
Embedded Systems Lab 9
Image Processing, Pointers,  

Camera Functions

Tutor: Marcus Pham
marcus.pham@uwa.edu.au

mailto:marcus.pham@uwa.edu.au

Embedded Systems. Marcus Pham 2017

Image Processing
• Images can be stored in many different ways.
• In the common RGB method, images are made up of pixels, which each have

three values associated with them. Each value corresponds to a Red, Green or
Blue value for that pixel.

• These three values can be stored as bytes in an array. One array for each pixel.
• The image is made a singular 1 dimensional array of size: Width*Height*3.
• Before we can work on our image, we must allocate enough space for our array.

We already have predefined constants for the image sizes: 
 
QQVGA - 160*120 pixels  
QVGA - 320*240 pixels  
VGA - 640*480 pixels

• As well as predefined sizes to help initialisation of arrays: 
eg. QQVGA_SIZE = 160*120*3,  
 QQVGA_PIXELS = 160*120  
 QQVGA_X = 160, QQVGA_Y = 120

• Which helps us initialise our arrays easily

 BYTE colimage[QQVGA_SIZE];

2

Image Processing
! In order to ensure our camera collects the images of the correct size

we must also initialise our camera to the corresponding size: 
eg. CAMInit(QQVGA); //using QQVGA ie. 160*120

! In order to capture an image you then simply run: 
CAMGet(colimage);

! Take this image as an example. It’s an RGB image of size 20 x 15
pixels.

! Note that row and column  
indexes start at zero and that 
they start from the top left of 
the image.

! In each pixel is stored an array 
of three ‘BYTE’s for the RGB val.

3 Embedded Systems. Marcus Pham 2017

Image Processing

4

! Let’s say we want to look at the  
values in the pixel that makes up  
the top of the roof of the house.

! Remembering back that our images  
are stored as a single 1D array, to  
obtain the correct pixel we must do  
maths… 
 
int pixel = row*width+col;  
//in this case row = 4, width = 20 and col = 3  

! As our array will store the RGB BYTEs in the order RED, GREEN, BLUE 
to obtain our values we can get them by:

BYTE p_red = colimage[pixel*3];

BYTE p_green = colimage[pixel*3+1];
BYTE p_blue = colimage[pixel*3+2];

Embedded Systems. Marcus Pham 2017

Image Processing

5

! Let’s say we want to find the location of an object in
an image
! we know that this object is predominately blue
! we know our background is predominately not blue

! Let’s start with some  
code to identify the  
blue pixels in the  
image.

Embedded Systems. Marcus Pham 2017

Image Processing

6

• Start with some for loops to scan through the pixels of the image
...
int i,j;
for (i = 0, i < 15,i++) {
 for (j = 0, j < 20, j++) {
 /* we can now address each pixel */

 /*eg colimage[pixel*3+2] for blue */

 ...
 }
}
...

Embedded Systems. Marcus Pham 2017

• Now let’s check to see if that pixel is blue. We’ll need somewhere to
store the results too so lets make another array.

...
int isBlue[15][20] = {0};
int i,j;
for (i = 0, i < 15,i++) {
 for (j = 0, j < 20, j++) {
 if (image[i][j][0] < 100 &&  
 image[i][j][1] < 100 &&

 image[i][j][2] > 200) {
 isBlue[i][j] = 1;
 }
 }
}

• Now let’s check to see if that pixel is green. We’ll need somewhere to
store the results too so lets make another array.

...
int isGreen[15][20] = {0};
int i,j;
for (i = 0, i < 15,i++) {
 for (j = 0, j < 20, j++) {
 if (image[i][j][0] < 100 &&  
 image[i][j][1] > 200 &&

 image[i][j][2] < 100) {
 isGreen[i][j] = 1;
 }
 }
}

• Now let’s check to see if that pixel is yellow. We’ll need somewhere to
store the results too so lets make another array.

...
int isYellow[15][20] = {0};
int i,j;
for (i = 0, i < 15,i++) {
 for (j = 0, j < 20, j++) {
 if (image[i][j][0] > 200 &&  
 image[i][j][1] > 200 &&

 image[i][j][2] < 100) {
 isYellow[i][j] = 1;
 }
 }
}

• Now let’s check to see if that pixel is purple. We’ll need somewhere to
store the results too so lets make another array.

...
int isPurple[15][20] = {0};
int i,j;
for (i = 0, i < 15,i++) {
 for (j = 0, j < 20, j++) {
 if (image[i][j][0] > 200 &&  
 image[i][j][1] < 100 &&

 image[i][j][2] > 200) {
 isPurple[i][j] = 1;
 }
 }
}

• Now let’s check to see if that pixel is dark. We’ll need somewhere to
store the results too so lets make another array.

...
int isDark[15][20] = {0};
int i,j;
for (i = 0, i < 15,i++) {
 for (j = 0, j < 20, j++) {
 if (image[i][j][0] < 100 &&  
 image[i][j][1] < 100 &&

 image[i][j][2] < 100) {
 isDark[i][j] = 1;
 }
 }
}

• Now let’s check to see if that pixel is bright. We’ll need somewhere to
store the results too so lets make another array.

...
int isBright[15][20] = {0};
int i,j;
for (i = 0, i < 15,i++) {
 for (j = 0, j < 20, j++) {
 if (image[i][j][0] > 200 ||  
 image[i][j][1] > 200 ||

 image[i][j][2] > 200) {
 isBright[i][j] = 1;
 }
 }
}

Image Processing

7

• Now let’s check to see if that pixel is blue. We’ll need somewhere to
store the results too so lets make another array.

...
int isBlue[15*20] = {0};
int i,j;
for (i = 0, i < 15,i++) {
 for (j = 0, j < 20, j++) {
 if (image[(i*20+j)*3] < 100 &&  
 image[(i*20+j)*3+1] < 100 &&

 image[(i*20+j)*3+2] > 200) {
 isBlue[i*20+j] = 1;
 }
 }
}

Embedded Systems. Marcus Pham 2017

Image Processing

8

! Pro tip!
! Do not use the values from the previous slide as your

thresholds for matching a colour.
! You will need to determine your own values based on

camera/lighting/etc.

Embedded Systems. Marcus Pham 2017

Image Processing

9

! We now have an array of array of a integers where pixels
that are ‘blue’ are now ‘1’s and those that aren’t are ‘0’s.

! If we take the left image as input and were to display the
output of this code as a binary image we’d have the image
on the right (where ‘1’s are displayed as black and ‘0’s as
white).

Embedded Systems. Marcus Pham 2017

10 Embedded Systems. Marcus Pham 2017

Embedded Systems. Stephen Whitely
2013

11

12 Embedded Systems. Marcus Pham 2017

13

R
G
B

R
E
D

G
R
E
E
N

B
L
U
E

Embedded Systems. Marcus Pham 2017

14

R
G
B

R
E
D

G
R
E
E
N

B
L
U
E

Embedded Systems. Marcus Pham 2017

15

R
G
B

I
S
B
L
U
E

Embedded Systems. Marcus Pham 2017

Alternative Colour Spaces

16

! RGB is one way to represent colour and is probably the
most intuitive but we can represent colours with other
systems that have various advantage and disadvantages
! HSV/HSL

! Hue, saturation, value/luminance
! Great for separating out bands of colour (hue)
! Difficult to represent visually

! CMYK
! Cyan, magenta, yellow, black
! Used in printers

! YPbPr/YCbCr
! Used in analogue TV signals / JPEG and MPEG encoding

! Converting between colour spaces is computationally trivial.

Embedded Systems. Marcus Pham 2017

17

H
S
L

I
S
B
L
U
E

Embedded Systems. Marcus Pham 2017

Pointers
• Sometimes it is not convenient or possible to pass

through variables into another function. In particular,
we have no easy way of returning multiple variables.

• When we send a variable as an argument to a
function, a copy is made rather than the original. Any
changes to this copy have no effect on the original.

• In these situations, we need to use pointers.
• When we declare a variable in C, it is given an

address in memory.
• A pointer, put simply, is just a memory address.
• Be warned – messing up pointers is the most sure

fire way to create unstable code.

18 Embedded Systems. Marcus Pham 2017

Pointers
• We already know how to declare a variable.
int x;
• How do we declare a pointer? It’s actually just a variable with some

special notation.
int *x_pnt;
• The ‘*’ before the variable name tells the compiler that this variable is a

pointer (in this case, to an int).

• To store the address of x in x_pnt we use the ‘&’ symbol – called the
‘address-of-operator’.

x_pnt = &x;
• To retrieve the value stored at the memory location we use the ‘*’

symbol again – the ‘dereferencing operator’
int y = *x_pnt;
• The dereferencing operator can also be used in an assignment

operation
*x_pnt = 3;

19 Embedded Systems. Marcus Pham 2017

Pointers
• Make sure you pay attention with your pointers

x = y;
x = &y;
x = *y;
*x = y;
*x = &y;
*x = *y;
&x = y;
&x = &y;
&x = *y;

• Under differing circumstances, these are all valid but all
mean very different things.

20 Embedded Systems. Marcus Pham 2017

Pointers
• So now we have the address of x stored in x_pnt, we can send that

as an argument to a function and it can operate on it and write to it
without having to have the variable within its scope.

void doubler_func(int *addr) {
 *addr = *addr * 2; /* the ‘*’ makes it return
 the value at addr */
 return;
}
...
int x = 1;
int *x_pnt = &x;
LCDPrintf(“%d\n”, x); /* this will print ‘1’*/
doubler_func(x_pnt);
LCDPrintf(“%d\n”, x); /* this will print ‘2’*/

21 Embedded Systems. Marcus Pham 2017

Pointers
! Common mistakes with pointers
! Missing notation eg  
x_pnt = x; instead of x_pnt = &x;

! When declaring multiple pointers eg  
/* the following line of code is valid, however - */ 
int* x_pnt, y_pnt; /* only x_pnt is a pointer */ 
/* make sure you declare each as a pointer */ 
int *x_pnt, *y_pnt; /* both are now pointers */

! Pointer manipulation

22 Embedded Systems. Marcus Pham 2017

Camera Functions  
 Initialisation and Release
• int CAMInit (int size);  

//initialises the camera to the size specified. 
Sizes:  
QQVGA - 160*120,  
QVGA - 320*240, 
VGA - 640 *480, 
CAM1MP - 1296*730, 
CAM5MP - 1920*1080  
 

• int CAMRelease (void);  
//releases the camera

23 Embedded Systems. Marcus Pham 2017

Camera Functions  
 Initialisation and Release
...

int error = CAMInit(QQVGA); /* initialise camera */

if (error!=0) LCDPrintf(“Camera initialisation error”);
...

/* get images from camera, do image processing, etc */

...
error = CAMRelease(); /* release camera */

if (error!=0) LCDPrintf(“Camera release error”);
...

DON’T FORGET TO RELEASE THE CAMERA AT
THE END OF YOUR PROGRAM!

24 Embedded Systems. Marcus Pham 2017

Camera Functions  
Retrieving an Image
• Main functions required: 

CAMGet(BYTE *img); 
//captures a colour image (RGB) of the size
specified when initialising the camera  
//remember that the size is 3x the pixel count 
 
CAMGetGray(BYTE *img) 
//captures a greyscale image (0-255) 
//notice that this only requires an image of the
sam size as the pixel count. 
 
REMEMBER TO INITIALISE YOUR IMAGES TO
THE CORRECT SIZE FIRST!!!!

25 Embedded Systems. Marcus Pham 2017

Camera Functions  
Displaying an image

26 Embedded Systems. Marcus Pham 2017

• LCDImage(BYTE *img); 
//displays a colour image (RGB) 
 
LCDImageGray(BYTE *img); 
//displays a greyscale image (0-255) 
 
LCDImageBinary(BYTE *img); 
//displays a binary image (1 or 0) 
 
LCDImageSize(size); 
//sets the expected image printing size  
//remember to set this first!!! 
 
LCDImageStart(size, x_start, y_start, x_size, y_size); 
//sets the starting position of the image

• //useful for printing multiple images to the screen  

27 Embedded Systems. Marcus Pham 2017

• LCDSetPrintf(row, col, message); 
//prints a string at a position on the screen  
 
LCDLine(x_start, y_start, x_end, y_end, COLOR) 
//prints a line on the LCD. 
Colors are already predefined eg. RED, BLUE, YELLOW,
ORANGE etc. 

• REMEMBER that if you are printing anything to the
LCD, you must use either the touchscreen (by placing
your binary into the ~/usr/ folder) or through remote
desktop. 

• Function lookup available at: 
http://robotics.ee.uwa.edu.au/eyebot7/Robios7.html  

Other useful functions

http://robotics.ee.uwa.edu.au/eyebot7/Robios7.html

