



B Kmap 

 

 Q1Q0 00 01 11 10 

Q2      

0  1 1 1 0 

1  1 0 X 0 

 

B = Q1’Q0’ + Q2’Q0 

 

Now we have all the equations we can implement it in Retro as below. The LEDs for 

each output are to confirm their current state. 

 

 


