The University of Western Australia School of Engineering Prof. Thomas Bräunl

Embedded Systems

Lab Assignment 2 – CPU Design

NO TEAMS: This lab is an individual assignment.

EQUIPMENT: PC/Mac with ReTrO simulation system https://robotics.ee.uwa.edu.au/retro/

EXPERIMENT 1 (8 points)

Build a working CPU with 16-bit data bus (8-bit op-codes, and 8-bit operands / 8-bit addresses). Use a 16-bit wide RAM module. Implement the following ALU/CU functions:

0 v	LOADC	load constant into accumulator	acc ← v
1 a	LOADM	load memory value into accumulator	acc ← mem[a]
2 v	ADDC	add constant to accumulator	acc ← acc + v
3 a	ADDM	add memory value to accumulator	acc ← acc + mem[a]
4 a	STORE	store accumulator to memory (high byte 0)	mem[a] ← acc
5 *	CLEAR	set accumulator to zero	acc ← 0
6 a	BRA	branch always to address a	pc ← a
7 a	BZ	branch only if (acc==0) to address a	if (acc==0) then pc ← a

EXPERIMENT 2 (2 points)

Write a program to calculate $1 + 2 + 3 \dots + m$, for a given value m with $m \ge 1$.

$$result = \sum_{i=1}^{m} i$$

Points: 10

Data locations: value *m* in location \$A0

result in location \$A1

Algorithm: clear result

loop: add mem[m] to result
 decrement mem[m]

if (m≠0) branch to loop

done: branch to done /* finished: endless loop */

Example: m in mem[A0] result in mem[A1]

3 3 2 5 1 6 0 **6**