ELEC4403 Lab 8 — Lab Prep

Main ideas:

Use Remote Desktop to login
Use a menu/keys to control
Calibrate PSD raw values using GUI at start to find appropriate values.
Use previously defined variable definitions: QQVGA_X = 160, QQVGA_Y =
120, QQVGA_SIZE = QQVGA_X*QQVGA_Y*3(ie. Number of bytes).
Use LCDSetPrintf(row, column, message) to display on LCDScreen text
under the image, also useful for overwriting old values.
Use a control integer to select which mode to work in
Use lots of printf statements to how status, error checking
Draw a line to represent the column with the max red pixels
Use precompiler #define to specify variables to later easily calibrate
Use modular blocks of code, eg. One function to drive/control, one
function to process the image
Use <math.h> to do sqrt, typecasting where needed.
If doing exercise using RGB values, a basic method to verify if a pixel is
red (remembering RGB values are 0-255):

o pixel_red > 50 and pixel_red> pixel_blue*2 and

pixel_red>pixel_green*2

Main algorithm details

Have a start window, to init all

Move to a new window to show current status (camera/image, binary
image and centre of object).

Have a button to start actual driving/restart process, whilst displaying
mode on screen and binary image with current status/mode to see what
is going on

Print more detailed info on command line to see activity, ie all variables,
PSD values, actions, without cluttering the screen

Once motor control hits the can, use VWGetPosition(&x, &y, &phi) to
obtain current position, VWTurn(-phi) then calculate distance back using
x, y values to VWStraight().

Use VWDriveWait() in between drive sequences to fully complete
driving/action

Once returned, turn 3.14 radians and start back at idle status, requiring a
key press to restart driving. Remove can at this point

Screenshots:

Restart

ﬁi@raspberrypi: ~fusr/software
Edit Tabs

turning
111316

middle
turning

