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Image Processing
• Images can be stored in many different ways.
• In the common RGB method, images are made up of pixels, which each have 

three values associated with them. Each value corresponds to a Red, Green or 
Blue value for that pixel.

• These three values can be stored as bytes in an array. One array for each pixel.
• The image is made a singular 1 dimensional array of size: Width*Height*3.
• Before we can work on our image, we must allocate enough space for our array. 

We already have predefined constants for the image sizes: 
 
QQVGA - 160*120 pixels  
QVGA    - 320*240 pixels  
VGA       - 640*480 pixels

• As well as predefined sizes to help initialisation of arrays: 
eg. QQVGA_SIZE      = 160*120*3,  
      QQVGA_PIXELS = 160*120  
      QQVGA_X = 160, QQVGA_Y = 120

• Which helps us initialise our arrays easily

  BYTE colimage[QQVGA_SIZE];
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Image Processing
! In order to ensure our camera collects the images of the correct size 

we must also initialise our camera to the corresponding size: 
eg. CAMInit(QQVGA); //using QQVGA ie. 160*120

! In order to capture an image you then simply run: 
CAMGet(colimage);

! Take this image as an example. It’s an RGB image of size 20 x 15 
pixels.

! Note that row and column  
indexes start at zero and that 
they start from the top left of 
the image.

! In each pixel is stored an array 
of three ‘BYTE’s for the RGB val.
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Image Processing
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! Let’s say we want to look at the  
values in the pixel that makes up  
the top of the roof of the house.

! Remembering back that our images  
are stored as a single 1D array, to  
obtain the correct pixel we must do  
maths… 
 
int pixel =  row*width+col;  
//in this case row = 4, width = 20 and col = 3  

! As our array will store the RGB BYTEs in the order RED, GREEN, BLUE 
to obtain our values we can get them by:

BYTE p_red = colimage[pixel*3]; 

BYTE p_green = colimage[pixel*3+1]; 
BYTE p_blue = colimage[pixel*3+2];
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Image Processing
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! Let’s say we want to find the location of an object in 
an image
! we know that this object is predominately blue
! we know our background is predominately not blue

! Let’s start with some  
code to identify the  
blue pixels in the  
image.
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Image Processing
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• Start with some for loops to scan through the pixels of the image
... 
int i,j; 
for (i = 0, i < 15,i++) { 
 for (j = 0, j < 20, j++) { 
  /* we can now address each pixel */ 

  /*eg colimage[pixel*3+2] for blue */ 

  ... 
 } 
} 
...
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• Now let’s check to see if that pixel is blue. We’ll need somewhere to 
store the results too so lets make another array.

...
int isBlue[15][20] = {0}; 
int i,j; 
for (i = 0, i < 15,i++) { 
 for (j = 0, j < 20, j++) { 
  if (image[i][j][0] < 100 &&  
  image[i][j][1] < 100 && 

   image[i][j][2] > 200) { 
    isBlue[i][j] = 1; 
  } 
 } 
}

• Now let’s check to see if that pixel is green. We’ll need somewhere to 
store the results too so lets make another array.

...
int isGreen[15][20] = {0}; 
int i,j; 
for (i = 0, i < 15,i++) { 
 for (j = 0, j < 20, j++) { 
  if (image[i][j][0] < 100 &&  
  image[i][j][1] > 200 && 

   image[i][j][2] < 100) { 
    isGreen[i][j] = 1; 
  } 
 } 
}

• Now let’s check to see if that pixel is yellow. We’ll need somewhere to 
store the results too so lets make another array.

...
int isYellow[15][20] = {0}; 
int i,j; 
for (i = 0, i < 15,i++) { 
 for (j = 0, j < 20, j++) { 
  if (image[i][j][0] > 200 &&  
  image[i][j][1] > 200 && 

   image[i][j][2] < 100) { 
    isYellow[i][j] = 1; 
  } 
 } 
}

• Now let’s check to see if that pixel is purple. We’ll need somewhere to 
store the results too so lets make another array.

...
int isPurple[15][20] = {0}; 
int i,j; 
for (i = 0, i < 15,i++) { 
 for (j = 0, j < 20, j++) { 
  if (image[i][j][0] > 200 &&  
  image[i][j][1] < 100 && 

   image[i][j][2] > 200) { 
    isPurple[i][j] = 1; 
  } 
 } 
}

• Now let’s check to see if that pixel is dark. We’ll need somewhere to 
store the results too so lets make another array.

...
int isDark[15][20] = {0}; 
int i,j; 
for (i = 0, i < 15,i++) { 
 for (j = 0, j < 20, j++) { 
  if (image[i][j][0] < 100 &&  
  image[i][j][1] < 100 && 

   image[i][j][2] < 100) { 
    isDark[i][j] = 1; 
  } 
 } 
}

• Now let’s check to see if that pixel is bright. We’ll need somewhere to 
store the results too so lets make another array.

...
int isBright[15][20] = {0}; 
int i,j; 
for (i = 0, i < 15,i++) { 
 for (j = 0, j < 20, j++) { 
  if (image[i][j][0] > 200 ||  
  image[i][j][1] > 200 || 

   image[i][j][2] > 200) { 
    isBright[i][j] = 1; 
  } 
 } 
}

Image Processing
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• Now let’s check to see if that pixel is blue. We’ll need somewhere to 
store the results too so lets make another array.

...
int isBlue[15*20] = {0}; 
int i,j; 
for (i = 0, i < 15,i++) { 
 for (j = 0, j < 20, j++) { 
  if (image[(i*20+j)*3] < 100 &&  
  image[(i*20+j)*3+1] < 100 && 

   image[(i*20+j)*3+2] > 200) { 
    isBlue[i*20+j] = 1; 
  } 
 } 
}
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! Pro tip!
! Do not use the values from the previous slide as your 

thresholds for matching a colour.
! You will need to determine your own values based on 

camera/lighting/etc.
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! We now have an array of array of a integers where pixels 
that are ‘blue’ are now ‘1’s and those that aren’t are ‘0’s.

! If we take the left image as input and were to display the 
output of this code as a binary image we’d have the image 
on the right (where ‘1’s are displayed as black and ‘0’s as 
white). 
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Alternative Colour Spaces
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! RGB is one way to represent colour and is probably the 
most intuitive but we can represent colours with other 
systems that have various advantage and disadvantages
! HSV/HSL

! Hue, saturation, value/luminance
! Great for separating out bands of colour (hue)
! Difficult to represent visually

! CMYK
! Cyan, magenta, yellow, black
! Used in printers

! YPbPr/YCbCr
! Used in analogue TV signals / JPEG and MPEG encoding

! Converting between colour spaces is computationally trivial.
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Pointers
• Sometimes it is not convenient or possible to pass 

through variables into another function. In particular, 
we have no easy way of returning multiple variables.

• When we send a variable as an argument to a 
function, a copy is made rather than the original. Any 
changes to this copy have no effect on the original.

• In these situations, we need to use pointers.
• When we declare a variable in C, it is given an 

address in memory.
• A pointer, put simply, is just a memory address.
• Be warned – messing up pointers is the most sure 

fire way to create unstable code.
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Pointers
• We already know how to declare a variable.
int x; 
• How do we declare a pointer? It’s actually just a variable with some 

special notation.
int *x_pnt;  
• The ‘*’ before the variable name tells the compiler that this variable is a 

pointer (in this case, to an int).

• To store the address of x in x_pnt we use the ‘&’ symbol – called the 
‘address-of-operator’.

x_pnt = &x; 
• To retrieve the value stored at the memory location we use the ‘*’ 

symbol again – the ‘dereferencing operator’
int y = *x_pnt; 
• The dereferencing operator can also be used in an assignment 

operation
*x_pnt = 3;

19 Embedded Systems. Marcus Pham 2017



Pointers
• Make sure you pay attention with your pointers

x = y; 
x = &y; 
x = *y; 
*x = y; 
*x = &y; 
*x = *y; 
&x = y; 
&x = &y; 
&x = *y; 

• Under differing circumstances, these are all valid but all 
mean very different things.
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Pointers
• So now we have the address of x stored in x_pnt, we can send that 

as an argument to a function and it can operate on it and write to it 
without having to have the variable within its scope.

void doubler_func(int *addr) { 
 *addr = *addr * 2; /* the ‘*’ makes it return  
     the value at addr */ 
 return; 
} 
... 
int x = 1; 
int *x_pnt = &x;    
LCDPrintf(“%d\n”, x); /* this will print ‘1’*/ 
doubler_func(x_pnt);  
LCDPrintf(“%d\n”, x); /* this will print ‘2’*/
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Pointers
! Common mistakes with pointers
! Missing notation eg  
x_pnt = x; instead of x_pnt = &x; 

! When declaring multiple pointers eg  
/* the following line of code is valid, however - */ 
int* x_pnt, y_pnt; /* only x_pnt is a pointer */ 
/* make sure you declare each as a pointer */ 
int *x_pnt, *y_pnt; /* both are now pointers */ 

! Pointer manipulation
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Camera Functions  
 Initialisation and Release
• int CAMInit (int size);  

//initialises the camera to the size specified. 
Sizes:  
QQVGA - 160*120,  
QVGA - 320*240, 
VGA - 640 *480, 
CAM1MP - 1296*730, 
CAM5MP - 1920*1080  
 

• int CAMRelease (void);  
//releases the camera
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Camera Functions  
 Initialisation and Release
... 

int error = CAMInit(QQVGA); /* initialise camera */ 

if (error!=0) LCDPrintf(“Camera initialisation error”); 
... 

/* get images from camera, do image processing, etc */ 

... 
error = CAMRelease();   /* release camera */ 

if (error!=0) LCDPrintf(“Camera release error”); 
... 

DON’T FORGET TO RELEASE THE CAMERA AT 
THE END OF YOUR PROGRAM!
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Camera Functions  
Retrieving an Image
• Main functions required: 

CAMGet(BYTE *img); 
//captures a colour image (RGB) of the size 
specified when initialising the camera  
//remember that the size is 3x the pixel count 
 
CAMGetGray(BYTE *img) 
//captures a greyscale image (0-255) 
//notice that this only requires an image of the 
sam size as the pixel count. 
 
REMEMBER TO INITIALISE YOUR IMAGES TO 
THE CORRECT SIZE FIRST!!!!
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Camera Functions  
Displaying an image
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• LCDImage(BYTE *img); 
//displays a colour image (RGB) 
 
LCDImageGray(BYTE *img); 
//displays a greyscale image (0-255) 
 
LCDImageBinary(BYTE *img); 
//displays a binary image (1 or 0) 
 
LCDImageSize(size); 
//sets the expected image printing size  
//remember to set this first!!! 
 
LCDImageStart(size, x_start, y_start, x_size, y_size); 
//sets the starting position of the image

• //useful for printing multiple images to the screen  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• LCDSetPrintf(row, col, message); 
//prints a string at a position on the screen  
 
LCDLine(x_start, y_start, x_end, y_end, COLOR) 
//prints a line on the LCD. 
Colors are already predefined eg. RED, BLUE, YELLOW, 
ORANGE etc. 

• REMEMBER that if you are printing anything to the 
LCD, you must use either the touchscreen (by placing 
your binary into the ~/usr/ folder) or through remote 
desktop. 

• Function lookup available at: 
http://robotics.ee.uwa.edu.au/eyebot7/Robios7.html  

Other useful functions

http://robotics.ee.uwa.edu.au/eyebot7/Robios7.html

