
Embedded Systems Tutorial 4
Intro to the C programming language

Marcus Pham & Stephen Whitely

1 DES - Marcus Pham & Stephen Whitely

Anatomy of a Function

In Assembly
• we have subroutines
• arguments are place on the stack
or data registers

• preservation of data was not
guaranteed (eg D0, A0)
• results returned in D0

• even simple math can be tedious

• simple data structures can be
difficult to use and are broken easily

In C
• we have functions
• arguments are passed as part of
the call to the function, all in one line
of code
• preservation of data can generally
be considered safe*
• results returned can be assigned to
any variable (of the same datatype)
• many simple math operations can
be achieved in a single line of code
• simple data structures are simple
to use but can still be broken easily

* with exception of using global variables and
pointers

2 DES - Marcus Pham & Stephen Whitely

Anatomy of a Function

datatype function(datatype
arg1, datatype arg2)
{ ...

return result;
}

eg

int sum(int x,int y)
{ int z;

z = x + y;
return z;

}

datatype – what sort of datatype the
function will return or needs as
arguments

function – name of the function

arguments – input values to be used
by the function

{ ... } – the statements making up the
function, ending with the return
statement

3 DES - Marcus Pham & Stephen Whitely

Syntax differences
Assembly

| uses ‘vertical bar’ or ‘pipe’ symbol for
| comments – no need to close comments
| but new lines need to be marked

.include “eyebot.i”

arguments placed in stack
jsr function

restore stack pointer
...

function: ...
rts

result stored in D0

instructions end in whitespace/new line

C

/* comments are put between forward
slashes and asterisks – need to be closed
but can span multiple lines */ (or // comment)

#include “eyebot.h”

x = function([args]);
...
int function([args])
{ ...

return result;
}
result stored in x

instructions end in a semicolon ;

4 DES - Marcus Pham & Stephen Whitely

Datatypes
} In assembly we saw .b, .w, .l for byte, word and long as well as a

special type .asciz for strings.
} Integer operators could be interchanged if data permitted

} In C, the main datatypes are int, float, double and char.
} int is for integers
} float and double are for floating point (decimal fraction) numbers,

double is double precision (double storage space)*
} char is for characters, an array of characters makes a string

} Another datatype is void
} Used to create functions which return nothing or have no arguments

*In a memory restricted environment, such as many embedded
systems, float and double should be avoided if not necessary.

5 DES - Marcus Pham & Stephen Whitely

Brackets, Braces and Parenthesis, oh My!
} [] square brackets are used to enclose array references –

“table[element number]”, and when declaring arrays – eg.
“int table[number of elements];”

} { } braces, or curly brackets are used to enclose
statements inside functions and structures

} () parenthesis are used to enclose and group arguments
to a function – eg. “function(arg1, (arg2+arg3)xarg4);”

6 DES - Marcus Pham & Stephen Whitely

Arrays
} Arrays are an indexed group of elements of a certain type used to store

data.
} Declare by
datatype name[number of elements];

e.g. -
int table[10];

• Reference by
name[element number]

e.g. -
x = table[0]; /* stores value in table element 0 to x */
table[9] = y; /* stores value of y to the element 9 */

Note – An array initialised “datatype array[n];” will have elements from
“array[0]” to “array[n-1]”

DES - Marcus Pham & Stephen Whitely7

Arrays

8

} Arrays can be filled a number of ways.
} directly at declaration e.g.
int table[5] = {1,2,3,4,5};

} inside a loop using control structures such as for loops (see
upcoming example)

} Arrays are not automatically filled with zeros. There may be
random data left in them from previous memory storage.

} A special array operation is available when declaring an array,
which will fill the array with zeroes or NULL.
int table[size] = {0};

} This special operation only works when declaring the array.

DES - Marcus Pham & Stephen Whitely

Multi-dimensional Arrays

9

} Multi-dimensional arrays are essentially arrays of arrays
} Declare by
datatype name[rows][columns];

e.g. -
int table[4][5];

} This is extendable out to how ever many dimensions is
required e.g. –

int table[1][2][3]...[n];

} Large arrays will use a lot of memory. Try to make arrays
no larger than required.

DES - Marcus Pham & Stephen Whitely

Multi-dimensional Arrays

10

} Multi-dimensional arrays can be filled at declaration just
like a one dimensional array

e.g. -
int table[4][3] = {{1, 2, 3}, {4, 5, 6},

{7, 8, 9}, {10, 11, 12}};

Represents this table

DES - Marcus Pham & Stephen Whitely

1 2 3

4 5 6

7 8 9

10 11 12

Simple Loop Example
} Create a data structure with ten elements and store the

numbers 1 to 10, in order, in that data structure.

11 DES - Marcus Pham & Stephen Whitely

Simple Loop Example

In Assembly

.section .data
table: ds.l 10

.section .text

.globl main

main: lea table, A0
move.l #1, D0

loop: move.l D0, (A0)
adda.l #4, A0
addi.l #1, D0
cmpi.l #10, D0
bne loop
rts

| declare data structure ‘table,’ ten
| long elements (40 bytes in total)

| copy table address to add. register
| put the number 1 in data register
| copy number (D0) into table (at A0)
| increment A0 to next table element
| increment D0 by 1
| compare D0 to 10
| branch if not equal to ‘loop’
| otherwise end (return to system)

12 DES - Marcus Pham & Stephen Whitely

Simple Loop Example

In Assembly

.section .data
table: ds.l 10

.section .text

.globl main

main: lea table, A0
move.l #1, D0

loop: move.l D0, (A0)
adda.l #4, A0
addi.l #1, D0
cmpi.l #10, D0
bne loop
rts

In C

int main()
{ int table[10];

int i;
for (i=1; i<=10; i++)
{ table[i-1] = i;
}
return 0;

}

13 DES - Marcus Pham & Stephen Whitely

Simple Loop Example

In C

int main()
{ int table[10];

int i;
for (i=1; i<=10; i++)
{ table[i-1] = i;
}
return 0;

}

/* declare table array */
/* start of for loop 1-100 */
/* store i in ith array element*/
/* end of for loop */
/* return statement */
/* end of main() */

14 DES - Marcus Pham & Stephen Whitely

Control Structures
} In assembly we used branching and labels
} In C we use if, else, do, while
} These control structures allow much simpler ways to

create loops and iterations

DES - Marcus Pham & Stephen Whitely15

Control Structures
int x = 0;

while (x<=10)

/* check that x is less than or = 10, if not skip to next */

{ printf(x); /* print the value of x */

x++; /* increment x by 1 (same as x = x + 1) */

} /* loop back to while statement */

int x = 0;

do { /* do while always runs at least once */

printf(x); /* print the value of x */

x++; /* increment x by 1 (same as x = x + 1) */

} while (x<10)

/* check that x is greater than zero, if so loop back */

The difference is simply when the while statement is evaluated.

DES - Marcus Pham & Stephen Whitely16

Control Structures
int i;

for (i = 0, i <= 10, i++)

/* set initial and final value for i, and increment each
iteration */

{ printf(i); /* print the value of i */

}

The for loop works a lot like the while loop but the ‘counter’ is contained
within the for statement. The increment occurs after the code inside the
loop is run and the comparison operation occurs before the loop is run.

DES - Marcus Pham & Stephen Whitely17

Control Structures

if (x==1)
{ ...
} else {

...
}

if (x==1)
{ x = f1(x);
} else if (x==2)
{ x = f2(x);
} …

switch (x)
{ case 1: x = f1(x);

break;
case 2: x = f2(x);

break;
...
case n: x = fn(x);

break;
default: x = 0;

}

DES - Marcus Pham & Stephen Whitely18

Note that switch/case only works with exact integers, not floating point numbers and
not ranges of values.

Complex Statements
} In assembly, each command only had two operands

} The operands had to be constant numbers, registers or
variables

} In C, each statement or function can contain a number of
operands and the operands themselves can be statements
or functions
} e.g.
d = sum(a, sum(b, c));

} This means we can accomplish in one line of C code
something that would take many lines of assembly.

19 DES - Marcus Pham & Stephen Whitely

Complex Statements
In Assembly

.asciz text1 “I only want to print “

.asciz text2 “ things but I need “

.asciz text3 “ lines of code./n”

main: move.l #5, D1
move.l #23, D2
jsr printmsg
rts

printmsg: pea text1
jsr LCDPrintf
add.l #4, SP
move.l D1, -(SP)
jsr LCDPutInt
add.l #4, SP
pea text2
jsr LCDPrintf
add.l #4, SP
move.l D2, -(SP)
jsr LCDPutInt
add.l #4, SP
pea text3
jsr LCDPrintf
add.l #4, SP
rts

23 lines of code (10 more if you backup registers)

In C
int main()
{ int a = 5;

int b = 8;
printmsg(a,b);
return 0;

}

void printmsg(a,b)
{ LCDPrintf(“I only want to print %d things but

I need %d lines of code./n”,a,b);
return void;

}

8 lines of code

DES - Marcus Pham & Stephen Whitely20

Pointers
} Best thing about them is that you don’t have to use them

yet :P.
} They have there uses but for inexperienced programmers

they are most likely only going to cause you to break
things.

} Please don’t even think about using them in the early labs.
} We will come back to pointers later in the unit.

21 DES - Marcus Pham & Stephen Whitely

Pointers
int x, y; /* integer */

x=7; y=5;
x → 7 (value)
&x → $F0A0 (address)
int *a; /* pointer */

a = &y; /* address of y */

a → $F0A4 (address)
*a → 5 (dereferenced value)

22 DES - Marcus Pham & Stephen Whitely

Fun Facts about C
} C programming language, which was developed in 1972,

was preceded by B (in 1969) but B was not preceeded by
A.

} The name of the C++ programming is a play on the
increment function in C.

} The name C# is a reference to the musical notation. For
absolutely no good reason.

} Fun facts about programming are rarely ever actually fun.
} If you do find these facts fun, you are probably a big nerd

but I still like you.

23 DES - Marcus Pham & Stephen Whitely

